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aSONDRA, CentraleSupélec, 91192, Gif-sur-Yvette, France
bAI Department, Echiev Autonomous Driving Technology, 518057, Shenzhen, China

cParis Nanterre University, LEME EA-4416 92410 Ville d’Avray, France
dCommunication Systems Group, Technische Universität Darmstadt, Darmstadt 64283, Germany

Abstract

The spherically invariant random process (SIRP) clutter model is commonly used in scenarios where the radar clutter cannot
be correctly modeled as a Gaussian process. In this short communication, we devise a novel Maximum-Likelihood (ML)-based
iterative estimator for direction-of-departure and direction-of-arrival estimation in the Multiple-input multiple-output (MIMO) radar
context in the presence of SIRP clutter. The proposed estimator employs a stepwise numerical concentration approach w.r.t. the
objective function related to the marginal likelihood of the observation data. Our estimator leads to superior performance, as our
simulations show, w.r.t. to the existing likelihood based methods, namely, the conventional, the conditional and the joint likelihood
based estimators, and w.r.t. the robust subspace decomposition based methods. Finally, interconnections and comparison between
the Iterative Marginal ML Estimator (IMMLE), Iterative Joint ML Estimator (IJMLE) and Iterative Conditional ML Estimator
(ICdMLE) are provided.

Keywords: MIMO radar, spherically invariant random process, maximum likelihood estimation

1. Introduction

Multiple-input multiple-output (MIMO) radar has found
wide application in the past decades. By means of waveform di-
versity, MIMO radar allows significant improvement of perfor-
mance to be made as compared with the conventional phased-
array radar [1]. There exist in the literature abundant works to
investigate algorithms for target localization or to evaluate their
performances in MIMO radar contexts [2, 3, 4] mostly under
the umbrella of Gaussian clutter. The validity of the Gaussian
clutter assumption is rooted in the central limit theorem and is
realistic in the case of sufficiently large number of independent
and identically distributed (i.i.d.) elementary scatterers. In ap-
plications of high-resolution radars, the radar clutter exhibits
non-stationarity, and a Gaussian modeling of the clutter, be it
white or colored, deviates heavily from the real data and thus is
inadequate [5].

Non-Gaussian clutter scenarios have been first studied
through α-stable distribution and mixture noise distributions.
Nevertheless, the so-called spherically invariant random pro-
cess (SIRP) has, thanks to its ability to describe different
scales of the clutter roughness and to incorporate various non-
Gaussian distributions, become a favorite distribution family in
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the radar context [5, 6]. The latter is a two-scale, compound
Gaussian process which is a product of two components: the
texture and the speckle. The texture, which accounts for lo-
cal power changes, is the square root of a positive scalar ran-
dom process, whereas the speckle, which accounts for a local
scattering, is a complex Gaussian process. Though abounding
works have been dedicated to the estimation algorithms in the
SIRP clutter context with zero mean observations [7, 8, 9, 10],
there are, to the best of our knowledge, few works dealing with
jointly parameterized mean and parameterized covariance ma-
trix in the context of SIRP clutter [11, 12, 13]. Among these
few works, we can, first, cite the robust MUSIC (MUSIC-
Tyler) based on a robust fixed point Tyler estimate of the covari-
ance matrix [14], the robust covariation-based MUSIC (ROC-
MUSIC) [15], adapted for α-stable distribution, in which MU-
SIC method is applied to the covariation matrix instead of the
estimated covariance matrix and the RG-MUSIC [16] based on
the random matrix theory (namely, it takes into account the
Marcenko-Pastur distribution of the eigenvalues of the covari-
ance matrix to rectify its estimation). On the other hand, the
`p-MUSIC [17] is based on `p norm minimization with p < 2
in order to take into account impulsive noise. Finally, some al-
gorithms rely on robust mixtures noise as [13, 18], in which the
authors proposed respectively, ML based method in the pres-
ence of a mixture of K-distributed and Gaussian noise [13] and
ML based method in non-Gaussian noise with Gaussian mix-
tures [18].

