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CONTROLLING ITERATED JUMPS OF SOLUTIONS TO

COMBINATORIAL PROBLEMS

LUDOVIC PATEY

Abstract. Among the Ramsey-type hierarchies, namely, Ramsey’s theorem, the free set, the
thin set and the rainbow Ramsey theorem, only Ramsey’s theorem is known to collapse in
reverse mathematics. A promising approach to show the strictness of the hierarchies would
be to prove that every computable instance at level n has a lown solution. In particular, this
requires to control effectively iterations of the Turing jump.

In this paper, we design some variants of Mathias forcing to construct solutions to cohesive-
ness, the Erdős-Moser theorem and stable Ramsey’s theorem for pairs, while controlling their
iterated jumps. For this, we define forcing relations which, unlike Mathias forcing, have the
same definitional complexity as the formulas they force. This analysis enables us to answer
two questions of Wei Wang, namely, whether cohesiveness and the Erdős-Moser theorem admit
preservation of the arithmetic hierarchy, and can be seen as a step towards the resolution of
the strictness of the Ramsey-type hierarchies.

1. Introduction

The effective forcing is a very powerful tool in the computational analysis of mathematical
statements. In this framework, lowness is achieved by deciding formulas during the forcing
argument, while ensuring that the whole construction remains effective. Thus, the definitional
strength of the forcing relation is very sensitive in effective forcing. We present a new forcing
argument enabling one to control iterated jumps of solutions to Ramsey-type theorems. Our
main motivation is reverse mathematics.

1.1. Reverse mathematics

Reverse mathematics is a vast mathematical program whose goal is to classify ordinary theo-
rems in terms of their provability strength. It uses the framework of subsystems of second order
arithmetic, which is sufficiently rich to express in a natural way many theorems. The base sys-
tem, RCA0 standing for Recursive Comprehension Axiom, contains the basic first order Peano
arithmetic together with the ∆0

1 comprehension scheme and the Σ0
1 induction scheme. Thanks

to the equivalence between ∆0
1-definable sets and computable sets, RCA0 can be considered as

capturing “computational mathematics”. The proof-theoretic analysis of the theorems in re-
verse mathematics is therefore closely related to their computational analysis. See Simpson [19]
for a formal introduction to reverse mathematics.

Early reverse mathematics have led to two main empirical observations: First, many ordinary
(i.e. non set-theoretic) theorems require very weak set existence axioms. Second, most of those
theorems are in fact equivalent to one of five main subsystems, known as the “Big Five”.
However, among the theorems studied in reverse mathematics, a notable class of theorems
fails to support those observations, namely, Ramsey-type theorems. This article focuses on
consequences of Ramsey’s theorem below the arithmetic comprehension axiom (ACA0). See
Hirschfeldt [7] for a gentle introduction to the reverse mathematics below ACA0.

1.2. Controlling iterated jumps

Among the hierarchies of combinatorial principles, namely, Ramsey’s theorem [9, 18, 4], the
rainbow Ramsey theorem [6, 20, 16], and the free sets and thin set theorems [3, 22] – only
Ramsey’s theorem is known to collapse within the framework of reverse mathematics. The
above mentioned hierarchies satisfy the lower bounds of Jockusch [9], that is, there exists a
computable instance at every level n ≥ 2 with no Σ0

n solution. Thus, a possible strategy for
1
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proving that a hierarchy is strict consists of showing the existence, for every computable instance
at level n, of a lown solution.

The solutions to combinatorial principles are often built by Mathias forcing, whose forcing
relation is known to be of higher definitional strength than the formula it forces [2]. Therefore
there is a need for new notions of forcing with a better-behaving forcing relation. In this
paper, we design three notions of forcing to construct solutions to cohesiveness, the Erdős-Moser
theorem and stable Ramsey’s theorem for pairs, respectively. We define a forcing relation with
the expected properties, and which formalises the first and the second jump control of Cholak,
Jockusch and Slaman [4]. This can be seen as a step toward the resolution the strictness of the
Ramsey-type hierarchies. We take advantage of this new analysis of Ramsey-type statements
to prove two conjectures of Wang about the preservation of the arithmetic hierarchy.

1.3. Preservation of the arithmetic hierarchy

The notion of preservation of the arithmetic hierarchy has been introduced by Wang in [21],
in the context of a new analysis of principles in reverse mathematics in terms of their definitional
strength.

Definition 1.1 (Preservation of definitions)

1. A set Y preserves Ξ-definitions (relative to X) for Ξ among ∆0
n+1,Π

0
n,Σ

0
n where n > 0,

if every properly Ξ (relative to X) set is properly Ξ relative to Y (X ⊕ Y ). Y preserves
the arithmetic hierarchy (relative to X) if Y preserves Ξ-definitions (relative to X) for
all Ξ among ∆0

n+1,Π
0
n,Σ

0
n where n > 0.

2. Suppose that Φ = (∀X)(∃Y )ϕ(X,Y ) and ϕ is arithmetic. Φ admits preservation of Ξ-
definitions if for each Z and X ≤T Z there exists Y such that Y preserves Ξ-definitions
relative to Z and ϕ(X,Y ) holds. Φ admits preservation of the arithmetic hierarchy if
for each Z and X ≤T Z there exists Y such that Y preserves the arithmetic hierarchy
relative to Z and ϕ(X,Y ) holds.

The preservation of the arithmetic hierarchy seems closely related to the problem of control-
ling iterated jumps of solutions to combinatorial problems. Indeed, a proof of such a preservation
usually consists of noticing that the forcing relation has the same strength as the formula it
forces, and then deriving a diagonalization from it. See Lemma 2.16 for a case-in-point. Wang
proved in [21] that weak König’s lemma (WKL0), the rainbow Ramsey theorem for pairs (RRT2

2)
and the atomic model theorem (AMT) admit preservation of the arithmetic hierarchy. He con-
jectured that this is also the case for cohesiveness and the Erdős Moser theorem. We prove the
two conjectures through the following theorem, where COH stands for cohesiveness and EM for
the Erdős-Moser theorem.

Theorem 1.2 COH and EM admit preservation of the arithmetic hierarchy.

1.4. Definitions and notation

Fix an integer k ∈ ω. A string (over k) is an ordered tuple of integers a0, . . . , an−1 (such that
ai < k for every i < n). The empty string is written ε. A sequence (over k) is an infinite listing
of integers a0, a1, . . . (such that ai < k for every i ∈ ω). Given s ∈ ω, ks is the set of strings
of length s over k and k<s is the set of strings of length < s over k. As well, k<ω is the set of
finite strings over k and kω is the set of sequences (i.e. infinite strings) over k. Given a string
σ ∈ k<ω, we denote by |σ| its length. Given two strings σ, τ ∈ k<ω, σ is a prefix of τ (written
σ � τ) if there exists a string ρ ∈ k<ω such that σρ = τ . Given a sequence X, we write σ ≺ X
if σ = X�n for some n ∈ ω. A binary string (resp. real) is a string (resp. sequence) over 2.
We may identify a real with a set of integers by considering that the real is its characteristic
function.

A tree T ⊆ k<ω is a set downward-closed under the prefix relation. A binary tree is a set
T ⊆ 2<ω. A set P ⊆ ω is a path through T if for every σ ≺ P , σ ∈ T . A string σ ∈ k<ω is a
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stem of a tree T if every τ ∈ T is comparable with σ. Given a tree T and a string σ ∈ T , we
denote by T [σ] the subtree {τ ∈ T : τ � σ ∨ τ � σ}.

Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x < y] and
by A ⊆∗ B the formula (∀∞x ∈ A)[x ∈ B], intuitively meaning that A is included into B up
to finite changes. A Mathias condition is a pair (F,X) where F is a finite set, X is an infinite
set and F < X. A condition (F1, X1) extends (F,X) (written (F1, X1) ≤ (F,X)) if F ⊆ F1,
X1 ⊆ X and F1rF ⊂ X. A set G satisfies a Mathias condition (F,X) if F ⊂ G and GrF ⊆ X.

2. Cohesiveness preserves the arithmetic hierarchy

Cohesiveness plays a central role in reverse mathematics. It appears naturally in the standard
proof of Ramsey’s theorem, as a preliminary step to reduce an instance of Ramsey’s theorem
over (n+ 1)-tuples into a non-effective instance over n-tuples.

Definition 2.1 (Cohesiveness) An infinite set C is ~R-cohesive for a sequence of sets R0, R1, . . .
if for each i ∈ ω, C ⊆∗ Ri or C ⊆∗ Ri. A set C is cohesive (resp. p-cohesive, r-cohesive)

if it is ~R-cohesive where ~R is the sequence of all the c.e. sets (resp. primitive recursive sets,

computable sets). COH is the statement “Every uniform sequence of sets ~R admits an infinite
~R-cohesive set.”

Mileti [13] and Jockusch & Lempp [unpublished] proved that COH is a consequence of Ram-
sey’s theorem for pairs over RCA0. The computational power of COH is relatively well under-
stood. Jockusch and Stephan characterized in [8] the degrees bounding COH as the degrees
whose jump is PA relative to ∅′. The author [17] extended this characterization to an instance-
wise correspondance between cohesiveness and the statement “For every ∆0

2 tree T , there is a set
whose jump computes a path through T”. Wang [21] conjectured that COH admits preservation
of the arithmetic hierarchy. We prove his conjecture by using a new forcing argument.

Theorem 2.2 COH admits preservation of the arithmetic hierarchy.

Before proving Theorem 2.2, we state an immediate corollary.

Corollary 2.3 There exists a cohesive set preserving the arithmetic hierarchy.

Proof. Jockusch [10] proved that every PA degree computes a sequence of sets containing,
among others, all the computable sets. Wang proved in [21] that WKL0 preserves the arithmetic

hierarchy. Therefore there exists a uniform sequence of sets ~R containing all the computable

sets and preserving the arithmetic hierarchy. By Theorem 2.2 relativized to ~R, there exists an

infinite ~R-cohesive set C preserving the arithmetic hierarchy relative to ~R. In particular C is
r-cohesive and preserves the arithmetic hierarchy. By [8], the degrees of r-cohesive and cohesive
sets coincide. Therefore C computes a cohesive set which preserves the arithmetic hierarchy. �

Given a uniformly computable sequence of sets R0, R1, . . . , the construction of an ~R-cohesive
set is usually done with computable Mathias forcing, that is, using conditions (F,X) in which X
is computable. The construction starts with (∅, ω) and interleaves two kinds of steps. Given
some condition (F,X),

(S1) the extension step consists of taking an element x from X and adding it to F , therefore
forming the extension (F ∪ {x}, X r [0, x]);

(S2) the cohesiveness step consists of deciding which one of X ∩ Ri and X ∩ Ri is infinite,
and taking the chosen one as the new reservoir.

Cholak, Dzhafarov, Hirst and Slaman [2] studied the definitional complexity of the forcing
relation for computable Mathias forcing. They proved that it has the good definitional prop-
erties to decide the first jump, but not iterated jumps. Indeed, given a computable Mathias
condition c = (F,X) and a Σ0

1 formula (∃x)ϕ(G, x), one can ∅′-effectively decide whether there
is an extension d forcing (∃x)ϕ(G, x) by asking the following question:
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Is there an extension d = (E, Y ) ≤ c and some n ∈ ω such that ϕ(E,n) holds?

If there is such an extension, then we can choose it to be a finite extension, that is, such

that Y =∗ X. Therefore, the question is Σ0,X
1 . Consider now a Π0

2 formula (∀x)(∃y)ϕ(G, x, y).
The question becomes

For every extension d ≤ c and every m ∈ ω, is there some extension e = (E, Y ) ≤
d and some n ∈ ω such that ϕ(E,m, n) holds?

In this case, the extension d is not usually a finite extension and therefore the question cannot be
presented in a Π0

2 way. In particular, the formula “Y is an infinite subset of X” is definitionally
complex. In general, deciding iterated jumps of a generic set requires to be able to talk about
the future of a given condition, and in particular to describe by simple means the formula “d is
a valid condition” and the formula “d is an extension of c”.

Thankfully, in the case of cohesiveness, we do not need the full generality of the computable
Mathias forcing. Indeed, the reservoirs have a very special shape. After the first application of
stage (S2), the set X is, up to finite changes, of the form ω ∩ R0 or ω ∩ R0. After the second
application of (S2), it is in one of the following forms: ω ∩R0 ∩R1, ω ∩R0 ∩R1, ω ∩R0 ∩R1,
ω ∩ R0 ∩ R1, and so on. More generally, after n applications of (S2), a condition c = (F,X)
is characterized by a pair (F, σ) where σ is a string of length n representing the choices made
during (S2).

Even within this restricted partial order, the decision of the Π0
2 formula remains too com-

plicated sinces it requires to decide whether Rσ is infinite. However, notice that the σ’s such

that Rσ is infinite are exactly the initial segments of the Π0,∅′
1 class C(~R) defined as the collection

of the reals X such that Rσ has more than |σ| elements for every σ ≺ X. We can therefore use
a compactness argument at the second level to decrease the definitional strength of the forcing
relation, as did Wang [21] for weak König’s lemma.

2.1. The forcing notion

We let T denote the collection of all the infinite ∅′-primitive recursive trees T such that [T ] ⊆
C(~R). Note that T is a computable set. We are now ready to defined our partial order.

Definition 2.4 Let P be the partial order whose conditions are tuples (F, σ, T ) where F ⊆ ω
is a finite set, σ ∈ 2<ω, Rσ is infinite and T ∈ T with stem σ. A condition d = (E, τ, S) extends
c = (F, σ, T ) (written d ≤ c) if E ≤σ F , τ � σ and S ⊆ T .

Given a condition c = (F, σ, T ), the string σ imposes a finite restriction on the possible
extensions of the set F . The condition c intuitively denotes the Mathias condition (F,Rσ ∩
(max(F ),+∞)) with some additional constraints on the extensions of σ represented by the
tree T . Accordingly, set G satisfies (F, σ, T ) if it satisfies the induced Mathias condition, that
is, if F ⊆ G ⊆ F ∪ (Rσ ∩ (max(F ),+∞)). We let Ext(c) be the collection of all the extensions
of c.

Note that although we did not explicitely require Rσ to be infinite, this property holds for

every condition (F, σ, T ) ∈ P. Indeed, since [T ] ⊆ C(~R), then Rτ is infinite for every extensible
node τ ∈ T . Since σ is a stem of T , it is extensible and therefore Rσ is infinite.

2.2. Preconditions and forcing Σ0
1 (Π0

1) formulas

When forcing complex formulas, we need to be able to consider all possible extensions of
some condition c. Checking that some d = (E, τ, S) is a valid condition extending c requires
to decide whether the tree ∅′-p.r. S is infinite, which is a Π0

2 question. At some point, we will
need to decide a Σ0

1 formula without having enough computational power to check that the tree
part is infinite (see clause (ii) of Definition 2.10). As the tree part of a condition is not accurate
for such formulas, we may define the corresponding forcing relation over a weaker notion of
condition where the tree is not anymore required to be infinite.

Definition 2.5 (Precondition) A precondition is a condition (F, σ, T ) without the assumption
that T is infinite.
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In particular, Rσ may be a finite set. The notion of condition extension can be generalized
to the preconditions. The set of all preconditions is computable, contrary to the set P. Given
a precondition c, we denote by Ext1(c) the set of all preconditions (E, τ, S) extending c such
that τ = σ and T = S. Here, T = S in a strong sense, that is, the Turing indices of T
and S are the same. This fact is used in clause a) of Lemma 2.14. We let A denote the
collection of all the finite sets of integers. The set A represents the set of finite approximations
of the generic set G. We also fix a uniformly computable enumeration A0 ⊆ A1 ⊆ . . . of
finite subsets of A cofinal in A, that is, such that

⋃
sAs = A. We denote by Apx(c) the set

{E ∈ A : (E, σ, T ) ∈ Ext1(c)}. In particular, Apx(c) is collection of all finite sets E satisfying c,
that is, Apx(c) = {E ∈ A : E ≤σ F}. Last, we let Apxs(c) = Apx(c) ∩As. We start by proving
a few trivial statements.

Lemma 2.6 Fix a precondition c = (F, σ, T ).

1) If c is a condition then Ext1(c) ⊆ Ext(c).
2) If c is a condition then Apx(c) = {E : (E, τ, S) ∈ Ext(c)}.
3) If d is a precondition extending c then Apx(d) ⊆ Apx(c) and Apxs(d) ⊆ Apxs(c).

