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1. Abstract and Summary

By choosing a different but physically consistent set of equivalence transformations than the incon-
sistent one proposed by Sadeghi et al. (2018), it will be shown how for a temporally evolving plane
jet the numerically computed statistical profiles up to second moment can be correctly scaled such
as to collapse into a single invariant profile.

In contrast to the claims made in Sadeghi et al. (2018), the algorithm developed therein and then
re-iterated herein, is no prediction algorithm as how turbulent jet flow scales. It only is a sophisticated
post-processing algorithm to find within a trial-and-error process the appropriate scalings such that
numerically computed profiles collapse approximately into a single profile. The algorithm is not
able to predict the functional structure of these singly collapsed profiles, not even approximately.
The reason is that although the algorithm is based on a systematic Lie-group invariant analysis for
the statistical equations of a temporally evolving turbulent jet flow, these equations are unclosed,
and so are their invariant transformations. Hence, when performing any invariant analysis on such
an infinite hierarchy of unclosed moment equations, it will predominately result into a non-unique
solution involving arbitrary functions for which from the outset it is not clear how to specify them.
The closure problem of turbulence cannot be circumvented by just employing the method of Lie-
group invariant analysis alone, since the arbitrariness just gets shifted from one function to another
(see also e.g. Frewer et al. (2014a) and Frewer & Khujadze (2016)). Hence, without modelling
these unclosed equations, an a priori prediction as how turbulence scales is and will not be possible.
Only a posteriori, by anticipating what to expect from numerical or experimental data, the adequate
invariant scalings can be generated through an iterative trial-and-error process as shown here in this
comment once again.

Also, just because of this arbitrariness involved, one has to be aware of the associated problem that
unphysical invariant transformations might get generated once making a certain choice. Hence, it is
important to have a physical guideline as how to make a physically sound choice. One such guideline
is the classical principle of cause and effect, namely that any statistical invariance must have a cause
in the underlying instantaneous Navier-Stokes equations, where the cause itself, however, need not
to be an invariant. This guideline will play a central role in this comment (for theoretical details,
please see e.g. Frewer et al. (2015, 2016) and Appendix A in Frewer et al. (2017)) — a guideline
which again is intentionally and wittingly missing in Sadeghi et al. (2018), with the result that
therein again unphysical and inconsistent invariances get generated. Even when formally considering
the statistically infinite hierarchy of unclosed moment equations, the still existing connection to
the deterministic and instantaneous Navier-Stokes equations may not be ignored, simply because it
are these equations which due to their spatially nonlocal and temporally chaotic behavior induce
the infinite hierarchy of statistical equations, and not vice versa. Those who generate statistical
invariances without establishing a connection to the underlying Navier-Stokes equations act grossly
negligent, like again in Sadeghi et al. (2018), who even justify their unphysical and inconsistent
analysis with the bold statement: “These symmetries are denoted statistical symmetries and they
have no direct counterpart in the Navier-Stokes equations” (p.239).
∗Email address for correspondence: frewer.science@gmail.com
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Two points are to be noted here: Firstly, due to the unclosedness of the statistical moment
equations, the invariant transformations derived herein are only equivalence transformations and
not symmetry transformations as incorrectly denoted in Sadeghi et al. (2018). It is not a semantic
sophistry to carefully distinguish between equivalence and symmetry transformations, because in the
latter, when applied to a certain set of differential equations, solutions get mapped to solutions of
the same set of equations again, while the former acts in a weaker sense, where the considered set of
equations get mapped to a different set of equations of the same class. In other words, equivalence
transformations do not allow for the same insight into the solution structure of differential equations
as symmetry transformations do — see e.g. Frewer et al. (2014b) for a detailed discussion.

Secondly, the invariance analysis presented herein is only performed up to the second moment
in the statistical hierarchy. As in Sadeghi et al. (2018), statements about the scaling behaviour of
higher order moments are not made, so it cannot be ruled out that the scaling which works for second
order also works for higher order moments. This important consistency check remains pending, in
particular as the DNS data for higher order moments are not yet at disposal. The data used in this
comment is taken from Sadeghi et al. (2018) and has been extracted by WebPlotDigitizer.

Finally, this comment will close with Sec. 5, which in detail will reveal the flaws and problems the
study Sadeghi et al. (2018) faces. The content of that section will not only invalidate their study,
but will also serve as a note to directly compare with the correct approach presented herein.

2. Statistical equivalences for a temporally evolving turbulent plane jet

Considered is the 1-point defining set of unclosed turbulent transport equations up to second moment
in the inviscid limit (ν = 0) (see Sadeghi et al. (2018) for all details)

∂tU1 + ∂x2H
0
12 = 0,

∂tH
0
ij + ∂x2H

0
ij2 + ∂x2

(
δi2PUj

0 + PUi
0
δj2
)
− Φ0

ij = 0,

 (2.1)

where U1 is the mean streamwise velocity field of this inviscid and temporally evolving plane jet,
PUi its pressure-velocity correlation, and

H0
ij = UiUj , H0

ijk = UiUjUk, Φ0
ij = P (∂xiUj + ∂xjUi), (2.2)

the second and third instantaneous velocity moments and the pressure-rate-of-strain tensor of the jet,
respectively. The superscript ‘0’, as defined in Sadeghi et al. (2018), indicates that we are dealing here
with a 1-point and not a spatially 2-point statistics, i.e., in which for all fields the 2-point correlation
distance r has been set to zero in the limit r→ 0. The four non-zero instantaneous double-velocity
moments are related to the Reynolds stresses as (Eqs. (3.2)-(3.5) in Sadeghi et al. (2018))

H0
11 = R0

11 + U
2
1, H0

22 = R0
22, H0

33 = R0
33, H0

12 = R0
12. (2.3)

Performing a systematic equivalence analysis on (2.1) by using, for example, the Lie software package
‘DESOLV-II’ by Vu et al. (2012), one obtains, in contrast to the particular and already pre-specified
solution as presented by Eqs. (A1)-(A11) in Sadeghi et al. (2018), the far more general solution †

ξt = F1(t),

ξx2 = F2(t, x2),

ηU1
= a1U1 − U1∂x2F2(t, x2) + F3(t, x2),

ηH0
12

= a1H
0
12 + U1∂tF2(t, x2)−H0

12∂tF1(t) + F4(t, x2), where ∂x2F4 = −∂tF3,

ηH0
ii

= U1F5,i,1(t, x2) +H0
12F5,i,12(t, x2) +

∑3
j=1H

0
jjF5,i,jj(t, x2) + F5,i,0(t, x2),


(2.4)

†To note is that the general solution (2.4) can also be derived from the 2-point correlation equations along with
their continuity constraints as described in Sadeghi et al. (2018), by letting in the end the correlation length r in the
solutions go to zero.

https://automeris.io/WebPlotDigitizer/
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after exploiting the spanwise (x3) symmetry of the flow configuration.† By augmenting the defining
system (2.1) with the still required mass flux constraint

∫∞
−∞ U1dx2 = const., will restrict the general

solution (2.4) only marginally to:

a1 = 0, and
∫ ∞
−∞
F3(t, x2)dx2 = 0, (2.5)

i.e., F3 should be antisymmetric in x2; the derivation of these two restrictions is given in Appendix A.
For the sake of brevity, the solutions for the triple-velocity and pressure-velocity correlations are not
shown here at this stage in (2.4); they will be shown further below when we try to consistently reduce
the complexity of this solution. The presentation of (2.4) should only give a first impression of the
high degree of arbitrariness which is involved here through the emergence of arbitrary space-time
functions F for each variable.‡ Also, it gives the correct impression of what from the outset a Lie-
group invariance analysis can predict, without any prior intervention from the user: For a temporally
evolving plane jet, as in (2.4), not too much, as the degree of arbitrariness is too high here in this case.
In this sense, the presentation of the “general” equivalence solution given in Sadeghi et al. (2018) by
Eqs. (A1)-(A11) is highly misleading, as the reader might think that this reduced solution is already
the most general solution any Lie-group invariance analysis would give, particularly, as nowhere in
the text it is mentioned that Eqs. (A1)-(A11) is actually only a reduced solution and that it thus, in
fact, already constitutes a biased solution specified by the user.‡‡