In this short communication, we focus on the direction-of-
departure (DOD) and/or direction-of-arrival (DOA) estimation
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problems in the presence of SIRP noise/clutter, under an ar-
ray processing model and a MIMO radar model. In [11, 12],
the authors designed estimators based on the Iterative Condi-
tional Maximum Likelihood Estimator (ICdMLE) and the Itera-
tive Joint Maximum Likelihood Estimator (IJMLE), which are,
based on the conditional likelihood of the observations on the
texture realizations, and the joint likelihood between the two,
respectively. As a consequence, these two estimators are both
eo ipso suboptimal.

To overcome the algorithm suboptimality and the model lim-
itations in [11, 12] (as the existence of only one Coherent Pulse
Interval (CPI), the fact that DOD and DOA are assumed to share
same values), we propose in this short communication an iter-
ative ML estimator that is based on the marginal (exact) obser-
vation likelihood for a general MIMO radar model under SIRP
clutter, named the Iterative Marginal ML Estimator (IMMLE).
As our derivations will show, the MIMO model in this paper af-
ter matched-filtering can be transformed into the same structure
as the array processing model considered in [11], meaning that
the proposed IMMLE is directly applicable to the latter model
without any further generalization.

2. Model setup

2.1. Observation model

Consider a MIMO radar system with linear and possibly non-
uniform arrays both at the transmitter and the receiver. Further
assume that K targets are illuminated by the MIMO radar, all
modeled as far-field, narrowband, point sources [1]. The radar
output for the lth pulse in a CPI, and after matched filtering in
the case of transmission of orthogonal waveforms [19], reads:

Z(l) =
1

√
T

Y(l)SH
=

K

∑
k=1

√
Tαke2 jπ fk la(R) (θ

(R)
k ) aT

(T ) (θ
(T )
k )

+ N(l), for l = 0, . . . , L − 1 (1)

where L denotes the number of radar pulses per CPI; αk and
fk denote a complex coefficient proportional to the radar cross
section (RCS) and the normalized Doppler frequency of the kth
target, respectively; T is the number of snapshots per pulse,
θ
(T )
k and θ

(R)
k represent the DOD and DOA of the kth tar-

get, respectively; the transmit and receive steering vectors are

defined as a(T )(θ
(T )
k ) = [e j

2π sin(θ(T )k )

λ
d(T )1 , . . . , e j

2π sin(θ(T )k )

λ
d(T )M ]T

and a(R)(θ
(R)
k ) = [e j

2π sin(θ(R)k )

λ
d(R)1 , . . . , e j

2π sin(θ(R)k )

λ
d(R)N ]T , in

which M and N represent the number of sensors at the trans-
mitter and the receiver, respectively; d(T )i and d(R)i denote the
distance between the ith sensor and the reference sensor for the
transmitter and the receiver, respectively; λ stands for the wave-
length; N(l) denotes the received clutter matrix at pulse l; and
(⋅)T denotes the transpose of a matrix.

By stacking the output in Eq. (1) into an MN × 1 vector de-
noted by z(l), we further have:

z(l) = vec{Z(l)} = A (θ) v(l) + n(l), l = 0, . . . , L − 1, (2)

in which A (θ) = [a (θ
(T )
1 , θ

(R)
1 ) , . . . , a (θ

(T )
K , θ

(R)
K )] de-

notes the steering matrix after matched filtering, where θ =

[θ
(T )
1 , θ

(R)
1 , . . . , θ

(R)
K ]

T
is a vector parameter introduced to

incorporate all the unknown DODs and DOAs of the tar-
gets, and, a (θ

(T )
k , θ

(R)
k ) = vec{a(R) (θ

(R)
k ) aT

(T ) (θ
(T )
k )} =

(IM ⊗ a(R) (θ
(R)
k )) a(T ) (θ

(T )
k ) , in which IM stands for the

identity matrix of size M, and⊗ denotes the Kronecker product;
v(l) = [

√
Tα1e2 jπ f1l, . . . ,

√
TαKe2 jπ fK l]

T
; n(l) = vec{N(l)}

denotes the clutter vector after matched filtering at pulse l; and
vec{⋅} stands for the vectorization of a matrix.

