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Abstract
Jet atomizations play a crucial role in many applications such as in cryogenic combustion chambers, thus must be
thoroughly studied to understand their impact on high-frequency instabilities. Since direct numerical simulations
of these two-phase flows in a real configuration of an engine are still out of reach, predictive numerical tools must
be developed using reduced-order models. However great care must be taken on the choices of these models in
order to both have sound mathematics properties and lead to predictive simulations. The contribution of this work
is three-fold. First, we present an original fully Eulerian modelling strategy. It relies on the coupling of a hierarchy
of diffuse interface models with a Eulerian kinetic-based moment method (KBMM). Special attention will be given
to the description of various disequilibrium levels for the diffuse interface model, which describes the separated
and mixed zones. A member of the KBMM hierarchy will accurately describe the polydisperse evaporating spray
generated through atomization. Second, to cope with the strong discontinuities encountered in jet atomization,
a robust and accurate numerical method using multi-slope MUSCL technique will be applied. The extension of
the proposed strategy to the various levels of the diffuse interface models will be discussed. Third, relying on the
previous two points, large eddy simulations of a jet atomization in a cryogenic combustion chamber in subcritical
conditions are presented using various levels of modelling.

Introduction

In a cryogenic combustion chamber, the multi-scale and various physical phenomena are very complex and their
interaction is a current research area. In particular, the primary atomization plays a crucial part in the way the
engine works, thus must be thoroughly studied to understand its impact on high-frequency instabilities. The latter
have been encountered in the past and can lead to critical damages of the rocket. Even though experimentations
must be conducted to enable simulation validation and to understand the observed physical phenomena, predictive
numerical simulations are mandatory, at least as a complementary tool to understand the physics and even more
to conceive new combustion chambers and predict instabilities they may generate in a given configuration. In
subcritical conditions, downside a coaxial injector, the liquid oxygen atomization by co-current gaseous hydrogen
engenders three two-phase flow topologies : at the exit of the injector, the two phases are separated by an interface.
Downstream a polydisperse spray of droplets is carried by the gaseous phase. In between, shear stress caused
by strong velocity gradients tears the liquid core apart and ligaments are formed. This process is called primary
atomization. The ligaments get thinner and thinner until they break into droplets. In this mixed region, the subscale
physics and the topology of the flow are very complex. Direct numerical simulations of these two-phase flows in
a real engine configuration are still out of reach, CPU needs being too high and defining the smallest scale of a
two-phase mixture is still unclear. Therefore predictive numerical tools must be developed using reduced-order
models. However great care must be taken on the choices of these models in order to both have solid mathematics
properties leading to robust and accurate numerical simulations after a validation process. Two main strategies are
encountered in the literature to build such reduced-order models :

− Coupled models: a first model is used in the separated-phase can be derived either by statistical averaging
of the instantaneous Navier-Stokes equations for each phase [7] or by front tracking methods including some
level of space filtering [14]. In the dispersed-phase zone, the polydispersity in size, velocity and temperature
of the droplets is taken into account with different methods: tracking the particles in a Lagrangian way [26],
or using an Eulerian approach where the droplets distribution is rebuilt thanks to the method of moments
[23]. Usually, the methods applied to the separated phase zone are extended to the mixed region, but it
implies either a high level of the phase disequilibrium description or an extremely refined mesh. On a top
that, a numerical strategy must be provided to communicate informations between the different models.
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− Unified models: In this strategy, a unique model takes care of all the flow topologies without the need
of model coupling methods. A recent proposal in this spirit can be found in [8], where a unified model
accounting for micro-inertia and micro-viscosity associated to bubble pulsation is proposed. The objective
is here to model the sub-scale using a unified description, which degenerate into a predictive spray model in
the disperse flow area [11] [10].

The present work aims at using the first approach by coupling a diffuse interface method to a member of the kinetic
based moment methods (KBMM). The two models transport different variables. Therefore they need to be coupled
in some way, transporting the information from one zone of the domain to the other. A reference implementation
of the coupled approach can be found in [16], but the prediction of the polydispersity of the generated spray has
to rely on some parameters impacting the resulting structure of the spray. The two-fluid model used, called a four-
equation model is not capable of describing the phase disequilibria in terms of temperature, velocity and pressure.
Even if simulations including a temperature disequilibrium have already been conducted on real configurations, it
seems it has never been done with also a velocity disequilibrium [21]. Figure 1 illustrates the numerical strategy
applied in this work.