This is exactly what will be done now, to reduce the immense complexity of the general equivalence
solution (2.4) into a manageable expression. The guideline should be to conduct the reduction in
a consistent and physically meaningful way. The first step should be to establish a connection to
the classical scaling relations, since experimental and numerical evidence approximately support this
scaling for the mean velocity field U1 as well as for the off-diagonal Reynolds stress R0

12. The classical
invariant scalings for these two fields are (see Sadeghi et al. (2018) for details)

Ũ1(x̃2) = U1(t, x2)
Uc(t)

, R̃0
12(x̃2) = R0

12(t, x2)
U2
c (t) , (2.6)

where Ũ1 and R̃0
12 are the corresponding self-similar fields, defined as a function of the similarity

variable
x̃2 = x2

δ0.5(t) , with the jet half-width: δ0.5(t) = B
√
t− t0, (2.7)

being the dimensionless invariant lateral distance, and normalized by the mean velocity on the
centreline (x2 = 0)

U1(t, 0) =: Uc(t) = A√
t− t0

. (2.8)

For an initial Reynolds number of 8000, based on the initial centreline velocity Uc(0) and the initial
jet thickness δ0.5(0), the global constants A, B and t0 were numerically best fitted in Sadeghi et al.
(2018) to the values

A = 1.91, B = 1/A = 0.524, t0 = 8.64, (2.9)

in the time range 20 ≤ t ≤ 30, where A and B both carry the same dimension of L/
√
T .

Now, when looking at the self-similar profile of the mean velocity (see Fig. 3 in Sadeghi et al.
(2018)), it approximately reminds us of a Gaussian profile being the solution of the diffusion equation.
And since, in particular, the dimensionless and self-similar scaling (2.7) and (2.6) is compatible with

†Due to spanwise homogeneity and a spanwise reflection symmetry in the flow, all moments involving an uneven
number of spanwise velocity fields vanish.

‡Except for the infinitesimal equivalence generator of the time variable ξt, which is an arbitrary function only of
time and not of space.
‡‡It is straightforward to see that when choosing in (2.4) the arbitrary space-time functions F appropriately, that

it will reduce to the particular solution Eqs. (A1)-(A7) in Sadeghi et al. (2018). However, the generators for the triple-
velocities ηH0

ij2
(Eqs. (A8)-(A9)) in Sadeghi et al. (2018) are not correct, as they all miss a term proportional to H0

ij∂tξx2 .
Furthermore, Eq. (A7) contains a misprint: Instead of F3(t)U1, this term should read (∂tF3(t))U1.
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the diffusion equation when re-scaled into an overall dimensionless form

∂
(

U1
A/
√
T

)
∂
(
t
T

) =
∂2
(

U1
A/
√
T

)
∂
(

x2
B
√
T

)2 ⇐⇒ ∂U1
∂t

= νT
∂2U1
∂x2

2
, with νT = B2 = 0.275, (2.10)

where B2 then can be identified as the turbulent viscosity νT , which here for a Reynolds-number
of 8000 takes the specific value 0.275, it is thus, in a first approximative sense, physically reasonable
and not far-fetched to augment, within the considered time range 20≤ t≤30, the statistically unclosed
system (2.1) with equation (2.10) as an approximate defining equation† for the mean velocity U1

∂tU1 = νT∂
2
x2U1, (2.11)

but, and this is important, with a still unknown initial condition‡ within 20 ≤ t ≤ 30.
Re-performing the Lie-group invariance analysis of system (2.1) by including equation (2.11), will

restrict in (2.4) three arbitrary functions: The two functions for ξt and ξx2 down to two linearly
uncoupled functions

F1(t) = t− c1, F2(t, x2) = 1
2(x2 − c2), (2.12)

where c1 and c2 are arbitrary constants, and the function F3 down to be a particular solution of the
diffusion equation (2.11). The complete solution for the infinitesimal equivalence generators (2.4)
thus then reads (including the restrictions (2.5))

ξt = t− c1,

ξx2 = 1
2(x2 − c2),

ηU1
= −1

2U1 + F3(t, x2), where ∂tF3 = νT∂
2
x2F3, and

∫∞
−∞F3dx2 = 0,

ηH0
12

= −H0
12 + F4(t, x2), where ∂x2F4 = −∂tF3,

ηH0
ii

= U1F5,i,1(t, x2) +H0
12F5,i,12(t, x2) +

∑3
j=1H

0
jjF5,i,jj(t, x2) + F5,i,0(t, x2),

ηH0
122

= −3
2H

0
122 − 3

2PU1
0 − η

PU1
0 + F6(t, x2),

ηH0
ii2

= −1
2H

0
ii2 +H0

12F5,i,1(t, x2) +H0
122F5,i,12(t, x2) +

∑3
j=1H

0
jj2F5,i,jj(t, x2)

+ PU1
0F5,i,12(t, x2) + 2PU2

0F5,i,22(t, x2)− δi2
(
PU2

0 + 2η
PU2

0

)
+ F7,i,0(t, x2),

η
PU1

0 = F8(t, x2, U1, H
0
12, H

0
ii, H

0
122, H

0
ii2, PU1

0
, PU2

0
,Φ0

ij),

η
PU2

0 = F9(t, x2, U1, H
0
12, H

0
ii, H

0
122, H

0
ii2, PU1

0
, PU2

0
,Φ0

ij),



(2.13)

where F8 and F9 are fully arbitrary functions in all variables involved. For the sake of brevity, the
lengthy expressions for the pressure-rate-of-strain generators ηΦ0

ij
are not shown here, in particular

as they also do not reveal any exciting new information, since they basically just compensate the
functional structures given by the above triple-velocity and pressure-velocity correlations.

Although the original and untouched equivalence solution (2.4) got drastically reduced in the
independent variables when including the empirically consistent assumption (2.11) as a further con-
straint to the defining system (2.1), the resulting solution (2.13) is still highly arbitrary in all its
dependent variables. In the next section, a specific choice for these unclosed terms will be made.
Although a physically consistent choice is made, it is not dictated by theory. It is a purely empir-
ical choice, to be only seen as a single particular choice within an infinite trial-and-error process of
infinitely many other possible choices on a way to find the optimal choice that will match numerical
or experimental data best.

†Later, in Sec. 4 a better and higher-order approximation will be given based on the finding by Bradbury (1965).
‡Although (2.11) as a Cauchy problem can be generally solved within the time range 20 ≤ t ≤ 30 as

U1(t, x2) = 1√
4πνT (t−20)

∫∞
−∞ dx

′
2U1(20, x′2)e−

(x2−x′2)2

4νT (t−20) ,

a concrete solution can only be generated if the initial condition U1(20, x2) is priorly known or pre-established.
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3. Specifying a particular equivalence solution

In the following, let the set of open constants and arbitrary functions in (2.13) up to second moment
be specifically chosen as:

c1 = t0, c2 = 0, F3 = F4 = F5,i,1 = F5,i,12 = 0, F5,i,jj = −δij , ∀i, j,

F5,i,0 = αi√
t− t0

e
−
βx2

2
t−t0 , F8 = −3

2PU1
0 − U1F5,2,0 + G1, F9 = −3

2PU2
0 + G2,

 (3.1)

where αi and β are arbitrary constants, and G1 and G2 arbitrary functions of space and time only.
The equivalence generators (2.13) then take the explicit form

ξt = t− t0, ξx2 = 1
2x2, ηU1

= −1
2U1,

ηH0
12

= −H0
12, ηH0

ii
= −H0

ii + αi√
t− t0

e
−
βx2

2
t−t0 ,

ηH0
122

= −3
2H

0
122 + U1

α2√
t− t0

e
−
βx2

2
t−t0 − G1(t, x2) + F6(t, x2),

ηH0
ii2

= −3
2H

0
ii2 − 2δi2G2(t, x2) + F7,i,0(t, x2),

η
PU1

0 = −3
2PU1

0 − U1
α2√
t− t0

e
−
βx2

2
t−t0 + G1(t, x2),

η
PU2

0 = −3
2PU2

0 + G2(t, x2),



(3.2)

where, up to the four global constants αi and β, the generators for the mean velocity U1 and the
Reynolds stresses R0

ij = H0
ij − δ1iδ1jU

2
1 (2.3) are fully specified now.

