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Abstract. The separation between two theorems in reverse mathematics is
usually done by constructing a Turing ideal satisfying a theorem P and avoiding
the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Tows-
ner introduced a forcing technique for iterating a computable non-reducibility
in order to separate theorems over omega-models. In this paper, we present a
modularized version of their framework in terms of preservation of hyperim-
munity and show that it is powerful enough to obtain the same separations re-
sults as Wang did with his notion of preservation of definitions. More than the
actual separations, we provide a systematic method to design a computability-
theoretic property which enables one to distinguish two statements, based on
an analysis of their combinatorics.

1 Introduction

Reverse mathematics is a mathematical program which aims to capture the provabil-
ity content of ordinary (i.e. non set-theoretic) theorems. It uses the framework of
subsystems of second-order arithmetic, with a base theory RCA0 which is composed
of the basic axioms of Peano arithmetic together with the∆0

1 comprehension scheme
and the Σ0

1 induction scheme. Thanks to the equivalence between ∆0
1-definable sets

and computable sets, RCA0 can be thought as capturing “computational mathemat-
ics”. See [8] for a good introduction.

Many theorems are Π1
2 statements (∀X )(∃Y )Φ(X , Y ) and come with a natural

class of instances X . The sets Y such that Φ(X , Y ) holds are solutions to X . For ex-
ample, König’s lemma (KL) states that every infinite, finitely branching tree has an
infinite path. An instance of KL is an infinite, finitely branching tree T . A solution
to T is an infinite path through T . Given two Π1

2 statements P and Q, proving an
implication Q → P over RCA0 consists of taking a P-instance X and constructing
a solution to X through a computational process involving several applications of
the Q statement. Empirically, many proofs of implications are in fact computable
reductions [9].

Definition 1 (Computable reducibility). Fix two Π1
2 statements P and Q. We say

that P is computably reducible to Q (written P ≤c Q) if every P-instance I computes
a Q-instance J such that for every solution X to J, X ⊕ I computes a solution to I.



If the computable reduction between from P to Q can be formalized over RCA0,
thenRCA0 `Q→ P. However,Pmay not be computably reducible toQwhileRCA0 `
Q→ P. Indeed, one may need more than one application of Q to solve the instance
of P. This is for example the case of Ramsey’s theorem for pairs with k colors (RT2

k)
which implies RT2

k+1 over RCA0, but RT2
k+1 6≤c RT

2
k for k ≥ 1 (see [22]).

In order to prove the non-implication between P and Q, one needs to iterate
the computable non-reducibility in order to build a model of Q which is not a model
ofP. This is the purpose of the framework developed by Lerman, Solomon and Tows-
ner in [14]. They successfully used their framework for separating the Erdős-Moser
theorem (EM) from the stable ascending descending sequence principle (SADS)
and separating the ascending descending sequence (ADS) from the stable chain an-
tichain principle (SCAC). Their approach has been reused by Flood & Towsner [5]
and the author [18] on diagonal non-computability statements.

However, their framework suffers some drawbacks. In particular the forcing no-
tions involved are heavy and the deep combinatorics witnessing the non-implications
are hidden by the complexity of the proof. Moreover, the P-instance chosen in the
ground forcing depends on the forcing notion used in the iteration forcing and there-
fore the overall construction is not modular. On the other hand, Wang [24] recently
introduced the notion of preservation of definitions and made independent proofs
of preservations for various statements included EM. Then he deduced that the con-
junction of those statements does not imply SADS, therefore strengthening the re-
sult of Lerman, Solomon & Towsner in a modular way. Variants of this notion have
been reused by the author [22] for separating the free set theorem (FS) from RT2

2.
In this paper, we present a modularized version of the framework of Lerman,

Solomon & Towsner and use it to reprove the separation results obtained by Wang [24].
We thereby show that this framework is a viable alternative to the notion introduced
by Wang for separating statements in reverse mathematics. In particular, we reprove
the following theorem, in which COH is the cohesiveness principle, WKL0 is weak
König’s lemma, RRT2

2 the rainbow Ramsey theorem for pairs,Π0
1G theΠ0

1-genericity
principle and STS2 the stable thin set theorem for pairs.1

Theorem 2 (Wang [24]). Let Φ be the conjunction of COH, WKL0, RRT2
2, Π0

1G,
and EM. Over RCA0, Φ does not imply any of SADS and STS2.

One may object that those separations were already known and that the preser-
vation notion used to separate the two classes of theorems is pretty similar to Wang’s.
There is however a fundamental difference between the two approaches.

The approach of Wang [24] with his notion of preservation of non-c.e. definition
is mainly explorative. Wang studied various notions of preservation and wondered
how the statements in reverse mathematics compare with respect to these notions.

With our technique, we start with two statements that we would like to sepa-
rate, study the features of their forcing notions and design a computability-theoretic

1 This paper is an extended version of a conference paper of the same name published in
CiE 2015.



notion which will distinguish them. The resulting process benefits both from the sys-
tematic nature of the framework of Lerman, Solomon and Towsner, and the simplic-
ity of Wang’s notion of preservation. Moreover, the resulting computability-theoretic
notions are more informative, in that they express the fundamental difference be-
tween the combinatorics of the two studied statements. The technique has been
already successfuly reused by the author to separate Ramsey’s theorem for pairs
from the tree theorem for pairs [20].