Figure 1: Topologies of a cryogenic jet atomization in sub-critical conditions.
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The paper is organized as follows. First, a mathematical overview of the various models used is adressed. The
numerical methods applied to these models are described in the following section. Later on details of the numerical
simulations conducted are given and a comparison between the different models is drawn to finally conclude on
the work.

Mathematical modeling

Two models are used: a two-phase flow model based on diffuse interface methods and a multi-fluid model derived
by Kinetic Based Moment Methods. They are two-way coupled.

Hierarchy of diffuse interface methods

Diffuse interface methods rely on the assumption that at any time t, at any place x in a given domain Ω, two phases
can coexist. Hence, three configurations occur : time-space point (t,x) with only one or the other phase or with
both of them. The latter forms a mixture. To obtain a continuum-mechanical approach for describing two phase
flows, a statistical averaging process is applied on the microscopic Navier-Stokes equations for each phase [7]. A
system of conservative equations is obtained allowing full disequilibrium between the two phases. Two assump-
tions are made to obtain these conservation equations. First, each phase behaves independently to one another, the
exchanges between the phases are modeled by additional mass, momentum and energy exchange terms. Second,
the mixture follows the same conservation equations obtained by summing those of each phase. Then, the entropy
inequality derived from the second law of thermodynamics imposes restrictions on the constitutive equations, re-
sulting in models for each exchange term. However the system of six equations, namely a mass, momentum and
energy equations for each phase, is not closed. Baer and Nunziato introduced for the first time a supplementary
evolutionary equation for the volume fraction of one phase to ensure the model closure, resulting in a so-called
seven-equation model describing the deflagration-to-detonation (DDT) in gas-permeable, reactive granular mate-
rials [2]. This model has been generalized for two-phase flow by introducing two interfacial quantities, uI and pI ,
the averaged interfacial velocity and pressure respectively [19], and writes in a quasi-linear form :

∂tU +A1∂xU =
R(U)

ε
+ Su→q − Sdrag − Sh (1)

2



14th ICLASS 2018 Abbreviated Paper Title Abbreviated Paper Title Abbreviated Paper Title Abbreviated Paper Title

with the conservative variables U = (α2, U2, U1)
t, Uk = (αkρk, αkρkuk, αkρkEk), the conservative fluxes

F (U) and the non-conservative fluxesG(U) defining the matrix A1 as:

A1 =

 uI 0 0
∂α2
F (U2) +G(U2) ∂U2F (U2) 0

∂α2F (U1) +G(U1) 0 ∂U1F (U1)

 (2)

where F (Uk) =
(
αkρkuk, αkρku

2
k + αkpk, αk(ρkEk + pk)uk

)t
and G(U2) = −G(U1) = (0, pI , pIuI)

t.
αk is the volume fraction of phase k = 1, 2, ρk the partial density, uk the phase velocity, pk the phase pressure,
Ek = εk + 1/2u2

k the total energy per unit of mass, εk the internal energy. A two-parameter equation of state
associated with a Gibbs law will be used hereafter. Mass transfer between the two phases is neglected. Su→q
models the atomization of the liquid phase into droplets and the pseudo coalescence of the droplets into the liquid
phase, Sdrag the drag force of the gas acting upon the droplets, Sh the conducto-convective heat transfer at the
surface of the droplet.

Because a mixture can not stay in full disequilibrium,R is an application describing the mechanical, hydrodynamic
and thermal relaxations between the two phases and ε is the characteristic time for each of these processes. The
condition R(U) = 0R7 imposes three constraints (pressure, velocity and temperature equilibria) and defines the
constrained manifold E =

{
U ∈ R7, R(U) = 0R7

}
. Usually, the constraint R is defined by physical processes

respecting the entropy inequality. When only pressure and velocity relaxations are accounted for, it decomposes
classically onto

