
HAL Id: hal-01888538
https://hal.science/hal-01888538

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SBIP 2.0: Statistical Model Checking Stochastic
Real-time Systems

Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani,
Axel Legay, Saddek Bensalem

To cite this version:
Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga, Mahieddine Dellabani, Axel Legay, et al.. SBIP
2.0: Statistical Model Checking Stochastic Real-time Systems. ATVA 2018 - 16th International Sym-
posium Automated Technology for Verification and Analysis, Oct 2018, Los Angeles, CA, United
States. pp.536-542, �10.1007/978-3-030-01090-4_33�. �hal-01888538�

https://hal.science/hal-01888538
https://hal.archives-ouvertes.fr

SBIP 2.0: Statistical Model Checking Stochastic
Real-time Systems?

Braham Lotfi Mediouni1, Ayoub Nouri1, Marius Bozga1, Mahieddine
Dellabani1, Axel Legay2, and Saddek Bensalem1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP??, VERIMAG, 38000 Grenoble, France
2 INRIA, Rennes, France

Abstract. This paper presents a major new release of SBIP, an extensi-
ble statistical model checker for Metric (MTL) and Linear-time Temporal
Logic (LTL) properties on respectively Generalized Semi-Markov Pro-
cesses (GSMP), Continuous-Time (CTMC) and Discrete-Time Markov
Chain (DTMC) models. The newly added support for MTL, GSMPs,
CTMCs and rare events allows to capture both real-time and stochastic
aspects, allowing faithful specification, modeling and analysis of real-life
systems. SBIP is redesigned as an IDE providing project management,
model edition, compilation, simulation, and statistical analysis.

1 Introduction

Statistical Model Checking (SMC) is a powerful alternative to classical numer-
ical probabilistic model-checking that generally fail to handle large state-space
systems. SMC was successfully applied in the assessment of different real-life
systems in various application domains. Classical model checkers [8, 4] now in-
clude SMC as part of their analysis engines and have been recently joined by a
variety of specialized ones [12, 6, 1, 9]. All these tools mainly differ in their model-
ing and properties specification formalisms. Uppaal-smc [4] considers Networks
of Priced Timed Automata, which are high-level representations of D/CTMCs
for system modeling, and weighted MTL for properties specification. Prism [8]
treats in addition Markov Decision Processes and Probabilistic Timed Automata
for modeling, and Probabilistic Computation Tree, Continuous Stochastic Logic
(CSL), and LTL for specification. Plasma Lab [6] is a modular statistical model
checker that allows to use external simulators and checkers. Its default configu-
ration supports DTMCs specified in a Prism dialect and bounded LTL. Ymer
[12] is one of the rare tools to implement SMC (Hypothesis testing) for GSMPs
and CSL, however it is no more maintained. Finally, COSMOS [1] relies on Gen-
eralized Stochastic Petri Nets as input models and Hybrid Automata Stochastic
Logic, a more expressive formalism, for properties specifications.

In this paper, we present the newest release of SBIP, a statistical model
checker that enriches the existing BIP tool-set [2] with statistical analyses. BIP

? The research leading to these results has received funding from the EU’s H2020
programme under grant agreements no. 700665 (CITADEL), 7300080 (ESROCOS)

?? Institute of Engineering Univ. Grenoble Alpes

2 B.L. Mediouni, A. Nouri, et al.

provides a general framework to support design activities ranging from specifica-
tion and validation to implementation and deployment in a rigorous way. To im-
plement this vision, a rich tool-set was built for modeling, languages embedding,
functional validation, models transformation and distributed code generation.

In its previous version [9], SBIP was limited to the analysis of DTMCs with
respect to bounded LTL properties. In this release, it was redesigned and ex-
tended to support GSMPs, CTMCs, MTL, parametric exploration of
LTL and MTL properties and analysis of rare events. The tool has also
benefited from a major revision of its workflows and GUI. It now provides an In-
tegrated Development Environment (IDE) where one can edit, compile, simulate
models, and perform analyses. Additionally, SBIP is now organized around well-
structured projects that enclose models, properties and traces. It also includes
support for graphical visualization of analysis results.

2 SBIP Design and Functionalities

SBIP is fully developed in Java and runs on GNU/Linux. It is freely available at
http://www-verimag.imag.fr/Statistical-Model-Checking.html. The tool
is distributed with a large set of case studies and a detailed documentation (e.g.,
user manual, installation details, video tutorials). For the sake of simplicity, we
also provide a virtual machine with a pre-installed version of the tool.