In section 2, we introduce the framework of Lerman, Solomon & Towsner in its
original form and detail its drawbacks. Then, in section 3, we develop a modularized
version of their framework. In section 4, we establish basic preservation results,
before reproving in section 5 Wang’s theorem. Last, we reprove in section 6 the
separation obtained by the author in [22].

1.1 Notation

String, sequence. Fix an integer k ∈ω. A string (over k) is an ordered tuple of integers
a0, . . . , an−1 (such that ai < k for every i < n). The empty string is written ε. A
sequence (over k) is an infinite listing of integers a0, a1, . . . (such that ai < k for
every i ∈ω). Given s ∈ω, ks is the set of strings of length s over k and k<ω is the set
of finite strings over k. Given a string σ ∈ k<ω, we denote by |σ| its length. Given
two strings σ,τ ∈ k<ω, σ is a prefix of τ (written σ � τ) if there exists a string
ρ ∈ k<ω such that σρ = τ. A binary string (resp. real) is a string (resp. sequence)
over 2. We may equate a real with a set of integers by considering that the real is its
characteristic function.

Tree, path. A tree T ⊆ ω<ω is a set downward-closed under the prefix relation.
The tree T is finitely branching if every node σ ∈ T has finitely many immediate
successors. A binary tree is a tree T ⊆ 2<ω. A set P ⊆ ω is a path though T if
for every σ ≺ P, σ ∈ T . A string σ ∈ k<ω is a stem of a tree T if every τ ∈ T
is comparable with σ. Given a tree T and a string σ ∈ T , we denote by T [σ] the
subtree {τ ∈ T : τ� σ∨τ� σ}.

Sets. Given two sets X and Y , X ⊆∗ Y means that X is almost included into Y ,
X =∗ Y means X ⊆∗ Y ∧ Y ⊆∗ X and X ⊆fin Y means that X is a finite subset of Y .
Given some x ∈ω, A> x denotes the formula (∀y ∈ A)[y > x].

Computation. We fix a computable enumeration ΦX
0 ,ΦX

1 , . . . of all Turing func-
tionals with oracle X . We write W X

e for dom(ΦX
e ). A set X is Y -computable if there is

a Turing index e such that X = ΦY
e .

2 The iteration framework

An ω-structure is a structure M = (ω, S,+, ·,<) where ω is the set of standard
integers, +, · and < are the standard operations over integers and S is a set of reals
such thatM satisfies the axioms of RCA0. Friedman [7] characterized the second-
order parts S of ω-structures as those forming a Turing ideal, that is, a set of reals
closed under Turing join and downward-closed under the Turing reduction.



Fix two Π1
2 statements P and Q. The construction of an ω-model of P which

is not a model of Q consists of creating a Turing ideal I together with a fixed Q-
instance I ∈ I , such that every P-instance J ∈ I has a solution in I , whereas I
contains no solution in I . In the first place, let us just focus on the one-step case,
that is, a proof that Q 6≤c P. To do so, one has to choose carefully some Q-instance I
such that every I -computable P-instance has a solution X which does not I -compute
a solution to I . The construction of a solution X to some I -computable P-instance J
will have to satisfy the following scheme of requirements for each index e:

Re : ΦX⊕I
e infinite → ΦX⊕I

e is not a solution to I

Such requirements may not be satisfiable for an arbitrary Q-instance I . The choice
of the instance and the satisfaction of the requirement is strongly dependent on
the combinatorics of the statement Q and the forcing notion used for constructing a
solution to J . A recurrent approach in the framework of Lerman, Solomon & Towsner
consists of constructing a Q-instance I which satisfies some fairness property. The
forcing notion PI used in the construction of a solution to J is usually designed so
that

(i) There exists an I -computable set encoding (at least) every condition in PI

(ii) Given some forcing condition in PI , one can uniformly find in a c.e. search a
finite set of candidate extensions such that one of them is in PI (e.g. the notion
of split pair in [14], the compactness argument for a tree forcing, ...).

The fairness property states the following:

“For every condition in PI , if for every x ∈ω, there exists a finite Q-instance A>
x and a finite set of candidate extensions d0, . . . , dm such that Φdi⊕I

e is not a solution
to A for each i ≤ m, then one of the A’s is a subinstance of I .”

This property is designed so that we can satisfy it by taking each condition c ∈ PI

one at a time, find some finiteQ-instance A on which I is not yet defined, and define I
over A. One can think of the instance I as a fair adversary who, if we have infinitely
often the occasion to beat him, will be actually beaten at some time.

Suppose now we want to extend this computable non-reducibility into a sepa-
ration over ω-structures. One may naturally try to make the instance I satisfy the
fairness property at every level of the iteration forcing. At the first iteration with
an I -computable P-instance J , the property is unchanged. At the second iteration,
the P-instance J1 is X0⊕ I -computable, but the set X0 is not yet constructed. Thank-
fully, the fairness property requires a finite piece of oracle X0. Therefore we can
modify the fairness property which becomes

“For every condition c0 ∈ PI and every condition c1 ∈ Pc0⊕I , if for every x ∈ ω,
there exists a Q-instance A> x , a finite set of candidate extensions d0, . . . , dm ∈ PI

and d0,i , . . . , dni ,i ∈ P
di⊕I for each i ≤ m such that Φ

d j,i⊕di⊕I
e is not a solution to A for

each i ≤ m and j ≤ ni , then one of the A’s is a subinstance of I .”