R

ε
=
Ru

εu
+
Rp

εp
, with

Ru

εu
=

(
0,
Ru

2

εu
,
Ru

1

εu

)t
and

Rp

εp
=

(
p2 − p1

εp
,
Rp

2

εp
,
Rp

1

εp

)t
(3)

where Ru
2 = −Ru

1 = (0, u2 − u1, uI(u2 − u1)), Rp
2 = −Rp

1 = (0, 0, pI(p2 − p1)). The interfacial terms uI
and pI modeling varies and an expression for the relaxation parameters εu and εp have been for example derived
using the DEM technic in [20]. Relaxing the pressure and the velocity can be interpreted as projecting the full
disequilibrium state U ∈ R7 on the constraint manifold E where the relaxation R(U) = 0R7 occurs. One can thus
look for a reduced model by projecting U ∈ R7 on Rp, p ≤ 7. It can be shown that there exists an admissible
map M from Rp to E ⊂ R7 which leads to semi-stable systems. In particular, one can obtain the five-equation
model where the phases have now the same pressure and the same velocity. In [18], the authors interpret the
reduced model as the asymptotic limit of the seven-equation model when ε → ∞. Following their lines, without
the coupling source terms, the five-equation model writes :

∂tU +A1∂xU =
R(U)

ε
(4)

with the conservative variables U = (α2, U2, U1)
t, Uk = (αkρk, αkρku, αkρkEk)

t, the conservative fluxes
F (Uk) and the non-conservative fluxes G(Uk) defining the matrix A1 as in Equation (2) but with uI = u1 =
u2 = u, pI = p1 = p2. Finally taking the Taylor series of the relaxing source terms with respect to ε gives
uI = u+ o(ε), pI = p+ o(ε) and

u2 − u1

εu
=
α1ρ1α2ρ2

ρ
(

1

ρ1
− 1

ρ2
)∂xp+ o(ε)

p2 − p1

εp
= α1α2

ρ1a
2
1 − ρ2a

2
2∑

k=1,2 αk′ρka
2
k

∂xu+ o(ε) (5)

where ρ is the mixture density ρ = α1ρ1 + α2ρ2, ak is the phase sound of speed, a2
k = ∂pk/∂ρk|sk , and

k′ = k + 1[2]. The zero order terms are injected into Equation (3) to defineR in Equation (4). In practice, for the
five-equation model, the two partial momentum and energy equations are summed and replaced by an equation on
the total momentum ρu and an equation on the total energy ρE respectively. Only one relaxing term remains in
the system of equation: that of the volume fraction equation. Thus the only difference between the five-equation
model and the instantaneously relaxed seven-equation model lies in the volume fraction equation.

When relaxing the temperatures, one obtains the compressible Navier-Stokes equations, called also four-equation
model. This last model, associated with the two previous one, defines the hierarchy of diffuse interface models at
disposal.

To accurately describe the mixed region, one needs to use the out-of-equilibrium seven-equation model to feed
more accurately the KBMM for the velocity, temperature and pressure of the droplets.

3



14th ICLASS 2018 Abbreviated Paper Title Abbreviated Paper Title Abbreviated Paper Title Abbreviated Paper Title

Mathematical properties of the seven-equation model

The mathematical properties of the seven-equation model have been studied by [4] among others. It is hyperbolic
and admits 7 eigenvalues Sp (A1) =

{
uI , {uk, uk ± ak}k=2,1

}
. As noticed by [9], the system becomes non

strictly hyperbolic when two or more eigenvalues coincide. Assuming the interface velocity uI is defined as a
linear average of the two phase velocities uI = βu1 +(1−β)u2, β ∈ [0, 1] then the eigenvalues λ1 = uI , λ2 = u2

and λ5 = u1 remain distinct. Thus the only condition leading to hyperbolic degeneracy, designated as the non
resonance condition in [5], is (uk − uI)2

= a2
k, k = 1, 2.

A KBMM element: sampling method

It would have been possible to choose one of the best KBMM element such as a multi-fluid modelling using a
continuous discretization of the droplet size through sections, which has been validated on evaporating polydisperse
sprays [23]. Nevertheless since our primary concern is to increase the disequilibrium in the interface diffuse
model, for sake of simplicity, a simple KBMM element has been chosen: a multi-fluid modelling with sampling
methods [15] and monokinetic and monotemperature assumptions. Evaporation and coalescence of the droplets
are neglected, thus only one sample of droplet is needed to attest the success of the coupling strategy of the two
models. The system of equation is weekly hyperbolic [6] and writes for one class:

∂tQ+ ∂xFq(Q) = Sdrag + Sh + Sq→u (6)

where the variables are Q = (n, αdρd, αdρdud, αdρdεd)
t the conservative fluxes Fq(Q) = (nud, αdρdud,

αdρdu
2
d, αdρdεdud)

t, and the coupling source term Sq→u. n is number of droplets, ρd is the liquid density
depending only on the temperature, ud the droplet velocity, εd the droplet internal energy. To be conservative,
the coupling source terms of Equation (1) and Equation (6) must balance out each other, thus Sq→u = −Su→q .