Proof.

1) By definition, if c is a condition, then T is infinite. If d ∈ Ext1(c) then d = (E, σ, T ) for
some E ∈ Apx(c). As d is a precondition and T is infinite, d is a condition.

2) By definition, Apx(c) = {E : (E, σ, T ) ∈ Ext1(c)} ⊆ {E : (E, τ, S) ∈ Ext(c)}. On
the other direction, fix an extension (E, τ, S) ∈ Ext(c). By definition of an extension,
E ≤τ F , so E ≤σ F . Therefore (E, σ, T ) ∈ Ext1(c) and by definition of Apx(c),
E ∈ Apx(c).

3) Fix some (E, τ, S) ∈ Ext1(d). As d extends c, τ � σ. By definition of an extension,
E ≤τ F , so E ≤σ F , hence (E, σ, T ) ∈ Ext1(c). Therefore Apx(d) = {E : (E, τ, S) ∈
Ext1(d)} ⊆ {E : (E, σ, T ) ∈ Ext1(c)} = Apx(c). For any s ∈ ω, Apxs(d) = Apx(d) ∩
As ⊆ Apx(c) ∩ As = Apxs(c).

�

Note that altough the extension relation has been generalized to preconditions, Ext(c) is
defined to be the set of all the conditions extending c. In particular, if c is a precondition which
is not a condition, Ext(c) = ∅, whereas at least c ∈ Ext1(c). This is why clause 1 of Lemma 2.6
gives the useful information that whenever c is a true condition, so are the members of Ext1(c).

Definition 2.7 Fix a precondition c = (F, σ, T ) and a Σ0
0 formula ϕ(G, x).

(i) c  (∃x)ϕ(G, x) iff ϕ(F,w) holds for some w ∈ ω
(ii) c  (∀x)ϕ(G, x) iff ϕ(E,w) holds for every w ∈ ω and every set E ∈ Apx(c).

As explained, σ restricts the possible extensions of the set F (see clause 3 of Lemma 2.6),
so this forcing notion is stable by condition extension. The tree T itself restricts the possible
extensions of σ, but has no effect of the decision of a Σ0

1 formula (Lemma 2.8).
The following trivial lemma expresses the fact that the tree part of a precondition has no

effect in the forcing relation for a Σ0
1 or Π0

1 formula.

Lemma 2.8 Fix two preconditions c = (F, σ, T ) and d = (F, σ, S), and some Σ0
1 or Π0

1 for-
mula ϕ(G).

c  ϕ(G) if and only if d  ϕ(G)

Proof. Simply notice that the tree part of the condition does not occur in the definition of the
forcing relation, and that Apx(c) = Apx(d). �

As one may expect, the forcing relation for a precondition is closed under extension.

Lemma 2.9 Fix a precondition c and a Σ0
1 or Π0

1 formula ϕ(G). If c  ϕ(G) then for every
precondition d ≤ c, d  ϕ(G).
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Proof. Fix a precondition c = (F, σ, T ) such that c  ϕ(G) and an extension d = (E, τ, S) ≤ c.
− If ϕ ∈ Σ0

1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0
0. As c  ϕ(G),

then by clause (i) of Definition 2.7, there exists a w ∈ ω such that ψ(F,w) holds. By
definition of d ≤ c, E ≤σ F , so ψ(E,w) holds, hence d  ϕ(G).

− If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. As c  ϕ(G), then
by clause (ii) of Definition 2.7, for every w ∈ ω and every H ∈ Apx(c), ϕ(H,w) holds.
By clause 3 of Lemma 2.6, Apx(d) ⊆ Apx(c) so d  ϕ(G).

�

2.3. Forcing higher formulas

We are now able to define the forcing relation for any arithmetic formula. The forcing relation
for arbitrary arithmetic formulas is induced by the forcing relation for Σ0

1 formulas. However,
the definitional strength of the resulting relation is too high with respect to the formula it
forces. We therefore design a custom relation with better definitional properties, and which still
preserve the expected properties of a forcing relation, that is, the density of the set of conditions
forcing a formula or its negation, and the preservation of the forced formulas under condition
extension.

Definition 2.10 Let c = (F, σ, T ) be a condition and ϕ(G) be an arithmetic formula.

(i) If ϕ(G) = (∃x)ψ(G, x) where ψ ∈ Π0
n+1 then c  ϕ(G) iff there is a w < |σ| such

that c  ψ(G,w)
(ii) If ϕ(G) = (∀x)ψ(G, x) where ψ ∈ Σ0

1 then c  ϕ(G) iff for every τ ∈ T , every E ∈
Apx|τ |(c) and every w < |τ |, (E, τ, T [τ ]) 6 ¬ψ(G,w)

(iii) If ϕ(G) = ¬ψ(G, x) where ψ ∈ Σ0
n+3 then c  ϕ(G) iff d 6 ψ(G) for every d ≤ c.

Note that in clause (ii) of Definition 2.10, there may be some τ ∈ T such that T [τ ] is finite,

hence (E, τ, T [τ ]) is not necessarily a condition. This is where we use the generalization of
forcing of Σ0

1 and Π0
1 formulas to preconditions. We now prove that this relation enjoys the

main properties of a forcing relation.

Lemma 2.11 Fix a condition c and an arithmetic formula ϕ(G). If c  ϕ(G) then for every
condition d ≤ c, d  ϕ(G).

Proof. We prove by induction over the complexity of the formula ϕ(G) that for every condition
c, if c  ϕ(G) then for every condition d ≤ c, d  ϕ(G). Fix a condition c = (F, σ, T ) such that
c  ϕ(G) and an extension d = (E, τ, S).

− If ϕ ∈ Σ0
1 ∪Π0

1 then it follows from Lemma 2.9.
− If ϕ ∈ Σ0

n+2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0
n+1. By clause (i)

of Definition 2.10, there exists a w ∈ ω such that c  ψ(G,w). By induction hypothesis,
d  ψ(G,w) so by clause (i) of Definition 2.10, d  ϕ(G).

− If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause (ii) of

Definition 2.10, for every ρ ∈ T , every w < |ρ|, and every H ∈ Apx|ρ|(c), (H, ρ, T [ρ]) 6
¬ψ(G,w). As S ⊆ T and Apx(d) ⊆ Apx(c), for every ρ ∈ S, every w < |ρ|, and every

H ∈ Apx|ρ|(d), (H, ρ, T [ρ]) 6 ¬ψ(G,w). By Lemma 2.8, (H, ρ, S[ρ]) 6 ¬ψ(G,w) hence

by clause (ii) of Definition 2.10, d  ϕ(G).
− If ϕ ∈ Π0

n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0
n+3. By clause (iii)

of Definition 2.10, for every e ∈ Ext(c), e 6 ψ(G). As Ext(d) ⊆ Ext(c), for every
e ∈ Ext(d), e 6 ψ(G), so by clause (iii) of Definition 2.10, d  ϕ(G).

�

Lemma 2.12 For every arithmetic formula ϕ, the following set is dense

{c ∈ P : c  ϕ(G) or c  ¬ϕ(G)}
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Proof. We prove by induction over n > 0 that if ϕ is a Σ0
n (Π0

n) formula then the following set
is dense

{c ∈ P : c  ϕ(G) or c  ¬ϕ(G)}
It suffices to prove it for the case where ϕ is a Σ0

n formula, as the case where ϕ is a Π0
n formula

is symmetric. Fix a condition c = (F, σ, T ).

− In case n = 1, the formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Σ0
0. Suppose

there exists a w ∈ ω and a set E ∈ Apx(c) such that ψ(E,w) holds. The precondition
d = (E, σ, T ) is a condition extending c by clause 1 of Lemma 2.6 and by definition
of Apx(c). Moreover d  (∃x)ψ(G, x) by clause (i) of Definition 2.7 hence d  ϕ(G).
Suppose now that for every w ∈ ω and every E ∈ Apx(c), ψ(E,w) does not hold. By
clause (ii) of Definition 2.7, c  (∀x)¬ψ(G, x), hence c  ¬ϕ(G).

− In case n = 2, the formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Π0
1. Let

S = {τ ∈ T : (∀w < |τ |)(∀E ∈ Apx|τ |(c)(E, τ, T
[τ ]) 6 ψ(G,w)}

The set S is obviously ∅′-p.r. We prove that it is a subtree of T . Suppose that τ ∈ S
and ρ � τ . Fix a w < |ρ| and E ∈ Apx|ρ|(c). In particular w < |τ | and E ∈ Apx|τ |(c) so

(E, τ, T [τ ]) 6 ψ(G,w). Note that (E, τ, T [τ ]) is a precondition extending (E, ρ, T [ρ]), so

by the contrapositive of Lemma 2.9, (E, ρ, T [ρ]) 6 ψ(G,w). Therefore ρ ∈ S. Hence S
is a tree, and as S ⊆ T , it is a subtree of T .

If S is infinite, then d = (F, σ, S) is an extension of c such that for every τ ∈ S, every

w < |τ | and every E ∈ Apx|τ |(c), (E, τ, T [τ ]) 6 ψ(G,w). By Lemma 2.8, for every E ∈
Apx|τ |(c), (E, τ, S[τ ]) 6 ψ(G,w) and by clause 3 of Lemma 2.6, Apx|τ |(d) ⊆ Apx|τ |(c).

Therefore, by clause (ii) of Definition 2.10, d  (∀x)¬ψ(G, x) so d  ¬ϕ(G). If S is

finite, then pick some τ ∈ T rS such that T [τ ] is infinite. By choice of τ ∈ T rS, there
exists a w < |τ | and an E ∈ Apx|τ |(c) such that (E, τ, T [τ ])  ψ(G,w). d = (E, τ, T [τ ])

is a valid condition extending c and by clause (i) of Definition 2.10 d  ϕ(G).
− In case n > 2, density follows from clause (iii) of Definition 2.10.

�

Any sufficiently generic filter F induces a unique generic real G defined by

G =
⋃
{F ∈ A : (F, σ, T ) ∈ F}

The following lemma informally asserts that the forcing relation is sound and complete. Sound
because whenever it forces a property, then this property actually holds over the generic real G.
The forcing is also complete in that every property which holds over G is forced at some point
whenever the filter is sufficiently generic.

Lemma 2.13 Suppose that F is a sufficiently generic filter and let G be the corresponding
generic real. Then for each arithmetic formula ϕ(G), ϕ(G) holds iff c  ϕ(G) for some c ∈ F .

Proof. We prove by induction over the complexity of the arithmetic formula ϕ(G) that ϕ(G)
holds iff c  ϕ(G) for some c ∈ F . Note that thanks to Lemma 2.12, it suffices to prove that if
c  ϕ(G) for some c ∈ F then ϕ(G) holds. Indeed, conversely if ϕ(G) holds, then by genericity
of G either c  ϕ(G) or c  ¬ϕ(G) for some c ∈ F , but if c  ¬ϕ(G) then ¬ϕ(G) holds,
contradicting the hypothesis. So c  ϕ(G).

We proceed by case analysis on the formula ϕ. Note that in the above argument, the converse
of the Σ case is proved assuming the Π case. However, in our proof, we use the converse of
the Σ0

n+3 case to prove the Π0
n+3 case. We need therefore prove to the converse of the Σ0

n+3

case without Lemma 2.12. Fix a condition c = (F, σ, T ) ∈ F such that c  ϕ(G).

− If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause (i) of
Definition 2.7, there exists a w ∈ ω such that ψ(F,w) holds. As F ⊆ G and G r F ⊆
(max(F ),+∞), then by continuity ψ(G,w) holds, hence ϕ(G) holds.
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− If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. By clause (ii) of
Definition 2.7, for every w ∈ ω and every E ∈ Apx(c), ψ(E,w) holds. As {E ⊂fin G :
E ⊇ F} ⊆ Apx(c), then for every w ∈ ω, ψ(G,w) holds, so ϕ(G) holds.

− If ϕ ∈ Σ0
n+2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

n+1. By clause (i)
of Definition 2.10, there exists a w ∈ ω such that c  ψ(G,w). By induction hypothesis,
ψ(G,w) holds, hence ϕ(G) holds.

Conversely, suppose that ϕ(G) holds. Then there exists a w ∈ ω such that ψ(G,w)
holds, so by induction hypothesis c  ψ(G,w) for some c ∈ F , so by clause (i) of
Definition 2.10, c  ϕ(G).

− If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause (ii) of

Definition 2.10, for every τ ∈ T , every w < |τ |, and every E ∈ Apx|τ |(c), (E, τ, T [τ ]) 6
¬ψ(G,w). Suppose for the sake of absurd that ψ(G,w) does not hold for some w ∈ ω.
Then by induction hypothesis, there exists a d ∈ F such that d  ¬ψ(G,w). Let
e = (E, τ, S) ∈ F be such that e  ¬ψ(G,w), |τ | > w and e extends both c and d. The
condition e exists by Lemma 2.9. We can furthermore require that E ∈ Apx|τ |(c), so

e 6 ¬ψ(G,w) and e  ¬ψ(G,w). Contradiction. Hence for every w ∈ ω, ψ(G,w) holds,
so ϕ(G) holds.

− If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause (iii)
of Definition 2.10, for every d ∈ Ext(c), d 6 ψ(G). By Lemma 2.11, d 6 ψ(G) for
every d ∈ F , and by a previous case, ψ(G) does not hold, so ϕ(G) holds.

�

We now prove that the forcing relation enjoys the desired definitional properties, that is, the
complexity of the forcing relation is the same as the complexity of the formula it forces. We
start by analysing the complexity of some components of this notion of forcing.

Lemma 2.14

a) For every precondition c, Apx(c) and Ext1(c) are ∆0
1 uniformly in c.

b) For every condition c, Ext(c) is Π0
2 uniformly in c.

Proof.

a) Fix a precondition c = (F, σ, T ). A set E ∈ Apx(c) iff the following ∆0
1 predicate holds:

(F ⊆ E) ∧ (∀x ∈ E r F )[x > max(F ) ∧ x ∈ Rσ]

Moreover, (E, τ, S) ∈ Ext1(c) iff the ∆0
1 predicate E ∈ Apx(c) ∧ τ = σ ∧ S = T holds.

As already mentioned, the equality S = T is translated into “the indices of S and T
coincide” which is a Σ0

0 statement.
b) Fix a condition c = (F, σ, T ). By clause 2) of Lemma 2.6, (E, τ, S) ∈ Ext(c) iff the

following Π0
2 formula holds

E ∈ Apx(c) ∧ σ � τ
∧(∀ρ ∈ S)(∀ξ)[ξ � ρ→ ξ ∈ S] (S is a tree)
∧(∀n)(∃ρ ∈ 2n)ρ ∈ S) (S is infinite)
∧(∀ρ ∈ S)(σ ≺ ρ ∨ ρ � σ) (S has stem σ)
∧(∀ρ ∈ S)(ρ ∈ T ) (S is a subset of T )

�

Lemma 2.15 Fix an arithmetic formula ϕ(G).

a) Given a precondition c, if ϕ(G) is a Σ0
1 (Π0

1) formula then so is the predicate c  ϕ(G).
b) Given a condition c, if ϕ(G) is a Σ0

n+2 (Π0
n+2) formula then so is the predicate c  ϕ(G).

Proof. We prove our lemma by induction over the complexity of the formula ϕ(G). Fix a
(pre)condition c = (F, σ, T ).
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− If ϕ(G) ∈ Σ0
1 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause (i) of
Definition 2.7, c  ϕ(G) if and only if the formula (∃w ∈ ω)ψ(F,w) holds. This is a Σ0

1

predicate.
− If ϕ(G) ∈ Π0

1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0
0. By clause (ii)

of Definition 2.7, c  ϕ(G) if and only if the formula (∀w ∈ ω)(∀E ∈ Apx(c))ψ(E,w)
holds. By clause a) of Lemma 2.14, this is a Π0

1 predicate.
− If ϕ(G) ∈ Σ0

n+2 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0
n+1. By clause (i)

of Definition 2.10, c  ϕ(G) if and only if the formula (∃w < |σ|)c  ψ(G,w) holds.
This is a Σ0

n+2 predicate by induction hypothesis.

