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new scalings in a temporally evolving turbulent plane jet using a different and physical choice of equivalence transformations

Two points are to be noted here: Firstly, due to the unclosedness of the statistical moment equations, the invariant transformations derived herein are only equivalence transformations and not symmetry transformations as incorrectly denoted in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. It is not a semantic sophistry to carefully distinguish between equivalence and symmetry transformations, because in the latter, when applied to a certain set of differential equations, solutions get mapped to solutions of the same set of equations again, while the former acts in a weaker sense, where the considered set of equations get mapped to a different set of equations of the same class. In other words, equivalence transformations do not allow for the same insight into the solution structure of differential equations as symmetry transformations do -see e.g. Frewer et al. (2014b) for a detailed discussion.

Secondly, the invariance analysis presented herein is only performed up to the second moment in the statistical hierarchy. As in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], statements about the scaling behaviour of higher order moments are not made, so it cannot be ruled out that the scaling which works for second order also works for higher order moments. This important consistency check remains pending, in particular as the DNS data for higher order moments are not yet at disposal. The data used in this comment is taken from [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] and has been extracted by WebPlotDigitizer.

Finally, this comment will close with Sec. 5, which in detail will reveal the flaws and problems the study [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] faces. The content of that section will not only invalidate their study, but will also serve as a note to directly compare with the correct approach presented herein.

Statistical equivalences for a temporally evolving turbulent plane jet

Considered is the 1-point defining set of unclosed turbulent transport equations up to second moment in the inviscid limit (ν = 0) (see [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] for all details)

∂ t U 1 + ∂ x 2 H 0 12 = 0, ∂ t H 0 ij + ∂ x 2 H 0 ij2 + ∂ x 2 δ i2 P U j 0 + P U i 0 δ j2 -Φ 0 ij = 0,    (2.1)
where U 1 is the mean streamwise velocity field of this inviscid and temporally evolving plane jet, P U i its pressure-velocity correlation, and

H 0 ij = U i U j , H 0 ijk = U i U j U k , Φ 0 ij = P (∂ x i U j + ∂ x j U i ), (2.2)
the second and third instantaneous velocity moments and the pressure-rate-of-strain tensor of the jet, respectively. The superscript '0', as defined in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], indicates that we are dealing here with a 1-point and not a spatially 2-point statistics, i.e., in which for all fields the 2-point correlation distance r has been set to zero in the limit r → 0. The four non-zero instantaneous double-velocity moments are related to the Reynolds stresses as (Eqs. (3.2)-(3.5) in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF])

H 0 11 = R 0 11 + U 2 1 , H 0 22 = R 0 22 , H 0 33 = R 0 33 , H 0 12 = R 0 12 . (2.3)
Performing a systematic equivalence analysis on (2.1) by using, for example, the Lie software package 'DESOLV-II' by [START_REF] Vu | Finding higher symmetries of differential equations using the MAPLE package DESOLV-II[END_REF], one obtains, in contrast to the particular and already pre-specified solution as presented by Eqs. ( A1)-(A11) in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], the far more general solution † ξ t = F 1 (t),

ξ x 2 = F 2 (t, x 2 ), η U 1 = a 1 U 1 -U 1 ∂ x 2 F 2 (t, x 2 ) + F 3 (t, x 2 ), η H 0 12 = a 1 H 0 12 + U 1 ∂ t F 2 (t, x 2 ) -H 0 12 ∂ t F 1 (t) + F 4 (t, x 2 ), where ∂ x 2 F 4 = -∂ t F 3 , η H 0 ii = U 1 F 5,i,1 (t,
x 2 ) + H 0 12 F 5,i,12 (t, x 2 ) + 3 j=1 H 0 jj F 5,i,jj (t, x 2 ) + F 5,i,0 (t, x 2 ),

                            
(2.4) † To note is that the general solution (2.4) can also be derived from the 2-point correlation equations along with their continuity constraints as described in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], by letting in the end the correlation length r in the solutions go to zero.