Numerical methods

The models used hereafter to simulate the jet atomization have been implemented in the CEDRE software which
is a multi-physics platform working on general unstructured meshes and organized as a set of solver [13]. Two
solvers are used, SEQUOIA for the diffuse interface model and SPIREE for the KBMM. Both are two-way coupled
by the source terms Sq→u and Su→q exchanged at every time step. A Lie splitting technic is used resulting in the
following system of equations:

Un+1 =
[
Su→q-Sh-Sdrag

Ru

εu

]∆t Rp

εp
Hu (Un) Qn+1 = [Sq→uShSdrag]

∆t Hq (Un) (7)

The hyperbolic operatorsHu andHq corresponding to convection of the two-phase model and the dispersed model
respectively, are calculated using an approximate Riemann solver, HLLC, and a Presureless Gas Dynamics exact
Riemann solver respectively [3]. Then relaxation operators and source terms are applied in the order showed in
Equation (7) to define the new states Un+1 andQn+1 of the conservative variables.

HLLC scheme for the two-phase flow model

Ideally, an exact Riemann solver should be able to solve the hyperbolic operator Hu [22], however the compu-
tational cost is way too expensive. Thanks to hyperbolicity of the model, a VFRoe solver has been tested [1]
using primitive variables U = (α1, ρ1,u1, p1, ρ2,u2, p2)t. Nevertheless, it was not robust enough to handle the
strong gradients occurring in the chamber. Therefore, choice has been made to use a HLLC solver which shows
usually good robustness [24]. Other difficulties for solving Equation (1) are owed to the non-conservative terms
and modelling the interfacial terms. The approach proposed in [12] tackles all the issues by assuming (1) the
interfacial terms pI and uI to be local constants in the Riemann problem, (2) the volume fraction to vary only
across the interfacial contact discontinuity uI . As a result, the non conservative terms in Equation (1) vanish, uI
and pI are determined locally by Discrete Equation Method (DEM) [20] at each time step and stay constant during
the update. Thus, phases are now decoupled and Equation (1) splits into two conservative sub-systems to which
a classic HLLC solver is applied. As proposed by [12], a second order reconstruction is developed. It uses the
MUSCL-Hancock strategy but the spatial reconstruction is done with a multi-slope MUSCL scheme developed
by [17]. Finally, two slope limiters have been tested: the Van-Leer limiter and a hybrid limiter developped in
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[16], which combines the advantages of a CFL-Superbee limiter for high gradient regions and a third order CFL
dependent limiter for the regular regions.

Relaxation procedure

In many applications, the pressures of a two-phase flow are assumed to relax instantaneously. Thus, after the
hyperbolic update, the following ODE is solved: ∂tU = Rp(U)/εp, with εp → ∞ which infers uk remain
constant. Manipulating the equations, an equilibrium pressure is obtained by solving a second order equation with
an iterative procedure such as a Newton method. Detailed of the equation can be found in [12]. As for the velocities,
within the context of assisted jet atomization in sub-critical conditions, the relaxation time is finite. The following
ODE is solved: ∂tU = Ru (U) /εu which implies αk, ρk are conserved during the relaxation. Subtraction of the
momentum equations gives the following ODE on the split velocity ud = u2 − u1: ∂tud − Aoud/εu = 0 where
superscript o denotes the state before relaxation. A first numerical approach is to fix a remaining slip velocity ratio
target at each computational time step ∆t. It defines the characteristic relaxing time:

εu
Ao

= ln(X)∆t with X =
ud(∆t)

uod
and Ao =

αo1ρ
o
1 + αo2ρ

o
2

αo1ρ
o
1α

o
2ρ
o
2

(8)

An instantaneous velocity relaxation is in pratice also possible and manipulating the ODE leads to a unique relaxed
velocity, which is the mass weighted average of the two velocities before relaxing.

Coupling source terms

The physical processes accounted for in the coupling source terms are the atomization of the liquid phase, Satom,
and the pseudo-coalescence of the liquid droplets, Scoal, defined respectively as Satom = α2ρ2fatomλatom and
Scoal = αdρdfcoalλcoal where fatom is the atomization frequency, λatom describes the efficiency of the atom-
ization, fcoal the pseudo-coalescence frequency and λcoal the pseudo-coalescence efficiency, defined all in [16].
Thanks to the increase of disequilibrium by using the seven-equation model with finite velocity relaxation, Satom
has been revisited making full use of the existence of two velocities to track regions with high shear stress and thus
regions where atomization should occur.