− If ϕ(G) ∈ Π0
2 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause (ii)
of Definition 2.10, c  ϕ(G) if and only if the formula (∀τ ∈ T )(∀w < |τ |)(∀E ∈
Apx|τ |(c))(E, τ, T

[τ ]) 6 ¬ψ(G,w) holds. By induction hypothesis, (E, τ, T [τ ]) 6 ¬ψ(G,w)

is a Σ0
1 predicate, hence by clause a) of Lemma 2.14, c  ϕ(G) is a Π0

2 predicate.
− If ϕ(G) ∈ Π0

n+3 then it can be expressed as ¬ψ(G) where ψ ∈ Σ0
n+3. By clause (iii)

of Definition 2.10, c  ϕ(G) if and only if the formula (∀d)(d 6∈ Ext(c) ∨ d 6 ψ(G))
holds. By induction hypothesis, d 6 ψ(G) is a Π0

n+3 predicate. Hence by clause b) of

Lemma 2.14, c  ϕ(G) is a Π0
n+3 predicate.

�

2.4. Preserving the arithmetic hierarchy

The following lemma asserts that every sufficiently generic real for this notion of forcing
preserves the arithmetic hierarchy. The argument deeply relies on the fact that this notion of
forcing admits a forcing relation with good definitional properties.

Lemma 2.16 If A 6∈ Σ0
n+1 and ϕ(G, x) is Σ0

n+1, then the set of c ∈ P satisfying the following
property is dense:

[(∃w ∈ A)c  ¬ϕ(G,w)] ∨ [(∃w 6∈ A)c  ϕ(G,w)]

Proof. Fix a condition c = (F, σ, T ).

− In case n = 0, ϕ(G,w) can be expressed as (∃x)ψ(G,w, x) where ψ ∈ Σ0
0. Let U = {w ∈

ω : (∃E ∈ Apx(c))(∃u)ψ(E,w, u)}. By clause a) of Lemma 2.14, U ∈ Σ0
1, thus U 6= A.

Fix w ∈ U∆A. If w ∈ U rA then by definition of U , there exists an E ∈ Apx(c) and a
u ∈ ω such that ψ(E,w, u) holds. By definition of Apx(c) and clause 1) of Lemma 2.6,
d = (E, σ, T ) is a condition extending c. By clause (i) of Definition 2.7, d  ϕ(G,w). If
w ∈ ArU , then for every E ∈ Apx(c) and every u ∈ ω, ψ(E,w, u) does not hold, so by
clause (ii) of Definition 2.7, c  (∀x)¬ψ(G,w, x), hence c  ¬ϕ(G,w).

− In case n = 1, ϕ(G,w) can be expressed as (∃x)ψ(G,w, x) where ψ ∈ Π0
1. Let U = {w ∈

ω : (∃s)(∀τ ∈ 2s ∩ T )(∃u < s)(∃E ∈ Apxs(c))(E, τ, T
[τ ])  ψ(G,w, u)}. By Lemma 2.15

and clause a) of Lemma 2.14, U ∈ Σ0
2, thus U 6= A. Fix w ∈ U∆A. If w ∈ U r A then

by definition of U , there exists an s ∈ ω, a τ ∈ 2s ∩T , a u < s and an E ∈ Apxs(c) such

that T [τ ] is infinite and (E, τ, T [τ ])  ψ(G,w, u). Thus d = (E, τ, T [τ ]) is a condition
extending c and by clause (i) of Definition 2.10, d  ϕ(G,w). If w ∈ A r U , then

let S = {τ ∈ T : (∀u < |τ |)(∀E ∈ Apx|τ |(c)(E, τ, T
[τ ]) 6 ψ(G,w, u)}. As proven in

Lemma 2.12, S is a ∅′-p.r. subtree of T and by w 6∈ U , S is infinite. Thus d = (F, σ, S)
is a condition extending c. By clause 3) of Lemma 2.6, Apx(d) ⊆ Apx(c), so for every

τ ∈ S, every u < |τ |, and every E ∈ Apx|τ |(d), (E, τ, T [τ ]) 6 ψ(G,w, u). By Lemma 2.8,

(E, τ, S[τ ]) 6 ψ(G,w, u), so by clause (ii) of Definition 2.10, d  (∀x)¬ψ(G,w, u) hence
d  ¬ϕ(G,w).

− In case n > 1, let U = {w ∈ ω : (∃d ∈ Ext(c))d  ϕ(G,w)}. By clause b) of Lemma 2.14
and Lemma 2.15, U ∈ Σ0

n, thus U 6= A. Fix w ∈ U∆A. If w ∈ U rA then by definition
of U , there exists a condition d extending c such that d  ϕ(G,w). If w ∈ Ar U , then
for every d ∈ Ext(c)d 6 ϕ(G,w) so by clause (iii) of Definition 2.10, c  ¬ϕ(G,w).

�
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We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let C be a set and R0, R1, . . . be a uniformly C-computable sequence of

sets. Let T0 be a C ′-primitive recursive tree such that [T0] ⊆ C(~R). Let F be a sufficiently generic
filter containing c0 = (∅, ε, T0). and let G be the corresponding generic real. By genericity, the

set G is an infinite ~R-cohesive set. By Lemma 2.16 and Lemma 2.15, G preserves non-Σ0
n+1

definitions relative to C for every n ∈ ω. Therefore, by Proposition 2.2 of [21], G preserves the
arithmetic hierarchy relative to C. �

3. The Erdős Moser theorem preserves the arithmetic hierarchy

We now extend the previous result to the Erdős-Moser theorem. The Erdős-Moser theorem
is a statement coming from graph theory. It provides together with the ascending descending
principle (ADS) an alternative proof of Ramsey’s theorem for pairs (RT2

2). Indeed, every color-
ing f : [ω]2 → 2 can be seen as a tournament R such that R(x, y) holds if x < y and f(x, y) = 1,
or x > y and f(y, x) = 0. Every infinite transitive subtournament induces a linear order whose
infinite ascending or descending sequences are homogeneous for f .

Definition 3.1 (Erdős-Moser theorem) A tournament T on a domain D ⊆ ω is an irreflexive
binary relation on D such that for all x, y ∈ D with x 6= y, exactly one of T (x, y) or T (y, x)
holds. A tournament T is transitive if the corresponding relation T is transitive in the usual
sense. A tournament T is stable if (∀x ∈ D)[(∀∞s)T (x, s)∨ (∀∞s)T (s, x)]. EM is the statement
“Every infinite tournament T has an infinite transitive subtournament.” SEM is the restriction
of EM to stable tournaments.

Bovykin and Weiermann proved in [1] that EM + ADS is equivalent to RT2
2 over RCA0, equiva-

lence still holding between their stable versions. Lerman et al. [12] proceeded to a combinatorial
and effective analysis of the Erdős-Moser theorem, and proved in particular that there is an
ω-model of EM which is not a model of SRT2

2. The author simplified their proof in [15] and
showed in [16] that RCA0 ` EM → [STS2 ∨COH], where STS2 stands for the stable thin set
theorem for pairs. In particular, since Wang [21] proved that STS2 does not admit preservation
of the arithmetic hierarchy, Theorem 2.2 follows from Theorem 3.2. On a definitional point of
view, Wang proved in [21] that EM admits preservation of ∆0

2 definitions and preservation of
higher definitions. He conjectured that EM admits preservation of the arithmetic hierarchy. We
prove his conjecture.

Theorem 3.2 EM admits preservation of the arithmetic hierarchy.

Again, the core of the proof consists of finding the good forcing notion whose generics will
preserve the arithmetic hierarchy. For the sake of simplicity, we will restrict ourselves to stable
tournaments eventhough it is clear that the forcing notion can be adapted to arbitrary tour-
nament. The proof of Theorem 3.2 will be obtained by composing the proof that cohesiveness
and the stable Erdős-Moser theorem admit preservation of the arithmetic hierarchy.

The following notion of minimal interval plays a fundamental role in the analysis of EM.
See [12] for a background analysis of EM.

Definition 3.3 (Minimal interval) Let T be an infinite tournament and a, b ∈ T be such that
T (a, b) holds. The interval (a, b) is the set of all x ∈ T such that T (a, x) and T (x, b) hold. Let
F ⊆ T be a finite transitive subtournament of T . For a, b ∈ F such that T (a, b) holds, we say
that (a, b) is a minimal interval of F if there is no c ∈ F ∩ (a, b), i.e., no c ∈ F such that T (a, c)
and T (c, b) both hold.

We must introduce an preliminary variant of Mathias forcing which is more suited to the
Erdős-Moser theorem.
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3.1. Erdős Moser forcing

The following notion of Erdős-Moser forcing has been first implicitly used by Lerman, Solomon
and Towsner [12] to separate the Erdős-Moser theorem from stable Ramsey’s theorem for pairs.
The author formalized this notion of forcing in [14] to construct a low2 degree bounding the
Erdős-Moser theorem.

Definition 3.4 An Erdős Moser condition (EM condition) for an infinite tournament R is a
Mathias condition (F,X) where

(a) F ∪ {x} is R-transitive for each x ∈ X
(b) X is included in a minimal R-interval of F .

The Erdős-Moser extension is the usual Mathias extension. EM conditions have good prop-
erties for tournaments as state following lemmas. Given a tournament R and two sets E and
F , we denote by E →R F the formula (∀x ∈ E)(∀y ∈ F )R(x, y) holds.

Lemma 3.5 (Patey [14]) Fix an EM condition (F,X) for a tournament R. For every x ∈ F ,
{x} →R X or X →R {x}.

Lemma 3.6 (Patey [14]) Fix an EM condition c = (F,X) for a tournament R, an infinite subset
Y ⊆ X and a finite R-transitive set F1 ⊂ X such that F1 < Y and [F1 →R Y ∨ Y →R F1].
Then d = (F ∪ F1, Y ) is a valid extension of c.

3.2. Partition trees

Given a string σ ∈ k<ω, we denote by setν(σ) the set {x < |σ| : σ(x) = ν} where ν < k. The
notion can be extended to sequences P ∈ kω where setν(P ) = {x ∈ ω : P (x) = ν}.

Definition 3.7 (Partition tree) A k-partition tree of [t,+∞) for some k, t ∈ ω is a tuple (k, t, T )
such that T is a subtree of k<ω. A partition tree is a k-partition tree of [t,+∞) for some k, t ∈ ω.

For the simplicity of notations, we may use the same letter T to denote both a partition tree
(k, t, T ) and the actual tree T ⊆ k<ω. We then write dom(T ) for [t,+∞) and parts(T ) for k.
Given a p.r. partition tree T , we write #T for its Turing index, and may refer to it as its code.

Definition 3.8 (Refinement) Given a function f : ` → k, a string σ ∈ `<ω f -refines a string
τ ∈ k<ω if |σ| = |τ | and for every ν < `, setν(σ) ⊆ setf(ν)(τ). A p.r. `-partition tree S of
[u,+∞) f -refines a p.r. k-partition tree T of [t,+∞) (written S ≤f T ) if #S ≥ #T , ` ≥ k,
u ≥ t and for every σ ∈ S, σ f -refines some τ ∈ T .

The collection of partition trees is equipped with a partial order ≤ such that (`, u, S) ≤
(k, t, T ) if there exists a function f : ` → k such that S ≤f T . Given a k-partition tree of
[t,+∞) T , we say that part ν of T is acceptable if there exists a path P through T such that
setν(P ) is infinite. Moreover, we say that part ν of T is empty if (∀σ ∈ T )[dom(T )∩setν(σ) = ∅].
Note that each partition tree has at least one acceptable part since for every path P through T ,
setν(P ) is infinite for some ν < k. It can also be the case that part ν of T is non-empty, while
for every path P through T , setν(P ) ∩ dom(T ) = ∅. However, in this case, we can choose the
infinite computable subtree S = {σ ∈ T : setν(σ) ∩ dom(T ) = ∅} of T which has the same
collection of infinite paths and such that part ν of S is empty.

Given a k-partition tree T , a finite set F ⊆ ω and a part ν < k, define

T [ν,F ] = {σ ∈ T : F ⊆ setν(σ) ∨ |σ| < max(F )}

The set T [ν,F ] is a (possibly finite) subtree of T which id-refines T and such that F ⊆ setν(P )

for every path P through T [ν,F ].
We denote by U the set of all ordered pairs (ν, T ) such that T is an infinite, primitive recursive

k-partition tree of [t,+∞) for some t, k ∈ ω and ν < k. The set U is equipped with a partial
ordering ≤ such that (µ, S) ≤ (ν, T ) if S f -refines T and f(µ) = ν. In this case we say that
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part µ of S refines part ν of T . Note that the domain of U and the relation ≤ are co-c.e. We
denote by U[T ] the set of all (ν, S) ≤ (µ, T ) for some (µ, T ) ∈ U.

Definition 3.9 (Promise for a partition tree) Fix a p.r. k-partition tree of [t,+∞) T . A class
C ⊆ U[T ] is a promise for T if

a) C is upward-closed under the ≤ relation restricted to U[T ]
b) for every infinite p.r. partition tree S ≤ T , (µ, S) ∈ C for some non-empty part µ of S.

A promise for T can be seen as a two-dimensional tree with at first level the acyclic digraph
of refinement of partition trees. Given an infinite path in this digraph, the parts of the members
of this path form an infinite, finitely branching tree.

Lemma 3.10 Let T and S be p.r. partition trees such that S ≤f T for some function f :
parts(S)→ parts(T ) and let C be a ∅′-p.r. promise for T .

a) The predicate “T is an infinite k-partition tree of [t,+∞)” is Π0
1 uniformly in T , k and t.

b) The relations “S f -refines T” and “part ν of S f -refines part µ of T” are Π0
1 uniformly

in S, T and f .
c) The predicate “C is a promise for T” is Π0

2 uniformly in an index for C and T .

Proof.

a) T is an infinite k-partition tree of [t,+∞) if and only if the Π0
1 formula [(∀σ ∈ T )(∀τ �

σ)τ ∈ T ∩ k<∞] ∧ [(∀n)(∃τ ∈ kn)τ ∈ T ] holds.
b) Suppose that T is a k-partition tree of [t,+∞) and S is an `-partition tree of [u,+∞).

S f -refines T if and only if the Π0
1 formula u ≥ t ∧ ` ≥ k ∧ [(∀σ ∈ S)(∃τ ∈ k|σ|)(∀ν <

u)setν(σ) ⊆ setf(ν)(τ)] holds. Part ν of S f -refines part µ of T if and only if µ = f(ν)
and S f -refines T .

c) Given k, t ∈ ω, let PartTree(k, t) denote the Π0
1 set of all the infinite p.r. k-partition

trees of [t,+∞). Given a k-partition tree S and a part ν of S, let Empty(S, ν) denote the
Π0

1 formula “part ν of S is empty”, that is the formula (∀σ ∈ S)setν(σ) ∩ dom(S) = ∅.
C is a promise for T if and only if the following Π0

2 formula holds:

(∀`, u)(∀S ∈ PartTree(`, u))[S ≤ T → (∃ν < `)¬Empty(S, ν) ∧ (ν, S) ∈ C)]
∧(∀`′, u′)(∀V ∈ PartTree(`′, u′))(∀g : `→ `′)[S ≤g V ≤ T →
(∀ν < `)((ν, S) ∈ C → (g(ν), V ) ∈ C)]

�

Given a promise C for T and some infinite p.r. partition tree S refining T , we denote by C[S]
the set of all (ν, S′) ∈ C below some (µ, S) ∈ C, that is, C[S] = C ∩U[S]. Note that by clause b)
of Lemma 3.10, if C is ∅′-p.r. promise for T then C[S] is a ∅′-p.r. promise for S.

Establishing a distinction between the acceptable parts and the non-acceptable ones requires
a lot of definitional power. However, we prove that we can always find an extension where the
distinction is ∆0

2. We say that an infinite p.r. partition tree T witnesses its acceptable parts if
its parts are either acceptable or empty.

Lemma 3.11 For every infinite p.r. k-partition tree T of [t,+∞), there exists an infinite p.r.
k-partition tree S of [u,+∞) refining T with the identity function and such that S witnesses
its acceptable parts.

Proof. Given a partition tree T , we let I(T ) be the set of its empty parts. Fix an infinite p.r. k-
partition tree of [t,+∞) T , It suffices to prove that if ν is a non-empty and non-acceptable part
of T , then there exists an infinite p.r. k-partition tree S refining T with the identity function,
such that ν ∈ I(S) r I(T ). As I(T ) ⊆ I(S) and |I(S)| ≤ k, it suffices to iterate the process at
most k times to obtain a refinement witnessing its acceptable parts.