This new release was designed in a modular fashion to allow more flexi-
bility and extensibility. As depicted in Fig. 1, SBIP consists of three generic
functional modules: Stochastic Simulation Engine, Monitoring, and Statistical
Analyses that currently include Hypothesis Testing (HT), Probability Estima-
tion (PE), Parametric Exploration (PX) and Importance Splitting (IP) for rare
events analysis. All these modules are fully independent and interact through
well-defined Java interfaces. The latter also define a clean and easy way to extend
the tool with further modules (simulators, monitors and analyzers). In practice,
statistical analysis algorithms trigger the stochastic simulation engine to pro-
duce a new execution trace which is monitored against an input property to
produce a local verdict. Depending on the used analysis method, several itera-
tions are generally required, to produce the final verdict. The proposed design
allows to perform different analyses in separate workflows, namely simple simu-
lation, standard SMC analyses, parametric SMC exploration and analysis of rare
events. These workflows rely on common features such as models and properties
edition, compilation and generated traces inspection.

Stochastic Simulation Engine. Currently, SBIP allows to use two different
stochastic simulators, namely, for classical stochastic BIP [9] that enables to
model discrete-time systems (DTMCs) and for the newly implemented Stochas-
tic Real-Time BIP [10] for continuous-time systems with arbitrary distributions
(GSMPs and CTMCs)3. The former produces untimed traces needed to verify
bounded LTL properties (and to guarantee backward compatibility), whereas

3 SRT-BIP sources are available at https://gricad-gitlab.univ-grenoble-alpes.

fr/verimag/bip/compiler/tree/stochastic-real-time

SBIP 2.0: Statistical Model Checking Stochastic Real-time Systems 3

Traces
Φ Monitor

Stochastic

Verdict

Analyses

Global verdict
Commands

α, β, δI

Specification

System

Stochastic
BIP

Φ(x)

G

U

Engine

Output

Input

HT PE

PX

IP

Fig. 1: SBIP architecture

the latter generates timed traces necessary to verify MTL properties. We im-
plemented simulators to produce traces in different modes, i.e., symbol-wise,
piece-wise and trace-wise. We use the first mode for online monitoring and to be
able to interrupt simulations as soon as a verdict is obtained. The second is pri-
mordial for rare events analysis and allows to generate traces as a concatenation
of trace-fragments. Finally, we use the third mode for offline monitoring.

Monitor. The new release of the tool implements monitoring capabilities for
MTL and bounded LTL formulas. Our monitoring algorithms are inspired from
the rewrite-based procedures introduced in [3, 11]. Given a formula and a trace,
the monitor alternates rewriting and simplification phases. Rewriting consumes
a symbol of the trace and partially evaluates the formula by unfolding temporal
operators and evaluating atomic propositions to their truth value. Simplification
applies Boolean reduction rules to the formula in order to conclude or to simplify
it. The implemented MTL/LTL grammars and monitors allow for expressing
properties with nested operators and having parameters, i.e., variables used to
represent a range of properties in a compact way.

Statistical Analyses. In addition to classical SMC algorithms, i.e., HT [12]
and PE [5], we propose in this release two additional analyses (exploitable via
independent workflows) for the exploration of properties parameters, Parametric
Exploration (PX), and for rare events analysis, Importance Splitting (IP) [7]. To
recall, HT allows to answer qualitative queries, i.e., given a stochastic system S
and a property φ, it enables to assess whether the probability for S to satisfy
φ is greater or equal to a given threshold θ. PE addresses quantitative queries,
that is to compute a probability estimate p for S to satisfy φ.

Parametric Exploration (PX) is an automated way to perform statistical model
checking on a family of properties, in a batch mode. A family of properties is
specified in a compact way as a parametric property φ(x), where x is an integer
parameter ranging over a finite instantiation domain Π. Similarly to Prism,
our implemented algorithm returns a set of SMC verdicts corresponding to the
verification of the parametric property instances φ(vx) with respect to vx ∈ Π.

4 B.L. Mediouni, A. Nouri, et al.

This can be very useful when exploring unknown system parameters such as,
buffers sizes guaranteeing no overflow, or the amount of consumed energy. It
automates the exploration for large parameters domains as opposed to tedious
and time consuming manual procedures. This exploration differs from Uppaal-
smc parametric SMC which explores the parameters of the input model.