Since this property becomes overly complicated in the general case, Lerman,
Solomon and Towsner abstracted the notion of requirement and made it a Σ0,I

1 black



box which takes as parameters a condition and a finite Q-instance. Instead of mak-
ing the instance I in charge of satisfying the fairness property at every level of the
iteration forcing, the instance I satisfies the property only at the first level. Then,
by encoding a requirement at the next level into a requirement at the current level,
the iteration forcing ensures the propagation of this fairness property from the first
level to every level. The property in its abstracted form is then

“For every condition in PI and every Σ0,I
1 predicateK I , if for every x ∈ω, there

is a finite Q-instance A> x and a finite set of candidate extensions d0, . . . , dm such
that K I (A, di) is satisfied for each i ≤ m, then one of the A’s is a subinstance of I .”

In particular, by letting K I (A, c) be the predicate “Φdi⊕I
e is not a solution to A”,

the requirements Re will be satisfied.
The problem of such an approach is that the construction of the Q-instance

strongly depends on the forcing notion used in the iteration forcing. A slight modi-
fication of the latter requires a change in the ground forcing. Moreover, if someone
wants to prove that the conjunction of two statements does not imply a third one, we
need to construct an instance I which will satisfy the fairness property for the two
statements, and in each iteration forcing, we will need to ensure that both properties
are propagated to the next iteration. The size of the overall construction explodes
when trying to make a separation of the conjunction of several statements at the
same time.

3 Preservation of hyperimmunity

In this section, we propose a general simplification of the framework of Lerman,
Solomon & Towsner [14] and illustrate it in the case of the separation ofEM from SADS.
The corresponding fairness property happens to coincide with the notion of hyper-
immunity. The underlying idea ruling this simplification is the following: since each
condition in the iteration forcing can be given an index and since the finite set of
candidate extensions of a condition c, can be found in a c.e. search, given a Σ0,I

1

predicate K I , the following formula is again Σ0,I
1 :

ϕ(U) = “there exists a finite set of candidate extensions d0, . . . , dm of c such that
K I (U , di) is satisfied for each i ≤ m”

We can therefore abstract the iteration forcing and ask the instance I to satisfy
the following property:

“For every Σ0,I
1 predicate ϕ(U), if for every x ∈ ω, there exists a finite Q-

instance A> x such that ϕ(A) is satisfied, then one of the A’s is a subinstance of I .”

Let us illustrate how this simplification works by reproving the separation of the
Erdős-Moser theorem from the ascending descending sequence principle.

Definition 3 (Ascending descending sequence). ADS is the statement “Every lin-
ear order admits an infinite ascending or descending sequence”. SADS is the restriction
of ADS to linear orders of type ω+ω∗.



The ascending descending sequence principle has been studied within the frame-
work of reverse mathematics by Hirschfeldt & Shore [10]. Lerman, Solomon & Tows-
ner [14] constructed an infinite linear order I of order type ω+ω∗ with ω and ω∗

parts respectively B0 and B1, such that for every condition c and every Σ0,I
1 predicate

K I , if for every x ∈ ω, there exists a finite set A > x and a finite set of candidate
extensions d0, . . . , dm of c such thatK I (A, di) is satisfied for each i ≤ m, then one of
the A’s will be included in B0 and another one will be included in B1. In particular,
taking K I (A, c) = Φc⊕I

e ∩ A 6= ;, no infinite solution to the constructed tournament
I -computes a solution to I . After abstraction, we obtain the following property:

“For every Σ0,I
1 predicate ϕ(U), if for every x ∈ω, there exists a finite set A> x

such that ϕ(A) is satisfied, one of the A’s is included in B0 and one of the A’s is
included in B1.”

Following the terminology of [14], we say that a formula ϕ(U) is essential if for
every x ∈ ω, there exists some finite set A > x such that ϕ(A) holds. This fairness
property coincides with the notion of hyperimmunity for B0 and B1.

Definition 4 (Preservation of hyperimmunity).

1. Let D0, D1, . . . be a computable list of all finite sets and let f be computable. A
c.e. array {Df (i)}i≥0 is a c.e. set of mutually disjoint finite sets Df (i). A set B is
hyperimmune if for every c.e. array {Df (i)}i≥0, Df (i) ∩ B = ; for some i.

2. A Π1
2 statement P admits preservation of hyperimmunity if for each set Z, each

countable collection of Z-hyperimmune sets A0, A1, . . ., and eachP-instance X ≤T Z
there exists a solution Y to X such that the A’s are Y ⊕ Z-hyperimmune.

The following lemma establishes the link between the fairness property for SADS
and the notion of hyperimmunity.

Lemma 5. Fix a set Z. A set B is Z-hyperimmune if and only if for every essential Σ0,Z
1

predicate ϕ(U), ϕ(A) holds for some finite set A⊆ B.

Proof. Let D0, D1, . . . be a computable list of all finite sets.

– Fix some set Z and some Z-hyperimmune set B. For every essential Σ0,Z
1 for-

mula ϕ(U), define the Z-computable function f inductively so that ϕ(Df (0))
holds and for every i, Df (i+1) > Df (i) and ϕ(Df (i+1)) holds. Because ϕ(U) is es-
sential, the function f is total. {Df (i)}i≥0 is a Z-c.e. array, so by Z-hyperimmunity,
Df (i) ∩ B = ; for some i, hence Df (i) ⊆ B and ϕ(Df (i)) holds.

