
HAL Id: hal-01888676
https://hal.science/hal-01888676

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Prototype for Dynamic Provisioning of QoS-oriented
Virtualized Network Functions in the Internet of Things

Clovis Anicet Ouedraogo, El-Fadel Bonfoh, Samir Medjiah, Christophe
Chassot, Sami Yangui

To cite this version:
Clovis Anicet Ouedraogo, El-Fadel Bonfoh, Samir Medjiah, Christophe Chassot, Sami Yangui. A
Prototype for Dynamic Provisioning of QoS-oriented Virtualized Network Functions in the Internet of
Things. 4th IEEE Conference on Network Softwarization and Workshops (NetSoft 2018), Jun 2018,
Montreal, Canada. 3p., �10.1109/NETSOFT.2018.8459955�. �hal-01888676�

https://hal.science/hal-01888676
https://hal.archives-ouvertes.fr

A Prototype for Dynamic Provisioning of
QoS-oriented Virtualized Network Functions in the

Internet of Things
Clovis Anicet Ouedraogo∗, El-Fadel Bonfoh∗, Samir Medjiah∗†, Christophe Chassot∗‡ and Sami Yangui∗‡

Univ. Toulouse, ∗ CNRS-LAAS, † UPS, ‡ INSA, F-31400 Toulouse, France
{FirstName.LastName}@laas.fr

Abstract—Maturity of virtualization techniques and the success
of rich cloud services have pushed the horizon of a new sophis-
ticated and connected IoT systems over the Internet. However,
provisioning, including managing, such systems is still static, and
consequently, costly and time consuming. It is poorly suited to
the dynamic criterion of such systems. In this paper, self-adaptive
management procedures are proposed towards QoS maintaining
at the middleware level of IoT systems. The design is based on
concepts such as Network Function Virtualization (NFV) and
its generalization, Software-defined Networks (SDN) and edge
computing. A realistic use case is implemented for illustration and
validation purposes. Prototype execution shows the self-adaptive
capabilities of the approach to maintain operative QoS while
facing unpredicted events such as fire detection.

Index Terms—ANF, edge computing, IoT, QoS, NFV, SDN

I. INTRODUCTION

According to the standardization bodies [1] [2], the IoT
contextual model consists of four strata: Device, Network,
Middleware, and Application. This model is depicted in Fig.1.
IoT Devices collect and send data to the running Applications
through the Network facilities. Middleware entities are often
needed to support and manage the heterogeneous capabilities
and/or requirements of Applications and Devices (e.g. different
communication protocols, different data formats). More specif-
ically and based on both ETSI SmartM2M [1] and oneM2M
[2] specifications, the Middleware stratum consists of two
types of entities, i.e. an IoT Server and a set of Gateways.
The Gateways are the building blocks of the Middleware
strata. They implement Network Functions (NFs) that enable
devices to connect and communicate with each other and
with applications by translating different protocols, formatting
data to the appropriate shape and so on. The IoT Server
provides the medium for IP-level communication between the
Gateways and the underlying IoT Devices. Such contextual
model is enabling a plethora of novel and various end-user
applications. Home automation, healthcare and goods tracking
are among the examples. Efficiency in resources usage, scala-
bility, elasticity and easy provisioning are the key requirements
for these applications. Furthermore, a critical challenge for
such an architecture is to make up and running Quality of
Service (QoS) such as operative latency. On one hand, IoT-
based Applications are often latency-sensitive, demanding in
terms of service availability and needs to react quickly and

Fig. 1. IoT contextual model.

flexibly to changing in the operating environments [3] (e.g.
detecting a fire in smart home, braking a vehicle when facing
an unanticipated obstacle). On the other hand, according to
the IoT contextual model, these applications are quite far from
data sources.

All the interactions are performed via the Internet. This
may cause non-deterministic and tardy delays due to the
latency and the network workload variations. Furthermore,
the intermediate Network and Middleware strata [3] [4] are
made up of static and pre-provisioned silos. This makes their
adaptation and reconfiguration at runtime time consuming and
costly in terms of delays. Consequently, existing Network
and Middleware facilities often fail to dynamically adjust
and meet the evolving IoT applications requirements, caus-
ing frequent QoS degradation during execution. This work
focusses on designing and prototyping procedures that could
support the dynamic QoS management of the involved net-
work and gateway facilities in IoT. The proposed approach
is based on emerging concepts such as Network Functions
Virtualization (NFV), Software-defined networks (SDN) and
edge computing. The next section introduces these concepts
and discusses the proposed design. Section III describes the
prototype architecture and the demo scenario. Section IV
concludes the paper.