Importance Splitting (IP) overcomes the problem of estimating the probability
P (S |= φ) of a system S to satisfy a property φ representing a rare event. This
is done by considering a set of intermediate levels li that corresponds to less rare
properties φi, s.t., φn ⇒ φn−1 ⇒ . . .⇒ φ1, where φn = φ. P (S |= φ) is therefore
computed as the product of the conditional probabilities to reach li from li−1,
i.e., Πn

i=1P (S |= φi | S |= φi−1). In our implementation, the intermediate levels
li and associated φi are defined via a score function given as input. To evaluate a
system trace with respect to φ, we implemented a procedure that tells the level
reached by the trace, i.e., the intermediate property it satisfies. Our algorithm is
similar to the analysis procedure proposed in Plasma Lab. It iterates over levels,
and for each one, it simulates m trace prefixes among which ms reach the next
level and mf do not. The conditional probability to reach the next level is thus
estimated as the ratio ms/m. In the next iteration, the simulation of successful
prefixes is resumed, while the rest (mf) are replaced by successful ones sampled
uniformly. We note that IP is currently limited to the analysis of DTMCs.

3 Case Studies

In this section, we briefly present experiments performed using SBIP 4. Differ-
ent case studies covering various application domains were considered to validate
the new release of the tool. We implemented models for communication proto-
cols, namely Firewire, Bluetooth, and the Precision Time Protocol (PTP), for a
vehicle gear controller, a Pacemaker and a mutual exclusion scenario. All the ex-
periments were performed on a Dell Latitude 5480 with an i7-7820HQ processor
and 32 GB of RAM, running Ubuntu 16.04.

On these models, we tackled different types of requirements. For the Firewire
case study, we focused on analyzing its leader election protocol in different
topologies (2, 3 and 5 nodes) with respect to convergence time, by considering the
impact of contention (φ1,2,3) and regarding the impact of a node position on its
probability to become the leader (φ4). In this study, except φ3 performed using
PE, the other properties were performed using PX. We also built a parametric
model of the Bluetooth device discovery mechanism with one sender and one re-
ceiver that can be either in an active (v1) or a sniff mode (v2). For this model, we
were interested in studying the energy consumption of the receiver in both modes
(φ6) in addition to the convergence time (φ5). The PTP protocol was subject to
the analysis of the maximal drift between the master and the slave clocks (φ7).

4 See details in http://www-verimag.imag.fr/TR/TR-2018-5.pdf

SBIP 2.0: Statistical Model Checking Stochastic Real-time Systems 5

Case study Model φ Analysis
#smc
loops

avg smc
time

Firewire(2) CTMC

φ1 PX 11 1m 21s
φ2 PX 9 1m 59s
φ3 PE - 2m 28s
φ4 PX 2 3m 27s

Firewire(3) CTMC

φ1 PX 17 1m 53s
φ2 PX 11 3m 34s
φ3 PE - 3m 38s
φ4 PX 3 4m 43s

Firewire(5) CTMC

φ1 PX 18 3m 54s
φ2 PX 17 12m 36s
φ3 PE - 7m 23s
φ4 PX 5 10m 16s

Bluetooth v1 CTMC
φ5 PX 9 2m 27s
φ6 PX 16 3m 11s

Bluetooth v2 CTMC
φ5 PX 11 3m 0s
φ6 PX 14 13m 05s

PTP GSMP φ7 PX 15 8m 42s
Gear Control CTMC φ8 PX 11 54s

Pacemaker CTMC
φ9 PE - 1h 28m
φ10 PE - 1h 30m

Mutual
DTMC φ11

IP - 13s
Exclusion PE - 3m 37s

Table 1: Summary of performance

For the gearbox system, we in-
vestigated the minimum and
maximum time required to
complete a gear change (φ8).
We also verified requirements
regarding the time relation-
ships between atrial and ven-
tricular events in the pace-
maker model (φ9,10). Analyses
of the Bluetooth, PTP and the
gearbox models were performed
using PX, while we used PE for
the Pacemaker. We also con-
sidered a model of three con-
current processes arbitrarily re-
questing access to a shared re-
source. In this case study, the
goal was to estimate the prob-
ability that each process is able
to access the resource 10 times
within 30 system steps (rare
property φ11). Using our IP
implementation, we obtained
2.35 × 10−7 in less than 13s,
while it was not possible to ob-
serve the rare event using PE
upon 3 minutes of execution.