– Fix some set Z and some set B such that the fairness property of Lemma 5
holds. For every Z-c.e. array {Df (i)}i≥0, define theΣ0,Z

1 formulaϕ(U) = (∃i)[U =
Df (i)]. The formula ϕ(U) is essential, so there exists some finite set A⊆ B such
that ϕ(A) holds. In particular, there exists some i such that Df (i) ⊆ B. ut

Hirschfeldt, Shore & Slaman constructed in [11, Theorem 4.1] a computable
linear order of type ω+ω∗ such that both the ω and theω∗ part are hyperimmune.
As every ascending (resp. descending) sequence is an infinite subset of the ω (resp.
ω∗) part of the linear order, we deduce the following theorem.



Theorem 6. SADS does not admit preservation of hyperimmunity.

A slight modification of the forcing in [14] gives preservation of hyperimmunity
of the Erdős-Moser theorem. We will however reprove it in a later section with a
simpler forcing notion. As expected, the notion of preservation of hyperimmunity
can be used to separate statements in reverse mathematics.

Lemma 7. Fix twoΠ1
2 statements P and Q. If P admits preservation of hyperimmunity

and Q does not, then P does not imply Q over RCA0.

Proof. Fix a set X0, a countable collection of X0-hyperimmune sets B0, B1, . . . and
an X0-computable Q-instance J such that for every solution Y to J , one of the B’s
is not Y ⊕ X0-hyperimmune. By preservation of hyperimmunity of P and carefully
choosing a sequence of P-instance functionals I0, I1, . . ., we can define an infinite
sequence of sets X1, X2, . . . such that for each n ∈ω

(a) Xn+1 is a solution to the P-instance IX0⊕...⊕Xn
n

(b) The B’s are X0 ⊕ . . .⊕ Xn-hyperimmune
(c) For every X0⊕. . .⊕Xn-computableP-instance I , there exists some m such that I =

IX0⊕...⊕Xm
m .

LetM be the ω-structure whose second-order part is the Turing ideal

I = {Y : (∃n)[Y ≤T X0 ⊕ . . .⊕ Xn]}

In particular, the Q-instance J is in I , but the B’s are Y -hyperimmune for ev-
ery Y ∈ I , so J has no solution Y ∈ I and M 6|= Q. By construction of I , every
P-instance I ∈ I has a solution Xn ∈ I , so by Friedman [7],M |= RCA0 ∧P. ut

Before starting an analysis of preservations of hyperimmunity for basic state-
ments, we state another negative preservation result which enables to reprove that
the Erdős-Moser theorem does not imply the stable thin set theorem for pairs [15].

Definition 8 (Thin set theorem). A coloring f : [ω]2 → ω is stable if for every x,
limy f (x , y) exists. Let n ∈ ω and f : [ω]n → ω. A set A is f -thin if f ([A]n) 6= ω,
that is, if the set A “avoids” at least one color. TSn is the statement “every function
f : [ω]n → ω has an infinite f -thin set”. STS2 is the restriction of TS2 to stable
colorings.

Introduced by Friedman in [6], the basic reverse mathematics of the thin set
theorem has been settled by Cholak, Hirst & Jockusch in [2]. Its study has been
continued by Wang [25], Rice [23] and the author [16,22]. The author constructed
in [19] an infinite computable stable coloring f : [ω]2→ω such that the sets Bi =
{n ∈ ω : lims f (n, s) 6= i} are all hyperimmune. Every infinite f -thin set being an
infinite subset of one of the B’s, we deduce the following theorem.

Theorem 9. STS2 does not admit preservation of hyperimmunity.



4 Basic preservations of hyperimmunity

When defining a notion, it is usually convenient to see how it relates with typical
sets. There are two kinds of typicalities: genericity and randomness. Both notions
admit preservation of hyperimmunity.

Theorem 10. Fix some set Z and a countable collection of Z-hyperimmune sets B0, B1, . . .
If G is sufficiently Cohen generic relative to Z, the B’s are G ⊕ Z-hyperimmune.

Proof. It suffices to prove that for every Σ0,Z
1 formula ϕ(G, U) and every i ∈ ω, the

set of conditions σ forcing ϕ(G, U) not to be essential or such that ϕ(σ, A) holds for
some finite set A⊂ Bi is dense. Fix any string σ ∈ 2<ω. Define

ψ(U) = (∃τ� σ)ϕ(τ, U)

The formulaψ(U) isΣ0,Z
1 , so by Z-hyperimmunity of Bi , eitherψ(U) is not essential,

orψ(A) holds for some finite set A⊆ Bi . Ifψ(U) is not essential with witness x ∈ω,
then σ forces ϕ(G, U) not to be essential with the same witness. Ifψ(U) is essential,
then there exists some finite set A⊂ Bi such thatψ(A) holds. Unfolding the definition
of ψ(A), there exists some τ � σ such that ϕ(τ, A) holds. The condition τ is an
extension such that ϕ(τ, A) holds for some A⊂ Bi . ut

Theorem 11. Fix some set Z and a countable collection of Z-hyperimmune sets B0, B1, . . .
If R is sufficiently random relative to Z, the B’s are R⊕ Z-hyperimmune.

