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Abstract. The Minimal Description Length (MDL) principle is a pow-
erful and well founded approach, which has been successfully applied in
a wide range of Data Mining tasks. In this paper we address the problem
of pattern mining with MDL. We discuss how constraints – background
knowledge on interestingness of patterns – can be embedded into MDL
and argue the benefits of MDL over a simple selection of patterns based
on measures.

1 Introduction

Formal Concept Analysis (FCA) is a formalism that can be applied to Knowledge
Discovery and Data Mining. It is used commonly for solving a wide range of
tasks: from pattern mining to design of ontologies.

Even controlled application of FCA in practice may result in exponentially
large output, which entails additional steps aimed at reducing / selecting a small
subset of concepts. The reduction of the number of formal concepts may be done
during pre-/postprocessing stages.

In this paper we propose to combine two of the most common concept filtering
approaches: the Minimal Description Length principle (MDL) [2, 6, 7, 12] and
measure-based selection [8]. This combination tries to take the advantages of
both methods and reduces the drawbacks of each one.

The idea of MDL is to select a subset of patterns that ensures the best
compression of data. It has been embedded into FCA in a number of ways: for
defining how many factors to use in Boolean matrix factorization (BMF) [3,10,11]
or to get more diverse itemsets in frequent pattern mining (FIM) [1, 9, 13] or
to select triclusters [14]. Being threshold-free, MDL provides a succinct non-
redundant set of concepts. However, it has some shortcomings. Since the length
minimisation is at least NP-complete, the implementation of MDL is based on
heuristics. The selected itemsets cannot be interpreted easily by experts.

Unlike MDL, the selection of itemsets based of values of some measure is
easy to interpret. A measure reflects the assumption on interestingness of pat-
terns. Selecting the best itemsets w.r.t. the chosen measure one obtains patterns



with the desired characteristics. However, this approach requires threshold and
returns a lot of similar patterns.

In this paper we use the Krimp algorithm as an implementation of MDL
principle to improve measure-based selection. Krimp is based on greedy covering
of data by a set of patterns (subsets of attributes) called candidate set. The
patterns in a candidate set are ordered w.r.t. the pattern length and its frequency.
We propose to use different interestingness measures to order candidates. This
modification allows for embedding background knowledge, i.e., our assumptions
on interestingness. The aim of the ordering w.r.t. different measures is to improve
measure-based pattern selection rather than to compress data the best. Using a
preferable ordering one gets a good compression as well as only those patterns
that satisfy defined constraints.

The rest of the paper has the following structure. In Section 2 we briefly
recall the main notions of FCA. In Section 3 we describe the MDL principle and
discuss how interestingness measures can be used within MDL. The benefits of
our approach are discussed in Section 4, where we compare MDL-based with
threshold-based measure selection. Section 5 gives the conclusion and discuss
the direction of future work.

2 Formal Concept Analysis: Basic Notions

Here we briefly recall FCA terminology [5]. A formal context is a triple (G,M, I),
where G = {g1, g2, ..., gn} is called a set objects, M = {m1,m2, . . . ,mk} is
called a set attributes and I ⊆ G×M is a relation called incidence relation, i.e.
(g,m) ∈ I if the object g has the attribute m. The derivation operators (·)′ are
defined for A ⊆ G and B ⊆M as follows:

A′ = {m ∈M | ∀g ∈ A : gIm}
B′ = {g ∈ G | ∀m ∈ B : gIm}

A′ is the set of attributes common to all objects of A and B′ is the set of objects
sharing all attributes of B. An object g is said to contain a pattern (set of items
or itemset) B ⊆M if B ⊆ g′. The double application of (·)′ is a closure operator,
i.e. (·)′′ is extensive, idempotent and monotone. Sets A ⊆ G, B ⊆M , such that
A = A′′ and B = B′′, are said to be closed.

A (formal) concept is a pair (A,B), where A ⊆ G, B ⊆ M and A′ = B,
B′ = A. A is called the (formal) extent and B is called the (formal) intent of
the concept (A,B). A formal concept is said to cover set of objects A and set
of attributes B. A partial order 6 is defined on the set of concepts as follows:
(A,B) ≤ (C,D) iff A ⊆ C (D ⊆ B), a pair (A,B) is a subconcept of (C,D),
while (C,D) is a superconcept of (A,B).

