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Introduction

Ramsey's theorem (RT n k ) asserts that any k-coloring of [N] n admits an infinite monochromatic set, where [N] n stands for the n-tuples over N. In this paper, we study the lack of robustness of Ramsey's theorem and its consequences under the frameworks of reverse mathematics and computable reducibility. Informally, a mathematical statement is robust within a given framework if its strength is invariant under slight variations of the statement. In reverse mathematics, robustness can be understood as equiprovability of the various statements over the base theory RCA 0 , while in computability, a Π 1 2 statement is robust if its variations are computably equivalent. We shall detail further reverse mathematics and computable reducibility in sections 1.1 and 1.2. Our investigations follow three axes.

Axis 1: We first study the degrees of unsolvability of cohesiveness. Given a sequence of sets of integers R 0 , R 1 , . . . , an infinite set is R-cohesive if it is almost included in R i or R i for each i. COH is a consequence of Ramsey's theorem for pairs which finds many practical applications in computability and reverse mathematics. Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF] have studied the computational strength of cohesive sets for maximally difficult sequences of sets. We reveal that COH contains hierarchies of complexity of its instances by establishing a one-to-one correspondence between instances of COH and instances of König's lemma (KL). This shows that the strength of COH depends on the considered class of its instances, and is therefore not inner robust. This correspondance enables us to reprove the existence of a computable sequence of sets with no low cohesive set [START_REF] Jockusch | A cohesive set which is not high[END_REF] and to answer several questions asked by Wang [START_REF] Wang | Omitting cohesive sets[END_REF] about how randomness and genericity help in solving computably unsolvable instances of COH.

Axis 2: A simple color amalgamation argument shows that RT n k and RT n are provably equivalent in reverse mathematics whenever k, ≥ 2. In this sense, Ramsey's theorem is robust with respect to numbers of colors in reverse mathematics. However, the standard proof that RT n k → RT n k+1 involves two applications of RT n k . Mileti [START_REF] Roy | Partition theorems and computability theory[END_REF] first wondered whether those two applications were really necessary. The question has been later formalized thanks to Weihrauch and computable reducibility and investigated by Dorais, Dzhafarov, Hirst, Mileti and Shafer [START_REF] François | On uniform relationships between combinatorial problems[END_REF], Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF], Brattka and Rakotoniaina [START_REF] Brattka | On the uniform computational content of Ramsey's theorem[END_REF], among others. We answer positively by proving that for every n ≥ 2, RT n k is not computably reducible to RT n whenever k > ≥ 2. Therefore, Ramsey's theorem is not robust with respect to the number of colors under computable reducibility.

Axis 3: Last, we investigate the reverse mathematics of a weakening of Ramsey's theorem in which more colors are allowed in the resulting set. The thin set theorem (TS n k ) asserts that for any k-coloring of [N] n , there is an infinite set H such that [H] n avoids at least one color. We show that the thin set theorem is not robust in reverse mathematics by proving that for every n, m, ≥ 2, TS n k does not imply TS m for sufficiently large k's. This is the first example of an infinite decreasing hiearchy in reverse mathematics. This enables us to answer several questions from Cholak, Giusto, Hirst and Jockusch [START_REF] Cholak | Free sets and reverse mathematics[END_REF], Montálban [START_REF] Montalbán | Open questions in reverse mathematics[END_REF] and Hirschfeldt [START_REF] Denis | Slicing the truth[END_REF] about the strength of the thin set theorem and its strengthening, the free set theorem, with respect to Ramsey's theorem for pairs.

Reverse mathematics

Reverse mathematics is a vast mathematical program whose goal is to classify ordinary theorems in terms of their provability strength. It uses the framework of subsystems of second order arithmetic, which is sufficiently rich to express many theorems in a natural way. The base system, RCA 0 standing for Recursive Comprehension Axiom, contains the basic first order Peano arithmetic together with the ∆ 0 1 comprehension scheme and the Σ 0 1 induction scheme. Thanks to the equivalence between ∆ 0 1 -definable sets and computable sets, RCA 0 can be considered as capturing "computable mathematics". The proof-theoretic analysis of the theorems in reverse mathematics is therefore closely related to their computational analysis. See Simpson [START_REF] Stephen | Subsystems of Second Order Arithmetic[END_REF] for a formal introduction to reverse mathematics.

Early reverse mathematics have led to two main empirical observations: First, many ordinary (i.e. non set-theoretic) theorems require very weak set existence axioms. Second, most of those theorems are in fact equivalent to one of five main subsystems, known as the "Big Five". However, among the theorems studied in reverse mathematics, a notable class of theorems fails to support the second observation, namely, Ramsey-type theorems. The underlying idea of Ramsey's theory is that whenever a collection of objects is sufficiently large, we can always find an arbitrarily large sub-collection of objects satisfying some given structural property. Perhaps the most well-known statement is Ramsey's theorem, stating that every coloring of tuples of integers with a finite number of colors admits an infinite monochromatic subset. The various consequences of Ramsey's theorem usually fail to coincide with the main five subsystems, and slight variations of their statements lead to different subsystems. The study of Ramsey-type statements has been a very active research subject in reverse mathematics over the past few years [START_REF] Bienvenu | On the logical strengths of partial solutions to mathematical problems[END_REF][START_REF] Cholak | On the strength of Ramsey's theorem for pairs[END_REF][START_REF] Harvey | Fom:53:free sets and reverse math and fom:54:recursion theory and dynamics[END_REF][START_REF] Hirschfeldt | Combinatorial principles weaker than Ramsey's theorem for pairs[END_REF]. See Hirschfeldt [START_REF] Denis | Slicing the truth[END_REF] for a good introduction to recent reverse mathematics.

Reducibilities

Many theorems in reverse mathematics are Π 1 2 statements, i.e., of the form (∀X)(∃Y )Φ(X, Y ) where Φ is an arithmetic formula. They can be considered as problems which usually come with a natural class of instances. Given an instance X, a set Y such that Φ(X, Y ) holds is called a solution to X. For example, König's lemma states that every infinite, finitely branching tree has an infinite path. In this statement, an instance is a infinite, finitely branching tree T , and a solution to T is an infinite path through T .

Thanks to the computational nature of the axioms of RCA 0 , given two Π 1 2 statements P and Q, a proof of implication Q → P consists in taking an arbitrary P-instance I and computing a solution to I in a computational process involving several applications of the Q principle. If the proof relativizes and can be formalized over RCA 0 (the main concern being the restriction to Σ 0 1 -induction), we obtain a proof of RCA 0 Q → P. It is often the case that the proof of the implication Q → P involves only one application of Q given an instance of P. Such a reduction is called a computable reduction. Definition 1.1 (Computable reducibility) Fix two Π 1 2 statements P and Q.

1. P is computably reducible to Q (written P ≤ c Q) if every P-instance I computes a Qinstance J such that for every solution X to J, X ⊕ I computes a solution to I. 2. P is strongly computably reducible to a Q (written P ≤ sc Q) if every P-instance I computes a Q-instance J such that every solution to J computes a solution to I.

Of course, proving that a statement P is not computably reducible to another statement Q is not sufficient for separating the statements over RCA 0 . For example, we shall see that Ramsey's theorem for pairs with k + 1 colors is not computably reducible to Ramsey's theorem for pairs with k colors, whereas the statements are known to be logically equivalent over RCA 0 . However, proving that P ≤ c Q can be seen as a preliminary step towards the separation of the principles. Lerman et al. [START_REF] Manuel Lerman | Separating principles below Ramsey's theorem for pairs[END_REF] have developped a framework for iterating a one-step non-reducibility into a separation over RCA 0 .

Other reducibility notions have been introduced to better understand the computational content of theorems from the point of view of reverse mathematics. Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] studied the uniformity of the computable reductions P ≤ c Q by requiring the construction of a Q-instance J given a P-instance I and the construction of a solution to I given a solution to J to be done with two fixed Turing functionals. They showed that this uniform reducibility is the restriction of the Weihrauch reduction to the second-order setting. Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] introduced a game-theoretic approach and defined a generalized uniform reducibility extending the notion of uniform reducibility to several applications of the statement Q. In this paper, we shall restrict ourselves to computable reducibility and provability over RCA 0 .

Degrees of unsolvability of cohesiveness

Cohesiveness plays a central role in reverse mathematics. It appears naturally in the standard proof of Ramsey's theorem, as a preliminary step to reduce an instance of Ramsey's theorem over (n + 1)-tuples into a non-effective instance over n-tuples. An important part of current research about Ramsey-type principles in reverse mathematics consists in trying to understand whether cohesiveness is a consequence of stable Ramsey's theorem for pairs, or more generally whether it is a combinatorial consequence of the infinite pigeonhole principle [START_REF] Cholak | On the strength of Ramsey's theorem for pairs[END_REF][START_REF] Damir | Cohesive avoidance and strong reductions[END_REF][START_REF] Damir | Cohesive avoidance and arithmetical sets[END_REF][START_REF] Wang | Omitting cohesive sets[END_REF]. Chong et al. [START_REF] Chong | The metamathematics of stable Ramsey's theorem for pairs[END_REF] recently showed using non-standard models that cohesiveness is not a prooftheoretic consequence of the pigeonhole principle. However it is not known whether or not cohesiveness is computably reducible to stable Ramsey's theorem for pairs.

Definition 1.2 (Cohesiveness) An infinite set C is R-cohesive for a sequence of sets R 0 , R 1 , . . . if for each i ∈ ω, C ⊆ * R i or C ⊆ * R i . A set C is p-cohesive if it is R-
cohesive where R is an enumeration of all primitive recursive sets. COH is the statement "Every uniform sequence of sets R has an R-cohesive set." Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF] studied the degrees of unsolvability of cohesiveness and proved that COH admits a universal instance whose solutions are the p-cohesive sets. They characterized their degrees as those whose jump is PA relative to ∅ .

Cohesiveness is a Π 1 2 statement whose instances are sequences of sets R and whose solutions are R-cohesive sets. It is natural to wonder about the degrees of unsolvability of the R-cohesive sets according to the sequence of sets R. Mingzhong Cai asked whether whenever a uniformly computable sequence of sets R 0 , R 1 , . . . has no computable R-cohesive set, there exists a noncomputable set which does not compute one. In the opposite direction, one may wonder whether every unsolvable instance of COH is maximally difficult. A natural first approach in the analysis of the strength of a principle consists in looking in which way typical sets can help in computing a solution to an unsolvable instance. The notion of typical set is usually understood in two different ways: using the genericity approach and the randomness approach. Wang [START_REF] Wang | Omitting cohesive sets[END_REF] answered Cai's question by investigating the solvability of cohesiveness by typical sets.

In this paper, we refine Wang's analysis by establishing a pointwise correspondence between sets cohesive for a sequence and sets whose jump computes a member of a Π 0,∅ 1 class. Then, using the known interrelations between typical sets and Π 0 1 classes, we give precise genericity and randomness bounds above which no typical set helps computing a cohesive set. We identify different layers of unsolvability and spot a class of instances sharing many properties with the universal instance. Emulating work in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF] on the pigeonhole principle and weak König's lemma (WKL 0 ), we show that some unsolvable instances of COH are combinatorial consequences of the pigeonhole principle.

Ramsey's theorem and computable reducibility

The strength of Ramsey-type statements is notoriously hard to tackle in the setting of reverse mathematics. The separation of Ramsey's theorem for pairs (RT 2 2 ) from the arithmetical comprehension axiom (ACA 0 ) was a long-standing open problem, until Seetapun and Slaman solved it [START_REF] Seetapun | On the strength of Ramsey's theorem[END_REF] with his notion of cone avoidance. The question of the relation between RT 2 2 and weak König's lemma (WKL 0 ) remained open for many years before Cholak, Jockusch and Slaman [START_REF] Cholak | On the strength of Ramsey's theorem for pairs[END_REF] proved that WKL 0 does not imply RT 2 2 over RCA 0 . More than fifteen years after Seetapun, Liu [START_REF] Liu | RT 2 2 does not imply WKL0[END_REF] solved the remaining direction by proving that RT 2 2 does not imply WKL 0 over RCA 0 .

Definition 1.3 (Ramsey's theorem) A subset H of ω is homogeneous for a coloring f : [ω] n → k (or f -homogeneous) if each n-tuple over H is given the same color by f . A coloring f : [ω] n+1 → k is stable if for every n-tuple σ ∈ [ω] n , lim s f (σ, s) exists. RT n k is the statement "Every coloring f : [ω] n → k has an infinite f -homogeneous set". SRT n k is the restriction of RT n k to stable colorings.
Simpson [START_REF] Stephen | Subsystems of Second Order Arithmetic[END_REF]Theorem III.7.6] proved that whenever n ≥ 3 and k ≥ 2, RCA 0 RT n k ↔ ACA 0 . Ramsey's theorem for pairs is probably the most famous example of statement escaping the Big Five. Seetapun [START_REF] Seetapun | On the strength of Ramsey's theorem[END_REF] proved that RT 2 2 is strictly weaker than ACA 0 over RCA 0 . Because of the complexity of the related separations, RT 2 2 received a particular attention from the reverse mathematics community. Mileti [START_REF] Roy | Partition theorems and computability theory[END_REF] and Jockusch and Lempp [unpublished] proved that RT 2 2 is equivalent to SRT 2 2 + COH over RCA 0 . Recently, Chong et al. [START_REF] Chong | The metamathematics of stable Ramsey's theorem for pairs[END_REF] proved that SRT 2 2 is strictly weaker than RT 2 2 over RCA 0 . However they used non-standard models to separate the statements and the question whether SRT 2 2 and RT 2 2 coincide over ω-models remains open. Stable Ramsey's theorem for pairs can be characterized by a purely computability-theoretic statement. Definition 1.4 For every n, k ≥ 1, D n k is the statement "Every ∆ 0 n k-partition of the integers has an infinite subset of one of its parts". D n <∞ is the statement (∀k)D n k .