So fix a non-empty and non-acceptable part ν of T . By definition of being non-acceptable,
there exists a path P through T and an integer u > max(t, setν(P )). Let S = {σ ∈ T :
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setν(σ) ∩ [u,+∞) = ∅}. The set S is a p.r. k-partition tree of [u,+∞) refining T with the
identity function and such that part ν of S is empty. Moreover, S is infinite since P ∈ [S]. �

The following lemma strengthen clause b) of Definition 3.9.

Lemma 3.12 Let T be a p.r. partition tree and C be a promise for T . For every infinite p.r.
partition tree S ≤ T , (µ, S) ∈ C for some acceptable part µ of S.

Proof. Fix an infinite p.r. `-partition tree S ≤ T . By Lemma 3.11, there exists an infinite
p.r. `-partition tree S′ ≤id S witnessing its acceptable parts. As C is a promise for T and
S′ ≤ T , there exists a non-empty (hence acceptable) part ν of S′ such that (ν, S′) ∈ C. As C is
upward-closed, (ν, S) ∈ C. �

3.3. Forcing conditions

We now describe the forcing notion for the Erdős-Moser theorem. Recall that an EM condition
for an infinite tournament R is a Mathias condition (F,X) where F ∪ {x} is R-transitive for
each x ∈ X and X is included in a minimal R-interval of F .

Definition 3.13 We denote by P the forcing notion whose conditions are tuples (~F , T, C) where

(a) T is an infinite p.r. partition tree
(b) C is a ∅′-p.r. promise for T
(c) (Fν , dom(T )) is an EM condition for R and each ν < parts(T )

A condition d = ( ~E, S,D) extends c = (~F , T, C) (written d ≤ c) if there exists a function
f : `→ k such that D ⊆ C and the following holds:

(i) (Eν ,dom(S)) EM extends (Ff(ν),dom(T )) for each ν < parts(S)

(ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

We may think of a condition c = (~F , T, C) as a collection of EM conditions (Fν , Hν) for R,
where Hν = dom(T )∩ setν(P ) for some path P through T . Hν must be infinite for at least one
of the parts ν < parts(T ). At a higher level, D restricts the possible subtrees S and parts µ

refining some part of T in the condition c. Given a condition c = (~F , T, C), we write parts(c)
for parts(T ).

Lemma 3.14 For every condition c = (~F , T, C) and every n ∈ ω, there exists an extension

d = ( ~E, S,D) such that |Eν | ≥ n on each acceptable part ν of S.

Proof. It suffices to prove that for every condition c = (~F , T, C) and every acceptable part ν of

T , there exists an extension d = ( ~E, S,D) such that S ≤id T and |Eν | ≥ n. Iterating the process
at most parts(T ) times enables us to conclude. Fix an acceptable part ν of T and a path P
trough T such that setν(P ) is infinite. Let F ′ be an R-transitive subset of setν(P )∩ dom(T ) of

size n. Such a set exists by the classical Erdős-Moser theorem. Let ~E be defined by Eµ = Fµ if
µ 6= ν and Eν = Fν ∪F ′ otherwise. As the tournament R is stable, there exists some u ≥ t such
that (Eν , [u,+∞)) is an EM condition and therefore EM extends (Fν , dom(T )). Let S be the

p.r. partition tree T [ν,Eν ] of [u,+∞). The condition ( ~E, S, C[S]) is the desired extension. �

Given a condition c ∈ P, we denote by Ext(c) the set of all its extensions.

3.4. The forcing relation

The forcing relation at the first level, namely, for Σ0
1 and Π0

1 formulas, is parameterized by
some part of the tree of the considered condition. Thanks to the forcing relation we will define,
we can build an infinite decreasing sequence of conditions which decide Σ0

1 and Π0
1 formulas

effectively in ∅′. The sequence however yields a ∅′-computably bounded ∅′-computable tree of
(possibly empty) parts. Therefore, any PA degree relative to ∅′ is sufficient to control the first
jump of an infinite transitive subtournament of a stable infinite computable tournament.
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We cannot do better since Kreuzer proved in [11] the existence of an infinite, stable, com-
putable tournament with no low infinite transitive subtournament. If we ignore the promise
part of a condition, the careful reader will recognize the construction of Cholak, Jockusch and
Slaman [4] of a low2 infinite subset of a ∆0

2 set or its complement by the first jump control.
The difference, which at first look seems only presentational, is in fact one of the key features
of this notion of forcing. Indeed, forcing iterated jumps require to have a definitionally weak
description of the set of the extensions of a condition, and it requires much less computational
power to describe a primitive recursive tree than an infinite reservoir of a Mathias condition.

Definition 3.15 Fix a condition c = (~F , T, C), a Σ0
0 formula ϕ(G, x) and a part ν < parts(T ).

1. c ν (∃x)ϕ(G, x) iff there exists a w ∈ ω such that ϕ(Fν , w) holds.
2. c ν (∀x)ϕ(G, x) iff for every σ ∈ T , every w < |σ| and every R-transitive set F ′ ⊆

dom(T ) ∩ setν(σ), ϕ(Fν ∪ F ′, w) holds.

We start by proving some basic properties of the forcing relation over Σ0
1 and Π0

1 formulas.
As one may expect, the forcing relation at first level is closed under the refinement relation.

Lemma 3.16 Fix a condition c = (~F , T, C) and a Σ0
1 (Π0

1) formula ϕ(G). If c ν ϕ(G) for some

ν < parts(T ), then for every d = ( ~E, S,D) ≤ c and every part µ of S refining part ν of T ,
d µ ϕ(G).

Proof. We have two cases.

− If ϕ ∈ Σ0
1 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 3.15, there exists a w ∈ ω such that ψ(Fν , w) holds. By property (i) of the
definition of an extension, Eµ ⊇ Fν and (Eµ r Fν) ⊂ dom(T ), therefore ψ(Eµ, w) holds
by continuity, so by clause 1 of Definition 3.15, d µ (∃x)ψ(G, x).

− If ϕ ∈ Π0
1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. Fix a τ ∈ S, a w < |τ |
and an R-transitive set F ′ ⊆ dom(S) ∩ setµ(τ). It suffices to prove that ϕ(Eµ ∪ F ′)
holds to conclude that d µ (∀x)ψ(G, x) by clause 2 of Definition 3.15. By property (ii)

of the definition of an extension, there exists a σ ∈ T [ν,Eµ] such that |σ| = |τ | and

setµ(τ) ⊆ setν(σ). As dom(S) ⊆ dom(T ), F ′ ⊆ dom(T ) ∩ setν(σ). As σ ∈ T [ν,Eµ],
Eµ ⊆ setν(σ) and by property (i) of the definition of an extension, Eµ ⊆ dom(T ). So
Eµ ∪ F ′ ⊆ dom(T ) ∩ setν(σ). As w < |τ | = |σ| and Eµ ∪ F ′ is an R-transitive subset
of dom(T ) ∩ setν(σ), then by clause 2 of Definition 3.15 applied to c ν (∀x)ψ(G, x),
ϕ(Fν ∪ (Eµ r Fν) ∪ F ′, w) holds, hence ϕ(Eµ ∪ F ′) holds.

�

Before defining forcing relation at the higher levels, we prove a density lemma for Σ0
1 and Π0

1

formulas. It enables us in particular to reprove that every PA relative to ∅′ computes the jump
of an infinite R-transitive set.

Lemma 3.17 For every Σ0
1 (Π0

1) formula ϕ, the following set is dense

{c = (~F , T, C) ∈ P : (∀ν < parts(T ))[c ν ϕ(G) ∨ c ν ¬ϕ(G)]}

Proof. It suffices to prove the statement for the case where ϕ is a Σ0
1 formula, as the case where

ϕ is a Π0
1 formula is symmetric. Fix a condition c = (~F , T, C) and let I(c) be the set of the

parts ν < parts(T ) such that c 6ν ϕ(G) and c 6ν ¬ϕ(G). If I(c) = ∅ then we are done,
so suppose I(c) 6= ∅ and fix some ν ∈ I(c). We will construct an extension d of c such that
I(d) ⊆ I(c) r {ν}. Applying iteratively the operation enables us to conclude.

The formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Σ0
0. Define f : k + 1 → k as f(µ) = µ

if µ < k and f(k) = ν otherwise. Let S be the set of all σ ∈ (k + 1)<ω which f -refine some

τ ∈ T ∩ k|σ| and such that for every w < |σ|, every part µ ∈ {ν, k} and every finite R-transitive
set F ′ ⊆ dom(T ) ∩ setµ(σ), ϕ(Fν ∪ F ′, w) does not hold.
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Note that S is a p.r. partition tree of [t,+∞) refining T with witness function f . Suppose

that S is infinite. Let ~E be defined by Eµ = Fµ if µ < k and Ek = Fν and consider the extension

d = ( ~E, S, C[S]). We claim that ν, k 6∈ I(d). Fix a part µ ∈ {ν, k} of S. By definition of S, for
every σ ∈ S, every w < |σ| and every R-transitive set F ′ ⊆ dom(S) ∩ setµ(σ), ϕ(Eµ ∪ F ′, w)
does not hold. Therefore, by clause 2 of Definition 3.15, d µ (∀x)¬ψ(G, x), hence d µ ¬ϕ(G).
Note that I(d) ⊆ I(c) r {ν}.

Suppose now that S is finite. Fix a threshold ` ∈ ω such that (∀σ ∈ S)|σ| < ` and a τ ∈ T ∩k`
such that T [τ ] is infinite. Consider the 2-partition E0 t E1 of setν(τ) ∩ dom(T ) defined by
E0 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(i, s) holds} and E1 = {i ≥ t : τ(i) = ν ∧ (∀∞s)R(s, i) holds}.
This is a 2-partition since the tournament R is stable. As there exists no σ ∈ S which f -refines
τ , there exists a w < ` and an R-transitive set F ′ ⊆ E0 or F ′ ⊆ E1 such that ϕ(Fν∪F ′, w) holds.
By choice of the partition, there exists a t′ > t such that F ′ →R [t′,+∞) or [t′,+∞) →R F ′.

By Lemma 3.6, (Fν ∪ F ′, [t′,+∞)) is a valid EM extension for (Fν , [t,+∞)). As T [τ ] is infinite,

T [ν,F ′] is also infinite. Let ~E be defined by Eµ = Fµ if µ 6= ν and Eµ = Fν ∪ F ′ otherwise. Let

S be the k-partition tree (k, t′, T [ν,F ′]). The condition d = ( ~E, S, C[S]) is a valid extension of c.
By clause 1 of Definition 3.15, d µ ϕ(G). Therefore I(d) ⊆ I(c) r {ν}. �

As in the previous notion of forcing, the following trivial lemma expresses the fact that the
promise part of a condition has no effect in the forcing relation for a Σ0

1 or Π0
1 formula.

Lemma 3.18 Fix two conditions c = (~F , T, C) and d = (~F , T,D), and a Σ0
1 (Π0

1) formula. For
every part ν of T , c ν ϕ(G) if and only if d ν ϕ(G).

Proof. If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 3.15, c ν ϕ(G) iff there exists a w ∈ ω such that ψ(Fν , w) holds, iff d ν ϕ(G).
Similarily, if ϕ ∈ Π0

1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0
0. By clause 2

of Definition 3.15, c ν ϕ(G) iff for every σ ∈ T , every w < |σ| and every R-transitive set
F ′ ⊆ dom(T ) ∩ setν(σ), ϕ(Fν ∪ F ′, w) holds, iff d ν ϕ(G). �

We are now ready to define the forcing relation for an arbitrary arithmetic formula. Again,
the natural forcing relation induced by the forcing of Σ0

0 formulas is too complex, so we design
a more effective relation which still enjoys the main properties of a forcing relation.

Definition 3.19 Fix a condition c = (~F , T, C) and an arithmetic formula ϕ(G).

1. If ϕ(G) = (∃x)ψ(G, x) where ψ ∈ Π0
1 then c  ϕ(G) iff for every part ν < parts(T ) such

that (ν, T ) ∈ C there exists a w < dom(T ) such that c ν ψ(G,w)
2. If ϕ(G) = (∀x)ψ(G, x) where ψ ∈ Σ0

1 then c  ϕ(G) iff for every infinite p.r. k′-partition

tree S, every function f : parts(S) → parts(T ), every w and ~E smaller than #S such
that the following hold

i) (Eν ,dom(S)) EM extends (Ff(ν), dom(T )) for each ν < parts(S)

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

for every (µ, S) ∈ C, ( ~E, S, C[S]) 6µ ¬ψ(G,w)
3. If ϕ(G) = (∃x)ψ(G, x) where ψ ∈ Π0

n+2 then c  ϕ(G) iff there exists a w ∈ ω such that
c  ψ(G,w)

4. If ϕ(G) = ¬ψ(G, x) where ψ ∈ Σ0
n+3 then c  ϕ(G) iff d 6 ψ(G) for every d ∈ Ext(c).

Notice that, unlike the forcing relation for Σ0
1 and Π0

1 formulas, the relation over higher
formuals does not depend on the part of the relation. The careful reader will have recognized
the combinatorics of the second jump control introduced by Cholak, Jockusch and Slaman in [4].
We now prove the main properties of this forcing relation.

Lemma 3.20 Fix a condition c and a Σ0
n+2 (Π0

n+2) formula ϕ(G). If c  ϕ(G) then for every
d ≤ c, d  ϕ(G).
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Proof. We prove the statement by induction over the complexity of the formula ϕ(G). Fix a

condition c = (~F , T, C) such that c  ϕ(G) and an extension d = ( ~E, S,D) of c.

− If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

1. By clause 1 of
Definition 3.19, for every part ν of T such that (ν, T ) ∈ C, there exists a w < dom(T )
such that c ν ψ(G,w). Fix a part µ of S such that (µ, S) ∈ D. As D ⊆ C, (µ, S) ∈ C.
By upward-closure of C, part µ of S refines some part ν of C such that (ν, T ) ∈ C.
Therefore by Lemma 3.16, d µ ψ(G,w), with w < dom(T ) ≤ dom(S). Applying again
clause 1 of Definition 3.19, we deduce that d  (∀x)ψ(G, x), hence d  ϕ(G).

− If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. Suppose for the
sake of absurd that d 6 (∀x)ψ(G, x). Let f : parts(S)→ parts(T ) witness the refinement
S ≤ T . By clause 2 of Definition 3.19, there exists an infinite p.r. k′-partition tree S′,

a function g : parts(S′) → parts(S), a w ∈ ω, and ~H smaller than the code of S′ such
that

i) (Hν , dom(S′)) EM extends (Eg(ν),dom(S)) for each ν < parts(S′)

ii) S′ g-refines
⋂
ν<parts(S′) S

[g(ν),Hν ]

iii) there exists a (µ, S′) ∈ D such that ( ~H, S′,D[S′]) µ ¬ψ(G,w).
To deduce by clause 2 of Definition 3.19 that c 6 (∀x)ψ(G, x) and derive a contradiction,
it suffices to prove that the same properties hold w.r.t. T .

i) As by property (i) of the definition of an extension, (Eg(ν),dom(S)) EM extends
(Ff(g(ν)),dom(T )) and (Hν ,dom(S′) EM extends (Eg(ν), dom(S)), then (Hν , dom(S′))
EM extends (Ff(g(ν)),dom(T )).

ii) As by property (ii) of the definition of an extension, S f -refines
⋂
ν<parts(S′) T

[f(g(ν)),Eg(ν)]

and S′ g-refines
⋂
ν<parts(S′) S

[g(ν),Hν ], then S′ (g◦f)-refines
⋂
ν<parts(S′) T

[(g◦f)(ν),Hν ].

iii) As D ⊆ C, there exists a part (µ, S′) ∈ C such that ( ~H, S′,D[S′]) µ ¬ψ(G,w). By

Lemma 3.18, ( ~H, S′, C[S′]) µ ¬ψ(G,w).
− If ϕ ∈ Σ0

n+3 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0
n+2. By clause 3

of Definition 3.19, there exists a w ∈ ω such that c  ψ(G,w). By induction hypothesis,
d  ψ(G,w) so by clause 3 of Definition 3.19, d  ϕ(G).