The number of formal concepts can grow exponentially w.r.t. the size of a
formal context, i.e., the number of objects in G and attributes in M . We say
that a set of patterns S covers objects in G if

⋃
B∈S B′ = G, where B ⊆M . We

are interested in a small set of patterns (intents) S that covers all objects and
most of their attributes, i.e.,

∣∣⋃
B∈S{gIm | g ∈ B′,m ∈ B}

∣∣ ≈ |I|.



Example. Let us consider a toy example. A formal context is given in Figure 1 (1).
We consider 3 sets of itemsets (intents): S2 = {{abc}, {bcde}, {de}, {cde}, {ac}},
S3 = {{bc}, {de}, {ac}} and S4 = {{c}, {de}}. The corresponding coverings of
the context are given in Figure 1 (2-4). The intensity of colors is proportional to
the number of times a particular “cross” is covered by intents. In our example
“crosses” are covered by intents from 0 to 4 times. We count not only the number
of intents, but also the number of covered “crosses”, we call this value the rate of
a cover relation, or RCR = |“crosses” that covered at least once|/|I|. It can be
seen from the covering given in Figure 1 that S3 (Figure 1, (3)) provides the best
covering w.r.t. the number of itemsets (intents) and the rate of covered elements
in the object-attribute relation.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(1) A formal
context

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(2) Covering of
objects with S2 =
{{abc}, {bcde}, {de},
{cde}, {ac}}.
RCR = 1.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(3) Covering of
objects with S3 =
{{bc}, {de}, {ac}}.
RCR = 1.

a b c d e

1 x x x

2 x x x x

3 x x

4 x x x x

5 x x

(4) Covering of
objects with S4 =
{{c}, {de}}. RCR =
10/15.

Fig. 1. Formal context and its coverings.

The Minimal Description Length principle allows for covering with a sub-
stantial rate of “crosses” in I by a small number of patterns. In the next section
we use MDL in a more general framework, i.e., in pattern mining. Intents of
formal concepts, in turn, can be considered as patterns of a special kind.

3 Minimal Description Length: Basic Notions

MDL is aimed to find a subset of patterns that compresses data the best. In
our study we use Krimp [13] as a practical implementation of this principle. In
Section 3.1 we give a short description of it and in Section 3.2 we discuss how
background knowledge can be embedded into MDL.

3.1 MDL in Practice: the Krimp Algorithm

The input of the algorithm is a dataset and a list of patterns (that are computed
on the same dataset). The patterns are ordered w.r.t. their length and frequency.
The result of Krimp is a two-column code table that consists of patterns and
their encoding lengths (an examples of code tables are given in Figure 2). The
objective of Krimp is minimization of the function

L(D,CT ) = L(D | CT ) + L(CT | D), (1)



where L(D | CT ) is the length of the dataset D = {g′ | g ∈ G} encoded
with the code table CT and L(CT | D) is the length of the code table CT
computed w.r.t. D. The objects are encoded by disjoint patterns in a greedy
manner, i.e., starting from the top elements of CT. The length of pattern B
is computed using an optimal prefix code given by Shannon entropy, i.e., the
length l(B) = − log (u(B)/U) is inversely proportional to the usage u(B) =
|{t ∈ D | B ∈ cover(t, CT )} |. The usage shows how many times B is used to
cover objects in D, U =

∑
B∈CT u(B) is the total usage of itemsets. We leave

the details on itemset storage out of scope of this paper and take into account the
compression related to a particular choice of itemsets, i.e., we use the simplified
version of the lengths:

L(D | CT ) =
∑
g∈D

∑
B∈cover(g,CT )

l(B) = −
∑

B∈CT

u(B) log
u(B)

U
,

L(CT | D) =
∑

B∈CT

l(B) + code(B).

A code table is incrementally computed. At the beginning it contains only
single-attribute patterns {{m} | m ∈M}. A set of patterns – candidates in the
code table – are ordered w.r.t. their length (intent cardinality) and frequency
(extent cardinality). At each step the best candidate is added to the code table
if its usage allows for smaller encoding length, otherwise it is removed from the
code table and the candidate set.

Example. Let us consider how Krimp selects patterns using the running example
(the context is given in Figure 1, (1)). Here we represent the context as a set of
transactions, see Figure 2, (1). The main stages are given in Figure 2, (2-4). As
candidates we use intents of formal concepts with the size of intent and extent
exceeding 1. We sort them first by the size of intent and then by the size of
extent (in descending order). Let us consider some steps of the algorithm.