Cholak et al. [START_REF] Cholak | On the strength of Ramsey's theorem for pairs[END_REF] proved that D 2 k and SRT 2 k are computably equivalent and that the proof is formalizable over RCA 0 + BΣ 0 2 . Later, Chong et al. [START_REF] Chong | On the role of the collection principle for Σ 0 2 -formulas in secondorder reverse mathematics[END_REF] proved that D 2 2 implies BΣ 0 2 over RCA 0 , showing therefore that RCA 0 D 2 k ↔ SRT 2 for every k, ≥ 2. Dzhafarov [START_REF] Damir | Cohesive avoidance and strong reductions[END_REF] proved that COH ≤ sc D 2

<∞ by constructing a sequence of sets R 0 , R 1 , . . . such that for every k ≥ 2, every instance of RT 1 k hyperarithmetic in R has a solution which does not compute an R-cohesive set. In section 3.1, we strengthen this result by making R uniformly ∆ 0 2 and removing the effectiveness restriction on the instance of RT 1 k . The proof reveals the combinatorial nature of the relations between cohesiveness and RT 1 k and answers a question of Antonio Montálban. Recently, Dzhafarov [START_REF] Damir | Strong reductions between combinatorial principles[END_REF] proved that COH ≤ sc SRT 2 2 . Another closely related subject of interest is the impact of the number of colors in the strength of Ramsey's theorem. For every n ≥ 1 and k, ≥ 2, RCA 0 RT n k ↔ RT n by a simple color blindness argument. Whenever k > ≥ 2, the reduction of RT n k to RT n involves more than one application of RT n and therefore is not a computable reduction. Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] noticed that the proof of Dzhafarov [START_REF] Damir | Cohesive avoidance and strong reductions[END_REF] can be modified to obtain RT 1 k ≤ sc RT 1 . Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] asked in which case RT n k ≤ c RT n . In section 3.2, we answer by proving that SRT n k ≤ c RT n whenever k > ≥ 2 and n ≥ 2.

The weakness of free set and thin set theorems

Simpson [START_REF] Stephen | Subsystems of Second Order Arithmetic[END_REF]Theorem III.7.6] proved that the hiearchy of Ramsey's theorem collapses at level three in reverse mathematics. One may wonder about some natural weakenings of Ramsey's theorem over arbitrary tuples which remain strictly weaker than ACA 0 . Given a coloring f :

[ω] n → k, instead of stating the existence of an infinite f -homogeneous set H, we can simply require that f avoids at least one color over the set H. This is the notion of f -thin set. Definition 1.5 (Thin set theorem) Given a coloring f :

[ω] n → k (resp. f : [ω] n → ω), an infinite set H is thin for f if |f ([H] n )| ≤ k -1 (resp. f ([H] n ) = ω). For every n ≥ 1 and k ≥ 2, TS n
k is the statement "Every coloring f : [ω] n → k has a thin set" and TS n is the statement "Every coloring f : [ω] n → ω has a thin set". STS n k is the restriction of TS n k to stable colorings. TS is the statement (∀n) TS n .

The reverse mathematical analysis of the thin set theorem started with Friedman [START_REF] Harvey | Fom:53:free sets and reverse math and fom:54:recursion theory and dynamics[END_REF][START_REF] Harvey | Boolean Relation Theory and Incompleteness[END_REF]. It has been studied by Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF], Wang [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF] and the author [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF][START_REF] Patey | Degrees bounding principles and universal instances in reverse mathematics[END_REF] among others. Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] proved that TS 1 k is not uniformly reducible to TS 1 whenever > k. Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] extended the result to colorings over arbitrary tuples. We generalize the previous theorems by proving that TS n k ≤ c TS n whenever > k ≥ 2 and n ≥ 2. In the case of colorings of singletons, we prove that TS 1 k ≤ sc TS 1 whenever > k ≥ 2. The free set theorem is a strengthening of the thin set theorem in which every member of a free set is a witness of thinness of the same set. Indeed, if H is an infinite f -free set for some function f , for every a ∈ H, H {a} is f -thin with witness color a. See Theorem 3.2 in [START_REF] Cholak | Free sets and reverse mathematics[END_REF] for a formal version of this claim.

Definition 1.6 (Free set theorem) Given a coloring f : [ω] n → ω, an infinite set H is free for f if for every σ ∈ [H] n , f (σ) ∈ H → f (σ) ∈ σ. For every n ≥ 1, FS n is the statement "Every coloring f : [ω] n → ω has a free set". SFS n is the restriction of FS n to stable colorings. FS is the statement (∀n) FS n .
Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] proved that RCA 0 RT n 2 → FS n → TS n for every n ≥ 2. Wang [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF] proved that FS (hence TS) does not imply ACA 0 over ω-models. The author [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF] proved that FS does not imply WKL 0 (and in fact weak weak König's lemma) over RCA 0 .

Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] and Montalban [START_REF] Montalbán | Open questions in reverse mathematics[END_REF] asked whether any of TS 2 , FS 2 , FS 2 + COH and FS 2 + WKL 0 imply RT 2 2 over RCA 0 . Hirschfeldt [START_REF] Denis | Slicing the truth[END_REF] asked whether FS 2 + WKL 0 implies any of SRT 2 2 , the ascending descending sequence (ADS) and the chain antichain principle (CAC). We answer all these questions negatively by proving that for every k ≥ 2, the conjunction of COH, WKL 0 , the Erdős-Moser theorem (EM), TS 2 k+1 , FS and TS implies neither STS 2 k nor the stable ascending descending sequence (SADS) over RCA 0 .

Organization of the paper

In section 2, we establish an instance-wise correspondence between cohesive sets and degrees whose jump computes a member of a Π 0,∅ 1 class. We take advantage of this correspondence to study how typical sets are useful to compute unsolvable instances of cohesiveness, and extend this analysis to Ramsey-type statements. In section 3.1, we reprove Dzhafarov's result that cohesiveness is not strongly computably reducible to D 2 <∞ with a more combinatorial proof using hyperimmunity. In section 3.2, we refine the forcing of the previous section to separate Ramsey's theorem over computable reducibility according to the number of colors. In section 4.1, we separate variants of the thin set theorem for singletons over strong computable reducibility according to the number of colors using preservation of non-c.e. definitions. Finally, we separate the thin set theorem for pairs from Ramsey's theorem for pairs over RCA 0 in section 4.2, and extend this separation to the full thin set theorem in section 4.3 and the full free set theorem in section 4.4.

Notation

String, sequence. Fix an integer k ∈ ω. A string (over k) is an ordered tuple of integers a 0 , . . . , a n-1 (such that a i < k for every i < n). The empty string is written ε. A sequence (over k) is an infinite listing of integers a 0 , a 1 , . . . (such that a i < k for every i ∈ ω). Given s ∈ ω, k s is the set of strings of length s over k and k <s is the set of strings of length < s over k.

Similarly, k <ω is the set of finite strings over k and k ω is the set of sequences (i.e. infinite strings) over k. If σ is a string, then |σ| denotes its length. Given two strings σ, τ ∈ k <ω , σ is a prefix of τ (written σ τ ) if there exists a string ρ ∈ k <ω such that σρ = τ . Given a sequence X, we write σ ≺ X if σ = X n for some n ∈ ω, where X n denotes the restriction of X to its first n elements. A binary string (resp. real) is a string (resp. sequence) over 2. We may identify a real with a set of integers by considering that the real is its characteristic function. Accordingly, we identify a string σ ∈ 2 <ω with the set set(σ) = {n < |σ| : σ(n) = 1}. Therefore n ∈ σ means n ∈ set(σ) and given a set A ⊆ ω, we denote by σ ∩ A the string τ ∈ 2 |σ| such that τ (n) = 1 if and only if σ(n) = 1 and n ∈ A. We also write σ ⊆ A for set(σ) ⊆ A. Given a real X ∈ 2 ω and a string σ, we denote by X/σ the real obtained by replacing the |σ| first bits of X by σ.

Tree, path. A tree T ⊆ ω <ω is a set downward closed under the prefix relation. The tree T is finitely branching if every node σ ∈ T has finitely many immediate successors. A binary tree is a tree T ⊆ 2 <ω . A set P ⊆ ω is a path through T if for every σ ≺ P , σ ∈ T . A string σ ∈ k <ω is a stem of a tree T if every τ ∈ T is comparable with σ. Given a tree T and a string σ ∈ T , we denote by T [σ] the subtree {τ ∈ T : τ σ ∨ τ σ}. We write P X to say that P is of PA degree relative to X.

Classes. Given a finite string σ ∈ ω <ω , [σ] is the set of sequences extending σ. Whenever it is clear from the context that we are working with binary strings, [σ] denotes the set of reals extending σ. A Π 0,X 1 class is the collection of paths through an X-computable tree. The complement of a Π 0,X 1 class is a Σ 0,X 1 class. A k-enum of a class C ⊆ 2 ω is a uniform sequence of finite sets of strings D 0 , D 1 , . . . such that D s is a set of at most k binary strings of length s such that one of those is a prefix of a member of C.

Sets, partitions. Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x < y] and by A ⊆ * B the formula (∃b)(∀x ∈ A)[x ∈ B → x < b], meaning that A is contained in B except for at most finitely many elements. Given a set X and some integer k,

a k-cover of X is a k-uple A 0 , . . . , A k-1 such that A 0 ∪ • • • ∪ A k-1 = X.
We may simply say k-cover when the set X is unambiguous. A k-partition is a k-cover whose sets are pairwise disjoint.

The degrees of unsolvability of cohesiveness

In this section, we study the degree of unsolvability of R-cohesive sets according the degree of unsolvability of the sequence R itself. Then we take advantage of this analysis to answer various questions about which theorems in reverse mathematics can solve a computably unsolvable instance of cohesiveness.

2.1. Cohesiveness and Π 0,∅ 1 classes Jockusch and Stephan characterized the p-cohesive degrees as those whose jump is of degree PA relative to ∅ . We clarify the situation by establishing an instance-wise correspondence between the degrees of the sets cohesive for a sequence, and the degrees whose jump computes a member of a non-empty Π 0,∅ 1 class. Definition 2.1 Let R 0 , R 1 , . . . be a uniformly computable sequence of sets. For every σ ∈ 2 <ω , we define R σ inductively as follows. First, R ε = ω and then, if R σ has already been defined for some string σ of length s, let

R σ0 = R σ ∩ R s and R σ1 = R σ ∩ R s . For example, R 0110 = R 0 ∩ R 1 ∩ R 2 ∩ R 3 . Let C( R) be the Π 0,∅ 1
class of binary sequences P such that for every σ ≺ P , the set R σ is infinite.

Our first lemma shows that the degrees of R-cohesive sets can be characterized by their jumps. This lemma reveals in particular that low sets fail to solve unsolvable instances of cohesiveness. Lemma 2.2 For every uniformly computable sequence of sets R 0 , R 1 , . . . , a set computes an Rcohesive set if and only if its jump computes a member of C( R).

Proof. Fix an R-cohesive set C. Let P = {σ ∈ 2 <ω : C ⊆ * R σ }. The sequence P is infinite and C -computable as there exists exactly one string σ of each length such that C ⊆ * R σ . In particular, for every σ ≺ P , R σ is infinite, so P is a member of C( R).

Conversely, let X be a set whose jump computes a member P of C( R). By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], there exists an X-computable function f (•, •) such that for each x, lim s f (x, s) = P (x). Define an R-cohesive set C = s C s X-computably by stages C 0 = ∅ C 1 . . . as follows. At stage s, search for some string σ of length s and some integer n ∈ R σ greater than s such that f (x, n) = σ(x) for each x < |σ|. We claim that such σ and n must exist, as there exists a threshold n 0 such that for every n > n 0 , f (x, n) = P (x) for each x < s. Let σ ≺ P be of length s. By definition of P , R σ is infinite, so there must exist some n ∈ R σ which is greater than n 0 and s. Set C s+1 = C s ∪ {n} and go to the next stage. We now check that C = s C s is R-cohesive. For every x ∈ ω, there exists a threshold n 1 such that for every n > n 1 , f (x, n) = P (x). By construction, for every element

n ∈ C C n 1 , n ∈ R σ for some string σ such that σ(x) = P (x). Therefore C ⊆ * R x or C ⊆ * R x .
Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF] showed the existence of a uniformly computable sequence of sets R 0 , R 1 , . . . having no low R-cohesive set. We prove that it suffices to consider any sequence R with no computable R-cohesive set to obtain this property.

Corollary 2.3 A uniformly computable sequence of sets R 0 , R 1 , . . . has a low R-cohesive set if and only if it has a computable R-cohesive set.

Proof. Let X be a low R-cohesive set. By Lemma 2.2, the jump of X (hence ∅ ) computes a member of C( R). By a second application of Lemma 2.2, the existence of a computable Rcohesive set follows.

One may naturally wonder about the shape of the Π 0,∅ 1 classes C( R) for uniformly computable sequences R 0 , R 1 , . . . We show through the following lemma that C( R) can be any Π 0,∅ 1 class. Together with Lemma 2.2, it establishes an instance-wise correspondence between cohesive sets and Π 0,∅ 1 classes.

Lemma 2.4 For every non-empty Π 0,∅ 1 class D ⊆ 2 ω , there exists a uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) = D.

Proof. By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], there exists a computable function g : 2 <ω × ω → 2 whose limit exists and such that D is the collection of X such that for every σ ≺ X, lim s g(σ, s) = 1. We can furthermore assume that whenever g(σ, s) = 1, then for every τ ≺ σ, g(τ, s) = 1, and that for every s ∈ ω, the set U s = {σ ∈ 2 s : g(σ, s) = 1} is non-empty. We define a uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) = D by stages as follows.

As stage 0, R i = ∅ for every i ∈ ω. Suppose that we have already decided R i n s for every i ∈ ω and some n s ∈ ω. At stage s + 1, we will add elements to R 0 , . . . , R s so that for each string

σ of length s + 1, R σ [n s , n s + p] = ∅ if and only if σ ∈ U s+1 .
To do so, consider the set U s+1 = {σ 0 , . . . , σ p } defined above and add {n s + i :

σ i (j) = 1, i ≤ p} to R j for each j ≤ s.
Set n s+1 = n s + p + 1 and go to the next stage.

We claim that R σ is infinite if and only if σ ≺ X for some X ∈ D. Assume that R σ is infinite. By construction, there are infinitely many s such that R σ [n s , n s + p] = ∅. So there are infinitely many stages s such that τ ∈ U s (g(τ, s) = 1) for some τ σ. By assumption on g, there are infinitely many τ σ such that g(τ, s) = 1 for infinitely many s. Therefore, by compactness, there exists some X ∈ D such that σ ≺ X. Conversely, if σ ≺ X for some X ∈ D, then there are infinitely many stages s such that τ ∈ U s for some τ σ. At each of these stages,

R σ [n s , n s + p] ⊇ R τ [n s , n s + p] = ∅. Therefore R σ is infinite. Jockusch et al. proved in [22] that for every Π 0,∅ 1 class C ⊆ 2 ω , there exists a Π 0 1 class D ⊆ ω ω such that deg(C) = deg(D)
, where deg(C) is the class of degrees of members of C. For the reader who is familiar with Weihrauch degrees, what we actually prove here is that König's lemma is the jump of the cohesiveness principle under Weihrauch reducibility. Bienvenu [personal communication] suggested the use of Simpson's Embedding Lemma [START_REF] Stephen | An extension of the recursively enumerable Turing degrees[END_REF]Lemma 3.3] to prove the reducibility of some unsolvable instances of cohesiveness to various statements. Lemma 2.5 (Bienvenu) For every Σ 0,∅ 3 class E ⊆ ω ω with no ∅ -computable member, there exists a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set but such that every member of E computes an R-cohesive set.