2.2. Observation statistics

We model the clutter vectors n(l), l = 0, . . . , L − 1 as in-
dependent, identically distributed (i.i.d.) Spherically Invariant
Random Vectors (SIRVs), which can be formulated as the prod-
uct of two components statistically independent of each other:
n(l) =

√
τ(l)x(l), l = 0, . . . , L − 1, in which the texture terms

τ(l), are i.i.d. positive random variables; the speckle terms x(l)
are i.i.d. MN-dimensional circular complex Gaussian vectors
with zero mean and second-order moments E{x(i)xH( j)} =

δi jΣ where Σ denotes the speckle covariance matrix, E{⋅} is the
expectation operator, δi j is the Kronecker delta. To avoid the
ambiguity in the model arising from the scaling effect between
the texture and the speckle, we assume that tr{Σ} = MN, in
which tr{⋅} denotes the trace. In this paper, we mainly focus on
two kinds of SIRP clutters that are prevalent in the literature,
namely, the K-distributed and the t-distributed clutters. In both
cases the texture is characterized by two parameters, the shape
parameter a and the scale parameter b:

• K-distributed clutter, in which τ(l) follows a gamma
distribution (denoted by τ(l) ∼ Gamma(a,b)), namely,
p(τ(l); a,b) = 1

Γ(a)ba τ(l)a−1e−
τ(l)

b , in which Γ(⋅) denotes
the gamma function.

• t-distributed clutter, in which τ(l) follows an inverse-
gamma distribution (denoted by τ(l) ∼ Inv-Gamma(a,b)),
thus, p(τ(l); a,b) = ba

Γ(a)τ(l)−a−1e−
b

τ(l) .

2.3. Unknown parameter vector and likelihood function

Under the assumptions above, the unknown parameter vector
of our problem is given by:

ξ = [θT ,R{α}
T
,I{α}

T
, f T , ζT ,a,b]

T
, (3)

in which α = [α1, . . . , αK]
T is a complex vector parameter in-

cluding the RCS coefficients of all K targets, f = [ f1, . . . , fK]
T

contains the normalized Doppler frequencies of the targets, ζ is
a M2N2-element vector containing the real and imaginary parts
of the entries of the lower triangular part of Σ, R{⋅} and I{⋅}
denote the real and the imaginary part, respectively.

Let z = [zT(1), ..., zT(L − 1)]
T

denotes the full observation
vector after matched filtering, and τ = [τ(0), . . . , τ(L − 1)]T
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represents the vector of texture realizations at all pulses. The
full observation likelihood conditioned on τ can be written as:

p (z ∣τ; ξ̄ ) =
L−1

∏
l=0

exp (−
∥ρ(l)∥2

τ(l) )

∣πΣ∣ τMN(l)
; (4)

in which ξ̄ = [θT ,R{α}
T
,I{α}

T
, f T , ζT

]
T

is the unknown
parameter vector that does not contain the texture parameters a
and b, ∥⋅∥ denotes the norm of a vector, and

ρ(l) = Σ−1/2
(z(l) − A (θ) v(l)) , (5)

which represents the clutter realization at pulse l with its
speckle spatially whitened. The conditional likelihood in
Eq. (4), multiplied by p(τ; a,b), leads to the joint likelihood
between z and τ:

p (z,τ; ξ) = p (z ∣τ; ξ̄ ) p(τ; a, b) =
L−1

∏

l=0

exp (−
∥ρ(l)∥2

τ(l) )

∣πΣ∣ τMN
(l)

p(τ(l); a, b).