after exploiting the spanwise (x 3 ) symmetry of the flow configuration. † By augmenting the defining system (2.1) with the still required mass flux constraint ∞ -∞ U 1 dx 2 = const., will restrict the general solution (2.4) only marginally to: (2.5) i.e., F 3 should be antisymmetric in x 2 ; the derivation of these two restrictions is given in Appendix A.

a 1 = 0, and ∞ -∞ F 3 (t, x 2 )dx 2 = 0,
For the sake of brevity, the solutions for the triple-velocity and pressure-velocity correlations are not shown here at this stage in (2.4); they will be shown further below when we try to consistently reduce the complexity of this solution. The presentation of (2.4) should only give a first impression of the high degree of arbitrariness which is involved here through the emergence of arbitrary space-time functions F for each variable. ‡ Also, it gives the correct impression of what from the outset a Liegroup invariance analysis can predict, without any prior intervention from the user: For a temporally evolving plane jet, as in (2.4), not too much, as the degree of arbitrariness is too high here in this case.

In this sense, the presentation of the "general" equivalence solution given in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] by Eqs. ( A1)-( A11) is highly misleading, as the reader might think that this reduced solution is already the most general solution any Lie-group invariance analysis would give, particularly, as nowhere in the text it is mentioned that Eqs. ( A1)-( A11) is actually only a reduced solution and that it thus, in fact, already constitutes a biased solution specified by the user. ‡ ‡ This is exactly what will be done now, to reduce the immense complexity of the general equivalence solution (2.4) into a manageable expression. The guideline should be to conduct the reduction in a consistent and physically meaningful way. The first step should be to establish a connection to the classical scaling relations, since experimental and numerical evidence approximately support this scaling for the mean velocity field U 1 as well as for the off-diagonal Reynolds stress R 0 12 . The classical invariant scalings for these two fields are (see [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] for details)

Ũ 1 (x 2 ) = U 1 (t, x 2 ) U c (t) , R0 12 (x 2 ) = R 0 12 (t, x 2 ) U 2 c (t) , (2.6)
where Ũ 1 and R0 12 are the corresponding self-similar fields, defined as a function of the similarity variable x2 = x 2 δ 0.5 (t) , with the jet half-width:

δ 0.5 (t) = B √ t -t 0 , (2.7)
being the dimensionless invariant lateral distance, and normalized by the mean velocity on the centreline (x 2 = 0)

U 1 (t, 0) =: U c (t) = A √ t -t 0 . (2.8)
For an initial Reynolds number of 8000, based on the initial centreline velocity U c (0) and the initial jet thickness δ 0.5 (0), the global constants A, B and t 0 were numerically best fitted in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] to the values A = 1.91, B = 1/A = 0.524, t 0 = 8.64, (2.9) in the time range 20 ≤ t ≤ 30, where A and B both carry the same dimension of L/ √ T . Now, when looking at the self-similar profile of the mean velocity (see Fig. 3 in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]), it approximately reminds us of a Gaussian profile being the solution of the diffusion equation. And since, in particular, the dimensionless and self-similar scaling (2.7) and (2.6) is compatible with † Due to spanwise homogeneity and a spanwise reflection symmetry in the flow, all moments involving an uneven number of spanwise velocity fields vanish.

‡ Except for the infinitesimal equivalence generator of the time variable ξt, which is an arbitrary function only of time and not of space.

‡ ‡ It is straightforward to see that when choosing in (2.4) the arbitrary space-time functions F appropriately, that it will reduce to the particular solution Eqs. ( A1)-(A7) in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. However, the generators for the triplevelocities η H 0 ij2 (Eqs. ( A8)-( A9)) in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] are not correct, as they all miss a term proportional to H 0 ij ∂tξx 2 . Furthermore, Eq. (A7) contains a misprint: Instead of F3(t)U 1, this term should read (∂tF3(t))U 1.

the diffusion equation when re-scaled into an overall dimensionless form (2.10) where B 2 then can be identified as the turbulent viscosity ν T , which here for a Reynolds-number of 8000 takes the specific value 0.275, it is thus, in a first approximative sense, physically reasonable and not far-fetched to augment, within the considered time range 20 ≤ t ≤ 30, the statistically unclosed system (2.1) with equation (2.10) as an approximate defining equation † for the mean velocity U 1

∂ U 1 A/ √ T ∂ t T = ∂ 2 U 1 A/ √ T ∂ x 2 B √ T 2 ⇐⇒ ∂U 1 ∂t = ν T ∂ 2 U 1 ∂x 2 2 , with ν T = B 2 = 0.275,
∂ t U 1 = ν T ∂ 2 x 2 U 1 , (2.11)
but, and this is important, with a still unknown initial condition ‡ within 20 ≤ t ≤ 30.