Proof. It suffices to prove that for every Σ0,Z
1 formula ϕ(G, U) and every i ∈ ω, the

following class is Lebesgue null.

S = {X : [ϕ(X , U) is essential ]∧ (∀A⊆fin ω)ϕ(X , A)→ A 6⊆ Bi}

Suppose it is not the case. There exists σ ∈ 2<ω such that

µ(X ∈ S : σ ≺ X )> 2−|σ|−1

Define
ψ(U) = [µ(X : (∃Ã⊆ U)ϕ(X , Ã))> 2−|σ|−1]

The formulaψ(U) isΣ0,Z
1 and by compactness,ψ(U) is essential. By Z-hyperimmunity

of Bi , there exists some finite set A ⊆ Bi such that ψ(A) holds. For every set A such
that ψ(A) holds, there exists some X ∈ S and some Ã⊆ A such that ϕ(X , Ã) holds.
By definition of X ∈ S , Ã 6⊆ Bi and therefore A 6⊆ Bi . Contradiction. ut

Note that this does not mean that the sets G and R are hyperimmune-free relative
to Z . In fact, the converse holds: if G is sufficiently generic and R sufficiently random,
then both are Z-hyperimmune. Some statements like the atomic model theorem
(AMT), Π0

1-genericity (Π0
1G) and the rainbow Ramsey theorem for pairs (RRT2

2)
are direct consequences of genericity and randomness [11,4]. We can deduce from
Theorem 10 and Theorem 11 that they all admit preservation of hyperimmunity.

Cohesiveness is a very useful statement in the analysis of Ramsey-type theorems
as it enables one to transform an arbitrary instance into a stable one [3]. A set C is
cohesive for a sequence of sets R0, R1, . . . if C ⊆∗ Ri or C ⊆∗ Ri for each i.



Theorem 12. COH admits preservation of hyperimmunity.

The proof is done by the usual construction of a cohesive set with Mathias forc-
ing, combined with the following lemma.

Lemma 13. For every set Z, every Z-computable Mathias condition (F, X ), every Σ0,Z
1

formula ϕ(G, U) and every Z-hyperimmune set B, there exists an extension (E, Y ) such
that X =∗ Y and either ϕ(G, U) is not essential for every set G satisfying (E, Y ), or
ϕ(E, A) holds for some finite set A⊆ B.

Proof. Define
ψ(U) = (∃G ⊇ F)[G ⊆ F ∪ X ∧ϕ(G, U)]

The formula ψ(U) is Σ0,Z
1 . By hyperimmunity of B, either ψ(U) is not essential,

or ψ(A) holds for some finite set A⊆ B. In the first case, the condition (F, X ) already
satisfies the desired property. In the second case, let A⊆fin B be such thatψ(A) holds.
By the use property, there exists a finite set E satisfying (F, X ) such thatϕ(E, A) holds.
Let Y = X r [0, max(E)]. The condition (E, Y ) is a valid extension. ut

Weak König’s lemma (WKL0) states that every infinite, binary tree admits an
infinite path.

Theorem 14. WKL0 admits preservation of hyperimmunity.

Proof. Fix some set Z , some countable collection of Z-hyperimmune sets B0, B1, . . .
and some Z-computable tree T ⊆ 2<ω. Our forcing conditions are (σ, R) where σ
is a stem of the infinite, Z-computable tree R ⊆ T . A condition (τ, S) extends (σ, R)
if σ � τ and S ⊆ R. The result is a direct consequence of the following lemma.

Lemma 15. For every condition c = (σ, R), every Σ0,Z
1 formula ϕ(G, U) and every i ∈

ω, there exists an extension d = (τ, S) such that ϕ(P, U) is not essential for every
path P ∈ [S], or ϕ(τ, A) holds for some A⊆ Bi .

Proof. Define
ψ(U) = (∃s)(∀τ ∈ R∩ 2s)(∃Ã⊆fin U)ϕ(τ, Ã)

The formula ψ(U) is Σ0,Z
1 so we have two cases:

– Case 1: ψ(U) is not essential with some witness x . By compactness, the follow-
ing set is an infinite Z-computable subtree of R:

S = {τ ∈ R : (∀A> x)¬ϕ(τ, A)}

The condition d = (σ, S) is an extension such that ϕ(P, U) is not essential for
every P ∈ [S].

– Case 2: ψ(U) is essential. By Z-hyperimmunity of Bi , there exists some finite
set A ⊆ Bi such that ψ(A) holds. Unfolding the definition of ψ(A), there exists
some τ ∈ R such that R[τ] is infinite and ϕ(τ, Ã) holds for some Ã⊆ A⊆ Bi . The
condition d = (τ, R[τ]) is an extension such that ϕ(τ, Ã) holds for some finite
set Ã⊆ Bi .



Using Lemma 15, define an infinite descending sequence of conditions c0 =
(ε, T )≥ c1 ≥ . . . such that for each s ∈ω

(i) |σs| ≥ s
(ii) ϕ(P, U) is not essential for every path P ∈ [Rs+1], or ϕ(σs+1, A) holds for some

finite set A⊆ Bi if s = 〈ϕ, i〉

where cs = (σs, Rs). ut

Wei Wang [personal communication] observed that WKL0 preserves hyperim-
munity in a much stronger sense than COH, since cohesive sets are of hyperim-
mune degree [13], whereas by the hyperimmune-free basis theorem [12], WKL0
can preserve hyperimmunities of every hyperimmune set simultaneously and not
only countably many.