(6)

Finally, the full observation marginal (exact) likelihood, w.r.t.
ξ, is obtained by integrating out τ from the joint likelihood in
Eq. (6), as:

p (z; ξ) = ∫
+∞

0
p (z,τ; ξ)dτ =

L−1

∏
l=0
∫

+∞

0

exp (−
∥ρ(l)∥2

τ(l) )

∣πΣ∣ τMN(l)

× p(τ(l); a,b)dτ(l). (7)

3. Iterative marginal maximum likelihood estimator

The derivation procedure of the IMMLE is presented in
this section. To begin with, let Λ denote the marginal Log-
Likelihood (LL) function, which is obtained from Eq. (7), as:

Λ = ln p (z; ξ) = −LMN lnπ−L ln ∣Σ∣+
L−1

∑

l=0
ln gMN (∥ρ(l)∥2

, a, b) , (8)

in which

gMN (∥ρ(l)∥2
, a, b) = ∫

+∞

0

exp (−
∥ρ(l)∥2

τ(l) )

τMN
(l)

p(τ(l); a, b)dτ(l)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

2 ∥ρ(l)∥a−MN Ka−MN (2 ∥ρ(l)∥ /b
1
2 )

b
MN+a

2 Γ(a)
,K-distr. clutter,

baΓ(MN + a)

Γ(a) (∥ρ(l)∥2
+ b)

MN+a , t-distributed clutter,

(9)

where Kn(⋅) is the modified Bessel function of the second kind
of order n (cf. [20] for more details).

To begin with, we look for the estimates of the clutter param-
eters, i.e., of the speckle covariance matrix Σ, and the texture
parameters a and b. Let Σ̂ denote the estimate of Σ when all the
other unknown parameters are fixed, which can be obtained by
solving the equation ∂Λ/∂Σ = 0, as [10]:

Σ̂ =
1
L

L−1

∑

l=0
hMN (∥ρ(l)∥2

, a, b)⋅(z(l) − A (θ) v(l)) (z(l) − A (θ) v(l))H
,

(10)

in which

hMN (∥ρ(l)∥2
, a, b) = −

∂gMN(∥ρ(l)∥2 ,a,b)
∂∥ρ(l)∥2

gMN (∥ρ(l)∥2
, a, b)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

Ka−MN−1 (2 ∥ρ(l)∥ /b
1
2 )

b
1
2 ∥ρ(l)∥ Ka−MN (2 ∥ρ(l)∥ /b

1
2 )

,K-distributed clutter,

MN + a

∥ρ(l)∥2
+ b

, t-distributed clutter.

(11)

Note that Σ̂ in Eq. (10) has an iterative nature, as can be seen
from the expression of ρ(l) in Eq. (5).

We further need to normalize Σ̂ to fulfill the assumption that
tr{Σ} = MN. Let Σ̂n denote the normalized estimate Σ̂, which
is:

Σ̂n = MN
Σ̂

tr{Σ̂}
. (12)

Similarly, the estimates of a and b when other unknown pa-
rameters are fixed, denoted by â and b̂, can be found by equating
∂Λ/∂a and ∂Λ/∂b to zero, respectively, i.e., by solving numer-
ically:

∂Λ

∂a
=

L−1

∑
l=0

jMN (∥ρ(l)∥2
,a,b)

gMN (∥ρ(l)∥2
,a,b)

= 0 (13)

and
∂Λ

∂b
=

L−1

∑
l=0

kMN (∥ρ(l)∥2
,a,b)

gMN (∥ρ(l)∥2
,a,b)

= 0, (14)

w.r.t. a and b, respectively, in which

jMN (∥ρ(l)∥2
, a, b) =

∂gMN (∥ρ(l)∥2
, a, b)

∂a

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

−
1

baΓ(a) ∫
+∞

0
exp(−

∥ρ(l)∥2

τ(l)
−
τ(l)

b
) τ(l)−MN+a−1

⋅ (ln(
b
τ(l)