Results and Discussion

In the following, numerical simulations are performed on a subcritical cryogenic single-injector configuration
using the hierarchy of diffuse interface models introduced previously, namely the five equation model (5eq), the
instantaneously relaxed seven equation model (IR7eq) and the non-instantaneously relaxed seven equation model
(NIR7eq). On the way to validation of the numerical results with experimental data, the first interest is to attest the
robustness of the numerical method by increasing difficulties one step at a time: first increase the disequilibrium
of the diffuse interface model then activates the coupling via atomization and pseudo-coalescence source terms.
Doing so, we can study properly the impact of the models and the coupling on quantities of interest such as the
liquid core length, its dynamics, the sharpness of the interface and the velocities at the interface. However, we
choose operating conditions as close as possible to a real configuration, the results may thus also be predictive.

Description of the configuration

The configuration choice meets several criteria. First, the geometry mimics the experimental test-bench MAS-
COTTE [25], a cryogenic rocket engine combustion chamber. It adopts a unique co-axial injector of liquid oxygen
O2 (l) circumscribed by gaseous hydrogen H2(g)

. Second, it must offer three dimensions in space to capture the
dynamics of the jet. However, the computational time should not be too heavy to conduct numerical tests and
validations. Hence, only a portion θ ∈ [0, π/3] of the cylindrical chamber is meshed making use of the symmetric
axis of the cylinder preventing the liquid jet to flap. As seen in Figure 2, the mesh is refined inside the injector and
at its exit where the liquid core flows in order to capture the interface dynamics. The mesh size is around a million
tetra cells. The injector lip of length Llip is meshed by four cells at the minimum mesh size ∆xmin. Walls are set
to adiabatic slip boundaries, the variables (ρk, uk, Tk, αk) define the inlets, the outlet is pressure defined at p∞.
Table 1 summarizes key values of the configuration. The numerical simulation has been conducted as followed:
first, the oxygen and the hydrogen have been injected with a ramp-up to reach at τ = τ0 the operating point using
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Figure 2: Geometry and mesh of the configuration

Table 1: Physical parameters of the configuration

J =
ρ1u

2
1

ρ2u2
2

T1/T2 Gas Liquid Llip/∆xmin p∞ εα

∼ 3 ∼ 3 H2(g)
O2(l)

4 10 bar 10−6

the 5eq with no coupling. Then, the simulation has run approximately ten times the characteristic convective time
of the liquid core τconv . At this point, designated τ1, start the comparisons of the models.

Case 1 : comparison of the five-equation model and the instantaneously relaxed seven-equation model without
atomization

The first case aims at comparing the 5eq with the IR7eq. The unique difference emphasized by the mathematical
study lies on the order with respect to ε of the source term of the volume fraction equation. Therefore Figure 3
compares qualitatively the liquid core obtained after two τconv simulation time starting at τ = τ1. Looking at

Figure 3: Comparison of the liquid volume fraction α2: slice at θ=π/6, at τ=τ1 (left) and τ=τ1+2τconv (right),
α2=1.0 α2=0.01

5eq

IR7eq

5eq

IR7eq

the right figure, the outlook of the interface above and below the axis looks quite unchanged at first sight. The
models capture the disruption of the interface due to high-shear stress sparking ligaments. The interface seems
less diffusive in the region close to the liquid injector outlet for the IR7eq. Since the sound speeds involved
in the spectrum of the two models are different, the CFL condition writes not the same. Thus, for a identical
CFL constraint, the time step is about 25% smaller for the latter model explaining potentially the diminution of
diffusion. Furthermore we focus on quantitative results. The length of the liquid core, Llc, made dimensionless
by the diameter of the O2 (l) injector outlet, Dinj , is plotted over time scaled by τconv in Figure 4a along with
its time average 〈Llc〉. The oscillations of the length reveal a pulsating movement along the axial direction. Even
after 4τconv , the behaviour of the liquid core is similar for the two models. Only the average length over time
〈Llc〉 for the IR7eq is 15% greater than for the 5eq. It can be interpreted as a quantitative argument attesting of a
less-diffusive interface in the case of the IR7eq, again certainly due to the gain on accuracy on the volume fraction
equation and a smaller time step. Nevertheless, putting aside the dissimilarities on the volume fraction, the IR7eq
does not offer significant improvement compared to the 5eq.