− If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4
of Definition 3.19, for every e ∈ Ext(c), e 6 ψ(G). As Ext(d) ⊆ Ext(c), for every
e ∈ Ext(d), e 6 ψ(G), so by clause 4 of Definition 3.19, d  ϕ(G).

�

Lemma 3.21 For every Σ0
n+2 (Π0

n+2) formula ϕ, the following set is dense

{c ∈ P : c  ϕ(G) or c  ¬ϕ(G)}

Proof. We prove the statement by induction over n. It suffices to treat the case where ϕ is a

Σ0
n+2 formula, as the case where ϕ is a Π0

n+2 formula is symmetric. Fix a condition c = (~F , T, C).
− In case n = 0, the formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Π0

1. Suppose there
exists an infinite p.r. k′-partition tree S for some k′ ∈ ω, a function f : parts(S) →
parts(T ) and a k′-tuple of finite sets ~E such that

i) (Eν , [`,+∞)) EM extends (Ff(ν),dom(T )) for each ν < parts(S).

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

iii) for each non-empty part ν of S such that (ν, S) ∈ C, ( ~E, S, C[S]) ν ψ(G,w) for
some w < #S

We can choose dom(S) so that (Eν ,dom(S)) EM extends (Ff(ν),dom(T )) for each ν <
parts(S). Properties i-ii) remain trivially true. By Lemma 3.16 and Lemma 3.18,
property iii) remains true too. Let D = C[S]r {(ν, S′) ∈ C : part ν of S′ is empty}. As
C is an ∅′-p.r. promise for T , C[S] is an ∅′-p.r. promise for S. As D is obtained from
C[S] by removing only empty parts, D is also an ∅′-p.r. promise for S. By clause 1 of

Definition 3.19, d = ( ~E, S,D)  (∃x)ψ(G, x) hence d  ϕ(G).
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We may choose a coding of the p.r. trees such that such that the code of S is

sufficiently large to witness ` and ~E. So suppose now that for every infinite p.r. k′-

partition tree S, every function f : parts(S) → parts(T ) and ~E smaller than the code
of S such that properties i-ii) hold, there exists a non-empty part ν of S such that

(ν, S) ∈ C and ( ~E, S, C) 6ν ψ(G,w) for every w < `. Let D be the collection of all such

(ν, S). The set D is ∅′-p.r. since by Lemma 3.25, both ( ~E, S, C) 6ν ψ(G,w) and “part
ν of S is non-empty” are Σ0

1. By Lemma 3.16 and since we require that #S ≥ #T
in the definition of S ≤ T , D is upward-closed under the refinement relation, hence is

a promise for T . By clause 2 of Definition 3.19, d = (~F , T,D)  (∀x)¬ψ(G, x), hence
d  ¬ϕ(G).

− In case n > 0, density follows from clause 4 of Definition 3.19.

�

Given any filter F = {c0, c1, . . . } with cs = (~Fs, Ts, Cs), the set of the acceptable parts ν
of Ts such that (ν, Ts) ∈ Cs forms an infinite, directed acyclic graph G(F). Whenever F is
sufficiently generic, the graph G(F) has a unique infinite path P . The path P induces an
infinite set G =

⋃
s FP (s),s. We call P the generic path and G the generic real.

Lemma 3.22 Suppose that F is sufficiently generic and let P and G be the generic path and
the generic real, respectively. For any Σ0

1 (Π0
1) formula ϕ(G), ϕ(G) holds iff cs P (s) ϕ(G) for

some cs ∈ F .

Proof. Fix a condition cs = (~F , T, C) ∈ F such that c P (s) ϕ(G), and let ν = P (s).

− If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 3.15, there exists a w ∈ ω such that ψ(Fν , w) holds. As ν = P (s), Fν =
FP (s) ⊆ G and G r Fν ⊆ (max(Fν),+∞), so ψ(G,w) holds by continuity, hence ϕ(G)
holds.

− If ϕ ∈ Π0
1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. By clause 2
of Definition 3.15, for every σ ∈ T , every w < |σ| and every R-transitive set F ′ ⊆
dom(T ) ∩ setν(σ), ψ(Fν ∪ F ′, w) holds. For every F ′ ⊆ Gr Fν , and w ∈ ω there exists
a σ ∈ T such that w < |σ| and F ′ ⊆ dom(T ) ∩ setν(σ). Hence ψ(Fν ∪ F ′, w) holds.
Therefore, for every w ∈ ω, ψ(G,w) holds, so ϕ(G) holds.

The other direction holds by Lemma 3.17. �

Lemma 3.23 Suppose that F is sufficiently generic and let P and G be the generic path and
the generic real, respectively. For any Σ0

n+2 (Π0
n+2) formula ϕ(G), ϕ(G) holds iff cs  ϕ(G) for

some cs ∈ F .

Proof. We prove the statement by induction over the complexity of the formula ϕ(G). As
previously noted in Lemma 2.13, it suffices to prove that if cs  ϕ(G) for some cs ∈ F then
ϕ(G) holds. Indeed, conversely if ϕ(G) holds, then by Lemma 3.21 and by genericity of F either
cs  ϕ(G) or cs  ¬ϕ(G), but if c  ¬ϕ(G) then ¬ϕ(G) holds, contradicting the hypothesis.

So cs  ϕ(G). Fix a condition cs = (~F , T, C) ∈ F such that cs  ϕ(G). We proceed by case
analysis on ϕ.

− If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

1. By clause 1 of
Definition 3.19, for every part ν of T such that (ν, T ) ∈ C, there exists a w < dom(T ) such
that cs ν ψ(G,w). In particular (P (s), T ) ∈ C, so cs P (s) ψ(G,w). By Lemma 3.22,
ψ(G,w) holds, hence ϕ(G) holds.

− If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause 2 of
Definition 3.19, for every infinite k′-partition tree S, every function f : parts(S) →
parts(T ), every w and ~E smaller than the code of S such that the following hold

i) (Eν ,dom(S)) EM extends (Ff(ν), dom(T )) for each ν < parts(S)

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]
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for every (µ, S) ∈ C, ( ~E, S, C[S]) 6µ ¬ψ(G,w). Suppose for the sake of absurd that
ψ(G,w) does not hold for some w ∈ ω. Then by Lemma 3.22, there exists a dt ∈ F
such that dt P (t) ¬ψ(G,w). Since F is a filter, there is a condition er = ( ~E, S,D) ∈ F
extending both cs and dt. Let µ = P (r). By choice of P , (µ, S) ∈ C, so by clause ii),

( ~E, S, C[S]) 6µ ψ(G,w), hence by Lemma 3.18, er 6µ ¬ψ(G,w). However, since part µ
of S refines part P (t) of dt, then by Lemma 3.16, er µ ¬ψ(G,w). Contradiction. Hence
for every w ∈ ω, ψ(G,w) holds, so ϕ(G) holds.

− If ϕ ∈ Σ0
n+3 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

n+2. By clause 3 of
Definition 3.19, there exists a w ∈ ω such that cs  ψ(G,w). By induction hypothesis,
ψ(G,w) holds, hence ϕ(G) holds.

Conversely, if ϕ(G) holds, then there exists a w ∈ ω such that ψ(G,w) holds, so by
induction hypothesis cs  ψ(G,w) for some cs ∈ F , so by clause 3 of Definition 3.19,
cs  ϕ(G).

− If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4
of Definition 3.19, for every d ∈ Ext(cs), d 6 ψ(G). By Lemma 3.20, d 6 ψ(G) for
every d ∈ F and by a previous case, ψ(G) does hold, so ϕ(G) holds.

�

We now prove that the forcing relation has good definitional properties as we did with the
notion of forcing for cohesiveness.

Lemma 3.24 For every condition c, Ext(c) is Π0
2 uniformly in c.

Proof. Recall from Lemma 3.10 that given k, t ∈ ω, PartTree(k, t) denotes the Π0
1 set of all

the infinite p.r. k-partition trees of [t,+∞), and given a k-partition tree S and a part ν of S,
the predicate Empty(S, ν) denotes the Π0

1 formula “part ν of S is empty”, that is, the formula

(∀σ ∈ S)[setν(σ) ∩ dom(S) = ∅]. If T is p.r. then so is T [ν,H] for some finite set H.

Fix a condition c = (~F , (k, t, T ), C). By definition, ( ~H, (k′, t′, S),D) ∈ Ext(c) iff the following
formula holds:

(∃f : k′ → k)
(∀ν < k′)(Hν , [t

′,+∞)) EM extends (Ff(ν), [t,+∞)) (Π0
1)

∧S ∈ PartTree(k′, t′) ∧ S ≤f
∧
ν<k′ T

[f(ν),Hν ] (Π0
1)

∧D is a promise for S ∧ D ⊆ C (Π0
2)

By Lemma 3.10 and the fact that
∧
ν<k′ T

[f(ν),Hν ] is p.r. uniformly in T , f , ~H and k′, the above

formula is Π0
2. �

Lemma 3.25 Fix an arithmetic formula ϕ(G), a condition c = (~F , T, C) and a part ν of T .

a) If ϕ(G) is a Σ0
1 (Π0

1) formula then so is the predicate c ν ϕ(G).
b) If ϕ(G) is a Σ0

n+2 (Π0
n+2) formula then so is the predicate c  ϕ(G).

Proof. We prove our lemma by induction over the complexity of the formula ϕ(G).

− If ϕ(G) ∈ Σ0
1 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 3.15, c ν ϕ(G) if and only if the formula (∃w ∈ ω)ψ(Fν , w) holds. This is a
Σ0
1 predicate.

− If ϕ(G) ∈ Π0
1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. By clause 2
of Definition 3.15, c ν ϕ(G) if and only if the formula (∀σ ∈ T )(∀w < |σ|)(∀F ′ ⊆
dom(T ) ∩ setν(σ))[F ′ R-transitive→ ψ(Fν ∪ F ′, w)] holds. This is a Π0

1 predicate.
− If ϕ(G) ∈ Σ0

2 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0
1. By clause 1 of Defi-

nition 3.19, c  ϕ(G) if and only if the formula (∀ν < parts(T ))(∃w < dom(T ))[(ν, T ) ∈
C → c ν ψ(G,w)] holds. This is a Σ0

2 predicate by induction hypothesis and the fact
that C is ∅′-computable.

− If ϕ(G) ∈ Π0
2 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause 2
of Definition 3.19, c  ϕ(G) if and only if for every infinite k′-partition tree S, every
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function f : parts(S) → parts(T ), every w and ~E smaller than the code of S such that
the following hold

i) (Eν ,dom(S)) EM extends (Ff(ν),dom(T )) for each ν < parts(S)

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

for every (µ, S) ∈ C, ( ~E, S, C[S]) 6µ ¬ψ(G,w). By Lemma 3.10, Properties i-ii) are

∆0
2. Moreover, the predicate (µ, S) ∈ C is ∆0

2. By induction hypothesis, ( ~E, S, C) 6µ
¬ψ(G,w) is Σ0

1. Therefore c  ϕ(G) is a Π0
2 predicate.

− If ϕ(G) ∈ Σ0
n+3 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

n+2. By clause 3
of Definition 3.19, c  ϕ(G) if and only if the formula (∃w ∈ ω)c  ψ(G,w) holds. This
is a Σ0

n+3 predicate by induction hypothesis.

− If ϕ(G) ∈ Π0
n+3 then it can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4 of
Definition 3.19, c  ϕ(G) if and only if the formula (∀d)(d 6∈ Ext(c) ∨ d 6 ψ(G)) holds.
By induction hypothesis, d 6 ψ(G) is a Π0

n+3 predicate. By Lemma 3.24, the set Ext(c)

is Π0
2-computable uniformly in c, thus c  ϕ(G) is a Π0

n+3 predicate.

�

3.5. Preserving the arithmetic hierarchy

We now prove the core lemmas showing that every sufficiently generic real preserves the
arithmetic hierarchy. The proof is split into two lemmas since the forcing relation for Σ0

1 and Π0
1

formulas depends on the part of the condition, and therefore has to be treated separately.

Lemma 3.26 If A 6∈ Σ0
1 and ϕ(G, x) is Σ0

1, then the set of c = (~F , T, C) ∈ P satisfying the
following property is dense:

(∀ν < parts(T ))[(∃w ∈ A)cs ν ¬ϕ(G,w)] ∨ [(∃w 6∈ A)cs ν ϕ(G,w)]

Proof. The formula ϕ(G,w) can be expressed as (∃x)ψ(G,w, x) where ψ ∈ Σ0
0. Given a condition

c = (~F , T, C), let I(c) be the set of the parts ν of T such that for every w ∈ A, c 6ν ¬ϕ(G,w)
and for every w ∈ A, c 6ν ϕ(G,w). If I(c) = ∅ then we are done, so suppose I(c) 6= ∅ and
fix some ν ∈ I(c). We will construct an extension d such that I(d) ⊆ I(c) r {ν}. Applying
iteratively the operation enables us to conclude.

Say that T is a k-partition tree of [t,+∞) for some k, t ∈ ω. Define f : k+1→ k as f(µ) = µ
if µ < k and f(k) = ν otherwise. Given an integer w ∈ ω, let Sw be the set of all σ ∈ (k+ 1)<ω

which f -refine some τ ∈ T ∩ k|σ| and such that for every u < |σ|, every part µ ∈ {ν, k} and
every finite R-transitive set F ′ ⊆ dom(T ) ∩ setµ(σ), ϕ(Fν ∪ F ′, w, u) does not hold.

The set Sw is a p.r. (uniformly in w) partition tree of [t,+∞) refining T with witness func-
tion f . Let U = {w ∈ ω : Sw is finite }. U ∈ Σ0

1, thus U 6= A. Fix some w ∈ U∆A. Suppose

first that w ∈ Ar U . By definition of U , Sw is infinite. Let ~E be defined by Eµ = Fµ if µ < k

and Ek = Fν , and consider the extension d = ( ~E, Sw, C[Sw]). We claim that I(d) ⊆ I(c) r {ν}.
Fix a part µ ∈ {ν, k} of Sw. By definition of Sw, for every σ ∈ Sw, every u < |σ| and every
R-transitive set F ′ ⊆ dom(Sw)∩ setµ(σ), ϕ(Eµ ∪F ′, w, u) does not hold. Therefore, by clause 2
of Definition 3.15, d µ (∀x)¬ψ(G,w, x), hence d µ ¬ϕ(G,w), and this for some w ∈ A. Thus
I(d) ⊆ I(c) r {ν}.

Suppose now that w ∈ U r A, so Sw is finite. Fix an ` ∈ ω such that (∀σ ∈ S)|σ| < ` and a

τ ∈ T ∩k` such that T [τ ] is infinite. Consider the 2-partition E0∪E1 of setν(τ)∩dom(T ) defined
by E0 = {i ≥ t : τ(i) = ν∧(∀∞s)R(i, s) holds} and E0 = {i ≥ t : τ(i) = ν∧(∀∞s)R(s, i) holds}.
As there exists no σ ∈ Sw which f -refines τ , there exists a u < ` and an R-transitive set F ′ ⊆ E0

or F ′ ⊆ E1 such that ϕ(Fν ∪ F ′, w, u) holds. By choice of the partition, there exists a t′ > t
such that F ′ →R [t′,+∞) or [t′,+∞) →R F ′. By Lemma 3.6, (Fν ∪ F ′, [t′,+∞)) is a valid

EM extension of (Fν , [t,+∞)). As T [τ ] is infinite, T [ν,F ′] is also infinite. Let ~E be defined by

Eµ = Fµ if µ 6= ν and Eµ = Fν ∪F ′ otherwise. Let S be the k-partition tree (k, t′, T [ν,F ′]). The

condition d = ( ~E, S, C[S]) is a valid extension of c. By clause 1 of Definition 3.15, d µ ϕ(G,w)
with w 6∈ A. . Therefore I(d) ⊆ I(c) r {ν}. �
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Lemma 3.27 If A 6∈ Σ0
n+2 and ϕ(G, x) is Σ0

n+2, then the set of c ∈ P satisfying the following
property is dense:

[(∃w ∈ A)c  ¬ϕ(G,w)] ∨ [(∃w 6∈ A)c  ϕ(G,w)]

Proof. Fix a condition c = (~F , T, C).
− In case n = 0, ϕ(G,w) can be expressed as (∃x)ψ(G,w, x) where ψ ∈ Π0

1. Let U be
the set of integers w such that there exists an infinite p.r. k′-partition tree S for some

k′ ∈ ω, a function f : parts(S)→ parts(T ) and a k′-tuple of finite sets ~E such that
i) (Eν , [`,+∞)) EM extends (Ff(ν), dom(T )) for each ν < parts(S).