) +Ψ(a)) dτ(l), K-distributed clutter,

−

baΓ(MN + a) (ln (
∥ρ(l)∥2

b + 1) −Ψ(MN + a) +Ψ(a))

Γ(MN) (∥ρ(l)∥2
+ b)

MN+a ,

t-distributed clutter,

(15)

where Ψ(⋅) denotes the digamma function, and

kMN (∥ρ(l)∥2
, a, b) =

∂gMN (∥ρ(l)∥2
, a, b)

∂b

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

1
ba+2Γ(a) ∫

+∞

0
exp(−

∥ρ(l)∥2

τ(l)
−
τ(l)

b
)

⋅ τ(l)−MN+a−1
⋅ (τ(l) − ab) dτ(l),K-distributed clutter,

−

aba−1Γ(MN + a) (−a ∥ρ(l)∥2
+ MNb)

Γ(a + 1) (∥ρ(l)∥2
+ b)

MN+a+1 , t-distr. clutter.

(16)

Next, we consider the estimate v̂(l), by solving ∂Λ/∂v(l) =
0, which reads

v̂(l) = (ÃH
(θ) Ã (θ))

−1
ÃH

(θ) z̃(l), (17)
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in which Ã (θ) = Σ−
1
2 A (θ) , and z̃(l) = Σ−1/2 z(l), represent-

ing the steering matrix and the observation at pulse l, both pre-
whitened by the speckle covariance matrix Σ, respectively.

As the expressions in Eqs. (10), (13), (14) and (17) suggest,
the estimation of each of the parameters a, b, Σ and v(l) re-
quires the knowledge of all the others of them, and furthermore
the knowledge of the parameter vector θ. This mutual depen-
dence between the unknown parameters makes it impossible to
concentrate the LL function analytically, i.e., to obtain a closed-
form expression for the LL function concentrated w.r.t. each of
the aforementioned parameters that is independent of the other
ones. Instead, we resort to the so-called stepwise numerical
concentration approach.

This approach consists in concentrating the LL function it-
eratively, by assuming that certain parameters are known from
the previous iteration. For the task under consideration, we as-
sume, at each iteration, that Σ̂, â and b̂ are known and use them
to compute v̂(l), which is then used in turn to update the val-
ues of Σ̂ and â and b̂ to be used in the next iteration. This
sequential updating procedure is repeated until convergence or
a maximum iteration number is reached.

Next, we turn to the estimation of θ. The approach explained
above allows us to drop all the constant terms in the LL function
(including those terms that contain only Σ, a and b as unknown
parameters, as these are assumed to be known at each iteration).
Furthermore, by inserting the expression of v̂(l) in Eq. (17) into
what remains in the LL function, we obtain the estimate of θ,
denoted by θ̂, as:

θ̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arg min
θ

⎧⎪⎪
⎨
⎪⎪⎩

L−1

∑
l=0

((MN − a) ln (∥P�Ã(θ) z̃(l)∥)

− ln Ka−MN (2 ∥P�Ã(θ) z̃(l)∥/b
1
2 ) )

⎫⎪⎪
⎬
⎪⎪⎭

,K-distr. clutter,

arg min
θ

{
L−1

∑
l=0

ln(∥P�Ã(θ) z̃(l)∥
2
+ b)} , t-distributed clutter.