Case 2 : comparison of the instantaneously relaxed seven-equation model and the non-instantaneously relaxed
seven-equation model with atomization

To better describe the flow in the region close to the interface, it is necessary to increase the disequilibrium of
the phases. In the present configuration, a strong velocity gradient occurs at the interface, and the ratio of kinetic
energy, J = (ρ1u

2
1)/(ρ2u

2
2), is about 3. Physically, the liquid is expected to be accelerated by the gas, but not

instantaneously. Therefore it is physically wrong to assume an instantaneous relaxation time for the velocities of
the phase. The same comment can be done on the temperatures. So far in the literature [21], it has been achieved to
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Figure 4: Model influence on the liquid core length Llc over time and its time average 〈Llc〉 at isovalue
α2=0.95±0.04. Figure 4a compares 5eq and IR7eq. Figure 4b compares NIR7eq and IR7eq
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allow the phases to have their own temperature but always have a common velocity using for example the 5eq. Even
when the 7eq. model has been used, it was always with an instantaneous relaxation time of the velocities mainly
due to numerical difficulties [12]. In such case, the 7eq. model lacks of interest in practice compared to the 5eq.
Here for the first time, we have successfully conducted a simulation of jet atomization with a non-instantaneously
relaxed seven-equation model. Each phase retains its own velocity in the region of the interface. The simulation
has run for 2.5τconv attesting the success of the implementation. Figure 5 presents the volume fraction of liquid
droplets αd and the norm of the slip velocity in the two-phase flow |uslip|. The slip velocity is highly concentrated

Figure 5: NIR7eq with atomization (Legend: blue isovolume of α2 = 0.99, volume fraction of droplets in the
SPIREE solver αd, slip velocity norm |uslip|)

αd low high
|uslip| low high

in the interface region, on the so-to-say "gaseous side", where atomization occurs. It permits to give to the atomized
liquid droplets the speed of the liquid phase. It is a major gain of accuracy as long as the characteristic time of
velocity relaxation is physically well-defined. At the present time, the characteristic time is finite and constant,
but it will be revisited in future works to match physical reality. Finally, a comparison between the IR7eq and no
coupling and the NIR7eq with atomization is proposed hereafter. The reason why the former was not coupled with
atomization in due to the fact that the atomization source term Su→q depends on the existence of a slip velocity ud.
Nevertheless comparing these two models helps us to verify that the activation of the atomization does not destroy
the liquid core. Figure 6 compares qualitatively the liquid interface after 1.5τconv simulation time. Interestingly,

Figure 6: Comparison of the liquid volume fraction α2: slice at θ=π/6, at τ=τ1 (left) and τ=τ1+1.5τconv (right),
α2=1.0 α2=0.01

atomized NIR7eq

IR7eq

atomized NIR7eq

IR7eq

the appearance is similar for the two models meaning the atomization process is not interfering with the liquid
core, which is what was expected based on the choice of the efficiencies of Satom and Scoal. Furthermore the
length of the liquid core Llc is also very similar up to the point that the two models show the same time averaged
length (Figure 4b) which confirms that the atomization procedure has been carefully implemented.
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Conclusion and future prospects

An original fully Eulerian modelling strategy of jet atomization in sub-critical combustion chambers has been
successfully implemented. First, it relies on the coupling of a hierarchy of diffuse interface models from a five-
equation model to a non-instantaneously relaxed seven-equation model with an eulerian model derived by kinetic-
based moment method (KBMM). Temperature and velocity disequilibrium levels for the diffuse interface model
have been included to describes the separated and mixed zone. The numerical strategy has copped with the strong
discontinuities encountered in jet atomization thanks to a robust and accurate numerical method using multi-slope
MUSCL technique. All the models have captured the pulsating movement of the liquid core and the distortion of
the interface due to high-shear stress. The seven-equation model when non-instantaneously relaxed, has permitted
to feed the KBMM element with a liquid velocity.

In future works, we will first aim at defining a physical dynamic velocity relaxation time. Then, we will couple the
diffuse interface model with a more accurate KBMM element such as multi-sectional models including coalescence
and evaporation source terms to obtain a predictive spray of droplets and compare it to experimental data obtained
on the test-bench MASCOTTE [25].
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