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

iii) for each non-empty part ν of S such that (ν, S) ∈ C, ( ~E, S, C[S]) ν ψ(G,w, u) for
some u < #S

By Lemma 3.25 and Lemma 3.10, U ∈ Σ0
2, thus U 6= A. Let w ∈ U∆A. Suppose that

w ∈ U r A. We can choose dom(S) so that (Eν ,dom(S)) EM extends (Ff(ν),dom(T ))
for each ν < parts(S). By Lemma 3.16 and Lemma 3.18, properties i-ii) remain true.
Let D = C[S] r {(ν, S′) ∈ C : part ν of S′ is empty}. As C is an ∅′-p.r. promise
for T , C[S] is an ∅′-p.r. promise for S. As D is obtained from C[S] by removing
only empty parts, D is also an ∅′-p.r. promise for S. By clause 1 of Definition 3.19,

d = ( ~E, S,D)  (∃x)ψ(G,w, x) hence d  ϕ(G,w) for some w 6∈ A.
We may choose a coding of the p.r. trees such that such that the code of S is

sufficiently large to witness u and ~E. So suppose now that w ∈ A r U . Then for

every infinite p.r. k′-partition tree S, every ` and ~E smaller than the code of S such
that properties i-ii) hold, there exists a non-empty part ν of S such that (ν, S) ∈ C and

( ~E, S, C) 6ν ψ(G,w, u) for every u < `. Let D be the collection of all such (ν, S). The set
D is ∅′-p.r. By Lemma 3.16 and since #S ≥ #T whenever S ≤f T , D is upward-closed
under the refinement relation, hence it is a promise for T . By clause 2. of Definition 3.19,

d = (~F , T,D)  (∀x)¬ψ(G,w, x), hence d  ¬ϕ(G,w) for some w ∈ A.
− In case n > 0, let U = {w ∈ ω : (∃d ∈ Ext(c))d  ϕ(G,w)}. By Lemma 3.24 and

Lemma 3.25, U ∈ Σ0
n+2, thus U 6= A. Fix some w ∈ U∆A. If w ∈ U r A then

by definition of U , there exists a condition d extending c such that d  ϕ(G,w). If
w ∈ A r U , then for every d ∈ Ext(c), d 6 ϕ(G,w) so by clause 4 of Definition 3.19,
c  ¬ϕ(G,w).

�

We are now ready to prove Theorem 3.2. It follows from the preservation of the arithmetic
hierarchy for cohesiveness and the stable Erdős-Moser theorem.

Proof of Theorem 3.2. Since RCA0 ` COH∧SEM → EM, then by Theorem 2.2 it suffices to
prove that SEM admits preservation of the arithmetic hierarchy. Fix some set C and a C-
computable stable infinite tournament R. Let C0 be the C ′-p.r. set of all (ν, T ) ∈ U such that
(ν, T ) ≤ (0, 1<ω). Let F be a sufficiently generic filter containing c0 = ({∅}, 1<ω, C0). Let P and
G be the corresponding generic path and generic real, respectively. By definition of a condition,
the set G is R-transitive. By Lemma 3.14, G is infinite. By Lemma 3.26 and Lemma 3.25,
G preserves non-Σ0

1 definitions relative to C. By Lemma 3.27 and Lemma 3.25, G preserves
non-Σ0

n+2 definitions relative to C for every n ∈ ω. Therefore, by Proposition 2.2 of [21], G
preserves the arithmetic hierarchy relative to C. �

4. D2
2 preserves higher definitions

Among the Ramsey-type hierarchies, the D hierarchy is conceptually the simplest one. It is
therefore natural to study it in order to understand better the control of iterated jumps and
focus on the core combinatorics without the technicalities specific to another hierarchy.

Definition 4.1 For every n, k ≥ 1, Dn
k is the statement “Every ∆0

n k-partition of the integers
has an infinite subset of one of its parts”.
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In particular, D1
k is nothing but RT1

k. Cholak et al. [4] proved that D2
k and stable Ramsey’s

theorem for pairs and k colors (SRT2
k) are computably equivalent and that the proof is for-

malizable over RCA0 + BΣ0
2. Later, Chong et al. [5] proved that D2

2 implies BΣ0
2 over RCA0,

showing therefore that RCA0 ` D2
k ↔ SRT2

` for every k, ` ≥ 2. Wang [21] studied D2
2 within his

framework of preservation of definitions and proved that D2
2 admits preservation of Ξ definitions

simultaneously for all Ξ in {Σ0
n+2,Π

0
n+2,∆

0
n+2 : n ∈ ω}, but not ∆0

2 definitions. He used for this
a combination of the first jump control of Cholak, Jockusch and Slaman [4] and a relativization
of the preservation of the arithmetic hierarchy by WKL0.

In this section, we design a notion of forcing for D2
2 with a forcing relation which has the

same definitional complexity as the formula it forces. It enables us to reprove that D2
2 admits

preservation of Ξ definitions simultaneously for all Ξ in {Σ0
n+2,Π

0
n+2,∆

0
n+2 : n ∈ ω}. The

proof is significantly more involved than the previous proofs of preservation of the arithmetic
hierarchy.

4.1. Sides of a sequence of sets

A main feature in the construction of an solution to an instance R0, R1 of D2
2 is the parallel

construction of a subset of R0 and a subset of R1. The intrinsic disjunction in the forcing
argument prevents us from applying the same strategy as for the Erdős-Moser theorem and
obtain a preservation of the arithmetic hierarchy. Given some α < 2, we shall refer to Rα or

simply α as a side of ~R. We also need to define a relative notion of acceptation and emptiness
of a part.

Definition 4.2 Fix a k-partition tree T of [t,+∞) and a set X. We say that part ν of T is
X-acceptable if there exists a path P through T such that setν(P ) ∩X is infinite. We say that
part ν of T is X-empty if (∀σ ∈ T )[dom(T ) ∩ setν(σ) ∩X = ∅].

The intended uses of those notions will be Rα-acceptation and Rα-emptiness. Every partition

tree has an Rα-acceptable part for some α < 2. The notion ofX-emptiness is Π0,X
1 , and therefore

Π0
2 if X is ∆0

2, which raises new problems for obtaining a forcing relation of weak definitional
complexity. We would like to define a stronger notion of “witnessing its acceptable parts” and
prove that for every infinite p.r. partition tree T , there is a p.r. refined tree S such that for
each side α and each part ν of S, either ν is Rα-empty in S, or ν is Rα-acceptable. However,
the resulting tree S would be ∅′-p.r. since Rα is ∅′-computable. Thankfully, we will be able to
circumvent this problem in Lemma 4.17.

4.2. Forcing conditions

Fix a ∆0
2 2-partition R0 ∪R1 = ω. We now describe the notion of forcing to build an infinite

subset of R0 or of R1.

Definition 4.3 We denote by P the forcing notion whose conditions are tuples (~F , T, C) where

(a) T is an infinite, p.r. k-partition tree for some k ∈ ω
(b) C is a ∅′-p.r. promise for T
(c) (Fαν , dom(T )) is a Mathias condition for each ν < k and α < 2

A condition d = ( ~E, S,D) extends c = (~F , T, C) (written d ≤ c) if there exists a function
f : parts(S)→ parts(T ) such that D ⊆ C and the following holds

(i) (Eαν ,dom(S) ∩ Rα) Mathias extends (Fαf(ν), dom(T ) ∩ Rα) for each ν < parts(S) and

α < 2
(ii) S f -refines

⋂
ν<parts(S),α<2 T

[f(ν),Eαν ]

In the whole construction, the index α indicates that we are constructing a set cofinitely in

Rα. Given a condition c = (~F , T, C), we write again parts(c) for parts(T ). The following lemma
shows that we can force our constructed set to be infinite if we choose it among the acceptable
parts.
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Lemma 4.4 For every condition c = (~F , T, C) and every n ∈ ω, there exists an extension

d = ( ~E, S,D) such that |Eαν | ≥ n on each Rα-acceptable part ν of S for each α < 2.

Proof. It suffices to prove that for every condition c = (~F , T, C), every side α < 2 and every

Rα-acceptable part ν of T , there exists an extension d = ( ~E, S,D) such that S ≤id T and
|Eαν | ≥ n. Iterating the process at most parts(T ) × 2 times enables us to conclude. Fix an
Rα-acceptable part ν of T and a path P trough T such that setν(P )∩Rα is infinite. Let F ′ be

a subset of setν(P )∩dom(T )∩Rα of size n. Let ~E be defined by Eβµ = F βµ if µ 6= ν ∨β 6= α and

Eαν = Fαν ∪ F ′ otherwise. Let S be the p.r. partition tree obtained from T [ν,Eαν ] by restricting
its domain so that (Eαν ,dom(S) ∩ Rα) Mathias extends (Fαν ,dom(T ) ∩ Rα). The condition

( ~E, S, C[S]) is the desired extension. �

Given a condition c, we denote by Ext(c) the set of all its extensions.

4.3. Forcing relation

We need to define two forcing relations at the first level: the “true” forcing relation, i.e., the
one having the good density properties but whose decision requires too much computational
power, and a “weak” forcing relation having better computational properties, but which does
not behave well with respect to the forcing. We start with the definition of the true forcing
relation.

Definition 4.5 (True forcing relation) Fix a condition c = (~F , T, C), a Σ0
0 formula ϕ(G, x), a

part ν < parts(T ), and a side α < 2.

1. c �α
ν (∃x)ϕ(G, x) iff there exists a w ∈ ω such that ϕ(Fαν , w) holds.

2. c �α
ν (∀x)ϕ(G, x) iff for every σ ∈ T such that T [σ] is infinite, every w < |σ| and every

set F ′ ⊆ dom(T ) ∩ setν(σ) ∩Rα, ϕ(Fαν ∪ F ′, w) holds.

Given a condition c, a side α < 2, a part ν of c and a Π0
1 formula ϕ, the relation c �α

ν ϕ(G) is

Π0,∅′⊕Rα
1 , hence Π0

2 as Rα is ∆0
2. This relation enjoys the good properties of a forcing relation,

that is, it is downward-closed under the refinement relation (Lemma 4.6), and the set of the
conditions forcing either a Σ0

1 formula or its negation is dense (Lemma 4.7).

Lemma 4.6 Fix a condition c = (~F , T, C) and a Σ0
1 (Π0

1) formula ϕ(G). If c �α
ν ϕ(G) for some

ν < parts(T ) and α < 2, then for every d = ( ~E, S,D) ≤ c and every part µ of S refining part ν
of T , d �α

µ ϕ(G).

Proof.

− If ϕ ∈ Σ0
1 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 4.5, there exists a w ∈ ω such that ψ(Fαν , w) holds. By property (i) of the
definition of an extension, Eαµ ⊇ Fαν and (Eαµ r Fαν ) ⊂ dom(T ) ∩ Rα, therefore by
continuity ψ(Eαµ , w) holds, so by clause 1 of Definition 4.5, d �α

µ (∃x)ψ(G, x).

− If ϕ ∈ Π0
1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. Fix a τ ∈ S such

that S[τ ] is infinite, a w < |τ | and a set F ′ ⊆ dom(S) ∩ setµ(τ) ∩ Rα. Let f be the
function witnesing d ≤ c. By property (ii) of the definition of an extension, τ f -refines

a σ ∈ T [ν,Eαµ ]. We claim that we can even choose σ to be extendible in T [ν,Eαµ ]. Indeed,
since τ is extendible in S, let P be a path through S extending τ and let U be the set
of σ’s in T such that P �s f -refines σ for some s. The set U is an infinite subtree of T .
Let σ be a string of length |τ | and extendible in U , hence in T . By definition of U , τ
f -refines σ. By definition of a refinement, such that |σ| = |τ | and setµ(τ) ⊆ setν(σ).

As w < |τ | and dom(S) ⊆ dom(T ), F ′ ⊆ dom(T ) ∩ setν(σ) ∩ Rα. As σ ∈ T [ν,Eαµ ],
Eαµ ⊆ setν(σ) and by property (i) of the definition of an extension, Eαµ ⊆ dom(T ) ∩Rα
so Eαµ ⊆ dom(T ) ∩ Rα. Therefore Eαµ ∪ F ′ ⊆ dom(T ) ∩ setν(σ) ∩ Rα. By clause 2 of
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Definition 4.5 applied to c �α
ν (∀x)ψ(G, x), ψ(Fαν ∪ (Eαµ r Fαν ) ∪ F ′, w) holds, hence

ψ(Eαµ ∪ F ′, w) holds and still by clause 2 of Definition 4.5, d �µ (∀x)ψ(G, x).

�

Lemma 4.7 For every Σ0
1 (Π0

1) formula ϕ, the following set is dense in P:

{c ∈ P : (∀ν < parts(c))(∀α < 2)[c �α
ν ϕ(G) or c �α

ν ¬ϕ(G)]}

Proof. It suffices to prove the statement for the case where ϕ is a Σ0
1 formula, as the case

where ϕ is a Π0
1 formula is symmetric. Fix a condition c = (~F , T, C) and let I(c) be the set

of pairs (ν, α) ∈ parts(T ) × 2 such that c 6�α
ν ϕ(G) and c 6�α

ν ¬ϕ(G). If I(c) = ∅ we are
done, so suppose I(c) 6= ∅. Fix some (α, ν) ∈ I(c). We will construct an extension d such that
I(d) ⊆ I(c) r {(α, ν)}. Applying iteratively the operation enables us to conclude.

The formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Σ0
0. Suppose there exists a σ ∈ T such

that T [σ] is infinite, a w < |σ| and a set F ′ ⊆ dom(T ) ∩ setν(σ) ∩ Rα such that ψ(Fαν ∪ F ′, w)

holds. In this case, letting ~E be defined by Eβµ = F βµ if µ 6= ν ∨ β 6= α and Eαν = Fαν ∪ F ′, and

letting S be the tree T [σ] where the domain is restricted so that (Eαν ,dom(S)) Mathias extends

(Fαν ,dom(T )), by clause 1 of Definition 4.5, the condition d = ( ~E, S, C[S]) is a valid extension
of c such that dαν � ϕ(G).

Suppose now that for every σ ∈ T such that T [σ] is infinite, every w < |σ| and every
set F ′ ⊆ dom(T ) ∩ setν(σ) ∩ Rα, ψ(Fαν ∪ F ′, w) does not hold. In this case, by clause 2 of
Definition 4.5, c �α

ν ¬ϕ(G). �

We now define the weak forcing relation which is almost the same as the true one, expect
that the set F ′ is not required to be a subset of Rα in the case of a Π0

1 formula.

Definition 4.8 (Weak forcing relation) Fix a condition c = (~F , T, C), a Σ0
0 formula ϕ(G, x), a

part ν < parts(T ) and a side α < 2.

1. c αν (∃x)ϕ(G, x) iff there exists a w ∈ ω such that ϕ(Fαν , w) holds.
2. c αν (∀x)ϕ(G, x) iff for every σ ∈ T , every w < |σ| and every set F ′ ⊆ dom(T )∩setν(σ),
ϕ(Fαν ∪ F ′, w) holds.

As one may expect, the weak forcing relation at the first level is also closed under the
refinement relation.

Lemma 4.9 Fix a condition c = (~F , T, C) and a Σ0
1 (Π0

1) formula ϕ(G). If c αν ϕ(G) for some

ν < parts(T ) and α < 2, then for every d = ( ~E, S,D) ≤ c and every part µ of S refining part ν
of T , d αµ ϕ(G).

Proof.

− If ϕ ∈ Σ0
1 then this is exactly clause 1 of Lemma 4.6 since the definition of the weak and

the true forcing relations coincide for Σ0
1 formulas.