Proof. By a relativization of Lemma 3.3 in [START_REF] Stephen | An extension of the recursively enumerable Turing degrees[END_REF], there exists a Π 0,∅ 1 class D whose degrees (relative to ∅ ) are exactly deg(E) ∪ P A[∅ ]. Therefore D has no ∅ -computable member and every member of E ∅ -computes a member of D. By Lemma 2.4, there exists a uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) = D. By Lemma 2.2, there exists no computable R-cohesive set, but every member of D (and in particular every member of E) computes an R-cohesive set.

How genericity helps solving cohesiveness

We now take advantage of the analysis of the previous section to deduce optimal bounds on how much genericity is needed to avoid solving an unsolvable instance of COH. Definition 2.6 (Genericity) Fix a set of strings S ⊆ 2 <ω . The set S is dense if every string has an extension in S. A real G meets S if it has some initial segment in S. A real G avoids S if it has an initial segment with no extension in S. Given an integer n ∈ ω, a real is n-generic if it meets or avoids each Σ 0 n set of strings. A real is weakly n-generic if it meets each Σ 0 n dense set of strings. By Friedberg's jump inversion theorem [START_REF] Friedberg | A criterion for completeness of degrees of unsolvability[END_REF], there exists a 1-generic which is of high degree, and therefore computes a cohesive set for every uniformly computable sequence of sets. Wang [START_REF] Wang | Omitting cohesive sets[END_REF] proved that whenever a uniformly computable sequence of sets R 0 , R 1 , . . . has no computable R-cohesive sets, no weakly 3-generic computes an R-cohesive set. He asked whether there exists a 2-generic computing an R-cohesive set. We prove the optimality of Wang's bound by showing the existence of an unsolvable instance of COH which is solvable by a 2-generic real.

Lemma 2.7 There exists a 2-generic real G together with a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set such that G computes an R-cohesive set.

Proof. Fix any ∆ 0 3 2-generic real G and consider the singleton E = {G}. As no 2-generic is ∆ 0 2 , the class E has no ∅ -computable member. By Lemma 2.5, there exists a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set, such that G computes an Rcohesive set.

However, if we slightly increase the unsolvability of the sequence of sets, no 2-generic real helps computing a set cohesive for the sequence. Recall that a 1-enum of a class C ⊆ 2 <ω is a sequence of strings σ 0 , σ 1 , . . . such that |σ s | = s and [σ s ] ∩ C = ∅ for each s ∈ ω. The notion has been extensively studied in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF].

Theorem 2.8 For any uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) has no ∅ -computable 1-enum, no 2-generic real computes an R-cohesive set.

Proof. By Jockusch [START_REF] Carl | Degrees of generic sets[END_REF], every n-generic set is GL n and in particular, every 2-generic is GL 1 . Therefore, by Lemma 2.2, a 2-generic set G computes an R-cohesive set if and only if there exists some functional Γ such that Γ G⊕∅ is a member of C( R). Fix a functional Γ such that Γ G⊕∅ is total for some 2-generic set G, and define the following Σ 0,∅ 1 set:

W bad = {σ ∈ 2 <ω : [Γ σ⊕∅ ] ∩ C( R) = ∅}
We claim G meets W bad . Suppose for contradiction that G avoids W bad . By 2-genericity of G, there exists a string σ ≺ G with no extension in W bad . We show that there exists a ∅ -effective procedure which computes a 1-enum of C( R), contradicting our hypothesis.

On input n, ∅ -effectively search for a τ n σ such that Γ τn⊕∅ n is defined. Such τ n exists as σ ≺ G and Γ G⊕∅ is total. As

τ n ∈ W bad , [Γ τn⊕∅ ] ∩ C( R) = ∅ and therefore (τ n : n ∈ ω) is a ∅ -computable 1-enum of C( R).
Note that if we assume that G is weakly 3-generic and therefore avoids the set W bad ∪ W partial where

W partial = {σ ∈ 2 <ω : (∀τ σ)|Γ τ ⊕∅ | < |σ|}
then we can furthermore impose that τ n+1 τ n and ∅ -compute a member of C( R). This suffices to reprove that no weakly 3-generic helps solving an unsolvable intance of COH.

We now prove a theorem inspired by the proof of domination closure of p-cohesive degrees by Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF]. Theorem 2.9 For any uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) has no ∅ -computable 1-enum, every R-cohesive set is of hyperimmune degree.

Proof. Suppose for the contradiction that there exists some R-cohesive set C = {a 0 < a 1 < . . . } and a computable set

B = {b 0 < b 1 < . . . } such that (∀i)(a i < b i ). For each n ∈ ω, let B n = {n, n + 1, . . . , b n }.
Note that a n ∈ B n for every n, and therefore for every length s, there exists a string σ s of length s such that (∃b)(∀n > b)R σs ∩ B n = ∅. Let σ 0 , σ 1 , . . . be the ∅ -computable sequence of such strings. We claim that this sequence is a 1-enum of C( R), therefore contradicting our hypothesis. Indeed, as (∃b

)(∀n > b)R σs ∩ B n = ∅, the set R σs is infinite and therefore C( R) ∩ [σ s ] = ∅.
Of course, there exists some uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set but with an R-cohesive set of hyperimmune-free degree. Simply apply Lemma 2.5 with E = {X} where X is a ∆ 0 3 set of hyperimmune-free degree. Such a set is known to exists by Miller and Martin [START_REF] Miller | The degrees of hyperimmune sets[END_REF]. The class E has no ∅ -computable member as every ∆ 0 2 set is hyperimmune.

How randomness helps solving cohesiveness

We now explore the interrelations between cohesiveness and the measure-theoretic paradigm of typicality, namely, algorithmic randomness.

Definition 2.10 (Randomness) A Σ 0 n (Martin-Löf ) test is a sequence U 0 , U 1 , . . . of uniformly Σ 0 n classes such that µ(U i ) ≤ 2 -i for every i ∈ ω. A real Z is n-random if for every Σ 0 n test U 0 , U 1 , . . . , Z ∈ i U i . A real Z is weakly n-random if it is in every Σ 0 n class of measure 1.
We shall say Martin-Löf random for 1-random. Wang [START_REF] Wang | Omitting cohesive sets[END_REF] proved that whenever a uniformly computable sequence of sets R 0 , R 1 , . . . has no computable R-cohesive sets, there exists a Martin-Löf random real computing no R-cohesive set. Thanks to Corollary 2.3, we know that it suffices to take any low Martin-Löf random real to obtain this property. Wang asked whether we can always ensure the existence of a 3-random real computing an R-cohesive set whenever the instance is unsolvable. The next two lemmas answer this question by proving that it depends on the considered sequence of sets R.

Lemma 2.11 There exists a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set, but such that every 2-random real computes an R-cohesive set.

Proof. Let D be a Π 0,∅ 1 class of positive measure with no ∅ -computable member. By Lemma 2.4, there exists a uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) = D. By Kautz [START_REF] Steven | Degrees of random sets[END_REF][START_REF] Steven | An improved zero-one law for algorithmically random sequences[END_REF], every 2-random real is, up to prefix, a member of C( R). Therefore, by Lemma 2.2, every 2-random real computes an R-cohesive set. Lemma 2.12 For every n ≥ 3, no (weakly) n-random real computes a p-cohesive set.

Proof. Jockusch and Stephan [START_REF] Jockusch | A cohesive set which is not high[END_REF] proved that degrees of p-cohesive sets are those whose jump is PA relative to ∅ . By a relativization of Stephan [START_REF] Stephan | Martin-Löf random and PA-complete sets[END_REF], every 2-random real whose jump is of PA degree relative to ∅ is high. By Kautz [START_REF] Steven | Degrees of random sets[END_REF], no weakly 3-random real is high. For every n ≥ 3, every (weakly) n-random real is a weakly 3-random real.

Avigad et al. [START_REF] Avigad | Algorithmic randomness, reverse mathematics, and the dominated convergence theorem[END_REF] introduced the principle n-WWKL stating that every ∆ 0 n tree of positive measure has a path. In particular, 1-WWKL is WWKL 0 . Thanks to Lemma 2.12, for every n ∈ ω, one can apply the usual constructions to build an ω-model of n-WWKL which does not contain any p-cohesive set and therefore is not a model of COH. Pick any n-random Z which does not compute any p-cohesive set and consider it as an infinite join Z 0 ⊕ Z 1 ⊕ . . . . By Van Lambalgen's theorem [START_REF] Van Lambalgen | The axiomatization of randomness[END_REF], the ω-structure whose second-order part is the Turing ideal {X :

(∃i)X ≤ T Z 0 ⊕ • • • ⊕ Z i } is a model of n-WWKL.
Moreover it does not contain a p-cohesive set.

How Ramsey-type theorems help solving cohesiveness

In his paper separating Ramsey's theorem for pairs from weak König's lemma, Liu [START_REF] Liu | RT 2 2 does not imply WKL0[END_REF] proved that every (non-necessarily effective) set A has an infinite subset of either it or its complement which is not of PA degree. The absence of effectiveness conditions on A shows the combinatorial nature of the weakness of the infinite pigeonhole principle. On the other hand, the author [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF] showed that this weakness depends on the choice of the instance of WKL 0 , by constructing a computable tree with no computable path together with a ∆ 0 2 set A such that every infinite subset of either A or A computes a path trough the tree. We answer a similar question for cohesiveness and study the weakness of the pigeonhole principle for typical partitions. Lemma 2.13 There exists a ∆ 0 3 (in fact low over ∅ ) set A and a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set, such that every infinite subset of either A or A computes an R-cohesive set.

Proof. Fix a set A which is low over ∅ and bi-immune relative to ∅ . The set of the infinite, increasing sequences which form an subset of either A or A is Π 0,A 1 , hence Π 0,∅ 2 in the Baire space:

E = {X ∈ ω ω : (∀s)[X(s) < X(s + 1)] ∧ [(∀s)(X(s) ∈ A) ∨ (∀s)(X(s) ∈ A)]}
Moreover, E has no ∅ -computable member by bi-immunity relative to ∅ of A. Apply Lemma 2.5 to complete the proof.

In a previous section, we constructed a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set such that every 2-random real computes an R-cohesive set. The following lemma strengthens this result by constructing an unsolvable instance of COH solvable by every infinite subset of any 2-random real. Definition 2.14 (Diagonal non-computability) A function f : ω → ω is diagonaly non-computable relative to X if for every e ∈ ω, f (e) = Φ X e (e).

By Kjos-Hanssen [START_REF] Kjos-Hanssen | Infinite subsets of random sets of integers[END_REF] and Greenberg and Miller [START_REF] Greenberg | Lowness for Kurtz randomness[END_REF], a set computes a function d.n.c. relative to ∅ (n-1) if and only if it computes an infinite subset of an n-random. Lemma 2.15 There exists a uniformly computable sequence of sets R 0 , R 1 , . . . with no computable R-cohesive set, such that every function d.n.c. relative to ∅ computes an R-cohesive set.

Proof. The class of functions which are d.n.c. relative to ∅ is Π 0,∅ 1 in the Baire space:

E = f ∈ ω ω : (∀e)[Φ ∅ e (e) ↑ ∨f (e) = Φ ∅ e (e)]
Moreover, E has no ∅ -computable member. Apply Lemma 2.5 to complete the proof.

In contrast with this lemma, if we require a bit more uncomputability in the R-cohesive sets of the sequence R 0 , R 1 , . . . , we can ensure the existence of a function d.n.c. relative to ∅ which does not compute an R-cohesive set.

Theorem 2.16 Fix a uniformly computable sequence of sets R 0 , R 1 , . . . such that C( R) has no ∅ -computable 1-enum. For every set X, there exists a function f d.n.c. relative to X whose jump does not compute a 1-enum of C( R). In particular, f does not compute an R-cohesive set.

The proof of Theorem 2.16 is done by a bushy tree forcing argument. See the survey from Khan and Miller [START_REF] Khan | Forcing with bushy trees[END_REF] for terminology and definitions. Fix a set X. We will construct a GL 1 function which is d.n.c. relative to X. Our forcing conditions are tuples (σ, B) where σ ∈ ω <ω and B ⊆ ω <ω is an upward-closed set k-small above σ for some k ∈ ω. A sequence f satisfies a condition (σ, B) if σ ≺ f and B is small above every initial segment of f . Our initial condition is (ε, B X DN C ) where

B X DN C = {σ ∈ ω <ω : (∃e)σ(e) = Φ X e (e)} Therefore every infinite sequence f satisfying (ε, B X DN C ) is d.n.c. relative to X. Thanks to the following lemma, we can prevent f ⊕ ∅ from computing a 1-enum of C( R). As the constructed function f is GL 1 , f ≤ T f ⊕ ∅ does not compute a 1-enum of C( R).
Lemma 2.17 For every condition c = (σ, B) and every Turing functional Γ, there exists an extension d = (τ, C) forcing Γ f ⊕∅ to be partial or such that Γ τ ⊕∅ is not a 1-enum of C( R).

Proof. Suppose that B is k-small above σ. For every n ∈ ω, define the Σ 0,∅ 1 set D n = {τ ∈ ω <ω : Γ τ ⊕∅ (n) ↓∈ 2 n }. Make a ∅ -effective search for an n ∈ ω such that one of the following holds:

(a) D n is k2 n -small above σ for some n ∈ ω (b) D n,ρ = {τ ∈ ω <ω : Γ τ ⊕∅ (n) ↓= ρ} is k-big above σ for some string ρ ∈ 2 n such that [ρ] ∩ C( R) = ∅. Such n exists, as otherwise, for every n ∈ ω, D n is k2 n -big above σ. By the smallness additivity property, D n,ρ is k-big above σ for some ρ ∈ 2 n . For every such string ρ, [ρ] ∩ C( R) = ∅. Therefore we can ∅ -compute a 1-enum of C( R) by searching on each input n for some ρ of length n such that D n,ρ is k-big above σ.

If we are in case (a), take d = (τ, C∪D n ) as the desired extension. The condition d forces Γ f ⊕∅ to be partial. If we are in case (b), by the concatenation property, there exists an extension τ ∈

D n,ρ such that B is still k-small above τ . The condition d = (τ, B) is an extension forcing Γ f ⊕∅ not to be a 1-enum of C( R) as Γ f ⊕∅ (n) = Γ τ ⊕∅ (n) = ρ and [ρ] ∩ C( R) = ∅.
Looking at the proof of the previous lemma, we can ∅ -decide in which case we are, and then use the knowledge of f to see which path has been chosen in the bushy tree. The construction therefore yields a GL 1 sequence.

Ramsey's theorem and computable reducibility

The strength of Ramsey's theorem is known to remain the same when changing the number of colors in the setting of reverse mathematics. Indeed, given some coloring f : [START_REF] Carl | Ramsey's theorem and recursion theory[END_REF] proved that every computable instance of RT n k has a Π 0 n solution, and that for every set X, there exists an X-computable instance of RT n 2 such that every solution computes X (n-2) .