(18)

in which P�Ã(θ) = IMN − Ã(θ) ( ÃH
(θ)Ã(θ))

−1
ÃH

(θ) is the or-

thogonal projection matrix onto the null space of Ã(θ). Finally,
the whole procedure of the IMMLE is summarized in Table. 1.
Remark 1: Let us recall the expression of θ̂ for the Conven-
tional ML Estimator (CvMLE), which treats the clutter as uni-
form white Gaussian distributed, denoted by CvMLE-U,

θ̂CvMLE−U = arg min
θ

L−1

∑
l=0

∥P�A(θ) z(l)∥
2
, (19)

as well as for both of the ICdMLE and IJMLE that we proposed
in [11, 12], which, adapted to the model in question, has the
following expression,

θ̂ICdMLE/IJMLE = arg min
θ

L−1

∑

l=0

1
τ̂ICdMLE/IJMLE(l)

∥P�Ã(θ) z̃(l)∥
2
. (20)

Expression of θ̂CvMLE−U shows that the CvMLE-U considers

simply the sum of ∥P�A(θ) z(l)∥
2

(the square of the norm of

the projection of the observation at pulse l onto the null space
of the steering matrix), while the ICdMLE and IJMLE, as the
expression of θ̂ICdMLE/IJMLE shows, consider the modified sum
of these terms (pre-whitened by the speckle covariance ma-
trix, and weighted by the inverse of the texture realization at
each pulse). It is precisely because of this modification that
the ICdMLE and IJMLE gain their advantages in performance
over the CvMLE-U. An iterative version of the CvMLE-U with
no assumption on the covariance matrix, denoted by ICvMLE,
can be easily derived, for which, the aforementioned conclu-
sions remain valid for the ICvMLE. On the other hand, we can
see from Eq. (18) that the proposed IMMLE considers, instead
of direct or modified sum of the projections, the sum of their
logarithms (modified by some algebraic operations), which is
equivalent to the product of them. Since a sum is small only
if all its terms are small, while a product can be small even if
only very few of its terms are small enough, we can conclude
that underlying this contrast between summation and multipli-
cation is a difference in essentia, that the CvMLE-U, ICvMLE,
ICdMLE and IJMLE treat all the pulses “equally”, whereas the
IMMLE focuses only on the “best” pulses. Due to space limi-
tation, refer to Table. 2 for a concise comparison between the
IMMLE, IJMLE and ICdMLE.
Remark 2: As is clear from the procedure above, our algo-
rithm does not entail the estimation of the RCS coefficients αk,
and the normalized Doppler frequencies fk, of the targets, but
rather only involves estimating the vectors v(l), which are func-
tions of them. Indeed, in applications where the estimation
of those parameters are of interest, one can naturally find the
ML or LS estimates of them by respectively equating an ade-
quate cost function to zero, and then complement our algorithm
accordingly. This, however, deviates from our topic, i.e., the
DOD/DOA estimation, and due to space limitation, it is not to
be discussed in this paper.
Remark 3: The convergence of the LL function is guaranteed
by the fact that the value of the objective function to calculate
θ̂, Σ̂, â and b̂ at each step can either improve or maintain but
cannot worsen. As the simulations will show, the convergence
of the estimates of the unknown parameters in θ can be obtained
by few iterations (one to two).
Remark 4: IMMLE has a computational complexity sightly
higher than ICvMLE, ML-GM, IJMLE and CdMLE. Indeed,
all of them possess a highly non-convex minimization step over
a 2K-dimensional parameter space, which is the most time-
consuming stage compared to the updating steps of the speckle
covariance matrix, Σ and the vector v (both of them mainly
based on analytical expressions) and the potential numerical
solving. Generally, a MUSIC-based algorithm has a lower
complexity than the ML-based one, except for `p-MUSIC al-
gorithm where the signal/noise subspaces construction is time-
consuming due to the `p norm minimization.