To note is that (3.1) is an empirical choice and not dictated by theory. It is only one particular
choice among infinitely many other choices that, as we will see in the next section, will scale the
numerical profiles for the mean velocity and the Reynolds stresses appropriately. Hence, other choices
may exist ‘out there’ that will scale equally well or even better. The only theoretical guideline that
was explicitly used for (3.1) was the classical principle of cause and effect (see e.g. Frewer et al.
(2015, 2016) and Appendix A in Frewer et al. (2017) for theoretical details), to assure as a minimal
requirement that the choice made in (3.1) is at least physically consistent.

Indeed, as shown in Appendix B, the above choice (3.2) is physically consistent in the sense
that there exists at least a single cause on the instantaneous (fluctuating) level such that the set of
transformations (3.2) can emerge as a collective invariance on the statistical level. This particular
choice (3.2) stands in stark contrast to the choice made in Sadeghi et al. (2018), in particular the
proposed triple-velocity transformation ηH0

122
(Eq. (A8)) which, in relation to all preceding lower-order

moment transformations Eqs. (A1)-(A7), is unphysical, since no cause of any type and form on the
fluctuating level exists such that this transformation can emerge as an invariance on the statistical
level. In relation to the specified lower-order moments Eqs. (A1)-(A7), the invariant transformation
ηH0

122
(Eq. (A8)) would only be physically consistent if it would contain a term proportional to the

mean velocity U1, but, which is not the case, even when adding the terms that are originally missing
from this expression (see last footnote on p. 3).

Following the procedure as outlined in Sadeghi et al. (2018), the corresponding invariant variables
of system (3.2) for the mean velocity and the Reynolds stresses, which would let collapse differently
timed spatial profiles in the range 20 ≤ t ≤ 30 into a single profile,† are generated by solving the

†Note that the collapsing of profiles can only occur approximately and not exactly. The aim of this whole endeavour
is namely to find the best approximation, which again is directly related to find a physically consistent set of invariant
transformations in (2.13) that does it best.
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following invariant surface conditions

ξt∂tU1 + ξx2∂x2U1 − ηU1
= 0,

ξt∂tH
0
12 + ξx2∂x2H

0
12 − ηH0

12
= 0, ξt∂tH

0
ii + ξx2∂x2H

0
ii − ηH0

ii
= 0,

 (3.3)

in each dependent variable for the constant of integration, which, since we are dealing here with
PDEs, will be arbitrary functions symbolized in the following by Ψ. Hence, when incorporating the
definitions (2.7) and (2.8) into the general solutions of (3.3), the invariant variable for the mean
velocity and for the off-diagonal Reynolds stress then take the explicit form

U1(t, x2) =
Ψ1
(

x2√
t−t0

)
√
t− t0

≡
AΨ̂1

(
x2

B
√
t−t0

)
√
t− t0

⇐⇒ Ũ1(x̃2) = U1(t, x2)
Uc(t)

,

H0
12(t, x2) = R0

12(t, x2) =
A2Ψ̂12

(
x2

B
√
t−t0

)
t− t0

⇐⇒ R̃0
12(x̃2) = R0

12(t, x2)
U2
c (t) ,


(3.4)

which correspond to the classical scaling (2.6), while the three diagonal or normal Reynolds stresses
scale differently as

H0
ii(t, x2) = R0

ii(t, x2) + δi1U
2
1(t, x2) = 2αi√

t− t0
e
−
βx2

2
t−t0 +

A2Ψ̂ii

(
x2

B
√
t−t0

)
t− t0

⇐⇒ R̃0
ii(x̃2) = R0

ii(t, x2) + δi1U
2
1(t, x2)

U2
c (t) − 2αi

√
t− t0
A2 e

−
βx2

2
t−t0 . (3.5)

4. Comparing the scaling performance to DNS

The numerical simulation to be compared to is taken from the DNS performed by Sadeghi et al.
(2018). The relevant data presented in Fig. 3 (p. 248) and Fig. 4 (p. 249) have been extracted using
the plot-digitizer software WebPlotDigitizer, and is represented again in Fig. 1 in order to explicitly
contrast it to the original data given in Sadeghi et al. (2018). For each variable, only three data
sets within the considered time range 20 ≤ t ≤ 30 have been extracted as it shows to be sufficient:
The lower end at t = 20 (�), the mid-value at t = 25 (4), and the upper end at t = 30 (◦).

While in Fig. 1 the classical normalizations (3.4) for the mean velocity Ũ1(x̃2) and the off-diagonal
Reynolds stress g12(x̃2) = R0

12(t, x2)/U2
c (t) = R̃0

12(x̃2) already scale appropriately by showing a
satisfactory global collapse for different times over the full invariant domain, this cannot be said for
the three normal or diagonal Reynolds stresses which near the centre region of the jet (x2 ∼ x̃2 ∼ 0)
deviate significantly from being self-similar when using the same classical normalization as for the
off-diagonal component: gii(x̃2) = R0

ii(t, x2)/U2
c (t) (Sadeghi et al., 2018, p. 248).

Using, however, the non-classical renormalization (3.5) for the normal stresses by taking for the
global parameters the best fitted values β = ln(2)/B2, α1 = −0.028, α2 = −0.035, α3 = −0.022,
all profiles for each stress then satisfactorily collapse into a single profile globally as shown in Fig. 2.
Worthwhile to note here is that the fitting result β = ln 2/B2 turns the initial specification of F5,i,0
in (3.1) into a best-fit function for the mean velocity profile, but only up to its turning point around
x̃2 = x̃0

2 ∼ 0.85, i.e., within this range the mean velocity profile of a temporally evolving turbulent
plane jet can be well approximated by

U1(t, x2) = A√
t− t0

e
−

ln2·x2
2

B2(t−t0) , for x̃2 ≤ x̃0
2 ∼ 0.85, (4.1)

but which for B2 = νT , unfortunately, deviates from being a solution of the diffusion equation (2.11)
by nearly a factor 3 in the exponent. Hence, the approximation initially made in Sec. 2, namely to

https://automeris.io/WebPlotDigitizer/
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Figure 1: Extracted data sets from Figs. 3-4 of Sadeghi et al. (2018) for t = 20 (�), t = 25 (4), and t = 30 (◦).
The axes labelling refer to the normalized variables: x̃2 = x2/δ0.5(t) (2.7), Ũ1(x̃2) = U1(t, x2)/Uc(t) (2.8), and
gij(x̃2) = R0

ij(t, x2)/Uc(t)2 as defined on p. 248 in Sadeghi et al. (2018).

augment the unclosed set of statistical moment equations (2.1) with the diffusion equation (2.11) as a
defining equation for the mean velocity U1, is a rather poor approximation. A better approximation
can be generated by using the finding of Bradbury (1965)†, namely to model the mean velocity in its
invariant variable to higher order as

U1(t, x2) = A√
t− t0

e
−

ln2·x2
2

B2(t−t0)
−

γ·x6
2

B6(t−t0)3 , (4.2)

which then offers a satisfactory approximation in the whole invariant domain x̃2 = x2/δ0.5(t) (2.7).
A best fit to the data shown in Fig. 1 will fix the higher order exponent to γ = 0.024 · ln 2, which,
not surprisingly, corresponds more or less to the value proposed in Bradbury (1965).