[ω] n → k 2 ,

Cohesiveness and strong reducibility

We start our analysis with partitions of integers. Of course, every computable partition has an infinite computable homogeneous set, so we need to consider non-effective partitions and strong computable reducibility. The study of RT 1 k over strong reducibility has close connections with cohesiveness. Dzhafarov [START_REF] Damir | Cohesive avoidance and strong reductions[END_REF] proved that COH ≤ sc D 2 <∞ by iterating the following theorem.

Theorem 3.1 (Dzhafarov [START_REF] Damir | Cohesive avoidance and strong reductions[END_REF]) For every k ≥ 2 and < 2 k , there is a finite sequence R 0 , . . . , R k-1 such that for all partitions

A 0 ∪ • • • ∪ A -1 = ω hyperarithmetical in R,
there is an infinite subset of some A j that computes no R-cohesive set.

Hirschfeldt and Jockusch noticed in [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] that the proof of Theorem 3.1 can be slightly modified to obtain a proof that RT 1 k ≤ sc RT 1 whenever k > ≥ 2. Montálban asked whether the hyperarithmetic effectiveness restriction can be removed from Dzhafarov's theorem. We give a positive answer, which has been proved independently by Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF]. Moreover, we show that R can be chosen to be low.

Given two integers k, ≥ 1, we let π(k, ) denote the unique a ≥ 1 such that k = a • -b for some b ∈ [0, ). Informally, π(k, ) is the minimal number of pigeons we can ensure in at least one pigeonhole, given k pigeons and pigeonholes. In particular, π(k, ) ≥ 2 whenever k > ≥ 1. We prove the following theorem, from which we deduce several corollaries about cohesiveness and RT 1 k .

Theorem 3.2 Fix some k ≥ 1 and ≥ 2, some set I and a sequence of k I-hyperimmune sets B 0 , . . . , B k-1 . For every -partition A 0 ∪ • • • ∪ A -1 = ω, there exists an infinite subset H of some A i such that π(k, ) sets among the B's are I ⊕ H-hyperimmune.

We will postpone the proof of Theorem 3.2 until after Corollary 3.6. Using the existence of a low k-partition B 0 ∪ • • • ∪ B k-1 = ω such that B j is hyperimmune for every j < k, we deduce the following corollary.

Corollary 3.3 For every k > ≥ 2, there is a low k-partition B 0 ∪ • • • ∪ B k-1 = ω such that for all -partitions A 0 ∪ • • • ∪ A -1 = ω,
there is an infinite subset H of some A i and a pair j 0 < j 1 < k such that every infinite H-computable set intersects both B j 0 and B j 1 .

Proof. Fix some k > ≥ 2 and a low k-partition B 0 ∪• • •∪B k-1 = ω such that B j is hyperimmune for every j < k. Since k > ≥ 2, π(k, ) ≥ 2. Therefore, by Theorem 3.2, for every -partition A 0 ∪ • • • ∪ A -1 = ω,
there is an infinite subset H of some A i and a pair j 0 < j 1 < k such that B j 0 and B j 1 are H-hyperimmune. In particular, every infinite H-computable set intersects both B j 0 and B j 1 .

The positive answer to Montálban's question is an immediate consequence of the previous corollary.

Corollary 3.4 For every k ≥ 2 and < 2 k , there is a finite sequence of low sets R 0 , . . . , R k-1 such that for all partitions A 0 ∪ • • • ∪ A -1 = ω, there is an infinite subset of some A i that computes no R-cohesive set.

Proof. Given k ≥ 2 and < 2 k , fix the low 2 k -partition (B σ : σ ∈ 2 k ) whose existence is stated by Corollary 3.3. For each i < k, define R i = σ(i)=1 B σ . Note that by disjointness of the B's, R i = σ(i)=0 B σ . By choice of the B's, for all -partitions A 0 ∪ • • • ∪ A -1 = ω, there is an infinite subset H of some A j and a pair σ < lex τ ∈ 2 k such that every infinite H-computable set intersects both B σ and B τ . Let i < k be the least bit such that σ(i) = τ (i). As σ < lex τ , σ(i) = 0 and τ (i) = 1. By definition of R i , B τ ⊆ R i and B σ ⊆ R i . Therefore no infinite H-computable set is homogeneous for R i . In particular no infinite H-computable set is R-cohesive.

The construction of the B's is done uniformly in k. We can therefore deduce the following corollary.

Corollary 3.5 There exists a sequence of low sets R 0 , R 1 , . . . such that every finite partition of ω has an infinite subset in one of its parts which does not compute an R-cohesive set.

The effectiveness of B in the statement of Corollary 3.3 enables us to deduce computable non-reducibility results about stable Ramsey's theorem for pairs, thanks to the computable equivalence between SRT 2 and the statement D 2 .

Corollary 3.6 For every k > ≥ 2, SRT 2 k ≤ c SRT 2 . Proof. Fix k > ≥ 2. By Corollary 3.3, there is a ∆ 0 2 k-partition B 0 ∪ • • • ∪ B k-1
= ω such that for all -partitions A 0 , . . . , A -1 of ω, there is an infinite subset H of some A i which does not compute an infinite subset of any B j . By Cholak et al. [START_REF] Cholak | On the strength of Ramsey's theorem for pairs[END_REF], for every stable computable function

f : [ω] 2 → , there exists a ∆ 0 2 -partition A 0 ∪ • • • ∪ A -1
= ω such that every infinite subset of a part computes an infinite f -homogeneous set. Therefore, for every such function f , there exists an infinite f -homogeneous set which does not compute an infinite subset of any B j . By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], the ∆ 0 2 approximation g :

[ω] 2 → k of the k-partition B 0 ∪ • • • ∪ B k-1
= ω is a stable computable function and every infinite ghomogeneous set with color j is an infinite subset of B j .

We now turn to the proof of Theorem 3.2. We shall prove it by induction over , using a forcing construction whose forcing conditions are Mathias conditions (F, X) where X is an infinite set such that the B's are X ⊕ I-hyperimmune. The case where = 1 trivially holds since π(k, 1) = k.

3.1.1. Forcing limitlessness. For every -partition A 0 ∪ • • • ∪ A -1 = ω, we want to satisfy the following scheme of requirements to ensure that G ∩ A i is infinite for each i < .

Q p : (∃n 0 , . . . , n -1 > p)[n 0 ∈ G ∩ A 0 ∧ • • • ∧ n -1 ∈ G ∩ A -1 ]
Of course, all requirements may not be satisfiable if some part A i is finite. Usually, a forcing argument starts with the assumption that the instance is non-trivial, that is, does not admit a solution with the desired properties (cone avoiding, low, ...). In order to force the solution to be infinite, it suffices to ensure that the reservoirs satisfy the desired properties, and therefore cannot be a solution to a non-trivial instance.

In our case, we say that an -partition A 0 ∪• • •∪A -1 is non-trivial if there is no infinite set H included in the complement of one of the A's and such that the B's are H ⊕ I-hyperimmune.

The following lemma states that we can focus on non-trivial partitions without loss of generality.

Lemma 3.7 For every trivial -partition

A 0 ∪ • • • ∪ A -1
, there is an infinite set H ⊆ A i for some i < such that π(k, ) sets among the B's are H ⊕ I-hyperimmune.

Proof. Let G = {n 0 < n 1 < . . . } be an infinite subset of A i for some i < such that the B's are G ⊕ I-hyperimmune. Define the ( -1)-partition (C j : j = i) by setting C j = {s ∈ ω : n s ∈ A j } for each j = i. By induction hypothesis, there exists an infinite set H 0 ⊆ C j for some j = i such that π(k, -1) sets among the B's are H 0 ⊕G⊕I-hyperimmune. Note that π(k, -1) ≤ π(k, ). The set H = {n s : s ∈ H 0 } is an H 0 ⊕ G-computable subset of A j and π(k, ) sets among the B's are H ⊕ J-hyperimmune.

Notice that the proof of Lemma 3.7 uses the induction hypothesis with a different context, namely, G ⊕ I instead of I. This is where we needed to use the relativized version of the theorem in the proof. A condition c = (F, X) forces Q p if there exists some n 0 , . . . , n m-1 > p such that n i ∈ F ∩ A j for each i < . Therefore, if G satisfies c and c forces Q p , then G satisfies the requirement Q p . We now prove that the set of conditions forcing Q p is dense for each p ∈ ω. Thus, every sufficiently generic filter will induce an infinite solution.

Lemma 3.8 For every condition c and every p ∈ ω, there is an extension forcing Q p .

Proof. Fix some p ∈ ω. It is sufficient to show that given a condition c = (F, X) and some i < , there exists an extension d 0 = (E, Y ) and some integer n i > p such that n i ∈ E∩A i . By iterating the process for each i < , we obtain the desired extension d. By definition of non-triviality, A i is co-immune in X and therefore X ∩ A i is infinite. Take any

n i ∈ X ∩ A i ∩ (p, +∞). The condition d 0 = (F ∪ {n i }, X [0, n i ]) is the desired extension.
3.1.2. Forcing non-homogeneity. The second scheme of requirements aims at ensuring that for some i < , at least π(k, ) sets among the B's are (G ∩ A i ) ⊕ I-hyperimmune. The requirements are of the following form for each j < k and each tuple of indices e = e 0 , . . . , e -1 . R e,j : R

A 0 ,B j e 0 ∨ • • • ∨ R A -1 ,B j e -1
where R A,B e is the statement "Φ (G∩A)⊕I e does not dominate p B ". We claim that if all the requirements are satisfied, then (G ∩ A i ) has the desired property for some i < . Indeed, if for some fixed j < k, all the requirements R e,j are satisfied, then by the usual pairing argument, there is some i < such that B j is (G ∩ A i ) ⊕ I-hyperimmune. So if all the requirements are satisfied, then by the pigeonhole principle, there is some i < such that π(k, ) sets among the B's are (G ∩ A i ) ⊕ I-hyperimmune.

A condition forces R e,j if every set G satisfying this condition also satisfies the requirement R e . The following lemma is the core of the forcing argument. Lemma 3.9 For every condition c = (F, X), every j < k and every tuple of Turing indices e, there exists an extension d = (E, Y ) forcing Φ (G∩A i )⊕I e i not to dominate p B j for some i < .

Proof. Let f be the partial X ⊕I-computable function which on input x, searches for a finite set of integers U such that for every -partition Z 0 ∪ • • • ∪ Z -1 = X, there is some i < and some set E ⊆ Z i such that Φ

((F ∩A i )∪E)⊕I e i (x) ↓∈ U . If such a set U is found, then f (x) = max(U ) + 1, otherwise f (x) ↑.
We have two cases.

-Case 1: The function f is total. By X ⊕ I-hyperimmunity of B j , f (x) ≤ p B j (x) for some x. Let U be the finite set witnessing f (x) ↓. Letting Z i = X ∩ A i for each i < , there is some i and some finite set E ⊆ X ∩ A i such that Φ

((F ∩A i )∪E)⊕I e i (x) ↓∈ U . The condition d = (F ∪ E, X [0, max(E)]) is an extension forcing Φ (G∩A i )⊕I e i (x) < f (x) ≤ p B j (x).
-Case 2: There is some x such that f (x) ↑. By compactness, the Π 0,X⊕I

1 class C of sets Z 0 ⊕• • •⊕Z -1 such that Z 0 ∪• • •∪Z -1 = X and for every i < and every set E ⊆ Z i , Φ ((F ∩A i )∪E)⊕I e i
(x) ↑ is non-empty. By the hyperimmune-free basis theorem [START_REF] Jockusch | Π 0 1 classes and degrees of theories[END_REF], there is some -partition

Z 0 ⊕ • • • ⊕ Z -1 ∈ C such that all the B's are Z 0 ⊕ • • • ⊕ Z -1 ⊕ X ⊕ I- hyperimmune. Let i < be such that Z i is infinite. The condition d = (F, Z i ) is an extension of c forcing Φ (G∩A i )⊕I e i (x) ↑.

Construction.

We have all necessary ingredients to build an infinite set G such that each G ∩ A i is infinite, and such that π(k, ) sets among the B's are (G ∩ A i ) ⊕ I-hyperimmune for some i < . Thanks to Lemma 3.8 and Lemma 3.9, define an infinite descending sequence of conditions (ε, ω) ≥ c 0 ≥ . . . such that for each s ∈ ω, (a)

c s forces Q s (b) c s forces R e,j if s = e, j
where c s = (F s , X s ). Define the set G = s F s . By (a), G ∩ A i is infinite for every i < , and by (b), each requirement R e,j is satisfied. This finishes the proof of Theorem 3.2.

Reducibility to Ramsey's theorem for pairs

Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] asked whether RT n k ≤ c RT n for every n ≥ 2 and k > ≥ 2. Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] and Rakotoniaina [START_REF] Rakotoniaina | The Computational Strength of Ramsey's Theorem[END_REF] proved that SRT n k is not uniformly reducible to RT n whenever k > . We extend the result to computable reducibility. In the first place, we shall focus on the case n = 2. For this, we will take advantage of the proof of RT 2 that applies the cohesiveness principle to obtain a stable coloring f : [ω] 2 → . This coloring can itself be considered as the ∆ 0 2 approximation of a ∅ -computable -partition of ω, and therefore as a non-effective instance of RT 1 . Any infinite subset of one of its parts computes an infinite set homogeneous for f .

In the previous section, we have shown how to diagonalize against every -partition, simply using the fact that the complement of the parts of the instance of RT n k are hyperimmune. The author proved in [START_REF] Patey | Iterative forcing and hyperimmunity in reverse mathematics[END_REF] that COH instances admit solutions preserving the hyperimmunity of a predefined collection of hyperimmune sets. Theorem 3.10 (Patey [START_REF] Patey | Iterative forcing and hyperimmunity in reverse mathematics[END_REF]) For every sequence of hyperimmune sets A 0 , A 1 , . . . and every uniformly computable sequence of sets R 0 , R 1 , . . . , there is an infinite R-cohesive set C such that the A's are hyperimmune relative to C.

Note that this theorem is optimal in the sense that every p-cohesive set is hyperimmune. Using Theorem 3.2, we can deduce the following theorem. Proof. Fix k, a sequence of I-hyperimmune sets B 0 , . . . , B k-1 for some set I. Let f : [ω] 2 → be an I-computable coloring and consider the sequence of sets R 0 , R 1 , . . . defined for each x ∈ ω by R x = {s : f (x, s) = 1} By Theorem 3.10, there is an infinite R-cohesive set C such that the B's are hyperimmune relative to C ⊕ I. Let f : ω → be defined by f (x) = lim s∈C f (x, s). By Theorem 3.2 relativized to C ⊕ Z, there is an infinite f -homogeneous set H such that π(k, ) among the B's are H ⊕ C ⊕ Z-hyperimmune. In particular, H ⊕ C ⊕ I computes an infinite f -homogeneous set.