5 The Erdős-Moser theorem and preservation of hyperimmunity

The Erdős-Moser theorem is a statement from graph theory which received a partic-
ular interest from reverse mathematical community as it provides, together with the
ascending descending sequence principle, an alternative proof of Ramsey’s theorem
for pairs.

Definition 16 (Erdős-Moser theorem). A tournament T is an irreflexive binary re-
lation such that for all x , y ∈ ω with x 6= y, exactly one of T (x , y) or T (y, x) holds.
A tournament T is transitive if the corresponding relation T is transitive in the usual
sense. EM is the statement “Every infinite tournament T has an infinite transitive sub-
tournament.”

The Erdős-Moser theorem was introduced in reverse mathematics by Bovykin
& Weiermann [1] and then studied by Lerman, Solomon & Towsner [14] and the
author [17,16,21]. In this section, we give a simple proof of the following theorem.

Theorem 17. EM admits preservation of hyperimmunity.

The proof of Theorem 17 exploits the modularity of the framework by using
preservation of hyperimmunity of WKL0. Together with the previous preservations
results, this theorem is sufficient to reprove Theorem 2. We must first introduce some
terminology.

Definition 18 (Minimal interval). Let T be an infinite tournament and a, b ∈ T be
such that T (a, b) holds. The interval (a, b) is the set of all x ∈ T such that T (a, x)
and T (x , b) hold. Let F ⊆ T be a finite transitive subtournament of T . For a, b ∈ F
such that T (a, b) holds, we say that (a, b) is a minimal interval of F if there is no
c ∈ F ∩ (a, b), i.e., no c ∈ F such that T (a, c) and T (c, b) both hold.

Definition 19. An Erdős Moser condition (EM condition) for an infinite tournament T
is a Mathias condition (F, X ) where



(a) F ∪ {x} is T -transitive for each x ∈ X
(b) X is included in a minimal T-interval of F.

EM extension is Mathias extension. A set G satisfies an EM condition (F, X ) if
it is T -transitive and satisfies the Mathias extension (F, X ). Basic properties of EM
conditions have been stated and proven in [17].

Fix a set Z and some countable collection of Z-hyperimmune sets B0, B1, . . . Our
forcing notion is the partial order of Erdős Moser conditions (F, X ) such that the B’s
are X ⊕ Z-hyperimmune. Our initial condition is (;,ω). By Lemma 5.9 in [17], EM
conditions are extendable, so we can force the transitive subtournament to be infi-
nite. Therefore it suffices to prove the following lemma to deduce Theorem 17.

Lemma 20. Fix a condition (F, X ), some i ∈ω and some Σ0,Z
1 formula ϕ(G, U). There

exists an extension (E, Y ) such that either ϕ(G, U) is not essential for every set G sat-
isfying (E, Y ), or ϕ(E, A) holds for some finite set A⊆ Bi .

Proof. Letψ(U) be the formula “For every partition X0∪X1 = X , there exists some j <
2, a T -transitive set G ⊆ X j and a set Ã ⊆ U such that ϕ(F ∪ G, Ã) holds.” By com-
pactness, ψ(U) is a Σ0,X⊕Z

1 formula. By X ⊕ Z-hyperimmunity of Bi , we have two
cases:

– Case 1:ψ(A) holds for some finite set A⊆ Bi . By compactness, there exists a finite
set H ⊂ X such that for every partition H0∪H1 = H, there exists some j < 2, a T -
transitive set G ⊆ H j and a set Ã⊆ A such thatϕ(F∪G, Ã) holds. Given two sets U
and V , we denote by U →T V the formula (∀x ∈ U)(∀y ∈ V )T (x , y). Each
element y ∈ X induces a partition H0 ∪ H1 = H such that H0 →T {y} →T H1.
There exists finitely many such partitions, so by the infinite pigeonhole principle,
there exists an X -computable infinite set Y ⊂ X and a partition H0∪H1 = H such
that H0 →T Y →T H1. Let j < 2 and G ⊆ H j be the T -transitive set such that
ϕ(F ∪ G, Ã) holds for some Ã ⊆ A ⊆ Bi . By Lemma 5.9 in [17], (F ∪ G, Y ) is a
valid extension.

– Case 2: ψ(U) is not essential with some witness x . Then the Π0,X⊕Z
1 class C

of sets X0 ⊕ X1 such that X0 ∪ X1 = X and for every j < 2, every T -transitive
set G ⊆ X j and every finite set Ã > x , the formula ϕ(F ∪ G, Ã) does not hold
is not empty. By preservation of hyperimmunity of WKL0, there exists some
partition X0 ⊕ X1 ∈ C such that the B’s are X0 ⊕ X1 ⊕ Z-hyperimmune. The
set X j is infinite for some j < 2 and the condition (F, X i) is the desired EM
extension. ut

6 Thin set theorem and preservation of hyperimmunity

There exists a fundamental difference in the way SADS and STS2 witness their
failure of preservation of hyperimmunity. In the case of SADS, we construct two
hyperimmune sets whereas in the case of STS2, a countable collection of hyper-
immune sets is used. This difference can be exploited to obtain further separation
results.