The aim now is to associate the function (4.2) to a certain transport equation that will replace
the initial approximation (2.11) by a better one, however, such that the classical scaling for the mean

†Note that Bradbury (1965) considered a spatially evolving jet flow, yet the self-similar result for the mean velocity
can be transcribed to a temporally evolving flow just by switching the dimensionless invariant variable from x2/δ0.5(x1)
to x2/δ0.5(t) — see also the introductory discussion in Sadeghi et al. (2018).
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Figure 2: Renormalized diagonal Reynolds stresses according to (3.5). In contrast to the classical normalization
shown in Fig. 1, a global self-similar behaviour can now be observed extending over the full invariant domain x̃2.
Within a best fit, the four global parameters in (3.5) were fixed to: β = ln(2)/B2, α1 = −0.028, α2 = −0.035,
and α3 = −0.022. As in Fig. 1, the above symbols refer again to: t = 20 (�), t = 25 (4), and t = 30 (◦).

velocity (2.6) is not destroyed. In other words, the aim is to augment again the unclosed set of
statistical moment equations (2.1) with a defining equation for the mean velocity, but now with a
better, higher-order approximate equation than the one initially proposed by (2.11); but, also such
that the infinitesimal equivalence generators for ξt, ξx2 and ηU1

, as generally given by (2.4), can
reduce to those of (3.2) when performing again a Lie-group invariance analysis on this new combined
system. Now, since the function (4.2) can be seen as a particular solution of the following modified
(non-autonomous) diffusion equation

∂tU1 = B2∂2
x2U1 + U1

t− t0

6∑
n=1

µn

(
x2

B
√
t− t0

)2n−2
, (4.3)

where the dimensionless parameters take on the values

µ1 = 2 ln 2− 1
2 , µ2 = ln 2 · (1− 4 ln 2), µ3 = 30γ,

µ4 = γ · (3− 24 ln 2), µ5 = 0, µ6 = −36γ2,

 (4.4)

and since this equation meets all requirements mentioned above, (4.3) is an appropriate higher-
order approximation to (2.11). Indeed, when re-performing a full Lie-group invariance analysis
on the defining but unclosed system (2.1) augmented with (4.3) and restricted by the mass flux
constraint (2.5), we will obtain the same general result (2.13) as before, except that c1, c2 and F3
are now specifically restricted to

c1 = t0, c2 = 0, ∂tF3 = B2∂2
x2F3 + F3

t− t0

6∑
n=1

µn

(
x2

B
√
t− t0

)2n−2
and

∫ ∞
−∞
F3dx2 = 0. (4.5)

This allows us now to make the specific higher-order choice for F5,i,0 in (3.1) as

F5,i,0 = α̂i√
t− t0

e
−

ln2·x2
2

B2(t−t0)
−

γ·x6
2

B6(t−t0)3 , γ = 0.024 · ln 2, (4.6)



A comment to Sadeghi et al. (2018) 9

R̃0
11

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

x̃2

R̃0
22

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

x̃2

R̃0
33

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

x̃2

Figure 3: Renormalized diagonal Reynolds stresses according to the higher-order approximation (4.9). How-
ever, when comparing to the former scaling shown in Fig. 2, no improvement can be registered. As discussed
in the text, maybe this improvement only will become visible when also considering the appropriate scaling
for higher-order moments beyond the Reynolds stresses. Within a best fit, the three global parameters in (4.9)
were fixed to: α̂′

1 = −0.015, α̂′
2 = −0.018, and α̂′

3 = −0.011. As in Fig. 2, the above symbols again refer to:
t = 20 (�), t = 25 (4), and t = 30 (◦).

which now can be identified as a best-fit function proportional to the mean velocity field, that is,
(4.6) can thus be well approximated by (4.2) as

F5,i,0 = α̂′i U1, where α̂′i = α̂i/A. (4.7)

With this ansatz in (3.1), the equivalence generators (2.13) then take the explicit form

ξt = t− t0, ξx2 = 1
2x2, ηU1

= −1
2U1,

ηH0
12

= −H0
12, ηH0

ii
= −H0

ii + α̂′i U1,

ηH0
122

= −3
2H

0
122 + α̂′2 U

2
1 − G1(t, x2) + F6(t, x2),

ηH0
ii2

= −3
2H

0
ii2 − 2δi2G2(t, x2) + F7,i,0(t, x2),

η
PU1

0 = −3
2PU1

0 − α̂′2 U1 + G1(t, x2),

η
PU2

0 = −3
2PU2

0 + G2(t, x2),



(4.8)

which now can be seen as a higher-order approximation to the former equivalence solution (3.2).
Solving for (4.8) the associated invariant surface conditions (3.3), the invariant variables for the
mean velocity and Reynolds stresses then read

Ũ1(x̃2) = U1(t, x2)
Uc(t)

, R̃0
12(x̃2) = R0

12(t, x2)
U2
c (t) , R̃0

ii(x̃2) = R0
ii(t, x2) + δi1U

2
1(t, x2)− 2α̂′i U1

U2
c (t) . (4.9)
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By construction the scaling for the mean velocity and the off-diagonal Reynolds stress stay unchanged
and are shown in Fig. 1. Different is only the scaling ansatz for the normal Reynolds stresses, which
for α̂′1 = −0.015, α̂′2 = −0.018 and α̂′3 = −0.011 is shown as a best fit in Fig. 3. However, when
comparing to the former scaling shown in Fig. 2, no improvement can be registered. Hence, it seems
that the improvement maybe only becomes visible when considering the scaling of higher-order
moments beyond the Reynolds stresses as for the triple-velocities H0

ij2 — but for these we have no
prior theoretical guarantee that the initial choice (3.1) made for the second moments is also consistent
to any higher-order moment; maybe a different choice has to be made when including and studying
the scaling behaviour of higher-order moments beyond the Reynolds stresses.

To close this section and in order to pass over to the next section, it is worth noting that when
comparing Fig. 2, or Fig. 3, with the corresponding Fig. 7 in Sadeghi et al. (2018), it seems at first sight
that in both cases a similar result is obtained, although by Eqs. (4.10)-(4.12) in Sadeghi et al. (2018)
a fundamentally different set of scaling relations for the normal Reynolds stresses is used than the one
derived herein, either given by (3.5) or by (4.9). It seems that a key difference lies in the absolute
value where the profiles collapse at x̃2 = 0, but even this difference levels out when considering
relative values: The ratios R̃0

ii(0)/R̃0
jj(0) from Fig. 2, or Fig 3, equal more or less those from Fig. 7

in Sadeghi et al. (2018). Despite all this resemblance between these figures, a key problem remains:
Fig. 7 in Sadeghi et al. (2018) cannot be reproduced. Their defining scaling relations Eqs. (4.10)-
(4.12) for Fig. 7 do not match to what is shown then in Fig. 7.