Using again the existence of a low k-partition B 0 ∪ • • • ∪ B k-1 such that B j is hyperimmune for every j < k, we deduce the following corollary. Corollary 3.12 For every k > ≥ 2, there is a low k-partition B 0 ∪• • •∪B k-1 = ω such that each computable coloring f : [ω] 2 → has an infinite f -homogeneous set H and a pair j 0 < j 1 < k such that every infinite H-computable set intersects both B j 0 and B j 1 .

Proof. Fix some k > ≥ 2 and a low k-partition B 0 ∪• • •∪B k-1 = ω such that B j is hyperimmune for every j < k. Since k > ≥ 2, π(k, ) ≥ 2. Therefore, by Theorem 3.11, for every RT 2instance f : [ω] 2 → , there is an infinite f -homogeneous set H and a pair j 0 < j 1 < k such that B j 0 and B j 1 are H-hyperimmune. In particular, every infinite H-computable set intersects both B j 0 and B j 1 .

Using Corollary 3.12 in a relativized form, we can extend the result to colorings over arbitrary tuples. Theorem 3.13 For every n ≥ 2, and every k > ≥ 2, there is a ∆ 0 n k-partition B 0 ∪• • •∪B k-1 = ω such that each computable coloring f : [ω] n → has an infinite f -homogeneous set H and a pair j 0 < j 1 < k such that every infinite H-computable set intersects both B j 0 and B j 1 .

Proof. This is proved in a relativized form by induction over n. The case n = 2 is proved by relativizing Corollary 3.12. Now assume it holds for some n in order to prove it for n+1. Let P ∅ (n-1) be such that P ≤ ∅ (n) . Such a set exists by the relativized low basis theorem [START_REF] Jockusch | Π 0 1 classes and degrees of theories[END_REF]. Applying the induction hypothesis to P , there is a ∆ 0,P 2

(hence ∆ 0 n+1 ) k-partition B 0 ∪ • • • ∪ B k-1 = ω such that each P -computable coloring f : [ω] n →
has an infinite f -homogeneous set H and a pair j 0 < j 1 < k such that every infinite H ⊕ P -computable set intersects both B j 0 and B j 1 .

Let f : [ω] n+1 → be a computable coloring. By Jockusch [20, Lemma 5.4], there exists an infinite set C pre-homogeneous for f such that C ≤ T P . (A set C is pre-homogeneous if any two (n + 1)-element subsets of C with the same first n elements are assigned the same color by f .) Let f : [C] n → be the P -computable coloring defined for each σ ∈ [C] n by f (σ) = f (σ, a), where a ∈ A, a > max(σ). Every f -homogeneous set is f -homogeneous. By definition of B 0 ∪ • • • ∪ B k-1 = ω, there exists an infinite f -homogeneous (hence f -homogeneous) set H and a pair j 0 < j 1 < k such that every infinite H ⊕ P -computable set intersects both B j 0 and B j 1 .

Using the fact that D n k ≤ c SRT n k for every n, k ≥ 2, we obtain the following corollary strengthening the result of Hirschfeldt and Jockusch [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] and Rakotoniaina [START_REF] Rakotoniaina | The Computational Strength of Ramsey's Theorem[END_REF].

Corollary 3.14 For every n ≥ 2 and every k > ≥ 2, SRT n k ≤ c RT n .
This answers in particular Question 7.1 of Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF]. The following corollary answers positively Question 5.5.3 of Mileti [START_REF] Roy | Partition theorems and computability theory[END_REF].

Corollary 3.15 There exists two stable computable functions f 1 : [ω] 2 → 2 and f 2 : [ω] 2 → 2 such that there is no computable g : [ω] 2 → 2 with the property that every set H g homogeneous for g computes both a set H f 1 homogeneous for f 1 and a set H f 2 homogeneous for f 2 .

Proof. By Corollary 3.12 with = 2 and k = 3, there exists a ∆ 0 2 3-partition B 0 ∪ B 1 ∪ B 2 = ω such that each computable coloring f : [ω] 2 → 2 has an infinite f -homogeneous set H and a pair j 0 < j 1 < 3 such that every infinite H-computable set intersects both B j 0 and B j 1 . As in Corollary 3.4, we assume that the B's are disjoint. By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], there exist two stable computable colorings f 1 and f 2 such that lim s f 1 (•, s) = B 0 and lim s f 2 (•, s) = B 1 . If j 0 = 0 (resp. j 0 = 1) then H does not compute an infinite set homogeneous for f 1 (resp. f 2 ). This completes the proof.

The weakness of free set and thin set theorems

The combinatorics involved in our study of the free set and thin set theorems differ deeply from our analysis of Ramsey's theorem in the previous sections. Let RT n ,d be the statement "Every coloring f : [ω] n → has an infinite set H on which f uses at most d colors." An analysis of the thin set theorems in the continuity of the previous sections would consists in considering the computable reductions between RT n ,d and RT n k,d whenever < k for a fixed parameter d. In this section, we consider the variation of the parameter d, and show that different d's lead to different subsystems of second-order arithmetic.

Thin set theorem and strong reducibility

We start our analysis with partitions of integers like we did with Ramsey's theorem. Every computable partition has an infinite computable set avoiding one of its parts. The natural reducibility to consider is therefore strong computable reducibility. In this section, we show that TS 1 k ≤ sc TS 1 k+1 . We could have proven this separation using the notion of hyperimmunity as we did in the previous section (and this is indeed the approach chosen by the author in [START_REF] Patey | Iterative forcing and hyperimmunity in reverse mathematics[END_REF]). However, we want to apply preservation of definitions, emulating Wang's analysis of theorems in reverse mathematics in terms of preservation of definitions. 4.1.1. Preservation of non-c.e. definitions. The notion of preservation of definitions was introduced by Wang in [START_REF] Wang | The definability strength of combinatorial principles[END_REF], in the context of a new analysis of principles in reverse mathematics in terms of their definitional strength. Wang defined a set X to preserve properly ∆ 0 2 definitions if every properly ∆ 0 2 set (i.e. ∆ 0 2 but neither Σ 0 1 nor Π 0 1 ) is properly ∆ 0,X 2 . He deduced several separation results, and in particular constructed an ω-model of the conjunction of COH, WKL 0 , the Erdős-Moser theorem (EM), the rainbow Ramsey theorem for pairs (RRT 2 2 ) and the Π 0 1genericity principle (Π 0 1 G) which is not a model of TS 2 . His analysis has been extended by the author in [START_REF] Patey | Controlling iterated jumps of solutions to combinatorial problems[END_REF]. Wang proved [START_REF] Wang | The definability strength of combinatorial principles[END_REF] that COH, EM, WKL 0 , RRT 2 2 and Π 0 1 G admit preservation of k non-c.e. definitions for every k ∈ ω. By a trivial adaptation of Proposition 2.4 from [START_REF] Wang | The definability strength of combinatorial principles[END_REF], if some statement P admits preservation of k non-c.e. definitions and some other statement Q does not, then there exists an ω-model of P which is not a model of Q. We start with a trivial lemma showing that our preservation proofs subsume Wang's analysis of cone avoidance of Ramsey-type theorems from [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF]. 

Negative preservation results.

The following theorem can be proven by a direct adaptation of Theorem 4.3 proven by Wang [START_REF] Wang | The definability strength of combinatorial principles[END_REF]. However, we provide a simpler proof.

Theorem 4.3 For every k ≥ 2, there exists a ∆ 0 2 k-partition B 0 ∪ • • • ∪ B k-1
= ω such that for each j < k, B j is non-c.e. but is H-c.e. for every infinite set H ⊆ B j .

Proof. It suffices to construct a stable computable function f : [ω] 2 → k with no infinite computable f -thin set, and such that for each i < k and each x < y < z ∈ ω,

f (x, y) = i ∧ f (y, z) = i → f (x, z) = i
We first justify that those properties are sufficient for proving our theorem. Let B i = {x : lim s f (x, s) = i}. Every infinite subset of B i computes an infinite set thin for f with witness i, therefore no B i is c.e. Moreover, B i is H-c.e. for every infinite set H ⊆ B i since

B i = {x ∈ ω : (∃y ∈ H)f (x, y) = i}
The construction of the function f is done by a finite injury priority argument with a movable marker procedure. We want to satisfy the following scheme of requirements for each e ∈ ω and i < k: R e,i :

W e infinite → (∃x ∈ W e ) lim s f (x, s) = i
The requirements are given the usual priority ordering. We proceed by stages, maintaining k sets B 0 , . . . , B k-1 which represent the limit of the function f . At stage 0, B i,0 = ∅ for each i < k and f is nowhere defined. Moreover, each requirement R e,i is given a movable marker m e,i initialized to 0.

A strategy for R e,i requires attention at stage s + 1 if W e,s ⊂ B i,s and W e,s ∩ [m e,i , s] = ∅. The strategy sets B i,s+1 = B i,s ∪ [m e,i , s], and B j,s+1 = B j,s [m e,i , s] for every j = i. Then it is declared satisfied until some strategy of higher priority changes its marker. Each marker m e ,i of strategies of lower priorities is assigned the value s + 1.

At stage s + 1, assume that B 0,s ∪ • • • ∪ B k-1,s = [0, s) and that f is defined for each pair over [0, s). For each x ∈ [0, s), set f (x, s) = i for the unique i such that x ∈ B i,s . If some strategy requires attention at stage s + 1, take the least one and satisfy it. If no such requirement is found, set B 0,s+1 = B 0,s ∪ {s} and B i,s+1 = B i,s for i > 0. Then go to the next stage. This ends the construction.

Each time a strategy acts, it changes the markers of strategies of lower priority, and is declared satisfied. Once a strategy is satisfied, only a strategy of higher priority can injury it. Therefore, each strategy acts finitely often and the markers stabilize. It follows that the B's also stabilize and that f is a stable function.

Lemma 4.4 For every i < k and every

x < y < z, f (x, y) = i ∧ f (y, z) = i → f (x, z) = i.
Proof. Suppose that f (x, y) = i but f (x, z) = i for some i < k. Let s ≤ z be the least stage such that f (x, t) = i for every t ∈ [s + 1, z]. At stage s + 1, some strategy R e,i moved to B i the whole interval [m e,i , s]. Since m e ,i ≤ m e,i for every strategy R e ,i of higher priority, none of the elements in [m e,i , s] leave

B i before stage z + 1. As f (x, y) = i, y ∈ [s + 1, z] so y ∈ [m e,i , s].
Therefore y ∈ B i,z and thus f (y, z) = i. Lemma 4.5 For every e ∈ ω and i < k, R e,i is satisfied.

Proof. By induction over the priority order. Let s 0 be a stage after which no strategy of higher priority will ever act. By construction, m e,i will not change after stage s 0 . If W e is infinite, it will eventually enumerate some element u bigger than m e,i , and therefore R e,i will require attention at some stage s ≥ u. As no strategy of higher priority ever acts after stage s 0 , R e,i will receive attention, be satisfied and never be injured.

Satisfying R e,i for every e ∈ ω and i < k guarantees that f has no computable thin set. This last claim finishes the proof of Theorem 4.3. Using the computable equivalence between the problem of finding a infinite set thin for an ∆ 0 2 -partition and STS 2 , we deduce the following corollary.

Corollary 4.10 For every > k ≥ 2, STS 2 k ≤ c STS 2 Proof. Fix > k ≥ 2 and consider the ∆ 0 2 k-partition B 0 ∪ • • • ∪ B k-1 = ω of Theorem 4.
3. By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], there exists a stable computable function g : [ω] 2 → k such that B j = {x : lim s g(x, s) = j} for each j < k. Every infinite set thin for g is thin for the B's. Fix any stable computable function f : [ω] 2 → and let A i = {x : lim s f (x, s) = i} for each i < m. By Theorem 4.8, there exists an infinite set H thin for the A's which does not compute an infinite set thin for the B's (hence for g). As H ⊕ f computes an infinite set G thin for f , f has an infinite f -thin set which does not compute an infinite set thin for g.

The remainder of this section is devoted to the proof of Theorem 4.8. Fix some set C preserving non-c.e. definitions of some sets B 0 , . . . , B k-1 and fix some (k + 1)-partition A 0 ∪ • • •∪A k = ω. We will construct a set G such that G∩A i is infinite for each i ≤ k and none of the B's are (G ∩ A i ) ⊕ C-c.e. for some i ≤ k. Our forcing conditions are Mathias conditions (σ, X) where X is an infinite set of integers such that none of the B's are X ⊕ C-c.e. 4.1.4. Forcing limitlessness. We want to satisfy the following scheme of requirements to ensure that G ∩ A i is infinite for each i ≤ k:

Q p : (∃m 0 , . . . , m k > p)[m 0 ∈ G ∩ A 0 ∧ • • • ∧ m k ∈ G ∩ A k ]
We say that an (k + 1)-partition

A 0 ∪ • • • ∪ A k = ω is non-trivial if
there exists no infinite set H homogeneous for the A's such that none of the B's are H ⊕ C-c.e. Of course, every infinite set homogeneous for the A's is thin for the A's, so if the partition A 0 ∪ • • • ∪ A k = ω is trivial, we succeed. Therefore we will assume from now on that the partition is non-trivial. A condition c = (σ, X) forces Q p if there exist some m 0 , . . . , m k > p such that m i ∈ σ ∩ A i for each i ≤ k. Therefore, if G satisfies c and c forces Q p , then G satisfies the requirement Q p . We now prove that the set of conditions forcing Q p is dense for each p ∈ ω. Thus, every sufficiently generic filter will induce a set G such that G ∩ A i is infinite for each i ≤ k. Lemma 4.11 For every condition c and every p, there is an extension forcing Q p .