Initial state (Figure 2, (2)): the code table consists of single-attribute pat-
terns. Usage is equal to frequency. Sets of attributes in the dataset are covered
by single-attribute patterns.

First step (Figure 2, (3)): An attempt to add the top pattern from the
candidate set. Pattern ac is used to cover object g1, g4 and g5 (Figure 2, (3)),
the usage of single attributes a and c decreases by 3. The description length
(see Formula 1) is computed for the updated code table and covering. Since
the inclusion of ac into the code table provides smaller description length, ac is
accepted for the code table.

Further, the top patterns one by one are used to minimize the description
length.

Last step (Figure 2, (4)): The last candidate bc can cover only object g2 (since
subsets bc are partially covered by other members of the code table). It is not
added since its inclusion in the code table does not provide better compression
(i.e. smaller description length). The subset of MDL-optimal patterns is {{ac},
{de}}.
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Fig. 2. The main stages of the Krimp algorithm. “Covering” tables show the dataset
with covering by itemsets from the corresponding code table above the covering, (·)
depicts an itemset that covers some attributes of an object. CT is a two-column code
table, where “IS” and“U” stand for itemsets and their usage in greedy covering, re-
spectively. “CS” is a candidate set.

3.2 MDL in Practice: Compression under Constraints

The implementation of the MDL principle is based on heuristics and allows for
the solution which is close to the optimal one. In practice, there exist several
ways to select subsets of patterns that have almost the same size and ensure
good compression. Thus, it becomes difficult to explain why a particular subset
was chosen.

More than that, by selecting a subset of patterns one is interested in pat-
terns that have particular properties, e.g., being stable w.r.t. noise, have high
probability under certain condition, etc. Despite proper interpretability, the ap-
plication of interestingness measures requires a threshold and results in a re-
dundant set of patterns (quite similar patterns). As interestingness measures of
concept (A,B) we took frequency fr(B) = |A|, i.e. the size of extent, length
len(B) = |B|, i.e., the size of the intent, and lift lift(B) =

∏
b∈B Pr(b)/Pr(B),

where Pr(·) = |(·)′|/|G|.
In our study we combine the measure-based selection with Krimp to get a

threshold-free approach that provides a small non-redundant subset of patterns
having desired properties. The modified approach works as follows. First, all
patterns are sorted w.r.t. chosen interestingness measures. Then the ordered set
is considered as a candidate set. The greedy covering strategy (Krimp) is applied
to select the most interesting and diverse patterns. The original workflow and
the adapted version that is used in the paper are given in Figure 3.



Original Krimp

Adapted Krimp

Compute
(frequent) patterns

Reorder patterns w.r.t. Apply greedy strategy
to cover datalength and frequency

Compute closed
(frequent) patterns

Reorder patterns w.r.t. Apply greedy strategy
to cover dataan interestingness measure

Fig. 3. The workflow for pattern mining by the original Krimp and its adapted version.

In the next section we show how the embedding of background knowledge
(i.e. reordering of patterns w.r.t. interestingness measures) affects the results of
pattern mining.

4 MDL in Closed Itemset Mining

In the worst case a concept lattice contains an exponential number of partially
ordered intents (concepts), the application of MDL allows for the selection of a
small subset of intents. Our experiments show that the application of the MDL
principle allows for significant reduction in the number of patterns (up to 5% of
the formal concepts, see Table 2). In the context of measure-based pattern min-
ing, the application of MDL makes the measure-based selection threshold-free.
More than that, a set of the MDL-optimal patterns has better characteristics
than the top-n patterns. First of all, almost the same concepts (intents) are
removed from the set of selected patterns. In our experiments we call this prop-
erty “non-redundancy”. For a set of patterns to be “non-redundant” means to
have the following characteristics: differ from the most similar pattern in the set
(i.e., distance to the 1st nearest neighbor), make shallow hierarchy by inclusion
B1 ⊂ B2 ⊂ . . . ⊂ Bn (i.e., average length of the longest paths built from par-
tially ordered itemsets) and do not have a lot of more general patterns Bi ⊂ B,
i ∈ [1, k] (the rate of patterns with children).

If we compare the sets of top-n and MDL-optimal patterns of the same
size we will see, as a side effects of the “non-redundancy”, that MDL-optimal
patterns cover in total more data (“crosses” in a formal context) being diverse
and interesting w.r.t. a given measure.