This mismatch can be easily seen just by looking at the asymptotic behaviour of the scaling rela-
tions Eqs. (4.10)-(4.12) for large x2, or equivalently for large x̃2 = x2/(B

√
t− t0) at some fixed finite

value t > t0, and then compare it to the asymptotic behaviour shown in Fig. 7 : While all self-similar
solutions in Fig. 7 tend to zero, the corresponding self-similar solutions given by Eqs. (4.10)-(4.12)
do not! Instead, for each field they tend to the finite value aHiit, because in free planar jet flow all
fields decay to zero for large lateral distances x2 with the result that the field-proportional terms on
the right-hand side of Eqs. (4.10)-(4.12) are thus negligible compared to the field-free terms aHiit,
which survive this limit.† Also, the values of these terms aHiit ‡, first of all, are not small when com-
pared to the maximum value of each profile for t ≥ 20, and secondly tend to a different value for each
different t, i.e., the self-similarity in the asymptotic region is lost due to the presence of these terms.
Fig. 4 shows the correct corresponding plots for the scaling relations Eqs. (4.10)-(4.12) proposed in
Sadeghi et al. (2018), clearly demonstrating the difference to what is shown in Fig. 7 — to note is
that at x̃2 = 0 the plots for the normal Reynolds stresses in Fig. 4 exactly coincide in value with
the corresponding plots in Fig. 7, thus corroborating that no mistake in Fig. 4 has been made. Fig. 4
also includes the similarity profile for the off-diagonal Reynolds stress R0

12, which should scale as
Eq. (B5) and shown in Sadeghi et al. (2018) by Fig. 6. Also this figure cannot be reproduced, since
in comparison with the correct plot shown in Fig. 4 it is off by a global scaling factor of nearly 3:
The correct maximum value for R̃0

12 is nearly three times higher than shown in Fig. 6.
The reason for why the asymptotic self-similarity gets broken by Eqs. (4.10)-(4.12) is that this

scaling is in fact based on an unphysical set of equivalence transformations, namely the choice
Eqs. (A4)-(A11) made in Sadeghi et al. (2018) violates the classical principle of cause and effect,
in the sense that there exists no cause on the instantaneous (fluctuating) level of the Navier-Stokes
equations such that these equivalences can emerge as an effect on the statistical level. In other words,
the equivalences Eqs. (A4)-(A11) put forward in Sadeghi et al. (2018) have no physical justification,
they even violate the underlying physical principles. This claim is proven at the end of Appendix B.
It stands in stark contrast to the equivalence transformations proposed in this comment, either given
by (3.2) or by (4.8), which both do not violate the causality principle.

†Note that D given in Eqs. (4.10)-(4.12) in Sadeghi et al. (2018) is a constant and not some functional, taking the
global value D = −7.57 (p. 249).

‡Taken from Tab. 1 in Sadeghi et al. (2018), the globally constant and fixed values of aHii are: aH11 = 0.0383,
aH22 = 0.0706, and aH33 = 0.0453.
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Figure 4: The correct plots associated to the self-similar scaling proposed in Sadeghi et al. (2018) by Eqs. (4.10)-
(4.12) for the normal Reynolds stresses and by Eq. (B5) for the off-diagonal Reynolds stress. There is a clear
discrepancy to the corresponding plots (Figs. 6-7) shown in Sadeghi et al. (2018). In contrast to Fig. 7, the
normal Reynolds stresses do not tend to zero and do not collapse into a single profile for large invariant
distances x̃2. In other words, the above plots for the three normal Reynolds stresses do not show a self-similar
behaviour for large x̃2, as incorrectly claimed in Sadeghi et al. (2018). To note is that at x̃2 = 0 the above
plots for the normal Reynolds stresses exactly coincide in value with the corresponding plots in Fig. 7, thus
corroborating that no mistake in the above plots have been made. Regarding the above lower right plot for the
off-diagonal Reynolds stress, this correct profile is globally in scale nearly 3 times larger than the corresponding
one shown in Fig. 6. For more details about this overall discrepancy, please see the text in Sec. 4 & 5. As in
all figures before, the above symbols refer again to: t = 20 (�), t = 25 (4), and t = 30 (◦).

5. A critical examination of Sadeghi et al. (2018): Refuting the study’s claims

This section lists all (major and minor) problems to be found in Sadeghi et al. (2018), including two
severe flaws (the first two listed below), which ultimately refutes the study as a whole:

(1): The interpretations and conclusions in that study are not justified by the results given. Par-
ticularly, Fig. 7 cannot be reproduced from the given DNS data shown in Fig. 4(a-c) as claimed. The
analytic asymptotic behaviours of the underlying Eqs. (4.10)-(4.12) do not match the corresponding
numerical asymptotic behaviours as shown in Fig. 7 : Firstly, when proposing a scaling as given by
Eqs. (4.10)-(4.12), a collapse of the profiles for large x̃2 cannot be confirmed and, secondly, in this
regime the profiles also do not tend to zero as incorrectly shown in Fig. 7.

That the profiles for the invariantized diagonal Reynolds stresses do not collapse and do not tend
to zero in the asymptotic regime when scaled as Eqs. (4.10)-(4.12) can be easily seen by considering
e.g. the case R̃0

22 (4.11) — the reasoning for the other two cases (4.10) and (4.12) is analogous:
Since in free planar jet flow all fields, including R0

22, decay for large lateral distances x2 and therefore
also for large invariant distances x̃2 ∝ x2/

√
t− t0 (Eqs. (3.6),(4.8)-(4.9)) for any fixed finite time t,

say t = 20, the first term −D ·R0
22 · (t− t0) on the right-hand side of Eq. (4.11) tends to zero.† Now,

since this first term is negligibly small compared to the second one on the right-hand side aH22t, which,
according to Tab. 1 (p. 252) takes for t = 20 the finite and non-zero value aH22t = 0.0706 · 20 ∼ 1.4,

†As already noted before, D and t0 in Eqs. (4.10)-(4.12) are empirically fixed constants, taking the global values
D = −7.57 (p. 249) and t0 = 8.64 (p. 247).
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the asymptotic value for the invariantized Reynolds stress R̃0
22 does not tend to zero, as incorrectly

shown in Fig. 7(b), but rather tends to the value 1.4. This is true also for any other profile, say
t = 30, which would tend to the even higher value aH22t = 0.0706 · 30 ∼ 2.1, being even a different
value than for the profile t = 20. Hence, for large x̃2 the profiles for different t do not only go to
a non-zero value but also do not collapse. Fig. 4 in this comment shows the correct profiles to the
scaling proposed by Sadeghi et al. (2018). The discrepancy to their Fig. 7 is clearly visible.

(2): The reason for this failure described above is that in that study again, as also already in
all previous studies from the group of Oberlack et al., unphysical statistical symmetries† are being
employed that violate the classical principle of cause and effect. If the statistical symmetries of the
system are chosen as given in Appx. A (p. 254), then, for example, the translation group aH22 of the
double-velocity moment in Eq. (A5) is inconsistent to the symmetry for the triple-velocity moment
H0

122 as given in Eq. (A8) or Eq. (A9), which, in order to be consistent with the lower moment, needs
to contain a term that is at least proportional to the mean velocity U1. See (3.2) or (4.8) in this
comment for a choice of symmetries that do not violate the causality principle and which lead to a
more convincing and robust collapsing of all profiles up to second order, as shown here in Fig. 2 and
Fig. 3, respectively. The consistency proof is given in Appendix B.

(3): The result of their performed Lie-group symmetry analysis, as presented in Eqs. (A1)-(A11),
not only contains inaccuracies,‡ but their analysis is also spectacularly incomplete. Irrespective of
whether performing a 1-point symmetry analysis, or a more general 2-point symmetry analysis within
the 1-point limit, in both cases, when done properly and correctly, will give an infinitely larger
symmetry group than the one presented in Appx. A (p. 254), not only for all dependent variables but
also for the independent variable x2: Any correctly performed symmetry analysis for the inviscid
(ν = 0) free planar jet flow case will not lead to the linear x2-specification from the outset as given in
Eq. (A2), but rather to an arbitrary function in x2 and t, given in this comment by (2.4). Even when
including the lateral mass flux constraint Eq. (2.4), the symmetry generator ξx2 stays arbitrary and
will not be restricted in a certain way — the mass flux constraint Eq. (2.4 ), also in its original form∫∞
−∞ ∂tU1dx2 = 0, only restricts the symmetry of the mean velocity U1 and not that of x2, since all

the restricting terms for x2 will cancel exactly (after partial integration) — see Appendix A.
Of course, it is clear that one aims to make a connection to the classical x2-invariant scaling

x̃2 ∝ x2/
√
t− t0 and that for this very reason one has to choose a linear ansatz for the symmetry

generator of x2, but this particular choice is not given as an explicit result from Lie-group analysis
itself. In other words, this particular choice is not given by theory from within, as misleadingly
claimed in Sadeghi et al. (2018); instead it is put as an external condition to match the collapsing
DNS profiles of the mean velocity field. The same is true for all other variables, except for ξt (Eq. (A1))
which from the outset is already in its general form.