Proof. Fix some p ∈ ω. It is sufficient to show that given a condition c = (σ, X) and some i ≤ k, there exist an extension d 0 = (τ, Y ) and some integer m i > p that m i ∈ τ ∩ A i . By iterating the process for each i ≤ k, we obtain an extension forcing Q p . Suppose for the sake of contradiction that X ∩ A i is finite. One can then X-compute an infinite set H ⊆ A i , contradicting nontriviality of the A's. Therefore, there exists an m i ∈ X ∩ A i such that m i > max(σ, p). The condition d 0 = (σ m i , X) is the desired extension. 4.1.5. Forcing preservation. The second scheme of requirements consists in ensuring that the sets B 0 , . . . , B k-1 are all non-(G ∩ A i ) ⊕ C-c.e. for some i ≤ k. The requirements are of the following form for each tuple of indices e = (e i : i ≤ k):

R e : j<k W (G∩A 0 )⊕C e 0 = B j ∨ • • • ∨ j<k W (G∩A k )⊕C e k = B j
A condition forces R e if every set G satisfying this condition also satisfies requirement R e . The following lemma is the core of the forcing argument. Lemma 4.12 For every condition c = (σ, X), every i 0 < i 1 ≤ k, every j < k and every vector of indices e, there exists an extension d forcing either W

(G∩A i 0 )⊕C e i 0 = B j or W (G∩A i 1 )⊕C e i 1 = B j .
Proof. Let W be the set of all a ∈ ω such that for every 2-cover Z i 0 ∪ Z i 1 = X, there is some

i ∈ {i 0 , i 1 } and some set G i ⊆ Z i such that a ∈ W (G i /(σ∩A i ))⊕C e i
. The set W is X ⊕ C-c.e. Therefore W = B j . Let a ∈ W ∆B j . We have two cases:

-Case 1: a ∈ W B j . By definition of W , taking in particular the sets

Z i 0 = X ∩ A i 0 and Z i 1 = X ∩ A i 1 , there is some i ∈ {i 0 , i 1 } and some finite set G i ⊆ Z i such that a ∈ W (G i /(σ∩A i ))⊕C e i
. The condition d = (G i /σ, X) is an extension forcing W

(G∩A i )⊕C e i = B j . -Case 2: a ∈ B j W . Let C be the Π 0,X⊕C 1 class of sets Z i 0 ⊕ Z i 1 such that Z i 0 ∪ Z i 1 = X
and for every i ∈ {i 0 , i 1 } and every set

G i ⊆ Z i a ∈ W (G i /(σ∩A i ))⊕C e i
. By definition of W , C is non-empty. As WKL 0 admits preservation of k non-c.e. definitions, there exists some

Z i 0 ⊕ Z i 1 ∈ C such that none of the B's are Z i 0 ⊕ Z i 1 ⊕ X ⊕ C-c.e. Let i ∈ {i 0 , i 1 } be such that Z i is infinite. The condition d = (σ, Z i ) is an extension of c forcing W (G∩A i )⊕C e i = B j .
As usual, the following lemma iterates Lemma 4.12 and uses the fact that k + 1 > k to satisfy the requirement R e . Lemma 4.13 For every condition c, and every indices e, there exists an extension d forcing R e .

Proof. Fix a condition c, and iterate applications of Lemma 4.12 to obtain an extension d such that for each j < k, d forces W 

(G∩A i )⊕C e i = B j for k different i's.

Thin set theorem for pairs and reverse mathematics

There is a fundamental difference in the way we proved that RT 1 k ≤ sc RT 1 and that TS 1 ≤ sc TS 1 k whenever k > . In the former case, we have built an instance I of RT 1 k satisfying some hyperimmunity properties, and used those properties to construct a solution X to each instance of RT 1 which does not compute a solution to I. We did not ensure that those hyperimmunity properties are preserved relative to the solution X, which prevents us from iterating the construction. As it happens, those properties are not preserved as multiple applications of RT 1 are sufficient to compute a solution to I. In the latter case, we proved that TS 1 has an instance whose solutions do not preserve some definitional property, whereas each instance of TS 1 k has a solution preserving it. This preservation enables us to iterate the applications of TS 1 k and build ω-structures whose second-order part is made of sets preserving this property. We will take advantage of those observations to obtain new separations in reverse mathematics.

In this section, we prove that TS 2 k+1 does not imply TS 2 k over RCA 0 for every k ≥ 2. In particular, we answer several questions asked by Cholak, Giusto, Hirst and Jockusch [START_REF] Cholak | Free sets and reverse mathematics[END_REF] and by Montálban [START_REF] Montalbán | Open questions in reverse mathematics[END_REF] about the relation between RT 2 2 and TS 2 . Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] proved that RCA 0 TS n k → ACA 0 for n ≥ 3 whenever k is not large enough. Therefore we cannot hope to obtain the same separation result over RCA 0 for arbitrary tuples. However, we shall see that TS n k is not computably reducible to TS n k+1 for n, k ≥ 2.

Theorem 4.14 For every k ≥ 2, let Φ be the conjunction of COH, WKL 0 , RRT 2 2 , Π 0 1 G, EM, TS 2 k+1 . Over RCA 0 , Φ implies neither STS 2 k nor SADS.

The proof of Theorem 4.14 follows Corollary 4.20. Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] and Montálban [START_REF] Montalbán | Open questions in reverse mathematics[END_REF] asked whether TS 2 implies RT 2 2 over RCA 0 . Thanks to Theorem 4.14, we answer negatively, noticing that TS 2 2 is the statement RT 2 2 and RCA 0 TS 2 k → TS 2 for every k ≥ 2 (see Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF]).

Corollary 4.15 TS 2 does not imply RT 2 2 over RCA 0 .

Using the standard trick of prehomogeneous sets, we can generalize from computable nonreducibility over pairs to arbitrary tuples. Proof. This is proved in a relativized form by induction over n ≥ 2. The case n = 2 is obtained by relativizing the proof of Theorem 4.14, which shows indeed the existence of a ∆ 0 2 k-partition B 0 ∪• • •∪B k-1 = ω such that every computable coloring f : [ω] 2 → k+1 has an infinite f -thin set computing no set thin for the B's. Now assume it holds for some n in order to prove it for n + 1. By the relativized low basis theorem [START_REF] Jockusch | Π 0 1 classes and degrees of theories[END_REF], let P ∅ (n-1) be such that P ≤ ∅ (n) . Applying the induction hypothesis to P , there is a ∆ 0,P 2

(hence ∆ 0 n+1 ) k-partition B 0 ∪ • • • ∪ B k-1 = ω such that each P -computable coloring f : [ω] n → k + 1
has an infinite f -homogeneous set H such that H ⊕ P does not compute an infinite set thin for the B's.

Let f : [ω] n+1 → k + 1 be a computable coloring. By Jockusch [START_REF] Carl | Ramsey's theorem and recursion theory[END_REF]Lemma 5.4], there exists an infinite set C pre-homogeneous for f such that C ≤

T P . Let f : [C] n → k + 1 be the P - computable coloring defined for each σ ∈ [C] n by f (σ) = f (σ, a), where a ∈ A, a > max(σ). Every f -thin set is f -thin. By definition of B 0 ∪ • • • ∪ B k-1 = ω,
there exists an infinite f -thin (hence f -thin) set H such that H ⊕ P does not compute an infinite set thin for the B's.

Corollary 4.17 For every k, n ≥ 2, STS n k ≤ c TS n k+1
We proved in section 4.1 that STS 2 k does not admit preservation of k non-c.e. definitions. Jockusch noticed (see Hirschfeldt and Shore [START_REF] Hirschfeldt | Combinatorial principles weaker than Ramsey's theorem for pairs[END_REF]) that SADS does not admit preservation of 2 non-c.e. definitions. We give the proof for the sake of completeness. Proof. Tennenbaum (see Rosenstein [START_REF] Rosenstein | Linear orderings[END_REF]) constructed a computable linear order of order type ω+ ω * with no computable infinite ascending or descending sequence. Let B 0 be the ω-part and B 1 be the ω * part of this linear order. Every infinite subset of B 0 (resp. B 1 ) computes an infinite ascending (resp. descending) sequence, therefore B 0 and B 1 are non-c.e. The ω part (resp. ω * part) is c.e. in every infinite ascending (resp. descending) sequence. By Schoenfield's limit lemma [START_REF] Shoenfield | On degrees of unsolvability[END_REF], a stable computable coloring over (n + 1)-tuples can be considered as a non-effective coloring over n-tuples. This consideration establishes a bridge between preservation properties for colorings over (n + 1)-tuples and strong preservation properties for colorings over n-tuples. In particular, it enables us to prove preservation results by induction over n. The following lemma has been proven by the author in its full generality in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF]. Nevertheless we reprove it in the context of preservation of non-c.e. definitions. We are now ready to prove Theorem 4.14.

Proof of Theorem 4.14. Fix some k ≥ 2. Wang proved in [START_REF] Wang | The definability strength of combinatorial principles[END_REF] that COH, WKL 0 , RRT 

Thin set theorem for tuples and reverse mathematics

In this section, we extend the preservation of non-c.e. definitions of the thin set theorem for pairs to arbitrary tuples, using the same construction pattern as Wang [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF]. We deduce that TS n does not imply TS n k over RCA 0 whenever is large enough, which is informally the strongest result we can obtain since Proposition 5.3 in Dorais et al. [START_REF] François | On uniform relationships between combinatorial problems[END_REF] states that RCA 0 ACA 0 ↔ TS n k for n ≥ 3 whenever k is not large enough. Thanks to the existing preservations of non-c.e. definitions and Proposition 2.4 from Wang [START_REF] Wang | The definability strength of combinatorial principles[END_REF], we deduce the following separations over ω-models. Corollary 4.23 For every k ≥ 2, let Φ be the conjunction of COH, WKL 0 , RRT 2 2 , Π 0 1 G, EM, TS 2 k+1 and TS. Over RCA 0 , Φ implies neither STS 2 k nor SADS.

The remainder of this section is devoted to the proof of Theorem 4.21.

4.3.1. Proof structure. We shall follow the proof structure of strong cone avoidance used by Wang [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF]. Fix some k ≥ 1. The induction works as follows: (A1) In section 4.2 we proved that TS 1 k+1 admits strong preservation of k non-c.e. definitions. This is the base case of our induction. (A2) Assuming that for each t ∈ (0, n), TS t dt+1 admits strong preservation of k non-c.e. definitions, we prove that TS 4.3.2. Generalized cohesiveness. Before proving that TS n dn+1 admits strong preservation of k non-c.e. definitions, we need to prove strong preservation for a generalized notion of cohesiveness already used by the author in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF]. Cohesiveness can be seen as the problem which takes as an input a coloring of pairs f : [ω] 2 → and fixes the first parameter to obtain an infinite sequence of colorings of integers f x : ω → for each x ∈ ω. A solution to this problem is an infinite set G which is eventually homogeneous for each coloring f x .

Going further in this approach, we can consider that cohesiveness is a degenerate case of the problem which takes as an input a coloring of pairs f : [ω] 2 → ω using infinitely many colors, and fixes again the first parameter to obtain an infinite sequence of colorings of integers f x : ω → ω. A solution to this problem is an infinite set G such that for each color i, either eventually the color will be avoided by f x over G, or G will be eventually homogeneous for f x with color i.

We can generalize the notion to colorings over tuples f : [ω] n → ω, seeing f as an infinite sequence of colorings over t-uples f σ : [ω] t → ω for each σ ∈ [ω] n-t . We will create a set G such that at most d t colors will appear for arbitrarily large pairs over G for each function f σ . This set will be constructed by applying TS t dt+1 to f σ for each σ. We do not need Theorem 4.24 in its full generality to complete our step (S1). However, it will be useful in a later section for proving that the free set theorem admits preservation of k non-c.e. definitions. Theorem 4.24 Fix a coloring f : [ω] n → ω, some t ≤ n and suppose that TS s ds+1 admits strong preservation of k non-c.e. definitions for each s ∈ (0, t]. For every set C preserving non-c.e. definitions of some sets A 0 , . . . , A k-1 , there exists an infinite set G such that G ⊕ C preserves non-c.e. definitions of the A's and for every σ

∈ [ω] <ω such that n -t ≤ |σ| < n, x : (∀b)(∃τ ∈ [G ∩ (b, +∞)] n-|σ| )f (σ, τ ) = x ≤ d n-|σ|
Proof. Our forcing conditions are Mathias conditions (F, X) where X ⊕ C preserves non-c.e. definitions of the A's. Lemma 3.16 in Wang [START_REF] Wang | The definability strength of combinatorial principles[END_REF] states that for every set G which is sufficiently generic for (F, X), G ⊕ C preserves k non-c.e. definitions. It suffices therefore to prove the following lemma. Using Lemma 3.16 in [START_REF] Wang | The definability strength of combinatorial principles[END_REF] and Lemma 4.25, one can define an infinite descending sequence of conditions (∅, ω) ≥ c 0 ≥ c 1 ≥ . . . such that for each s ∈ ω

1. c s = (F s , X s ) with |F s | ≥ s 2. c s forces W G⊕C e = A i if s = e, i 3. {f (σ, τ ) : τ ∈ [X s ] n-|σ| } ⊆ I or I ⊆ {f (σ, τ ) : τ ∈ [X s ] n-|σ| } if s = σ, I and |I| = d n-|σ| .
The set G = s F s is an infinite set such that G ⊕ C preserves non-c.e. definitions of the A's.

We claim that G satisfies the desired properties. Fix a σ ∈ [ω] <ω such that n -t ≤ |σ| < n. Suppose that there exists d n-|σ| + 1 elements x 0 , . . . ,

x d n-|σ| such that (∀b)(∃τ ∈ [G ∩ (b, +∞)] n-|σ| )f (σ, τ ) = x i for each i ≤ d n-|σ| . Let I = {x 0 , . . . , x d n-|σ| -1 }. By step s = σ, I , G satisfies (F s , X s ) such that {f (σ, τ ) : τ ∈ [X s ] n-|σ| } ⊆ I or I ⊆ {f (σ, τ ) : τ ∈ [X s ] n-|σ| }.
In the first case it contradicts the choice of x d n-|σ| and in the second case it contradicts the choice of an element of I. This finishes the proof of Theorem 4.24. 