It is clear to see that MDL approach not only dispenses from predefined
thresholds but also filter out similar interesting patterns and provides more com-
prehensive data description.

We examine the following orders of patterns: area fr lift(B) = fr(B) ·
lift(B), area len fr(B) = len(B) · fr(B), area len lift(B) = len(B) · lift(B)
and sequential ordering by len and fr, len and lift, lift and len (the patterns
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Fig. 4. The principle of computing MDL-optimal and top-n sets of patterns

are ordered by the chosen measure on Step 1 in Figure 4). An example of ordering
for frequent closed itemsets (frequency is greater than 2) for the running example
is given in Table 1.

Table 1. Values of interestingness measures and ordering of patterns for the running
example from Figure 1, (1). An alternative ordering is given in (·), to select one ordering
among the altervative ones additional rules are required to set.

Concepts
(A,B)

fr
|A|

len
|B|

area
(len ×

fr)

patterns ordered w.r.t.
length and frequency
values of measures

patterns ordered w.r.t.
area len fr

values of measures

({1245},{c}) 4 1 4 {cde}; 3,2 {de} ({ac}, {cde}); 6
({234},{de}) 3 2 6 {de} ({ac}); 2,3 {ac} ({de}, {cde}); 6
({145},{ac}) 3 2 6 {ac} ({de}); 2,3 {cde} ({de}, {ac}); 6
({12},{bc}) 2 2 4 {bc}; 2,2 {c} ({bc}); 4
({24},{cde}) 2 3 6 {c}; 1,4 {bc} ({c}); 4

The discretized datasets from LUCS-KDD repository [4] were used in the
study, the parameters of the datasets are given in Table 2. We split each dataset
into 10 parts and in each of 10 experiments we use 9 of them as a training set
and one part as a test set.

In this section we compare characteristics of MDL-optimal with top-n item-
sets, patterns in both sets are ordered w.r.t. the same interestingness measure.
The size of a set of top-n itemsets is equal to the size of a set of MDL-optimal
patterns. The scheme of computing these sets is given in Figure 4. We com-
pare the sets of patterns within the following properties: non-redundancy, data
covering and representativeness.



Table 2. Characteristics of datasets

dataset
nmb.
of

obj.

nmb.
of

attr.

nmb.
of

concepts

Number of MDL-optimal
area
fr lift

area
len fr

area
len lift

len
fr

len
lift

lift
len

breast 699 16 702 36.0 32.2 20.4 37.3 37.3 33.5

car 1 728 25 12 420 868.4 849.2 138.6 714.6 847.7 698.3

ecoli 336 29 690 58.8 55.9 16.4 64.9 65.6 55.9

iris 150 19 183 31.1 28.9 12.9 34.8 34.6 26.3

led7 3 200 24 3 808 108.0 118.3 64.2 108.7 108.7 130.3

pima 768 38 2 769 110.1 106.3 35.9 120.6 112.1 101.7

4.1 Non-redundancy

By redundant set of patterns we mean a set of patterns that contains a lot of
similar itemsets. We measure redundancy by three parameters: average distance
to the 1st nearest neighbor, average length of the longest paths built from par-
tially ordered itemsets, and average number of itemsets that have at least one
more general itemset (child).

Distance to the 1st nearest neighbor. To compute this parameter we represent
patterns as binary vectors and take into account the smallest Euclidean distance
between each pattern and the remaining patterns in the pattern set. The average
value for a pattern set is taken as the average distance to the 1st nearest neighbor.
A set containing a lot of similar patterns will have low average values, see Figure 5
(1) for an example.

As it can be seen from Figure 6 (1), the MDL principle provides much more
distinctive itemsets. Top-n concepts have a lot of similar patterns, while MDL-
optimal ones are pairwise distinctive (w.r.t. Euclidean distance).

Average length of the longest paths built from partially ordered itemsets. The
patterns can be partially ordered by inclusion, i.e. B1 ⊂ B2 ⊂ . . . ⊂ Bn, where
Bn is the most specific patters and B1 is the most general one. We call this
ordered sequences paths. If Bn ⊆ g′ then Bi ⊆ g′ is guaranteed for all i ∈
[1, n− 1]. Longer paths contain more patterns describing the same objects. Thus,
a long path can be considered as an indicator of redundancy. In other words,
these patterns characterize the same objects at different levels of abstraction and
contain only a few new details w.r.t. the nearest neighbors in the path. Short
paths correspond to “flat” structures with more varied patterns. An example of
comparison of two tiny pattern sets is given in Figure 5, (2).