Definition 21 (Preservation of k hyperimmunities). A Π1
2 statement P admits

preservation of k hyperimmunities if for each set Z, each Z-hyperimmune sets A0, . . . ,
Ak−1, and each P-instance X ≤T Z there exists a solution Y to X such that the A’s are
Y ⊕ Z-hyperimmune.

Theorem 6 shows that SADS does not admit preservation of 2 hyperimmunities.
On the other hand, we shall see that STS2 admits preservation of k hyperimmunities
for every k ∈ω. Consider the following variants of the thin set theorem.

Definition 22 (Thin set theorem). Given a function f : [ω]n→ k, an infinite set H
is f -thin if | f ([H]n)| ≤ k−1 (i.e. f avoids one color over H). For every n≥ 1 and k ≥ 2,
TSnk is the statement “Every function f : [ω]n→ k has an infinite f -thin set”. STS2k is
the restriction of TS2k to stable colorings.

Note that TS22 is Ramsey’s theorem for pairs. The following theorem is sufficient
to separate TS2 from Ramsey’s theorem for pairs as TS2 ≤c TS

2
k for every k ≥ 2.

Theorem 23. For every k ≥ 1, TS2k+1 admits preservation of k but not k+1 hyperim-
munities.

Before proving Theorem 23, we establish a few consequences. In the case k = 1,
noticing that the arithmetical comprehension scheme (ACA0) does not preserve 1
hyperimmunities as witnessed by taking any∆0

2 hyperimmune set, we re-obtain the
separation of Ramsey’s theorem for pairs from ACA0. Hirschfeldt & Jockusch [9]
asked whether TS2k+1 implies TS2k over RCA0. The author answered negatively
in [22]. Preservation of k hyperimmunities gives the same separation.

Theorem 24 (Patey [22]). For every k ≥ 2, let Φ be the conjunction of COH, WKL0,
RRT2

2, Π0
1G, EM, TS2k+1. Over RCA0, Φ does not imply any of SADS and STS2k.

We now prove Theorem 23. All the proofs in this section are very similar to [22].
We reprove everything in the context of preservation of hyperimmunities for the
sake of completeness. The negative part of Theorem 23 is obtained by a simple
finite injury priority construction (see [19]).

Lemma 25. For every k ≥ 2, TS2k does not admit preservation of k hyperimmunities.

Proof. By [19], there is an infinite computable stable coloring f : [ω]2 → ω such
that the sets Bi = {n ∈ ω : lims f (n, s) 6= i} are all hyperimmune. The coloring
g : [ω]2→ k defined by g(x , y) = max( f (x , y), k− 1) witnesses that TS2k does not
admit preservation of k hyperimmunities.

Definition 26 (Strong preservation of k hyperimmunities). AΠ1
2 statement P ad-

mits strong preservation of k hyperimmunities if for each set Z, each Z-hyperimmune
sets B0, . . . , Bk−1 and each (arbitrary) P-instance X , there exists a solution Y to X such
that the B’s are Y ⊕ Z-hyperimmune.

The following lemma has been proven by the author in its full generality in [16].
We reprove it in the context of preservation of k hyperimmunities.



Lemma 27. For every k, n ≥ 1 and ` ≥ 2, if TSn` admits strong preservation of k
hyperimmunities, then TSn+1` admits preservation of k hyperimmunities.

Proof. Fix any set Z , some Z-hyperimmune sets B0, . . . , Bk−1 and any Z-computable
coloring f : [ω]n+1→ `. Consider the uniformly Z-computable sequence of sets Rσ,i
defined for each σ ∈ [ω]n and i < ` by

Rσ,i = {s ∈ω : f (σ, s) = i}

As COH admits preservation of k hyperimmunities, there exists some R-cohesive
set G such that the B’s are G⊕ Z-hyperimmune. The cohesive set induces a (G⊕ Z)′-
computable coloring f̃ : [ω]n→ ` defined by:

(∀σ ∈ [ω]n) f̃ (σ) = lim
s∈G

f (σ, s)

As TSn` admits strong preservation of k hyperimmunities, there exists an infinite f̃ -
thin set H such that the B’s are H ⊕ G ⊕ Z-hyperimmune. H ⊕ G ⊕ Z computes an
infinite f -thin set.

Thanks to Lemma 27, it suffices to prove the following theorem to deduce the
positive part of Theorem 23.

Theorem 28. For every k ≥ 1, TS1k+1 admits strong preservation of k hyperimmuni-
ties.

The remainder of this section is devoted to the proof of Theorem 28. Fix some
set Z , some Z-hyperimmune sets B0, . . . , Bk−1 and some (k + 1)-partition A0 ∪ . . .∪
Ak =ω. We will construct an infinite set G such that G ∩Ai is infinite for each i ≤ k
and the B’s are (G ∩ Ai)⊕ Z-hyperimmune for some i ≤ k. Our forcing conditions
are Mathias conditions (F, X ) such that the B’s are X ⊕ Z-hyperimmune.

6.1 Forcing limitlessness

We want to satisfy the following scheme of requirements to ensure that G ∩ Ai is
infinite for each i ≤ k.