< t < n) such that for each t ∈ (0, n) (a) I t is a subset of {0, . . . , d n } of size at most d t d n-t (b) (∀σ ∈ [E] t )(∃b)(∀τ ∈ [E ∩ (b, +∞)] n-t )f (σ, τ ) ∈ I t For each t ∈ (0, n) and σ ∈ [ω] t , let F t (σ) = I σ . Using strong preservation of k non-c.e. definitions of TS t dt+1 , we build a finite sequence D ⊇ E 1 ⊇ • • • ⊇ E n-1 such that for each t ∈ (0, n) 1. E t ⊕ C preserves non-c.e. definitions of the A's 2. |F t ([E t ] t )| ≤ d t Let E = E n-1 and I t = F t ([E] t ) for each t ∈ (0, n). As for each σ ∈ [E] t , |F t (σ)| = |I σ | ≤ d n-t , |I t | ≤ d t d n-t , so property (a) holds. We now check that property (b) is satisfied. Fix a σ ∈ [E] t . By definition of I t , F t (σ) = I σ ⊆ I t . As E ⊆ D, (∃b)(∀τ ∈ [E ∩ (b, +∞)] n-t )f (σ, τ ) ∈ I σ ⊆ I t 4.3.5.
Step (S3) : Construction of the set G. Given the set E and the sequence of sets of colors (I t : 0 < t < n), we will construct a sequence (ξ

i ∈ [E] <ω : i < ω) such that (a) The set G = i ξ i is infinite and G ⊕ C preserves non-c.e. definitions of the A's (b) |f ([ξ i ] n )| ≤ d n-1 and max(ξ i ) < min(ξ i+1 ) for each i < ω (c) For each t ∈ (0, n) and σ ∈ [ j<i ξ j ] t , f (σ, τ ) ∈ I t for all τ ∈ [ j≥i ξ j ] n-t
We construct our set G by Mathias forcing (σ, X) where X is an infinite subset of E such that X ⊕ C preserves non-c.e. definitions of the A's. Using property (b) of E, we can easily construct an infinite sequence (ξ i ∈ [E] <ω : i < ω) satisfying properties (b) and (c) of step (S3). The following lemma shows how to satisfy property (a). Lemma 4.26 Fix a condition (σ, X), some e ∈ ω and some j < k. There exists an extension (σξ, Y ) with |f (

[ξ] n )| ≤ d n-1 , forcing W G⊕C e = A j .
Proof. Let W be the set of a ∈ ω such that for every coloring g :

[X] n → d n + 1, there is a set ξ ∈ [X] <ω such that |g([ξ] n )| ≤ d n-1 and a ∈ W σξ⊕C e . The set W is X ⊕ C-c.e, therefore W = A j . Let a ∈ W ∆A j .
We have two cases:

-Case 1: a ∈ W A j . In particular, taking g = f , there exists a set ξ ∈

[X] <ω such that |f ([ξ] n )| ≤ d n-1 and a ∈ W σξ⊕C e
. Take the condition (σξ, X) as the extension. -Case 2: a ∈ A j W . By definition of W , the collection C of colorings g : 

[X] n → d n + 1 such that for every set ξ ∈ [X] <ω satisfying |g([ξ] n )| ≤ d n-1 , a ∈ W σξ⊕C
[ξ s ] n ) ≤ d n-1 (ii) f (σ, τ ) ∈ I t for each t ∈ (0, n), σ ∈ [σ s ] t and τ ∈ [X] n-t . (iii) c s forces W G⊕C e = A j if s = e, j
where c s = (σ s , X s ). The set G = s σ s satisfies the desired properties. For each i < ω, let

J i = f ([ξ i ] n ). By property (b) of step (S3), J i is a subset of {0, . . . , d n } such that |J i | ≤ d n-1 . For each subset J ⊆ {0, . . . , d n } of size d n-1 , define the set Z J = {x ∈ G : (∃i)x ∈ ξ i ∧ f ([ξ i ] n ) ⊆ J}
There exists finitely many such J's, and the Z's form a partition of G. Apply strong preservation of k non-c.e. definitions of TS 1 d 1 +1 to obtain a finite set S of J's of such that |S| ≤ d 1 and an infinite set H ⊆ J∈S Z J ⊆ G such that H ⊕ G ⊕ C preserves non-c.e. definitions of the A's. 

f (σ) ∈ ( J∈S J) ∪ ( t∈(0,n) I t ) Recall that |S| ≤ d 1 , |J| = d n-1 for each J ∈ S, and |I t | ≤ d t d n-t for each t ∈ (0, n). Thus, applying the definition of d n from (A3), |f ([H] n )| ≤ d 1 d n-1 + 0<t<n d t d n-t = d n , as desired.
This completes property (A3) and the proof of Theorem 4.21.

4.4.

Free set theorem for tuples and non-c.e. definitions Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] studied the thin set theorem with infinitely many colors as a weakening of the free set theorem. The forcing notions used by Wang in [START_REF] Wang | The definability strength of combinatorial principles[END_REF] and by the author in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF] for constructing solutions to free set instances both involve the thin set theorem for a finite, but arbitrary number of colors. These constructions may suggest some relation between FS n and TS n k for arbitrarily large k, but the exact nature of this relation is currently unclear. In this section, we use the preservation of non-c.e. definitions of the thin set theorem to deduce similar preservation results for the free set theorem, and thereby separate FS from RT The remainder of this section is devoted to the proof of Theorem 4.28. The proof is done by induction over the size of the tuples. The base case of our induction states that FS 0 admits strong preservation of k non-c.e. definitions. Consider FS 0 as a degenerate case of the free set theorem, where an instance is a constant c and a solution to c is an infinite set H which does not contain c. Indeed, a function f : [ω] 0 → ω can be considered as a constant c, and a set H is f -free if for every ε ∈

[H] 0 , f (ε) ∈ H → f (ε) ∈ ε. As f (ε) ∈ ε, f (ε) = c ∈ H.
From now on, we will assume that FS t admits strong preservation of k non-c.e. definitions for every t ∈ [0, n).

We start with a lemma similar to Lemma 4.19. Although the notion of free set can be defined for every coloring over tuples of integers, we shall restrict ourselves to a particular kind of colorings: left trapped functions. The notion of trapped function was introduced by Wang in [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF] to prove that FS does not imply ACA 0 over ω-models. It was later reused by the author in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF] to separate FS from WWKL 0 over ω-models. The following lemma is a particular case of a more general statement proven by the author in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF]. It follows from the facts that FS n for right trapped functions is strongly uniformly reducible to the diagonally non-computable principle (DNR), which itself is computably reducible to FS n for left trapped functions. Theorem 4.34 For each k, n ≥ 1, if FS t admits strong preservation of k non-c.e. definitions for each t ∈ [0, n), then so does FS n for left trapped functions.

The proof of Theorem 4.34 begins after Lemma 4.36 and ends after Lemma 4.38. The two following lemmas will ensure that the reservoirs of our forcing conditions will have good properties, so that the conditions will be extensible. Lemma 4.35 (Patey in [START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF]) Suppose that FS t admits strong preservation of k non-c.e. definitions for each t ∈ (0, n) for some k ∈ ω. Fix a set C, some non-C-c.e. sets A 0 , . . . , A k-1 , a finite set F and an infinite set X computable in C. For every function f : [X] n → ω there exists an infinite set Y ⊆ X such that Y ⊕ C preserves non-c.e. definitions of the A's and (∀σ ∈ [F ] t )(∀τ ∈ [Y ] n-t )f (σ, τ ) ∈ Y τ for each t ∈ (0, n).

Proof. Fix the finite enumeration σ 0 , . . . , σ m-1 of all elements of [F ] t for all t ∈ (0, n). We define a finite decreasing sequence of sets X = Y 0 ⊇ Y 1 ⊇ • • • ⊇ Y m such that for each s < m Lemma 4.36 Suppose that TS t dt+1 admits strong preservation of k non-c.e. definitions for each t ∈ (0, n] and FS t admits strong preservation of k non-c.e. definitions for each t ∈ [0, n). For every function f : [ω] n → ω and every set C preserving non-c.e. definitions of some sets A 0 , . . . , A k-1 , there exists an infinite set X such that X ⊕ C preserves non-c.e. definitions of the A's and for every σ ∈ [X] <ω such that 0 ≤ |σ| < n, (∀x ∈ X σ)(∃b)(∀τ ∈ [X ∩ (b, +∞)] n-|σ| )f (σ, τ ) = x Proof. Let X be the infinite set constructed in Theorem 4.24 with t = n. For each s < n and i < d n-s , let f s,i : [X] s → ω be the function such that f s,i (σ) is the ith element of {x : (∀b)(∃τ ∈ [X ∩ (b, +∞)] n-s )f (σ, τ ) = x} if it exists, and 0 otherwise. Define a finite sequence X ⊇ X 0 ⊇ • • • ⊇ X n-1 such that for each s < n 1. X s ⊕ C preserves non-c.e. definitions of the A's 2. X s is f s,i -free for each i < d n-s We claim that X n-1 is the desired set. Fix s < n and take any σ ∈ [X n-1 ] s and any x ∈ X n-1 σ. If (∀b)(∃τ ∈ [X ∩(b, +∞)] n-s )f (σ, τ ) = x, then by choice of X, there exists an i < d n-s such that f s,i (σ) = x, contradicting f s,i -freeness of X n-1 . So (∃b)(∀τ ∈ [X ∩ (b, +∞)] n-s )f (σ, τ ) = x.

Proof of Theorem 4.34. Fix k ≥ 2, some set C, some non-C-c.e. sets A 0 , . . . , A k-1 and a left trapped coloring f : [ω] n → ω. We will construct an infinite f -free set H such that none of the A's is H ⊕ C-c.e. Our forcing conditions are Mathias conditions (F, X) such that (a) X ⊕ C preserves non-c.e. definitions of the A's Proof. By removing finitely many elements of X, we can assume that (∀σ ∈ [F ] n )f (σ) ∈ X. For each a ∈ ω, let C a be the Π 0,X⊕C 1 class of left trapped functions g : [X] n → ω such that for every g-free set E ⊂ X, a ∈ W (F ∪E)⊕C e . Also define W = {a ∈ ω : C a = ∅}. The set W is X ⊕ C-c.e. but A j is not X ⊕ C-c.e., therefore W = A j . Let a ∈ W ∆A j . We have two cases:

(b) (∀σ ∈ [F ∪ X] n )f (σ) ∈ F σ (c) (∀σ ∈ [F ∪ X] t )(∀x ∈ (F ∪ X) σ)(∃b)(∀τ ∈ [(F ∪ X) ∩ (b, +∞)] n-t ) f (σ, τ ) = x for each t ∈ [0, n). (d) (∀σ ∈ [F ] t )(∀τ ∈ [X] n-t )f (σ,
-Case 1: a ∈ W A j . As f ∈ C a , there exists a finite f -free set E such that a ∈ W Properties (a), (c) and (d) trivially hold. We now check property (b). By our choice of b, we only need to check that (∀σ ∈ [H] n )f (σ) ∈ H σ. By property (b) of (F, X), it suffices to check that (∀σ ∈ [H] n )f (σ) ∈ E σ. By property (d) of (F, X), and our initial assumption on X, we only need to check that (∀σ ∈ [E] n )f (σ) ∈ E σ, which is exactly f -freeness of E. where c s = (F s , X s ). Let G = s F s . By (i), G is infinite and by (ii), none of the A's are G ⊕ Cc.e. This completes the proof of Theorem 4.34.

Conclusion

In this last section, we recall some existing open questions about the free set and thin set theorems, and state some new ones. Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] asked the following question which remains open.

Question 5.1 Does TS 2 imply FS 2 over RCA 0 ?

We ask a related question motivated by the fact that the proof of cone avoidance of FS by Wang [START_REF] Wang | Some logically weak Ramseyan theorems[END_REF] and the preservation of k non-c.e. definitions of FS 2 in section 4.4 both use TS 2 k for any k to construct a solution to an instance of FS 2 . We know by Corollary 4.29 that FS 2 does not imply TS 2 k over RCA 0 for any k, but the reverse implication is still open.

Question 5.2 Does TS 2 3 imply FS 2 over RCA 0 ?

Cholak et al. [START_REF] Cholak | Free sets and reverse mathematics[END_REF] also asked whether FS 2 + CAC implies RT 2 2 over RCA 0 . Using the equivalence between RT 2 2 and EM + ADS proven by Bovykin and Weiermann [START_REF] Bovykin | The strength of infinitary Ramseyan principles can be accessed by their densities[END_REF], we ask the following related questions.

Question 5.3 Does any of FS 2 , TS 2 and TS 2 3 imply EM over RCA 0 ?

Theorem 3 . 11

 311 Fix some k ≥ 1 and ≥ 2, some set I and a sequence of k I-hyperimmune sets B 0 , . . . , B k-1 . Every I-computable coloring f : [ω] 2 → has an infinite f -homogeneous set H such that π(k, ) sets among the B's are I ⊕ H-hyperimmune.

Definition 4 . 1 (

 41 Preservation of non-c.e. definitions) 1. A set X preserves non-c.e. definitions of some non-c.e. sets A 0 , A 1 , . . . if no A i is X-c.e. 2. A Π1 2 statement P admits preservation of k non-c.e. definitions if for each C, each sequence of non-C-c.e. sets A 0 , . . . , A k-1 and each C-computable P-instance X, there exists a solution Y to X such that Y ⊕ C preserves non-c.e. definitions of A 0 , . . . , A k-1 .

Lemma 4 . 2

 42 If some statement P admits preservation of 1 non-c.e. definition, then it admits cone avoidance.Proof. Fix any set C, any set A ≤ T C and any C-computable P-instance X. As A ≤ T C, either A or A is not C-c.e. Call this set B. As P admits preservation of 1 non-c.e. definition, there exists a solution Y of X such that B is not Y ⊕ C-c.e. In particular A is not Y ⊕ C-computable.

Corollary 4 . 6 4 . 1 . 3 .

 46413 For every k ≥ 2, STS 2 k does not admit preservation of k non-c.e. definitions. Strong preservation of non-c.e. definitions. Because every computable instance of TS 1 k having a computable solution, TS 1 k admits preservation of k non-c.e. definitions for every k. On the other hand, we would like to say that TS 1 k does not combinatorially preserve k nonc.e. definitions since Theorem 4.3 shows the existence of a non-effective instance of TS 1 k whose solutions do not preserve k non-c.e. definitions. This combinatorial notion of preservation is called strong preservation.

Definition 4 . 7 (

 47 Strong preservation of non-c.e. definitions) A Π 1 2 statement P admits strong preservation of k non-c.e. definitions if for each set C, each sequence of non-C-c.e. sets A 0 , . . . , A k-1 and each (arbitrary) P-instance X, there exists a solution Y to X such that Y ⊕ C preserves non-c.e. definitions of A 0 , . . . , A k-1 .We have seen through Theorem 4.3 that for every k ≥ 2, TS 1 k does not admit strong preservation of k non-c.e. definitions. The following theorem shows the optimality of Theorem 4.3. Theorem 4.8 For every k ≥ 2, TS 1 k+1 admits strong preservation of k non-c.e. definitions. The proof of Theorem 4.8 follows Corollary 4.10. Putting Theorem 4.3 and Theorem 4.8 together, we obtain the desired separation over strong computable reducibility.Corollary 4.9 For every > k ≥ 2, TS 1 k ≤ sc TS 1

  By the pigeonhole principle, there exists some i ≤ k such that d forces W (G∩A i )⊕C e i = B j for each j < k. Therefore, d forces R e . 4.1.6. Construction. Thanks to Lemma 4.11 and Lemma 4.13, define an infinite descending sequence of conditions (ε, ω) ≥ c 0 ≥ . . . such that for each s ∈ ω, (a) c s forces Q s (b) c s forces R e if s = e where c s = (σ s , X s ). Let G = s σ s . By (a), G ∩ A i is infinite for every i ≤ k and by (b), G satisfies each requirement R e . This finishes the proof of Theorem 4.8.

Corollary 4 . 16

 416 For every k, n ≥ 2 there exists a ∆ 0 n k-partition B 0 ∪ • • • ∪ B k-1 = ω such that every computable coloring f : [ω] n → k + 1 has an infinite f -thin set computing no set thin for the B's.

Theorem 4 .

 4 [START_REF] Hirschfeldt | On notions of computability theoretic reduction between Π 1 2 principles[END_REF] SADS does not admit preservation of 2 non-c.e. definitions.