4. Cramér-Rao bound expression

The CRB w.r.t. target direction parameters in a MIMO radar
context in the presence of SIRP clutter has been derived in our
previous works [21], where we used an element-wise approach
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The IMMLE procedures

Initialization i = 0, set â(0), b̂(0) to be two arbitrary positive numbers and Σ̂
(0)
n = IMN

Step 1 Iteration i, calculate θ̂
(i)

from Eq. (18) using â(i), b̂(i) and Σ̂
(i)
n

Calculate v̂(i)(l) from Eq. (17) using θ̂
(i)

, â(i), b̂(i) and Σ̂
(i)
n

Step 2 Update â(i+1) from Eq. (13) using θ̂
(i)

, v̂(i)(l), Σ̂
(i)
n , and b̂(i)

Update b̂(i+1) from Eq. (14) using θ̂
(i)

, v̂(i)(l), Σ̂
(i)
n , and â(i+1)

Update Σ̂
(i+1)
n from Eqs. (10) and (12) using θ̂

(i)
, v̂(i)(l), â(i+1) and b̂(i+1)

Set i← i + 1
Step 3 Repeat Step 1 and Step 2 until convergence

Table 1: Summarization of the proposed algorithm

ICdMLE IJMLE IMMLE
Likelihood Conditional Joint Marginal
Texture modeling Deterministic Stochastic
Considers τ Yes No
Considers a and b No Yes
Numerical solution of
equations

No Yes

Numerical integration No Yes

Computational com-
plexity

Lowest
Higher
than
ICdMLE

Highest

Iteration(s) required Two One
Requires texture distri-
bution

No Yes

Can be used for texture
parameters estimation

No Yes

Table 2: Comparison between ICdMLE, IJMLE and IMMLE

to calculate the Fisher information matrix (FIM). For the model
considered in this paper, where the size of the unknown signal
parameter vector (hence the dimension of the resulting FIM)
is much larger, a block-wise expression for the CRB w.r.t. the
signal DODs and DOAs (denoted by CRB (θ)) is required, the
result of which is presented below. The 2K × 2K CRB matrix
w.r.t. θ in the presence of SIRP clutter is given by:

CRB (θ) = (
2κ

MN
R{

L−1

∑
l=0

HH
(l)D̃H P�Ã(θ) D̃H(l)})

−1

=
MN
2κL

(R{(D̃H P�Ã(θ) D̃)⊙ P̂
T
})

−1
, (21)

in which

κ =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
+∞

0 xMN+a−1 K2
a−MN−1(x)
Ka−MN(x) dx

2MN+a−2bΓ(MN)Γ(a)
, K-distributed clutter,

MNa(a + MN)

b(a + MN + 1)
, t-distributed clutter,

(22)

where Kn(x) is the modified Bessel functions of the second
kind of order n, H(l) = I2 ⊗ diag{[v(l)]1 , . . . , [v(l)]K}, J2

is the all-ones matrix of size 2, P̂ = 1
L J2 ⊗∑

L−1
l=0 v(l)vH(l), and

D̃ = Σ−
1
2 [D(T ), D(R)]

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

D(T ) =
⎡
⎢
⎢
⎢
⎢
⎣

∂a(θ(T ) ,θ(R))

∂θ(T )
∣

θ(T )=θ(T )1 ,θ(R)=θ(R)1

, . . . ,

∂a(θ(T ) ,θ(R))

∂θ(T )
∣

θ(T )=θ(T )K ,θ(R)=θ(R)K

⎤
⎥
⎥
⎥
⎥
⎦

D(R) =
⎡
⎢
⎢
⎢
⎢
⎣

∂a(θ(T ) ,θ(R))

∂θ(R)
∣

θ(T )=θ(T )1 ,θ(R)=θ(R)1

, . . . ,

∂a(θ(T ) ,θ(R))

∂θ(R)
∣

θ(T )=θ(T )K ,θ(R)=θ(R)K

⎤
⎥
⎥
⎥
⎥
⎦

5. Numerical simulations

For simulations, we consider a MIMO radar comprising M =

3 sensors at the transmitter and N = 4 at the receiver, both with
half-wave length inter-element spacing. The DOD and DOA of
the first source are respectively 18○ and 20○, and of the second
source are 45○ and 40○. The coefficients α1 and α2 are chosen to
be 2 + 3 j and 1 − 0.5 j, and the normalized Doppler frequencies
f1 and f2 are 0.3 and 0.8. There are L = 15 pulses per CPI, and
each pulse contains T = 5 snapshots. For K-distributed clutter,
we choose a = 2 and b = 10; and for t-distributed clutter, a = 1.1
and b = 2. The entries of the speckle covariance matrix Σ are
generated by [Σ]m,n = σ