Hence, presenting the symmetry result in the reduced form as given in Eqs. (A1)-(A11) is mis-
leading, as the reader might think that a Lie-group symmetry analysis for the inviscid free planar
jet will only lead to this particular result Eqs. (A1)-(A11) without any further intervention by the
user. But this is not the case: A consistent and complete symmetry analysis gives a highly arbitrary
result, which, if one aims to match with experimental or numerical data, needs to be arranged and
specified externally. Due to this arbitrariness in the symmetries, all derived scalings in that study
(irrespective of their higher-order inconsistencies as described in (1) and (2) above) are thus only
a posteriori scalings and not a priori scalings as wanted. Under such conditions as given in the theory
of turbulence, a systematic Lie-group analysis cannot make and give any analytical prediction as to
how turbulence scales statistically, due to that not only unknown parameters but also an abundance
of arbitrary functions get induced. As convincingly shown in this comment, a collapse of all profiles
can also be obtained when choosing a different set of symmetries than the one incorrectly proposed
in Sadeghi et al. (2018), i.e., when choosing any set of symmetries which does not violate the classical
principle of cause and effect. There is no prediction or no unique choice in the scaling as how to

†To keep in line with the (misleading) notation in Sadeghi et al. (2018), we will call all equivalences in this section
as symmetries. As discussed and explained in Sec. 1, such an identification is misleading here, since all results derived
and presented in Sadeghi et al. (2018) refer only to equivalence and not to symmetry transformations.

‡For example, if the symmetries for the double-velocity moments are chosen as given by Eqs. (A4)-(A7), then the
symmetry of each triple-velocity moment H0

ij2 misses the vital term proportional to H0
ij . See also last footnote on p. 3.
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make the profiles collapse; any other choice of symmetries with a cause will also do the job. Hence,
it is incorrect to state that “within the present work, we develop a theoretical basis using a Lie
symmetry group that predicts such behaviour for the flow evolution, as an exact solution of the two-
and multi-point correlation equations, which can be an important key in ‘filling the gaps’ of our
understanding of self-similarity” (p. 251). Instead of theoretically predicting flow evolution, Sadeghi
et al. (2018) only presents and proposes a sophisticated post-processing scheme. Nothing more!

The real problem simply is that the underlying statistical transport equations are unclosed, and so
are their symmetries. The closure problem of turbulence cannot be circumvented by just employing
the method of Lie-group symmetry analysis alone. Hence, without modelling these unclosed equa-
tions, an a priori prediction as how turbulence scales is and will not be possible. Only a posteriori,
by anticipating what to expect from numerical or experimental data, the adequate invariant scalings
can be generated through an iterative trial-and-error process.

(4): For the above reason mentioned in beginning of (3), namely in presenting an incomplete
symmetry analysis, it seems that the 1-point limit r → 0 in their symmetry analysis was not done
correctly, thus leading to that overly restricted symmetry group. An indication for it is given on
p. 242, when saying “we currently devote ourselves only to generating invariant scaling laws for the
mean velocity and Reynolds stresses, and therefore, the r-dependency of the terms is skipped”. Doing
the 1-point limit, the r-dependency may not be simply dropped, as this may lead to missing terms.
The problem here is that when performing the 1-point limit one has to respect the non-commutivity
of this limit: For example limx(2)→x(1) ∂x(1)Ui(x(1))Uj(x(2)) is simply not just ∂x(1)Ui(x(1))Uj(x(1));
it is more than that if one chooses this particular form — for a detailed explanation, see e.g. Eq. (C.27)
on p. 40 in Frewer et al. (2014b).

(5): The derivation of the invariant scaling Eq. (B3) from Eq. (B2) and Eq. (B1) is a deception.
The first step to (B1) is that U1x2 is being identified as the invariant integration constant Ũ1x̃2 in
order to reduce the integration effort of equation (B1). This step is correct and not to complain about.
However, this constant Ũ1x̃2 is also multiplied by the factor dF2(t)/dt, which from the calibration
done in Sec. 4 has to be zero, since F2(t) is fixed as the global constant F2(t) = −Dn (Eq. (4.9)),
i.e., dF2(t)/dt = 0. This results into an equation (B1) which does not contain the term involving
Ũ1x̃2, and thus when integrated to (B2) should not contain this term either, because it is zero.
Nevertheless, this term appears as an overall non-zero constant in (B2), because F2(t) =−Dn is a
non-zero constant. To solve this contradiction such that the integrated solution (B2) is consistent
with its underlying equation (B1), which again does not contain the term involving Ũ1x̃2, this term
appearing on the right-hand side of (B2) has to be transported and to be absorbed into the invariant
tilde-expression on the left-hand side of (B2), which is the collection pool of all integration constants.
But definitely not as done in (B3), by re-identifying the invariant constant Ũ1x̃2 back to the non-
invariant expression U1x2 and then by rewriting the factor F2(t) as an expression of F1(t) using
relation Eq. (3.11). Hence, the derivation of (B3) is not mathematically sound since the round-
bracketed term on the right-hand side actually belongs on the left-hand side of (B3). In fact, when
comparing the classical scaling in Fig. 4(d) with the corresponding new scaling in Fig. 6 described
by (B3), no improvement can be seen. Instead, the new scaling for the Reynolds stress R0

12 is rather
weaker than the classical scaling, since next to the already exiting problematic region around x̃2 = 1,
a new problematic region around x̃2 = 1.5 is induced which does not arise in classical scaling.

Besides this issue, it is further to note that also the plot for this newly scaled Reynolds stress R̃0
12

as shown in Fig. 6 cannot be fully reproduced too. It is off by a global scaling factor of nearly 3.
The correct plot for R̃0

12 according to the scaling by Sadeghi et al. (2018) is shown here in Fig. 4,
revealing that the maximum value for R̃0

12 is nearly three times higher than shown in Fig. 6.
(6): The title chosen for that study is misleading. Nowhere throughout that study any scaling laws

are derived. Instead, scaling relations are derived with the aim to let numerical profiles of a certain
field variable collapse. The functional structure of these collapsing profiles, however, remain unknown.
Thus no prediction on the scaling behaviour of the statistical solutions is made, as incorrectly claimed
on p. 251 and already discussed above in (3). For example, when integrating the invariant surface
condition for the mean velocity profile, i.e., when integrating the first three terms of Eq. (3.1), the
solution will be an arbitrary function in terms of an arbitrary invariant variable involving next to x2
the arbitrary temporal functions F1, F2 and F3. And knowing from the result (2.4) in this comment,
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that the invariant surface condition Eq. (3.1) is only a specification and not in its most general form,
the arbitrariness in the set of invariant solutions is even higher from the outset than given by Eq. (3.1).
To obtain invariant scaling laws, a systematic Lie-group symmetry analysis is not of much help here,
since it just shifts the arbitrariness from one function to another. For a further discussion of this
point, see e.g. Frewer et al. (2014a); Frewer & Khujadze (2016).