Lemma 4 . 19

 419 For every k, n ≥ 1 and ≥ 2, if TS n admits strong preservation of k non-c.e. definitions, then TS n+1 admits preservation of k non-c.e. definitions.Proof. Fix any set C, k non-C-c.e. sets A 0 , . . . , A k-1 and any C-computable coloring f :[ω] n+1 → . Consider the uniformly C-computable sequence of sets R defined for each σ ∈ [ω] n and i < byR σ,i = {s ∈ ω : f (σ, s) = i}As COH admits preservation of k non-c.e. definitions, there exists some R-cohesive set G such that G ⊕ C preserves non-c.e. definitions of the A's. The cohesive set induces a (G ⊕ C)computable coloring f : [ω] n → defined by:(∀σ ∈ [ω] n ) f (σ) = lim s∈G f (σ, s)As TS n admits strong preservation of k non-c.e. definitions, there exists an infinite f -thin set H such that H ⊕ G ⊕ C preserves non-c.e. definitions of the A's. H ⊕ G ⊕ C computes an infinite f -thin set.Using Theorem 4.8 together with Lemma 4.19, we deduce the following corollary.

Corollary 4 . 20

 420 For every k ≥ 2, TS 2 k+1 admits preservation of k non-c.e. definitions.

Theorem 4 . 21

 421 For every k, n ≥ 1, TS n admits strong preservation of k non-c.e. definitions for sufficiently large .The proof of Theorem 4.21 begins below in section 4.3.1. Using the fact that RCA 0 TS n → TS n for every n, ≥ 2, we obtain the following preservation result for TS. Corollary 4.22 For every k ≥ 1, TS admits strong preservation of k non-c.e. definitions.

Lemma 4 . 25

 425 For every condition (F, X) and σ ∈ [ω] <ω such that n -t ≤ |σ| < n, for every finite set I such that |I| = d n-|σ| , there exists an extension (F, X) such that{f (σ, τ ) : τ ∈ [ X] n-|σ| } ⊆ I or I ⊆ {f (σ, τ ) : τ ∈ [ X] n-|σ| } Proof. Define the function g : [X] n-|σ| → I ∪ {⊥} by g(τ ) = f (σ, τ ) if f (σ, τ ) ∈ Iand g(τ ) = ⊥ otherwise. By strong preservation of k non-c.e. definitions of TS n-|σ| d n-|σ| +1 , there exists an infinite subset X ⊆ X such that X ⊕ C preserves non-c.e. definitions of the A's and {g(τ ) : τ ∈ [ X] n-|σ| } ≤ d n-|σ| . The condition (F, X) is the desired extension.

4. 3 . 3 .

 33 Step (S1) : Construction of the set D. We start with the construction of an infinite set D ⊆ ω such that D ⊕ C preserves non-c.e. definitions of the A's and a sequence (I σ : 0 < |σ| < n) such that for each t ∈ (0, n) and each σ ∈ [ω] t (a) I σ is a subset of {0, . . . , d n } with at most d n-t many elements (b) (∃b)(∀τ ∈ [G ∩ (b, +∞)] n-t )f (σ, τ ) ∈ I σLet D be the set constructed in Theorem 4.24 for t = n -1. For each σ ∈ [ω] <ω such that 0 < |σ| < n, letI σ = {x ≤ d n : (∀b)(∃τ ∈ [G ∩ (b, +∞)] n-|σ| )f (σ, τ ) = x}By choice of D, the set I σ has at most d n-|σ| many elements. Moreover, for each y ≤ d n such that y ∈ I σ , there exists a bound b y such that (∀τ ∈ [D ∩ (b y , +∞)] n-|σ| )f (σ, τ ) = x. So taking b = max(b y : y ≤ d n ∧ y ∈ I σ ), we obtain (∀τ ∈ [D ∩ (b, +∞)] n-|σ| )f (σ, τ ) ∈ I σ 4.3.4. Step (S2) : Construction of the set E. We now construct an infinite set E ⊆ D such that E ⊕ C preserves non-c.e. definitions of the A's and a sequence (I t : 0

e

  is a nonempty Π 0,X⊕C 1 class. As WKL 0 admits preservation of k non-c.e. definitions, there is some coloring g ∈ C such that g ⊕ X ⊕ C preserves non-c.e. definitions of the A's. By preservation of k non-c.e. definitions of TS n d n-1 +1 , there exists an infinite subset Y ⊆ X such that Y ⊕ C preserves non-c.e. definitions of the A's and |g([Y ] n )| ≤ d n-1 . The condition (σ, Y ) forces a ∈ W G⊕C e . Using Lemma 4.26 and property (b) of the set E, we can construct an infinite descending sequence of conditions ( , E) ≥ c 0 ≥ . . . such that for each s ∈ ω (i) σ s+1 = σ s ξ s with |σ s | ≥ s and f (

4. 3 . 6 .

 36 Step (S4) : Construction of the set H. Finally, we build an infinite set H ⊆ G such that H ⊕ C preserves non-c.e. definitions of the A's and |f ([H] n )| ≤ d n .

Lemma 4 .

 4 27 |f ([H] n )| ≤ d n Proof. As H ⊆ G, any σ ∈ [H] n can be decomposed into ρ τ for some ρ ∈ [ξ i ] <ω and some τ ∈ [ j≥i ξ j ] <ω with |ρ| > 0. If |τ | = 0 then f (σ) ∈ J∈S J by definition of H. If |τ | > 0, then f (σ) ∈ I |ρ| by property (c) of step (S3). In any case

Lemma 4 . 31 4 . 4 . 1 .

 431441 For every n ≥ 1 and k ≥ 2, if FS n admits strong preservation of k non-c.e. definitions, then FS n+1 admits preservation of k non-c.e. definitions. Proof. Fix any set C, k non-C-c.e. sets A 0 , . . . , A k-1 and any C-computable coloring f : [ω] n+1 → ω. Consider the uniformly C-computable sequence of sets R defined for each σ ∈ [ω] n and y ∈ ω by R σ,y = {s ∈ ω : f (σ, s) = y} As COH admits preservation of k non-c.e. definitions, there exists some R-cohesive set G such that G ⊕ C preserves non-c.e. definitions of the A's. The cohesive set induces a coloring f : [ω] n → ω defined for each σ ∈ [ω] n by f (σ) = lim s∈G f (σ, s) if it exists 0 otherwise As FS n admits strong preservation of k non-c.e. definitions, there exists an infinite f -free set H such that H ⊕ G ⊕ C preserves non-c.e. definitions of the A's. In particular, (∀σ ∈ [H] n )(∀y ∈ H σ)(∃b)(∀s > b)f (σ, s) = y H ⊕ G ⊕ C computes an infinite f -free set. Trapped functions.

Definition 4 .

 4 32 A function f : [ω] n → ω is left (resp. right) trapped if for every σ ∈ [ω] n , f (σ) ≤ σ(n -1) (resp. f (σ) > σ(n -1)).

Lemma 4 . 33 (

 433 Patey in[START_REF] Patey | Combinatorial weaknesses of Ramseyan principles[END_REF]) For each k, n ≥ 1, if FS n for left trapped functions admits (strong) preservation of k non-c.e. definitions then so does FS k .It therefore suffices to prove strong preservation of k non-c.e. definitions for left trapped functions.4.4.2.Case of left trapped functions. In this part, we will prove the following theorem which, together with Lemma 4.33 is sufficient to prove Theorem 4.28 by induction over n.

  (a) none of the A's are Y s+1 ⊕ C-c.e. (b) ∀τ ∈[Y s+1 ] n-|σs| f (σ s , τ ) ∈ Y s+1 τGiven some stage s < m and some set Y s , define the functionf σs : [Y s ] n-|σs| → ω by f σs (τ ) = f (σ s , τ ). By strong preservation of k non-c.e. definitions of FS n-|σs| , there exists an infinite set Y s+1 ⊆ Y s satisfying (a) and (b). We claim that Y m satisfies the properties of the lemma. Fix some σ ∈ [F ] t and some τ ∈ [Y m ] n-t for some t ∈ (0, n). There is a stage s < m such that σ = σ s . Moreover, τ ∈ [Y s+1 ] n-|σs| , so by (b), f (σ s , τ ) ∈ Y s+1 τ , therefore f (σ, τ ) ∈ Y m τ , completing the proof.

  τ ) ∈ X τ for each t ∈ (0, n) Properties (c) and (d) will be obtained by Lemma 4.36 and Lemma 4.35 and are present to maintain the property (b) over extensions. A set G satisfies a condition (F, X) if it is f -free and satisfies the Mathias condition (F, X). Our initial condition is (∅, Y ) where Y is obtained by Lemma 4.36.

Lemma 4 . 37

 437 For every condition (F, X) there exists an extension (H, Y ) such that |H| > |F |.Proof. Choose an x ∈ X such that (∀σ ∈ [F ] n )f (σ) = x and set H = F ∪ {x}. By property (c) of (F, X), there exists a b such that (∀σ ∈ [F ] t )(∀τ ∈ [X ∩ (b, +∞)] n-t )f (σ, τ ) ={x} σ for each t ∈ [0, n]. By Lemma 4.35, there exists an infinite set Y ⊆ X [0, b] such that Y ⊕ C preserves non-c.e. definitions of the A's and property (d) is satisfied for (H, Y ). We claim that (H, Y ) is a valid condition. Properties (a), (c) and (d) trivially hold. We now check property (b). By property (b) of (F, X), we only need to check that (∀σ ∈ [F ∪ Y ] k )f (σ) = x. This follows from our choice of b. Lemma 4.38 For every condition (F, X), every e ∈ ω and j < k, there exists an extension (H, Y ) forcing W G⊕C e = A j .

(F

  ∪E)⊕C e. Set H = F ∪ E. By property (c) of (F, X), there exists a b such that(∀σ ∈ [H] t )(∀x ∈ H)(∀τ ∈ [X ∩ (b, +∞)] n-t )f (σ, τ ) = {x} σfor each t ∈ [0, n). By Lemma 4.35, there exists an infinite set Y ⊆ X ∩ (b, +∞) such that Y ⊕ C preserves non-c.e. definitions of the A's and property (d) is satisfied for (H, Y ). We claim that (H, Y ) is a valid condition.

-

  Case 2: a ∈ A j W . By definition of W , C a = ∅. As WKL 0 admits preservation of k nonc.e. definitions, there exists a left trapped functions g ∈ C a such that g ⊕X ⊕C preserves non-c.e. definitions of the A's. As FS n admits preservation of k non-c.e. definitions, there exists some infinite g-free set Y ⊆ X such that Y ⊕ C preserves non-c.e. definitions of the A's. The condition (F, Y ) forces a ∈ W G⊕C e and therefore W G⊕C e = A j . Let Y be the set constructed in Lemma 4.36. Using Lemma 4.37 and Lemma 4.38, we can define an infinite decreasing sequence of conditions (∅, Y ) ≥ c 0 ≥ . . . such that for every s ∈ ω (i) |F s | ≥ s (ii) c s forces W G⊕C e = A j if s = e, j

  Note that two applications of RT n 2 are sufficient to deduce RT n k in the case n ≥ 4, as Jockusch

we can define another coloring g : [ω] n → k by merging colors together by blocks of size k. After one application of RT n k to the coloring g, we obtain an infinite set H over which f uses at most k different colors. Another application of RT n k gives an infinite f -homogeneous set. This standard proof of RCA 0 RT n k → RT n k 2 involves two applications of RT n k . In this section, we show that in the computable reducibility setting, multiple applications are really necessary to reduce RT n k to RT n whenever k > and n ≥ 2.

  2 2 , Π 0 1 G and EM admit preservation of k non-c.e. definitions. By Corollary 4.20, so does TS 2 k+1 . By Corollary 4.6 and Theorem 4.18, neither STS 2 k nor SADS admit preservation of k non-c.e. definitions. The theorem follows by an application of Proposition 2.4 of Wang [47].

  Properties (A1) and (A2) are already proven. We now prove property (A3). It is again done in several steps. Fix a coloring f : [ω] n → d n + 1 and a set C preserving non-c.e. definitions of k sets A 0 , . . . , A k-1 .(S1) First, we construct an infinite set D ⊆ ω such that D ⊕ C preserves non-c.e. definitions of the A's and a sequence (I σ : 0 < |σ| < n) such that for each t ∈ (0, n) and each σ ∈ [ω] t (a) I σ is a subset of {0, . . . , d n } with at most d n-t many elements (b) (∃b)(∀τ ∈ [D ∩ (b, +∞)] n-t )f (σ, τ ) ∈ I σ (S2) Second, we construct an infinite set E ⊆ D such that E ⊕C preserves non-c.e. definitions of the A's and a sequence (I t : 0 < t < n) such that for each t ∈ (0, n) (a) I t is a subset of {0, . . . , d n } of size at mostd t d n-t (b) (∀σ ∈ [E] t )(∃b)(∀τ ∈ [E ∩ (b, +∞)] n-t )f (σ, τ ) ∈ I t (S3) Third, we construct a sequence (ξ i ∈ [E] <ω : i < ω) such that (a) The set G = i ξ i is infinite and G ⊕ C preserves non-c.e. definitions of the A's (b) |f ([ξ i ] n )| ≤ d n-1 and max(ξ i ) < min(ξ i+1 ) for each i < ω (c) For each t ∈ (0, n) and σ ∈ [ j<i ξ j ] t , f (σ, τ ) ∈ I t for all τ ∈ [ j≥i ξ j ] n-t(S4) Finally, we build an infinite set H ⊆ G such that H ⊕ C preserves non-c.e. definitions of the A's and |f ([H] n )| ≤ d n .

	n d n-1 +1 admits preservation of k non-c.e. definitions. This
	is done by Lemma 4.19.	
	(A3) Then we prove that TS n dn+1 admits strong preservation of k non-c.e. definitions where
	d n = d 1 d n-1 +	d t d n-t
	0<t<n	

2 2

 2 over RCA 0 . More precisely, we prove the following preservation theorem. Theorem 4.28 For every k ∈ ω, FS admits strong preservation of k non-c.e. definitions. The proof of Theorem 4.28 follows Corollary 4.30. Cholak et al. [5] asked whether any of FS 2 , FS 2 + COH and FS 2 + WKL 0 imply RT 2 2 and Hirschfeldt [17] asked whether FS 2 + WKL 0 implies any of SRT 2 2 , ADS or CAC. We answer all of those questions negatively with the following corollary. Corollary 4.29 For every k ≥ 2, let Φ be the conjunction of COH, WKL 0 , RRT 2 2 , Π 0 1 G, EM, TS 2 k+1 and FS. Over RCA 0 , Φ implies neither STS 2 k nor SADS.

Corollary 4.30 FS does not imply RT

2 

2 over ω-models.
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