− If ϕ ∈ Π0
1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. Fix a τ ∈ S, a w < |τ |
and a set F ′ ⊆ dom(S)∩setµ(τ). By property (ii) of the definition of an extension, there

exists a σ ∈ T [ν,Eαµ ] such that |σ| = |τ | and setµ(τ) ⊆ setν(σ). As w < |τ | and dom(S) ⊆
dom(T ), F ′ ⊆ dom(T )∩setν(σ). As σ ∈ T [ν,Eαµ ], Eαµ ⊆ setν(σ) and by property (i) of the
definition of an extension, Eαµ ⊆ dom(T ). Therefore Eαµ ∪ F ′ ⊆ dom(T ) ∩ setν(σ). By
clause 2 of Definition 4.8 applied to c αν (∀x)ψ(G, x), ψ(Fαν ∪ (Eαµ rFαν )∪F ′, w) holds,
hence ψ(Eαµ ∪ F ′, w) holds and still by clause 2 of Definition 4.8, d αµ (∀x)ψ(G, x).

�

The following trivial lemma simply reflects the fact that the promise C is not part of the
definition of the weak forcing relation for Σ0

1 or Π0
1 formulas, and therefore has no effect on it.
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Lemma 4.10 Fix two conditions c = (~F , T, C) and d = ( ~E, T,D) and a Σ0
1 (Π0

1) formula. For
every part ν of T such that Fαν = Eαν , c αν ϕ(G) if and only if d αν ϕ(G).

Proof. If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1
of Definition 4.8, c αν ϕ(G) iff there exists a w ∈ ω such that ψ(Fαν , w) holds. As Fαν = Eαν ,
c αν ϕ(G) iff d αν ϕ(G). Similarily, if ϕ ∈ Π0

1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where
ψ ∈ Σ0

0. By clause 2 of Definition 4.8, c αν ϕ(G) iff for every σ ∈ T , every w < |σ| and every
set F ′ ⊆ dom(T ) ∩ setν(σ), ψ(Fαν ∪ F ′, w) holds. As Fαν = Eαν , c αν ϕ(G) iff d αν ϕ(G). �

We can now define the forcing relation over higher formulas. It is defined inductively, starting
with Σ0

1 and Π0
1 formulas. We extend the weak forcing relation instead of the true one for

effectiveness purposes. We shall see later that the weak forcing relation behaves like the true
one for some parts and some sides of a condition, and therefore that it tell us something about
the truth of the formula over some carefully defined generic real G. Note that the forcing
relation over higher formulas is still parameterized by the side α of the condition.

Definition 4.11 Fix a condition c = (~F , T, C), a side α < 2 and an arithmetic formula ϕ(G).

1. If ϕ(G) = (∃x)ψ(G, x) where ψ ∈ Π0
1 then c α ϕ(G) iff for every part ν of T such that

(ν, T ) ∈ C there exists a w < dom(T ) such that c αν ψ(G,w)
2. If ϕ(G) = (∀x)ψ(G, x) where ψ ∈ Σ0

1 then c α ϕ(G) iff for every infinite p.r. k′-partition

tree S, every function f : parts(S) → parts(T ), every w and ~E smaller than #S such
that the following holds

i) Eβν = F βf(ν) for each ν < parts(S) and β 6= α

ii) (Eαν ,dom(S) ∩Rα) Mathias extends (Fαf(ν),dom(T ) ∩Rα) for each ν < parts(S)

iii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eαν ]

for every (µ, S) ∈ C, ( ~E, S, C[S]) 6αµ ¬ψ(G,w)

3. If ϕ(G) = (∃x)ψ(G, x) where ψ ∈ Π0
n+2 then c α ϕ(G) iff there exists a w ∈ ω such

that c α ψ(G,w)
4. If ϕ(G) = ¬ψ(G) where ψ ∈ Σ0

n+3 then c α ϕ(G) iff d 6α ψ(G) for every d ∈ Ext(c).

Note that clause 2.ii) of Definition 4.11 seems to be Π0
2 since Rα is ∆0

2. However, in fact,
one just needs to ensure that dom(S) ⊆ dom(T ) and Eαν r Fαf(ν) ⊆ dom(T ) ∩Rα. This is a ∆0

2

predicate, and so is its negation, so one can already easily check that the forcing relation over a
Π0

2 formula will be also Π0
2. Before proving the usual properties about the forcing relation, we

need to discuss the role of the sides in the forcing relation. We are now ready to prove that the
forcing relation is closed under extension.

Lemma 4.12 Fix a condition c, a side α < 2 and a Σ0
n+2 (Π0

n+2) formula ϕ(G). If c α ϕ(G)
then for every d ≤ c, d α ϕ(G).

Proof. We prove the statement by induction over the complexity of the formula ϕ(G). Fix a

condition c = (~F , T, C) and a side α < 2 such that c α ϕ(G). Fix an extension d = ( ~E, S,D)
of c.

− If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

1. By clause 1 of
Definition 4.11, for every part ν of T such that (ν, T ) ∈ C, there exists a w < dom(T )
such that c αν ψ(G,w). Fix a part µ of S such that (µ, S) ∈ D. As D ⊆ C, (µ, S) ∈ C.
By upward-closure of C, part µ of S refines some part ν of C such that (ν, T ) ∈ C.
Therefore by Lemma 4.9, d αµ ψ(G,w), with w < dom(T ) ≤ dom(S). Applying again
clause 1 of Definition 4.11, we deduce that d  (∀x)ψ(G, x), hence d α ϕ(G).

− If ϕ ∈ Π0
2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. Suppose for the sake
of absurd that d 6α (∀x)ψ(G, x). Let f : parts(S) → parts(T ) witness the refinement
S ≤ T . By clause 2 of Definition 4.11, there exists an infinite p.r. k′-partition tree S′, a



CONTROLLING ITERATED JUMPS OF SOLUTIONS TO COMBINATORIAL PROBLEMS 25

function g : parts(S′)→ parts(S), a w ∈ ω, and a 2k′-tuple of finite sets ~H smaller than
the code of S′ such that

i) Hβ
ν = Eβg(ν) for each ν < parts(S′) and β 6= α

ii) (Hα
ν ,dom(S′) ∩Rα) Mathias extends (Eαg(ν),dom(S) ∩Rα) for each ν < parts(S′)

iii) S′ g-refines
⋂
ν<parts(S′) S

[g(ν),Hα
ν ]

iv) there exists a (µ, S′) ∈ D such that ( ~H, S′,D[S′]) αµ ¬ψ(G,w).
To deduce by clause 2 of Definition 4.11 that c 6α (∀x)ψ(G, x) and derive a contradic-

tion, it suffices to prove that the same properties hold with respect to T . Let ~H ′ be

defined by H
′β
ν = F βf(g(ν)) for each ν < parts(S′) and β 6= α and H

′α
ν = Hα

ν .

i) It trivially holds by choice of ~H ′.
ii) By property (i) of the definition of an extension, (Eαg(ν),dom(S)) Mathias extends

(Fαf(g(ν)), dom(T )). Moreover (Hα
ν , dom(S′) Mathias extends (Eαg(ν),dom(S)), so

(H
′α
ν , dom(S′)) = (Hα

ν ,dom(S′)) Mathias extends (Ff(g(ν)),dom(T )).
iii) As by property (ii) of the definition of an extension,

S f -refines
⋂
ν<parts(S′) T

[f(g(ν)),Eα
g(ν)

]
, and

S′ g-refines
⋂
ν<parts(S′) S

[g(ν),Hα
ν ] then

S′ (g ◦ f)-refines
⋂
ν<parts(S′) T

[g(ν),H
′α
ν ].

iv) As D ⊆ C, there exists a part (µ, S′) ∈ C such that ( ~H, S′,D[S′]) αµ ¬ψ(G,w). By

Lemma 4.10, ( ~H ′, S′, C[S′]) αµ ¬ψ(G,w).

− If ϕ ∈ Σ0
n+3 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

n+2. By clause 3 of
Definition 4.11, there exists a w ∈ ω such that c α ψ(G,w). By induction hypothesis,
d α ψ(G,w) so by clause 3 of Definition 4.11, d α ϕ(G).

− If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. Suppose for the sake
of absurd that d 6α ϕ(G). By clause 4 of Definition 4.11, there exists an e ∈ Ext(d) such
that e α ψ(G). In particular, e ∈ Ext(c), so by clause 4 of Definition 4.11, e 6α ψ(G)
since c α ϕ(G). Contradiction.

�

Although the weak forcing relation does not satisfy the density property, the forcing relation
over higher formulas does. The reason is that the extended forcing relation does not involve
the weak forcing relation over Σ0

1 formulas in the clause 2 of Definition 4.11, but uses instead
the weaker statement “c does not force the negation of the Σ0

1 formula”. The link between this
statement and the statement “c has an extension which forces the Σ0

1 formula” is used when
proving that ϕ(G) holds iff c  ϕ(G) for some condition belonging to a sufficiently generic filter.
We now prove the density of the forcing relation for higher formulas.

Lemma 4.13 For every Σ0
n+2 (Π0

n+2) formula ϕ, the following set is dense in P:

{c ∈ P : (∀α < 2)[c α ϕ(G) or c α ¬ϕ(G)]}

Proof. We prove the statement by induction over n. It suffices to treat the case where ϕ is a
Σ0
n+2 formula, as the case where ϕ is a Π0

n+2 formula is symmetric. Moreover, it is enough to
prove that for every condition c and every α < 2, there exists an extension d ≤ c such that
d α ϕ(G) or d α ¬ϕ(G). Iterating the process at most twice enables us to conclude. Fix a

condition c = (~F , T, C) and a part α < 2.

− In case n = 0, the formula ϕ is of the form (∃x)ψ(G, x) where ψ ∈ Π0
1. Suppose there

exists an infinite p.r. k′-partition tree S for some k′ ∈ ω, a function f : parts(S) →
parts(T ), and a 2k′-tuple of finite sets ~E such that

i) Eβν = F βf(ν) for each ν < parts(S) and β 6= α

ii) (Eαν , dom(S) ∩Rα) Mathias extends (Fαf(ν), dom(T ) ∩Rα) for each ν < parts(S).

iii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eαν ]
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iv) for each non-empty part ν of S such that (ν, S) ∈ C, ( ~E, S, C[S]) αν ψ(G,w) for
some w < #S

Let D = C[S] r {(ν, S′) ∈ C : part ν of S′ is empty}. As C is an ∅′-p.r. promise for T ,
C[S] is an ∅′-p.r. promise for S. As D is obtained from C[S] by removing only empty

parts, D is also an ∅′-p.r. promise for S. By clause 1 of Definition 4.11, d = ( ~E, S,D) α

(∃x)ψ(G, x) hence d α ϕ(G).
We may choose a coding of the p.r. trees such that such that the code of S is sufficiently

large to witness f , ` and ~E. So suppose now that for every infinite p.r. k′-partition tree

S, every function f : parts(S)→ parts(T ), ` ∈ ω and ~E smaller than the code of S such
that properties i-iii) hold, there exists a non-empty part ν of S such that (ν, S) ∈ C
and ( ~E, S, C[S]) 6αν ψ(G,w) for every w < `. Let D be the collection of all such (ν, S).
D is ∅′-p.r. By Lemma 4.9 and since we require that #S ≥ #T in the definition
of S ≤ T , D is upward-closed, hence is a promise for T . By clause 2 of Definition 4.11,

d = (~F , T,D) α (∀x)¬ψ(G, x), hence d α ¬ϕ(G).
− In case n > 0, density follows from clause 4 of Definition 4.11.

�

We now prove that the weak forcing relation extended to any arithmetic formula enjoys the
desired definability properties. For this, we start with a lemma showing that the extension
relation is Π0

2. Therefore, only the first two levels have to be treated independently, since
the extension relation does not add some extra complexity to the forcing relation for higher
formulas.

Lemma 4.14 For every condition c, Ext(c) is Π0
2 uniformly in c.

Proof. Recall from Lemma 3.10 that given k, t ∈ ω, the set PartTree(k, t) denotes the Π0
1 set

of all the infinite p.r. k-partition trees of [t,+∞), and given a k-partition tree S and a part ν
of S, the predicate Empty(S, ν) denotes the Π0

1 formula “part ν of S is empty”, that is, the

formula (∀σ ∈ S)[setν(σ) ∩ dom(S) = ∅]. If T is p.r. then so is T [ν,H] for some finite set H.

Fix a condition c = (~F , (k, t, T ), C). ( ~H, (k′, t′, S),D) ∈ Ext(c) iff the following formula holds:

(∃f : k′ → k)
(∀ν < k′)(∀α < 2)(Hα

ν , [t
′,+∞) ∩Rα) Mathias extends (Fαf(ν), [t,+∞) ∩Rα) (Π0

2)

∧S ∈ PartTree(k′, t′) ∧ S ≤f
∧
ν<k′,α<2 T

[f(ν),Hα
ν ] (Π0

1)

∧D is a promise for S ∧ D ⊆ C (Π0
2)

The formula (Hα
ν , [t

′,+∞) ∩ Rα) Mathias extends (Fαf(ν), [t,+∞) ∩ Rα) can be written (∀x <
t)[x ∈ Hα

ν ↔ x ∈ Fαf(ν)]∧ t
′ ≥ t∧ (∀x ∈ Hα

ν rFαf(ν))x ∈ Rα and therefore is Π0
2. By Lemma 3.10

and the fact that
∧
ν<k′,α<2 T

[f(ν),Hα
ν ] is p.r. uniformly in T , f , ~H and k′, the above formula

is Π0
2. �

Lemma 4.15 Fix an arithmetic formula ϕ(G), a condition c = (~F , T, C), a side α < 2 and a
part ν of T .

a) If ϕ(G) is a Σ0
1 (Π0

1) formula then so is the predicate c αν ϕ(G).
b) If ϕ(G) is a Σ0

n+2 (Π0
n+2) formula then so is the predicate c α ϕ(G).

Proof. We prove our lemma by induction over the complexity of the formula ϕ(G).

− If ϕ(G) ∈ Σ0
1 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 4.8, c αν ϕ(G) if and only if the formula (∃w ∈ ω)ψ(Fαν , w) holds. This is a
Σ0
1 predicate.

− If ϕ(G) ∈ Π0
1 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

0. By clause 2
of Definition 4.8, c αν ϕ(G) if and only if the formula (∀σ ∈ T )(∀w < |σ|)(∀F ′ ⊆
dom(T ) ∩ setν(σ))ψ(Fαν ∪ F ′, w) holds. This is a Π0

1 predicate.
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− If ϕ(G) ∈ Σ0
2 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

1. By clause 1 of Defi-
nition 4.11, c α ϕ(G) if and only if the formula (∀ν < parts(T )(∃w < dom(T ))[(ν, T ) ∈
C → c αν ψ(G,w)] holds. This is a Σ0

2 predicate by induction hypothesis and the fact
that C is ∅′-computable.

− If ϕ(G) ∈ Π0
2 then it can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0

1. By clause 2
of Definition 4.11, c  ϕ(G) if and only if for every infinite k′-partition tree S, every

function f : parts(S) → parts(T ), every w and ~E smaller than the code of S such that
the following hold

i) (Eν ,dom(S) ∩Rα) Mathias extends (Ff(ν), dom(T ) ∩Rα) for each ν < parts(S)

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

for every (µ, S) ∈ C, ( ~E, S, C[S]) 6αµ ¬ψ(G,w). By Lemma 3.10, Properties i-ii) are

∆0
2. Moreover the predicate (µ, S) ∈ C is ∆0

2 since C is ∅′-p.r. By induction hypothesis,

( ~E, S, C[S]) 6αµ ¬ψ(G,w) is Σ0
1. Therefore c α ϕ(G) is a Π0

2 predicate.

− If ϕ(G) ∈ Σ0
n+3 then it can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

n+2. By clause 3
of Definition 4.11, c α ϕ(G) if and only if the formula (∃w ∈ ω)c α ψ(G,w) holds.
This is a Σ0

n+3 predicate by induction hypothesis.

− If ϕ(G) ∈ Π0
n+3 then it can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4 of
Definition 4.11, c α ϕ(G) if and only if the formula (∀d)(d 6∈ Ext(c) ∨ d 6α ψ(G))
holds. By induction hypothesis, d 6α ψ(G) is a Π0

n+3 predicate. By Lemma 4.14, the

set Ext(c) is Π0
2-computable uniformly in c, thus c α ϕ(G) is a Π0

n+3 predicate.

�

4.4. Validity

As we already saw, we have two candidating forcing relations for Σ0
1 and Π0

1 formulas:

1. The “true” forcing relation c �α ϕ(G). This relation has been shown to have the
expected density properties through Lemma 4.7. However deciding such a relation
requires too much computational power.