II. PROPOSED APPROACH

This section first introduces the key concepts of the pro-
posed approach. This is followed by the discussion of the
high-level architecture.978-1-5386-4633-5/18/$31.00 ©2018 IEEE

A. Key Concepts
Notably, concepts such as Network Function Virtualization

(NFV) and Software-defined Networks (SDN) and edge com-
puting might aid in addressing the previously described limi-
tations. NFV [5] aims at decoupling network resources from
underlying hardware. These resources can be considered at dif-
ferent levels of the communication stack (L3-L7 equipment).
NFV defines them in standalone pieces of software that could
be rapidly deployed and executed on any generic hardware.
More generally, the NFV concept can be envisioned to dy-
namically deploy NFs in a seamless way (i.e. NFs are inserted
into an ongoing communication between two communicating
entities). Moreover, these NFs can be packaged into different
formats ranging from classical virtualization containers (e.g.
virtual machines, application containers) to software modules
of an application, a.k.a Applicative Network Functions (ANF).
SDN [6] decouples network control and data plane and makes
the routing between the NFs by dynamically programming
the network resources. When it comes to edge computing
[7], it enables streamlining the traffic flow from IoT devices
and provide local computing capabilities that could host and
execute applications and network functions close (in terms
of latency) to the IoT devices. Specifically, provisioning the
network entities (including gateways) as Virtualized Network
Functions (VNFs) will enable their agile and cost-effective
operating. This will allow and ease automation and evolving
of the network (e.g. adaptation, resizing) to maintain operative
QoS during runtime. On the other side, SDN will ensure the
dynamic reconfiguration of the control and the routing planes
when making the network evolving during runtime. Finally,
close edge nodes will enable hosting and executing the NFs
close to the data sources if needed. The ultimate goal is to meet
the latency-sensitive requirement of the IoT applications.

B. Proposed Architecture
The proposed approach involves designing, developing and

demonstrating generic architectural and behavioral models
for self-adaptive management (within the General Controller
depicted in Fig. 2) of QoS-oriented network functions (NF) at
the different levels of the system (referred as Managed Entity
in Fig. 2):

• Taking advantage of the technological opportunities asso-
ciated with dynamic deployment of virtual or applicative
network functions (VNF vs. ANF), i.e. following an NFV-
like approach (i.e. VNFs), or based on a modular software
architecture (i.e. ANF), together with programmable net-
works such as SDN networks,

• Taking into account the heterogeneity in terms of runtime
environments (Cloud/Fog/Edge), NF packaging formats
(VM, Container, SW module), and the programmability
(e.g. SDN capacity) of the networks being deployed,

• Ensuring the consistency of the configuration and recon-
figuration choices made for each level through appropri-
ate theoretical tools.

Basically, the General Controller (GC) is in charge of sens-
ing the appropriate elements of the Managed Entity (e.g.

Fig. 2. High-level architecture.

gateway/server resources consumption, gateway/server perfor-
mances, etc.), and to make them apply the adaptation actions
(e.g. ANF/VNF dynamic deployment) that allow maintaining
the application level QoS at the expected level. To do that, the
GC interacts with both a VNF orchestrator (such as the ETSI
open source MANO [8]) and an ANF orchestrator (such as
Puppet1), that respectively allow provisioning VNF/ANF in
edge nodes. To perform these actions seamlessly for the IoT
application, the GC also interacts with an SDN controller (such
as Floodlight2), that allows configuring the SDN switches of
the underlying network. To implement the autonomous feature
of its internal behavior, the GC may be based on the IBM
autonomic computing paradigm [9] that makes appear the
Monitoring, Analysis, Planification and Execution steps of the
MAPE-K loop.

III. PROTOTYPE OVERVIEW

A prototype was designed, implemented and evaluated for
validation purpose. The prototype of the IoT-based business
application and its features are first introduced. This is fol-
lowed by the demo scenario description. Finally, the demo
objectives, and the expected lessons learned are discussed.

A. Wildfire Surveillance and Monitoring System

Performed prototype implements an automatic wildfire
surveillance and monitoring use case. It is a connected IoT-
based system. It enables early fire spotting by: (i) monitoring
temperature over the forest using temperature sensors and
(ii) detecting suspicious smoke with surveillance cameras. In
case of fire, alerts with live streaming over the fire zone are
delivered to wildfire management authorities. Wildland fires
are increasing in frequency, duration and intensity worldwide.
In response to these trends, the use of automatic and connected
wildfire surveillance are proliferating over risk area. Unlike
human-only monitored ways, such systems simultaneously
monitor wider areas and immediately send rapid alarms and
streams through the network. Early detection is enabled using
pattern-recognition software to detect smoke. Moreover, such

1Puppet, https://puppet.com/
2Project Floodlight, http://www.projectfloodlight.org/

Fig. 3. Demo setup overview.