(7): Update, 5. Dec. 2018: The criticism that was placed here in the earlier version (4. Oct. 2018),
regarding a mislabelling of the horizontal axes for the plots in Figs. 5-7, was not justified. Because,
when interpreting their small indication “x̃2 (x2/δ0.5)” on p. 249 uniquely as x̃2 = x2/δ0.5 and the
fact that indeed from their defining relation Eq. (3.6) along with Eqs. (4.8)-(4.9) the more general
result x̃2 = c · x2/

√
t− t0 (where c is an arbitrary integration constant) can be obtained, it seems

more than likely that ultimately the correct explicit expression for x̃2 was used. The issue was that
in the earlier version the indefiniteness of the integral in Eq. (3.6) was not fully recognized, thus the
integration fell short a constant. Hence, the earlier criticism here that a mislabelling has occurred
is removed. Yet, it should be noted that this correction has no effect on any of the comments (1)-(6)
made before.

•
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A. The general restrictions from the mass flux constraint

Imposing the mass flux constraint to be an invariant constraint on the general invariant solution (2.4),
i.e., imposing

c =
∫ ∞
−∞

U1dx2 =
∫ ∞
−∞

U
∗
1dx
∗
2, (A.1)

where c is the global invariant constant in space and time, and where the ‘*’-symbol refers to the
variable transformation generated by (2.4), which in infinitesimal form can be read-off from (2.4) as

t∗ = t+ εF1(t), x∗2 = x2 + εF2(t, x2), U
∗
1 = U1 + ε

(
a1U1 − U1∂x2F2(t, x2) + F3(t, x2)

)
, (A.2)

where ε� 1 is the infinitesimal parameter, (A.1) will impose natural restrictions on (A.2) and thus
overall on (2.4). As can be easily verified, by performing a Taylor expansion around ε = 0 and
neglecting all higher order terms than linear in ε, the inverse transformation of (A.2) is given by

t = t∗− εF1(t∗), x2 = x∗2− εF2(t∗, x∗2), U1 = U
∗
1− ε

(
a1U

∗
1−U

∗
1∂x∗2F2(t∗, x∗2)+F3(t∗, x∗2)

)
. (A.3)

The restrictions then follow as

0 = c−
∫ ∞
−∞

U
∗
1dx
∗
2

= c−
∫ ∞
−∞

(
U1 + ε

(
a1U1 − U1∂x2F2(t, x2) + F3(t, x2)

))(
1 + ε∂x2F2(t, x2)

)
dx2 +O(ε2)

= c−
∫ ∞
−∞

U1dx2︸ ︷︷ ︸
=0

+ ε

∫ ∞
−∞

(
a1U1 − U1∂x2F2(t, x2) + F3(t, x2) + U1∂x2F2(t, x2)

)
dx2 +O(ε2)

= ε

∫ ∞
−∞

(
a1U1 + F3(t, x2)

)
dx2 +O(ε2), (A.4)

which for all configurations U1 can only be solved if a1 = 0 and if F3 is an antisymmetric function
in x2, i.e., if

∫∞
−∞F3(t, x2)dx2 = 0, for all t ≥ 0.

Interesting to examine is whether further restrictions will surface when considering the original
differential consequence of (A.1), namely when imposing the original invariant differential constraint

0 =
∫ ∞
−∞

∂tU1dx2 =
∫ ∞
−∞

∂t∗U
∗
1dx
∗
2. (A.5)

This will lead to

0 =
∫ ∞
−∞

∂t∗U
∗
1dx
∗
2

=
∫ ∞
−∞

[(
(1− ε∂tF1) · ∂t − ε∂tF2 · ∂x2

)(
U1 + ε

(
a1U1 − U1∂x2F2 + F3

))](
1 + ε∂x2F2

)
dx2 +O(ε2)

= ε

∫ ∞
−∞

(
− ∂tF1∂tU1 − ∂tF2∂x2U1 + a1∂tU1 − U1∂

2
tx2F2 + ∂tF3

)
dx2 +O(ε2)

=
p.Int.

−ε ∂tF1(t)
∫ ∞
−∞

∂tU1 dx2︸ ︷︷ ︸
=0

+ ε ∂t

∫ ∞
−∞

(
a1U1 + F3

)
dx2︸ ︷︷ ︸

=0 (A.4)

= 0, (A.6)

saying that no further restrictions exist besides those already determined from (A.4).
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B. The causality principle as a modelling guideline for invariant turbulent scaling

The question is, does the particular equivalence solution (3.2), chosen from an unclosed and thus
infinite set of possible equivalence transformations (2.13), have a physical justification? Or asked
differently, does this solution maybe violate an underlying physical principle so that it has to be
ruled out as a possible candidate? One such principle to be checked is that of cause and effect.
Because, if (3.2) emerges as an equivalence invariance on the statistical level, then there must be
at least a cause on the instantaneous (fluctuating) level such that (3.2) can emerge as an effect
on the statistical level. Obviously, the cause need not to be an invariant itself in order to induce
an invariance of the statistical Navier-Stokes equations, simply because a mean field equation can
have an invariant structure that need not to exist for its underlying fluctuating equation (for further
details, see e.g. Frewer et al. (2015, 2016, 2017) and the references therein).

The most simplest possible cause that exists as to induce the statistical invariance (3.2), which
in its non-infinitesimal and one-parametrical Lie-group form reads †

t∗ = eε(t− t0) + t0, x∗2 = e
1
2 εx2, U

∗
1 = e−

1
2 εU1,

H0 ∗
12 = e−εH0

12, H0 ∗
ii = e−εH0

ii + 2αi(e−ε/2 − e−ε)√
t− t0

e
−
βx2

2
t−t0 ,

H0 ∗
122 = e−

3
2 εH0

122 + U1
2α2(e−ε − e−3ε/2)√

t− t0
e
−
βx2

2
t−t0 −

∫ ε

0
dε′
(
G1(t∗′, x∗′2 )−F6(t∗′, x∗′2 )

)
,

H0 ∗
ii2 = e−

3
2 εH0

ii2 −
∫ ε

0
dε′
(
2δi2G2(t∗′, x∗′2 )−F7,i,0(t∗′, x∗′2 )

)
,

PU1
0 ∗ = e−

3
2 εPU1

0 − U1
2α2(e−ε − e−3ε/2)√

t− t0
e
−
βx2

2
t−t0 +

∫ ε

0
dε′G1(t∗′, x∗′2 ),

PU2
0 ∗ = e−

3
2 εPU2

0 +
∫ ε

0
dε′G2(t∗′, x∗′2 ),



(B.1)

is to transform the four space-time coordinates and the four instantaneous field variables of the
deterministic Navier-Stokes equations as follows: ‡

t∗ = eε(t− t0) + t0, x∗2 = e
1
2 εx2, U∗i = e−

1
2 εUi + γi(t, x2, ε), P ∗ = e−εP + γP (t, x2, ε), (B.2)

where the γi are three random fields with zero mean, γP a random field with a non-zero mean, and
where all of these four random fields are to all orders statistically independent of the instantaneous
fields Ui and P , i.e., in all, where

γi = 0, γP 6= 0,

γi1 · · · γinγkP · Uj1 · · ·UjmP l = γi1 · · · γinγkP · Uj1 · · ·UjmP l.

 (B.3)

Now, if the fields γi and γP are realized such that their moments satisfy the relations

γ1γ2 = 0, γ2
i = 2αi(e−ε/2 − e−ε)√

t− t0
e
−
βx2

2
t−t0 ,

γ1γ2
2 = −γ1γP +

∫ ε

0
dε′F6(t∗′, x∗′2 ), γ2

i γ2 = −2δi2 γ2γP +
∫ ε

0
dε′F7,i,0(t∗′, x∗′2 ),

γP = −γ2
2 , γ1γP =

∫ ε

0
dε′G1(t∗′, x∗′2 ), γ2γP =

∫ ε

0
dε′G2(t∗′, x∗′2 ),


(B.4)

†Cf. Olver (1993); Bluman & Kumei (1996) on Lie’s central theorem how to obtain a one- or multi-parametric
Lie-group transformation from its infinitesimal generator.