Qp : (∃m0, . . . , mk > p)[m0 ∈ G ∩ A0 ∧ . . .∧mk ∈ G ∩ Ak]

We say that an (k+1)-partition A0∪ . . .∪Ak−1 =ω is non-trivial if there exists no
infinite set H ⊆ Ai for some i < k such that the B’s are H⊕Z-hyperimmune. A condi-
tion (F, X ) forcesQp if there exists m0, . . . , mk > p such that mi ∈ F∩Ai for each i ≤ k.
Therefore, if G satisfies c and c forces Qp, then G satisfies the requirement Qp. We
now prove that the set of conditions forcing Qp is dense for each p ∈ω. Therefore,
every sufficiently generic filter will induce k+ 1 infinite sets G ∩ A0, . . . , G ∩ Ak.

Lemma 29. For every condition c and every p ∈ω, there is a condition d extending c
such that d forces Qp.



Proof. Fix some p ∈ ω. It is sufficient to show that for a condition c = (F, X ) and
some i ≤ k, there exists an extension d0 = (H, Y ) and some integer mi > p that mi ∈
H ∩ Ai . By iterating the process for each i ≤ k, we obtain the desired extension d.
Suppose for the sake of contradiction that X ∩Ai is finite. Then one can X -compute
an infinite set H thin for the A’s with witness j for any j 6= i, contradicting non-
triviality of f . Therefore, there exists an mi ∈ X ∩ Ai , mi > p. The condition d0 =
(F ∪ {mi}, X r [0, mi]) is the desired extension. ut

6.2 Forcing non-preservation

Fix an enumeration ϕ0(G, U),ϕ1(G, U), . . . of all Σ0,Z
1 formulas. The second scheme

of requirements consists in ensuring that the sets B0, . . . , Bk−1 are all G∩Ai-hyperimmune
for some i ≤ k. The requirements are of the following form for each e.

Re :
∧

j<k

RA0,B j
e0
∨ . . .∨
∧

j<k

RAk ,B j
ek

where
RAi ,B j

e : ϕe(G ∩ Ai , U) essential ⇒ (∃A⊆fin B j)ϕe(G ∩ Ai , A)

A condition forces Re if every set G satisfying this condition also satisfies the
requirement Re .

Lemma 30. For every condition c = (F, X ), every i0 < i1 ≤ k, every j < k and every
indices e, there exists an extension d such that for some i ∈ {i0, i1}, d forces ϕei

(G ∩
Ai , U) not to be essential or forces ϕei

(G ∩ Ai , A) for some finite set A⊆ B j .

Proof. Let ψ(U) be the formula which holds if for every 2-partition X i0 ∪ X i1 = X ,
there is some i ∈ {i0, i1} and some set Gi ⊆ X i such that ϕei

((F ∩ Ai) ∪ Gi , Ã) holds
for some Ã⊆ U . By compactness, the formula ψ(U) is Σ0,X⊕Z

1 . We have two cases:

– Case 1: ψ(U) is essential. As B j is X ⊕ Z-hyperimmune, there exists some finite
set A ⊆ B j such that ψ(A) holds. In particular, taking X i = X ∩ Ai for each i ∈
{i0, i1}, there exists some i ∈ {i0, i1} and some finite set Gi ⊆ X i such thatϕei

((F∩
Ai)∪ Gi , Ã) holds for some Ã⊆ A. The condition d = (F ∪ Gi , X r [0, max(Gi)])
is an extension forcing ϕei

(G ∩ Ai , A) for some finite set A⊆ B j

– Case 2: ψ(U) is not essential, say with witness x . By compactness, the Π0,X⊕Z
1

class C of sets X i0 ⊕ X i1 such that X i0 ∪ X i1 = X and for every A > x , every i ∈
{i0, i1} and every set Gi ⊆ X i , ϕei

((F ∩Ai)∪Gi , A) does not hold is not empty. By
preservation of hyperimmunity of WKL0, there exists some X i0 ⊕ X i1 ∈ C such
that the B’s are X i0 ⊕ X i1 ⊕ Z-hyperimmune. Let i ∈ {i0, i1} be such that X i is
infinite. The condition d = (F, X i) is an extension of c forcing ϕei

(G ∩Ai , U) not
to be essential. ut

Lemma 31. For every condition c, and every indices e, there exists an extension d
forcing Re .



Proof. Fix a condition c, and apply iteratively Lemma 30 to obtain an extension d
such that for each j < k, d forces ϕei

(G∩Ai , U) not to be essential or forces ϕei
(G∩

Ai , A) for some finite set A⊆ B j for k different i’s. By the pigeonhole principle, there
exists some i ≤ k such that d forces ϕei

(G ∩ Ai , U) not to be essential or forces
ϕei
(G ∩ Ai , A) for some finite set A⊆ B j for each j < k. Therefore, d forces Re . ut

6.3 Construction

Thanks to Lemma 31 and Lemma 29, define an infinite descending sequence of
conditions c0 = (;,ω)≥ c1 ≥ . . . such that for each s ∈ω,

(a) cs+1 forces Re if s = 〈e〉
(b) cs+1 forces Qs

where cs = (Fs, Xs). Let G =
⋃

s Fs. The sets G ∩ A0, . . . , G ∩ Ak are all infinite and
the B’s are (G ∩ Ai)⊕ Z-hyperimune for some i ≤ k. This finishes the proof.
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