systems enable recording videos, which can be analyzed later
to discern fire source (e.g. campfires, arson), as well as, its
evolution on the local flora. However, one of the major lim-
itation of these systems remains in the intermediate network.
Indeed, these systems are usually deployed in non-urban areas.
This means that the used networking facilities are often limited
and not that capable. All the more so as such applications are
very demanding in terms of latency and bandwidth, especially
during fire detection events. Obviously, this is not always
sustainable considering wildland zones where wired Internet is
poor and telco satellites coverage is often limited. This often
resulted in major failures of such systems during critical period
of time. Investigation highlighted that most of these crashes
were due to communication infrastructure overloading over
the area. More generally, SLAs, such as 150 msec round-
trip latency for multimedia services, become difficult to meet
during the fire event when the very limited network facilities
are likely to be overloaded. The rest of the section shows
that the proposed prototype enables maintaining operative QoS
thanks to the use of NFV, SDN and edge resources.

B. Demo Setup and Description

The planned demo setup is depicted in Fig.3. In the east-
bound, DS18B20 temperature sensors and Raspberry Pi Mod-
ule V2 cameras will be used for the prospective fire spotting. In
the westbound, the several IoT applications are deployed over
M2M-enabled server. The intermediate networking domain is
made up the following devices:

• Raspberry Pi nodes hosting the required getaways behind
the used IoT devices. These modular gateways may host
ANFs,

• Dell Laptop implementing an edge node close to the data
sources and hosting the required VNFs,

• D-Link regular network switch,
• Banana Pi routers with Open vSwitch software acting as

SDN switches.
In addition to these, an additional laptop implementing the
prototype control plane hosts and executes the Floodlight SDN
controller, the OpenBaton VNF orchestration, the Apache Ace
ANF orchestrator, and the General Controller introduced in
the Section II. Finally, two live dashboards will be shown

to the audience. The first monitor displays the live evolution
of the IoT applications QoS through an unexpected event
such as fire detection and streaming camera activation. The
second monitor displays the instantaneous and autonomous
changes of the network topology and configuration triggered
by the control center to maintain the QoS in the operative
range. The reader should note that some software will be
used during the demo to simulate datasets and events such
as fire outbreak. (Un)Deployment of VNFs in the edge node,
dynamic reconfiguration of the SDN switches, increase of the
bandwidth are among the prospective changes that audience
can witness during the demo.

C. Expected Lessons Learned
Thanks to the live display boards, the demo will enable

audience to assess the dynamic and self-adaptive mechanisms
supported by the prototype to support and maintain floating
QoS. More generally, the prototype will show the feasibility
of such approach and validate the gain from the use of
emerging concepts such as NFV/SDN and edge computing
for such research issues. Provisioning dynamically network
functions as virtualized entities (e.g. VNFs, ANFs) could be
performed at all layers (i.e. application, middleware, transport,
network) and brings agility. Finally, it is also expected from
this demo to trigger relevant discussions between attendees
around economic and commercial potential of such approach,
keeping in mind the tradeoff between dynamicity and agility
from one side and the virtualization, as well as, orchestration
overhead on the other side.

IV. CONCLUSION

This paper motivates and describes a communication infras-
tructure prototype that uses NFV, SDN and edge computing to
handle and manage floating QoS in dynamic and demanding
contexts such as IoT systems. The prototype objectives and
expected results are discussed. The related demo implements
a realistic wildfire surveillance and monitoring use case.

REFERENCES

[1] ETSI, ”Machine-to-Machine communications (M2M); Functional ar-
chitecture” ETSI, ETSI TS 102 690, 2013. [Online]. Available:
http://www.etsi.org. [Accessed: Jan. 25, 2017].

[2] OneM2M, ”oneM2M functional architecture,” OneM2M, oneM2M-TS-
0001, 2014. [Online]. Available: http://www.onem2m.org. [Accessed:
Jan. 25, 2017].

[3] I. Lee, and K. Lee, ”The Internet of Things (IoT) : Applications,
investments, and challenges for enterprises,” Business Horizons, vol.
58, no 4, pp. 431-440, 2015.

[4] F. Li, M. Vogler, M. CLAEENS and S. Dustdar, ”Efficient and scalable
IoT service delivery on cloud,” In IEEE International Conference on
Cloud Computing (CLOUD), 2013, pp. 740-747.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ”Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no 2, pp.90-97, 2015.

[6] H. Kim, and N. Feamster, ”Improving network management with
software defined networking,” IEEE Communications Magazine, vol.
51, no 2, pp. 114-119, 2013.

[7] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ”Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no 5, pp. 637-646,
2016.

[8] ETSI, OSM, ”Open Source MANO,” OSM home page, 2016.
[9] J. O. Kephart and D. M. Chess, ”The vision of autonomic computing,”

Computer, vol. 36, no 11, pp. 41-50, 2003.