‡Note that the instantaneous transformation (B.2) neither need to be an equivalence nor a Lie-group transformation
of the deterministic Navier-Stokes equations. Further note that the other two (not listed) space coordinates in (B.2)
are to be considered as invariants, i.e., they both transform invariantly: x∗1 = x1 and x∗3 = x3.



A comment to Sadeghi et al. (2018) 17

then the set of statistical equivalence transformations (B.1) are caused by (B.4), as can be easily
verified by constructing the corresponding moments from (B.2) and recalling that for the flow case
considered herein U2 = U3 = 0. In other words, the chosen set of equivalence transformations (B.1),
or in their infinitesimal form (3.2), do not violate the classical principle of cause and effect, since at
least one cause on the instantaneous level can be found, for instance (B.2)-(B.4), from which then
the invariance (B.1) results as an effect on the statistical level.†

This is in stark contrast to the equivalence transformations Eqs. (A1)-(A11) chosen in Sadeghi
et al. (2018), for which no cause of any type and form can be found. The key problem is that the
transformations for the triple-velocity moments Eqs. (A8)-(A9) are inconsistent to ones chosen for the
double-velocity moments Eqs. (A4)-(A7), even when including the correct terms that are originally
missing from this expression (see last footnote on p. 3): No transformation on the instantaneous level
can be found as to make these two transformations consistent, and hence have to be discarded as
unphysical. Let’s prove this claim for the reduced version of Eqs. (A1)-(A11) that finally has been
used by Sadeghi et al. (2018) to derive the Reynolds stress scalings Eqs. (4.10)-(4.12) and Eq. (B5),
namely to choose F3(t) = a1 = aU1 = 0 (p. 244), F1(t) = D(t − t0), F2(t) = 1

2D (p. 249), and
aH12 = 0 (p. 255), which then reduces Eqs. (A1)-(A11) simply to

ξt = D(t− t0), ξx2 = 1
2Dx2, ηU1

= −1
2DU1,

ηH0
12

= −DH0
12, ηH0

ii
= −DH0

ii + aHii ,

ηH0
ijk

= −3
2DH

0
ijk + aHijk , η

PUi
0 = −3

2DPUi
0 + aPUi ,


(B.5)

which in its non-infinitesimal and one-parametrical Lie-group form then reads

t∗ = eDε(t− t0) + t0, x∗2 = e
1
2Dεx2, U

∗
1 = e−

1
2DεU1,

H0 ∗
12 = e−DεH0

12, H0 ∗
ii = e−DεH0

ii + (1− e−Dε)aHii
D

,

H0 ∗
ijk = e−

3
2DεH0

ijk + 2
3(1− e−

3
2Dε)

aHijk
D

, PUi
0 ∗ = e−

3
2DεPUi

0 + 2
3(1− e−

3
2Dε)aPUi

D
.


(B.6)

To search for a cause for this equivalence, the most general ansatz, that can be made to induce (B.6)
from an instantaneous transformation, is

t∗ = eDε(t− t0) + t0, x∗2 = e
1
2Dεx2,

U∗i = e−
1
2DεUi + fi(t, x2, U1, U2, U3, P, ε), P ∗ = e−εDP + fP (t, x2, U1, U2, U3, P, ε),

 (B.7)

where in a first step, due to aiming at the most general ansatz, no prior restrictions or assumptions
are made on the four functionals fi and fP . Now, in order to induce the transformations in (B.6)
say, for example, for the mean velocity U1 and the double-velocity moment H0

11, the moments for f1
have to satisfy

f1 = 0, 2e−
1
2DεU1f1 + f2

1 = (1− e−Dε)aH11

D
. (B.8)

But now, since for any particular realization of the instantaneous functional f1, the above three
moments will be functionals of velocity and pressure moments up to the order specified by f1, i.e.,

†Worthwhile to note is that finding a particular realization or the associated probability distribution function (PDF)
to the random functions γi and γP from the knowledge of their moments (B.4) is a challenging inverse problem, in
particular as a solution is not necessarily unique and for which, thus, further fundamental physical constraints have to
be placed: See e.g. Bandyopadhyay et al. (2005); Biswas & Bhattacharya (2010) in reconstructing a single PDF from
its moments up to a certain finite order by using a maximum entropy approach. Here, in this comment, as well as e.g.
in She et al. (2017); Chen et al. (2018), an explicit realization of the random field transformations are not needed to
determine turbulent scaling invariants. Here, the only thing to look out for is that the induced moment relations (B.4)
do not contradict each other.
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since for any particular realization of f1 (B.7) we would have the following induced realization

f1 = Θ1,1(t, x2, ε, U i, P ,H
0
ij , H

0
ijk, PUi, . . . ),

U1f1 = Θ1,2(t, x2, ε, U i, P ,H
0
ij , H

0
ijk, PUi, . . . ),

f2
1 = Θ1,3(t, x2, ε, U i, P ,H

0
ij , H

0
ijk, PUi, . . . ),

 (B.9)

the above relations (B.8) inherently will turn into algebraic restrictions for velocity and pressure
moments, which, certainly, is not what to be aimed at, simply because these restrictions are algebraic
equations then, which unnaturally will augment the defining set of moment equations (2.1) and
therefore will alter the systems’ invariant property as originally given by (B.6), or in its infinitesimal
form by (B.5). This negative and destructive feedback property onto the original system (2.1) can
only be avoided if one demands for the instantaneous functionals fi and fP not only full independence
of the instantaneous fields Ui and P but also, up to all orders, their statistical independence to them
if chosen as random functions, i.e.,†

fi(t, x2, U1, U2, U3, P, ε) ≡ σi(t, x2, ε), fP (t, x2, U1, U2, U3, P, ε) ≡ σP (t, x2, ε),

and: σi1 · · ·σinσkP · Uj1 · · ·UjmP l = σi1 · · ·σinσkP · Uj1 · · ·UjmP l.

 (B.10)

Turning back to our original aim to induce (B.6) from (B.7), along with its consistency constraint (B.10),
we now get the following relations for the moments of σi

σi = 0, σ1σ2 = 0, σ2
i = (1− e−Dε)aHii

D
, (B.11)

when considering the transformations for the mean velocity U1 and the double-velocity moments H0
ij

in (B.6), while when considering and including also the triple-velocity and pressure-velocity moments,
the above set of relations (B.11) gets augmented by

σiσj = 0, σiσjσk = 2
3(1− e−

3
2Dε)

aHijk
D

, σP = 0, σPσi = 2
3(1− e−

3
2Dε)aPUi

D
. (B.12)

However, if we demand ε 6= 0 or aHii 6= 0 as in Sadeghi et al. (2018), then the zero-result for the three
diagonal double-moments obtained in (B.12), namely σ2

i = 0, stands in contradiction to the non-zero
result σ2

i 6= 0 obtained in (B.11). This contradiction can only be solved, either if we allow for no
transformations at all, i.e., by putting the group parameter ε = 0, or if we allow for no translations
in the diagonal double-velocity moments, i.e., by putting aHii = 0, which thus would directly and
analytically prove that the non-zero translation parameters presented in Tab. 1 in Sadeghi et al.
(2018) are all unphysical. Hence, in either way, no cause on the instantaneous level (B.7) can be
generated, such that the statistical invariance (B.6) for aHii 6= 0 can emerge as an effect. �

†As was already stressed in Frewer et al. (2017), yet for a different setting, the randomness of σi and σP defined
in (B.10), as well as that of γi and γP in (B.2), is of a different origin and nature than the randomness of the field
variables Ui and P . Hence, a consistent random field transformation can only be performed if it occurs statistically
independent to the field variables it transforms, otherwise the structure of the original statistical field equations will
alter and thus will be different from the usual textbook equations. For more details on random field transformations,
see e.g. Filipiak (1992); McComb (2014), where in particular the peculiarities and difficulties of the random Galilean
transformations are discussed, explicitly showing that random field transformations are ensemble type of operations
and not kinematical operations.
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