As we see in Figure 6 (b), for ordering w.r.t. len (see len fr and len lift) the
MDL priciple does not provide any benefits, while its application to area len sep
and area sep lift, lift len fr allows for more flattened structures, even more
flattened than with len. It means that pattern mining with area len sep and
area sep lift, lift len fr can be significantly improved by the application of
MDL.
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Fig. 5. Non-redundancy measures computed for patterns set given in Figure 1. The
set S3 (column 1) is better than S2 (column 2) w.r.t. all the parameters: the average
distance is higher, the average length of the longest paths and the rate of patterns with
children are smaller.



(1) Distance to the 1NN (2) The average path
lengths

(3) Rate of patterns with chil-
dren.

Fig. 6. Non-redundancy parameters: (1) the average distance to the 1st nearest neigh-
bor for itemsets selected with MDL and top-n itemsets; (2) the average length of the
longest paths computed on the chain of itemsets formed by inclusion of its attributes;
(3) the average rate of itemsets with children. On the X-axis is different orderings of
patterns, on the Y -axis is the values of the listed above non-redundancy parameters
for MDL-optimal set (blue) and top-n (green) set of the same size.

Average number of itemsets with children (more general itemsets). This param-
eter characterizes the uniqueness of patterns in a set, absence of the second
pattern B2 ⊂ B1 that characterizes the same subset as a more specific one. This
parameter is related to the previous measure, but it indicates just an amount
of itemsets having at least one more general itemset. An example of computing
this parameter is given on Figure 5, (3).

The results of experiments (see Figure 6, (c)) show that the MDL principle
selects more distinctive itemsets than top-n itemsets.

4.2 Data coverage

A subset of selected patterns can be considered as a concise representation of
a dataset. Thus, it is important to know how much information is lost by com-
pression. We measure this parameter by the rate of covered attributes. Values
close to 1 correspond to the lossless compression.

The average covering rate is given in Figure 7 (1). With the same number
of patterns MDL ensures better covering. For area fr lift, area len fr and
area len lift MDL-optimal set covers much more data than top-n patterns.

4.3 Itemset typicality (representativeness)

In our experiments we also address typicality of patterns. In this study we mea-
sure it by the usage of patterns. To compute usage we consider the ordered



(1) Data coverage (2) Itemset typicality

Fig. 7. Pattern set parameters: (1) the average covering rate of itemsets (i.e. the
rate of crosses covered by patterns); (2) the average itemset usage (reflects typical-
ity/representativeness of patterns). On the X-axis is different orderings of patterns,
on the Y -axis is the covering rate and the average itemset usage for MDL-optimal set
(blue) and top-n (green) set of the same size.

patterns (in case of MDL, top patterns are those that have the shortest encod-
ing length, for top-n they are top-patterns w.r.t. a chosen measure). The ordered
patterns are used one by one to cover data. The attributes are covered only ones
(disjoint covering by patterns). The number of times a patterns is used in the
covering is its usage, thus the usage does not exceed the pattern frequency. For
example, in Figure 2 (4), the frequency of bc is 2, but it can be used only one
time to cover (b)(c)(de), since in (ac)(b) only b is left to cover.

It should be noted that it is not obvious which values are better. The usage
serves to characterize a subset of patterns. The high values correspond to a
subset of common patterns, while low values indicates that a subset contains
less typical, but still interesting (w.r.t. interestingness measures) patterns.

Figure 7(2) shows the average usage for MDL-optimal and top-n patterns.
The usage of MDL-optimal patterns is almost the same for different orders while
the usage of top-n is dependent on ordering.

5 Conclusion

In the paper we propose a new approach to the measure-based pattern mining. It
can be considered as an “implementation of the MDL principle under constrains”
or “embedding of background knowledge (on interestingness) into MDL”. We took
the Krimp algorithm as a basic implementation of MDL and studied a range of
interestingness measures within it.



The proposed approach is a threshold-free method for the selection of a small
set of patterns having desired properties. The chosen patterns are diverse and
varied, they cover almost all attributes of objects.

The studied Krimp algorithm can be changed further to improve (closed)
pattern mining as follows. The greedy strategy may be relaxed, i.e., overlapping
patterns can be used to cover an object. Some additional mechanism may be
proposed to deal with noisy data (missed values).
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