20.9∣m−n∣e j π2 (m−n), m,n = 1, . . . ,MN, in
which σ2 is a factor to adjust speckle power. Each point of the
MSE in the figures is generated by averaging the results of 500
Monte-Carlo trials. The signal-to-clutter ratio (SCR) [22] is
defined by SCR = 1

L
∑L−1

l=0 (A(θ)v(l))H(A(θ)v(l))
E{τ(l)}tr{Σ} , in which E{τ(l)}

is equal to ab for a K-distributed clutter and b/(a − 1) for a
t-distributed clutter (for a > 1).

Figs. 1 and 2 investigate the performance of the proposed
IMMLE estimator compared to the classical MUSIC method
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based on the Sample Covariance Matrix (MUSIC-SCM) as
well, its robust version based on the well-known Tyler estimate
of the covariance matrix [14] (MUSIC-Tyler). Others robust
MUSIC based algorithms are also considered such as the RG-
MUSIC [16], the `p-MUSIC [17] and the ROC-MUSIC [15]
as well the MKG algorithm proposed in [13] and the ML-GM
[18]. Finally, we consider the ICdMLE, the IJMLE and the
ICvMLE, as well the derived CRB.

In Fig. 1 and 2, the MSEs are plotted versus SCR with a fixed
L, respectively versus the pulse number L with a fixed SCR.
It can be noticed that MUSIC-based algorithms, even the ro-
bust versions, do not outperform the proposed algorithm due
to a small number of pulses, which is a typical scenario in
radar application. The MKG algorithm assumes a mixture of K-
distributed and Gaussian noise, both of them, with a covariance
matrix equals to the identity, which explains its poor perfor-
mance. Whereas, the robust ML-GM is based on, empirically
defined number of, Gaussian mixture with identity covariance
matrix assumptions. Since, it is a ML estimator (i.e., an esti-
mator based on a parametric model), its accuracy deteriorates
if we deviate from the assumed model distribution. Concern-
ing the ICdMLE, IJMLE and the ICvMLE, their performances
are below the proposed algorithm. Consequently, from Figures
1 et 2, we can assess that the IMMLE outperforms the afore-
mentioned algorithms. The same behavior is noticed under the
t-distributed clutter whether it is MSE versus SCR with fixed
L or versus L with fixed SCR. Finally, the reader is referred to
Table. 2 for a concise comparison between the IMMLE, IJMLE
and ICdMLE.
Remark 5: It is worth mentioning that, the proposed IMMLE
estimates are approximation of the true ML estimates due to
the iterative stepwise procedure, in which we have to solve nu-
merically at each step three equations for the update of the pa-
rameters of the texture distribution and the speckle covariance
matrix. Thus these latter, are not exact solutions either. Fur-
thermore, it is worth mentioning that a theoretical analysis of
the efficiency of the estimator on θ is beyond the scope of this
paper. Nevertheless, from our extensive simulations, we believe
that our proposed algorithm would not be statistically efficient
(i.e., its MSE does not attain the CRB).

6. Conclusion

This paper is dedicated to the design of the exact ML DOD
and DOA estimation for MIMO radar in the presence of SIRP
clutter. Specifically, our proposed iterative estimator is based
on the marginal likelihood for which its related cost function
is solved using stepwise numerical concentration approach. Fi-
nally, interconnections with the existing based likelihood meth-
ods, namely, the conventional, the conditional and the joint like-
lihood based estimators are investigated theoretically and nu-
merically.
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Figure 1: MSE vs. SCR under K-distributed clutter, L = 15
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Figure 2: MSE vs. L under K-distributed clutter, SCR = 15 dB
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