2. The “weak” forcing relation c α ϕ(G). Deciding such a relation requires the same
definitional power as the formula it forces. It provides a sufficient condition for forcing
the formula ϕ(G) as c α ϕ(G) implies c �α ϕ(G), but the converse does not hold and
we cannot prove the density property in the general case.

Thankfully, there exists some sides and parts of any condition on which those two forcing
relations coincide. This leads to the notion of validity.

Definition 4.16 (Validity) Fix an enumeration ϕ0(G), ϕ1(G), . . . of all the Π0
1 formulas. Fix a

condition c = (~F , T, C), a side α < 2 and a part ν of T . We say that side α is valid in part ν of
T if part ν of T is Rα-acceptable and for every i < dom(T ), c �α

ν ϕi(G) iff c αν ϕi(G).

Note that the statement “side α is valid in part ν of T” is Π0
2 as c �α

ν ϕi(G) is Π0
2 and

c αν ϕi(G) is Π0
1. Also note that if side α is valid in part µ of S and part µ of S refines

part ν of T , then side α is valid in part ν of T . The following lemma shows in particular that

every condition c = (~F , T, C) has a side which is valid in some of its parts, and that we can
furthermore restrict C so that it “witnesses its valid parts”.

Lemma 4.17 The following set is dense in P:

{(~F , T, C) ∈ P : (∀ν)(∃α < 2)[(ν, T ) ∈ C → side α is valid in part ν of T ]}

Proof. Given a condition c = (~F , T, C), let I(c) be the set of the parts ν of T such that (ν, T ) ∈ C
and no α < 2 is valid in part ν of T . Fix a condition c = (~F , T, C) ∈ P. By iterating the proof
of Lemma 4.13, we can assume without loss of generality that for each i < dom(T ),

(∀α < 2)[c α (∃x)ϕi(G) or c α (∀x)¬ϕi(G)]
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The dummy variable x ensures that the forcing relation for Σ0
2 and Π0

2 is applied. It suffices to

prove that for every ν ∈ I(c), there exists an extension d = ( ~E, S,D) such that I(d) ⊆ I(c)r{ν}.
Iterating the process at most |parts(T )| times enables us to conclude.

Fix a part ν ∈ I(c) and let D be the set of (µ, S) ∈ C such that part µ of S does not refine
part ν of T . The set D is a ∅′-p.r. upward-closed subset of C. It suffices to prove that for every
infinite p.r. partition tree S ≤ T , there exists a non-empty part µ of S such that (µ, S) ∈ D
to deduce that D is a promise for T and obtain an extension d = ( ~E, T,D) of c such that
I(d) ⊆ I(c) r {ν}.

Fix an infinite p.r. partition tree S ≤ T . By choice of ν, for every α < 2, either ν is not
Rα-acceptable in S, or there exists an iα < dom(T ) such that c �α

ν ϕiα(G) but c 6αν ϕiα(G).
In the latter case, by choice of c, c αν (∀x)¬ϕiα(G).

Let f : 2k + 1 → 2k be the function such that f(µ) = µ for each µ 6= ν and f(µα) = ν
for each α < 2. In other words, f forks the part ν of S into 2 parts µ0 and µ1. Let P be a
path through S, and let t ∈ ω be large enough to “witness the non Rα-acceptable sides”. More
formally, let t be such that for every α < 2, either setν(P )∩Rα ∩ [t,+∞) = ∅ or there exists an
iα < dom(T ) such that c �α

ν ϕiα(G) but c 6αν ϕiα(G).
Let S′ be the p.r. tree of all the τ ’s f -refining some σ ∈ S and such that for each α < 2,

either setµα(τ)∩ [t,+∞) = ∅, or ϕ(Eαν ∪F ′) holds for each F ′ ⊆ dom(S)∩ setµα(τ). The tree S′

is a (2k + 1)-partition tree of [t,+∞) f -refines S. We claim that S′ is infinite. Fix some s ∈ ω,

we will prove that τ ∈ S′ for some string τ of length s. Let σ = P �s. In particular, S[σ] is
infinite, so for every α < 2, either setν(P ) ∩ Rα ∩ [t,+∞) = ∅ by definition of t, or, unfolding
clause 2 of Definition 4.5 for c �α

ν ϕiα(G), for every set F ′ ⊆ dom(S)∩ setν(σ)∩Rα, ϕ(Eαν ∪F ′)
holds. Let τ be the string refining σ such that setµα(τ) = setν(σ) ∩ Rα. By definition of S′,
τ ∈ S′. Therefore S′ is infinite. Moreover, by definition of S’, for each α < 2, either µα is empty

in S′ or ( ~E, S′, C[S′]) αµα ϕiα(G).

By definition of c αν (∀x)¬ϕiα(G), ( ~E, S′, C[S′]) 6αµ ϕiα(G) for each part µ of S′ such that
(µ, S′) ∈ C. Then, for each α < 2, either µα is empty in S′, or (µα, S

′) 6∈ C, as otherwise it

would contradict ( ~E, S′, C[S′]) αµα ϕiα(G). So there must exists a non-empty part µ of S′ not
refining part ν of T such that (µ, S′) ∈ C, and by upward closure of a promise, there exists
a non-empty part µ of S not refining part ν of T such that (µ, S) ∈ C. By definition of D,
(µ, S) ∈ D. Therefore D is a promise for T and we conclude. �

Given any filter F = {c0, c1, . . . } with cs = (~Fs, Ts, Cs), the set of pairs (αs, νs) such that
(νs, Ts) ∈ Cs and the side αs is valid in the part ν of Ts forms again an infinite, directed acyclic
graph G(F). Lemma 4.17 enables us to say that this graph has at least one infinite directed
path. Whenever F is sufficiently generic, the graph G(F) yields a pair (α, P ) such that for
every s, the side α is valid in part P (s) of cs, and if if cs refines ct, then part P (s) of cs refines
part P (t) of ct. The path P induces an infinite set G =

⋃
{FαP (s),s : s ∈ ω}. We call α the

generic side, P the generic path and G the generic real.
By choice of the generic path to go only through valid sides and parts of the conditions, we

recovered the density property for the weak forcing relation and are therefore able to prove that
a property holds over the generic real iff it can be forced by some condition belonging to the
generic filter.

Lemma 4.18 Suppose that F is sufficiently generic and let α, P and G be the generic side, the
generic path and the generic real, respectively. For every Σ0

1 (Π0
1) formula ϕ(G), ϕ(G) holds iff

cs αP (s) ϕ(G) for some cs ∈ F .

Proof. Thanks to validity, it suffices to prove that if cs αν ϕ(G) for some cs ∈ F , then ϕ(G)
holds. Indeed, if ϕ(G) holds, then by genericity of F , cs �α

P (s) ϕ(G) or cs �α
P (s) ¬ϕ(G) for

some cs ∈ F . By validity of side α in part P (s) of cs, cs αP (s) ϕ(G) or cs αP (s) ¬ϕ(G). If

cs αP (s) ¬ϕ(G) then ¬ϕ(G) holds, contradicting the hypothesis. So cs αP (s) ϕ(G). Fix a

condition cs = (~F , T, C) ∈ F such that cs αν ϕ(G), where ν = P (s).
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− If ϕ ∈ Σ0
1 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Σ0

0. By clause 1 of
Definition 4.8, there exists a w ∈ ω such that ψ(Fαν , w) holds. As ν = P (s), Fαν =
FαP (s) ⊆ G and Gr Fαν ⊆ (max(Fαν ),+∞), so ψ(G,w) holds by continuity, hence ϕ(G)

holds.
− If ϕ ∈ Π0

1 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0
0. By clause 2 of

Definition 4.8, for every σ ∈ T , every w < |σ| and every set F ′ ⊆ dom(T ) ∩ setν(σ),
ψ(Fαν ∪ F ′, w) holds. For every F ′ ⊆ Gr Fαν , and w ∈ ω there exists a σ ∈ T such that
w < |σ| and F ′ ⊆ dom(T ) ∩ setν(σ). Hence ψ(Fαν ∪ F ′, w) holds. Therefore, for every
w ∈ ω, ψ(G,w) holds, so ϕ(G) holds.

�

Lemma 4.19 Suppose that F is sufficiently generic and let α and G be the generic side and
the generic real, respectively. For every Σ0

n+2 (Π0
n+2) formula ϕ(G), ϕ(G) holds iff cs α ϕ(G)

for some cs ∈ F .

Proof. This lemma uses validity implicitely by calling Lemma 4.18 which itself uses it explicitely.
Still following the explanation in Lemma 2.13, it suffices to prove that if cs α ϕ(G) for some
cs ∈ F then ϕ(G) holds. Let P be the generic path induced by the generic filter F . Fix a

condition cs = (~F , T, C) ∈ F such that cs α ϕ(G). We proceed by case analysis on ϕ.

− If ϕ ∈ Σ0
2 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0

1. By clause 1 of
Definition 4.11, for every part ν of T such that (ν, T ) ∈ C, there exists a w < dom(T )
such that cs αν ψ(G,w). Since (P (s), T ) ∈ C, cs αP (s) ψ(G,w). By Lemma 4.18,

ψ(G,w) holds, hence ϕ(G) holds.
− If ϕ ∈ Π0

2 then ϕ(G) can be expressed as (∀x)ψ(G, x) where ψ ∈ Σ0
1. By clause 2 of

Definition 4.11, for every infinite k′-partition tree S, every function f : parts(S) →
parts(T ), every w and ~E smaller than the code of S such that the following hold

i) (Eν ,dom(S) ∩Rα) Mathias extends (Ff(ν),dom(T ) ∩Rα) for each ν < parts(S)

ii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eν ]

for every (µ, S) ∈ C, ( ~E, S, C[S]) 6αµ ¬ψ(G,w). Suppose for the sake of absurd that
ψ(G,w) does not hold for some w ∈ ω. Then by Lemma 4.18, there exists a ct ∈ F
such that ct αP (t) ¬ψ(G,w). Since F is a filter, there is a condition ce = ( ~E, S,D) ∈ F
extending cs and ct. By choice of P , (P (e), S) ∈ C, so by clause ii), ( ~E, S, C[S]) 6αP (e)

ψ(G,w), hence by Lemma 4.10, ce 6αP (e) ψ(G,w). However, since part P (e) of ce refines

part P (t) of ct, then by Lemma 4.9, ce αP (e) ψ(G,w). Contradiction. Hence, for

every w ∈ ω, ψ(G,w) holds, so ϕ(G) holds.
− If ϕ ∈ Σ0

n+3 then ϕ(G) can be expressed as (∃x)ψ(G, x) where ψ ∈ Π0
n+2. By clause 3 of

Definition 4.11, there exists a w ∈ ω such that cs α ψ(G,w). By induction hypothesis,
ψ(G,w) holds, hence ϕ(G) holds.

Conversely, if ϕ(G) holds, then there exists a w ∈ ω such that ψ(G,w) holds, so by
induction hypothesis cs α ψ(G,w) for some cs ∈ F , so by clause 3 of Definition 4.11,
cs α ϕ(G).

− If ϕ ∈ Π0
n+3 then ϕ(G) can be expressed as ¬ψ(G) where ψ ∈ Σ0

n+3. By clause 4 of
Definition 4.11, for every d ∈ Ext(cs), d 6α ψ(G). By Lemma 4.12, d 6α ψ(G) for
every d ∈ F , and by a previous case, ψ(G) does hold, so ϕ(G) holds.

�

4.5. Preserving definitions

The following (and last) lemma shows that every sufficiently generic real preserves higher
definitions. This preservation property cannot be proved in the case of non-Σ0

1 sets since the
weak forcing relation does not have the good density property in general.
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Lemma 4.20 If A 6∈ Σ0
n+2 and ϕ(G, x) is Σ0

n+2, then the set of c ∈ P satisfying the following
property is dense:

(∀α < 2)[(∃w ∈ A)c α ¬ϕ(G,w)] ∨ [(∃w 6∈ A)c α ϕ(G,w)]

Proof. It is sufficient to find, given a condition c and a side α < 2, an extension d of c such that
the following holds:

[(∃w ∈ A)c α ¬ϕ(G,w)] ∨ [(∃w 6∈ A)c α ϕ(G,w)]

Fix a condition c = (~F , T, C) and a side α < 2.

− In case n = 0, ϕ(G,w) can be expressed as (∃x)ψ(G,w, x) where ψ ∈ Π0
1. Let U be

the set of integers w such that there exists an infinite p.r. k′-partition tree S for some

k′ ∈ ω, a function f : parts(S)→ parts(T ) and a 2k′-tuple of finite sets ~E such that

i) Eβν = F βf(ν) for each ν < parts(S) and β 6= α

ii) (Eαν ,dom(S) ∩Rα) Mathias extends (Fαf(ν),dom(T )) for each ν < parts(S).

iii) S f -refines
⋂
ν<parts(S) T

[f(ν),Eαν ]

iv) for each non-empty part ν of S such that (ν, S) ∈ C, ( ~E, S, C[S]) αν ψ(G,w, u) for
some u < #S

By Lemma 4.15 and Lemma 3.10, U ∈ Σ0
2, thus U 6= A. Let w ∈ U∆A.

Suppose that w ∈ U rA. Let D = C[S] r {(ν, S′) ∈ C : part ν of S′ is empty}. As C
is an ∅′-p.r. promise for T , C[S] is an ∅′-p.r. promise for S. As D is obtained from C[S] by
removing only empty parts, D is also an ∅′-p.r. promise for S. By Lemma 4.10, for every

part ν of S such that (ν, S) ∈ D ⊆ C, ( ~E, S,D) αν ψ(G,w, u) for some u < dom(S),

hence by clause 1 of Definition 4.11, d = ( ~E, S,D) α (∃x)ψ(G,w, x). In other words,
d α ϕ(G) for some w 6∈ A.

We may choose a coding of the p.r. trees such that such that the code of S is sufficiently

large to witness w and ~E. So suppose now that w ∈ ArU . Then for every infinite p.r.

k′-partition tree S, every function f : parts(S) → parts(T ) and every ~E smaller than
the code of S such that properties i-iii) hold, there exists a non-empty part ν of S such

that (ν, S) ∈ C and ( ~E, S, C[S]) 6αν ψ(G,w, u) for every u < #S. Let D be the collection
of all such (ν, S). D is ∅′-p.r. By Lemma 4.9 and since #S ≥ #T whenever S ≤ T , D
is upward-closed under the refinement relation, hence is a promise for T . By clause 2

of Definition 4.11, d = (~F , T,D) α (∀x)¬ψ(G,w, x), hence d α ¬ϕ(G,w) for some
w ∈ A.

− In case n > 0, let U = {w ∈ ω : (∃d ∈ Ext(c))d α ϕ(G,w)}. By Lemma 3.24 and
Lemma 3.25, U ∈ Σ0

n+2, thus U 6= A. Fix w ∈ U∆A. If w ∈ U r A then by definition
of U , there exists a condition d extending c such that d α ϕ(G,w). If w ∈ ArU , then
for every d ∈ Ext(c), d 6α ϕ(G,w) so by clause 4 of Definition 4.11, c α ¬ϕ(G,w).

�

We are now ready to reprove Corollary 3.29 from Wang [21].

Theorem 4.21 (Wang [21]) RT2
2 admits preservation of Ξ definitions simultaneously for all Ξ

in {Σ0
n+2,Π

0
n+2,∆

0
n+2 : n ∈ ω}.

Proof. Since RCA0 ` COH∧D2
2 → RT2

2, and COH admits preservation of the arithmetic hierar-
chy, it suffices to prove that D2

2 admits preservation of Ξ definitions simultaneously for all Ξ in

{Σ0
n+2,Π

0
n+2,∆

0
n+2 : n ∈ ω}. Fix some set C and a ∆0,C

2 2-partition R0 ∪ R1 = ω. Let C0 be
the C ′-p.r. set of all (ν, T ) ∈ U such that (ν, T ) ≤ (0, 1<ω). Let F be a sufficiently generic filter
containing c0 = ({∅, ∅}, 1<ω, C0). Let G be the corresponding generic real. By definition of a

condition, the set G is ~R-cohesive. By Lemma 4.20 and Lemma 4.15, G preserves non-Σ0
n+2

definitions relative to C for every n ∈ ω. Therefore, by Proposition 2.2 of [21], G preserves Ξ
definitions relative to C simultaneously for all Ξ in {Σ0

n+2,Π
0
n+2,∆

0
n+2 : n ∈ ω}. �
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