In addition to these experi-
ments summarized in Table 1, we report in the last two columns some perfor-
mance measures of the tool, namely, the number of SMC loops performed for
parametric exploration, and the average SMC time for a single loop. We ob-
served that depending on the model size and the property complexity, the time
varies from some seconds to a dozen of minutes, except for the pacemaker model
where it took more than an hour. In this particular case, PE required 4883 long
execution traces, representing approximately 8 minutes of real system execution.

4 Discussion

Most SMC tools [8, 4, 12, 6, 1] use dedicated abstract models as input for veri-
fication. In contrast, SBIP uses BIP, a full-fledged expressive component-based
framework developed to support system design from specification to analysis
and implementation. It allows for incrementally building complex systems from
elementary components and offers real-time capabilities, in addition to high-
level coordination and synchronization primitives e.g. multi-party interactions
and priorities. Furthermore, it enables including external C++ code, e.g. for
modeling complex data structures and integrating legacy code.

6 B.L. Mediouni, A. Nouri, et al.

We briefly discuss SBIP capabilities with respect to major SMC tools. Re-
garding the analyses, SBIP implements the HT and PE algorithms similarly
to Uppaal-smc [4], Prism [8] and Plasma Lab [6]. Besides, only Prism of-
fers a parametric functionality similar to PX. Furthermore, to the best of our
knowledge only Plasma Lab and COSMOS [1] support rare events analysis. The
former is the only one implementing IP as in our tool, while the latter rather
relies on importance sampling. Our underlying modeling formalism allows for
expressing arbitrary probability distributions over time. It offers built-in stan-
dard distributions, e.g. Normal, and a simple mechanism for specifying custom
distributions. In contrast, Prism is restricted to uniform and exponential distri-
butions, whereas in Uppaal-smc one need to define such distributions manually
by using a subset of the C language. The expressiveness of BIP together with the
reliance on concrete executions result in lower runtime performance compared
to Uppaal-smc and Prism. Comparatively, the authors of Plasma Lab chose to
focus on modularity at the expense of performance. In the future, we plan to
optimize our simulation engine to improve the overall performance.

References

1. P. Ballarini, B. Barbot, M. Duflot, S. Haddad, and N. Pekergin. Hasl: A new
approach for performance evaluation and model checking from concepts to exper-
imentation. Performance Evaluation, 90:53 – 77, 2015.

2. A. Basu, B. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. H. Nguyen, and
J. Sifakis. Rigorous component-based system design using the bip framework.
IEEE Software, 28(3):41–48, May 2011.

3. P. E. Bulychev, A. David, K. G. Larsen, A. Legay, G. Li, and D. B. Poulsen.
Rewrite-based statistical model checking of wmtl. RV, 7687:260–275, 2012.

4. A. David, K. G. Larsen, A. Legay, M. Mikuăionis, and D. B. Poulsen. Uppaal smc
tutorial. STTT, 17(4):397–415, August 2015.

5. T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet. Approximate Proba-
bilistic Model Checking. In VMCAI’04, pages 73–84, January 2004.

6. C. Jegourel, A. Legay, and S. Sedwards. A platform for high performance statistical
model checking – plasma. In TACAS’12, pages 498–503, Berlin, 2012. Springer.

7. C. Jegourel, A. Legay, and S. Sedwards. Importance splitting for statistical model
checking rare properties. In CAV, volume 13, pages 576–591. Springer, 2013.

8. M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: verification of probabilistic
real-time systems. CAV’11, pages 585–591. Springer-Verlag, 2011.

9. A. Nouri, S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, and A. Legay. Statis-
tical model checking QoS properties of systems with SBIP. STTT’15, 17:171–185.

10. A. Nouri, B. L. Mediouni, M. Bozga, J. Combaz, A. Legay, and S. Bensalem.
Performance evaluation of stochastic real-time systems with the sbip framework.
Technical Report TR-2017-6, Verimag Research Report, 2017.

11. G. Roşu and K. Havelund. Rewriting-based techniques for runtime verification.
Automated Software Engineering, 12(2):151–197, Apr 2005.

12. H. L. S. Younes. Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon, 2005.