Re-performing the Lie-group invariance analysis of system (2.1) by including equation (2.11), will restrict in (2.4) three arbitrary functions: The two functions for ξ t and ξ x 2 down to two linearly uncoupled functions

F 1 (t) = t -c 1 , F 2 (t, x 2 ) = 1 2 (x 2 -c 2 ), (2.12)
where c 1 and c 2 are arbitrary constants, and the function F 3 down to be a particular solution of the diffusion equation (2.11). The complete solution for the infinitesimal equivalence generators (2.4) thus then reads (including the restrictions (2.5))

ξ t = t -c 1 , ξ x 2 = 1 2 (x 2 -c 2 ), η U 1 = -1 2 U 1 + F 3 (t, x 2 ), where ∂ t F 3 = ν T ∂ 2 x 2 F 3 , and ∞ -∞ F 3 dx 2 = 0, η H 0 12 = -H 0 12 + F 4 (t, x 2 ), where ∂ x 2 F 4 = -∂ t F 3 , η H 0 ii = U 1 F 5,i,1 (t, x 2 ) + H 0 12 F 5,i,12 (t, x 2 ) + 3 j=1 H 0 jj F 5,i,jj (t, x 2 ) + F 5,i,0 (t, x 2 ), η H 0 122 = -3 2 H 0 122 -3 2 P U 1 0 -η P U 1 0 + F 6 (t, x 2 ), η H 0 ii2 = -1 2 H 0 ii2 + H 0 12 F 5,i,1 (t, x 2 ) + H 0 122 F 5,i,12 (t, x 2 ) + 3 j=1 H 0 jj2 F 5,i,jj (t, x 2 ) + P U 1 0 F 5,i,12 (t, x 2 ) + 2P U 2 0 F 5,i,22 (t, x 2 ) -δ i2 P U 2 0 + 2η P U 2 0 + F 7,i,0 (t, x 2 ), η P U 1 0 = F 8 (t, x 2 , U 1 , H 0 12 , H 0 ii , H 0 122 , H 0 ii2 , P U 1 0 , P U 2 0 , Φ 0 ij ), η P U 2 0 = F 9 (t, x 2 , U 1 , H 0 12 , H 0 ii , H 0 122 , H 0 ii2 , P U 1 0 , P U 2 0 , Φ 0 ij ),                                                                        (2.13)
where F 8 and F 9 are fully arbitrary functions in all variables involved. For the sake of brevity, the lengthy expressions for the pressure-rate-of-strain generators η Φ 0 ij are not shown here, in particular as they also do not reveal any exciting new information, since they basically just compensate the functional structures given by the above triple-velocity and pressure-velocity correlations.

Although the original and untouched equivalence solution (2.4) got drastically reduced in the independent variables when including the empirically consistent assumption (2.11) as a further constraint to the defining system (2.1), the resulting solution (2.13) is still highly arbitrary in all its dependent variables. In the next section, a specific choice for these unclosed terms will be made. Although a physically consistent choice is made, it is not dictated by theory. It is a purely empirical choice, to be only seen as a single particular choice within an infinite trial-and-error process of infinitely many other possible choices on a way to find the optimal choice that will match numerical or experimental data best. † Later, in Sec. 4 a better and higher-order approximation will be given based on the finding by [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF].

‡ Although (2.11) as a Cauchy problem can be generally solved within the time range 20 ≤ t ≤ 30 as

U 1(t, x2) = 1 √ 4πν T (t-20) ∞ -∞ dx 2 U 1(20, x 2 )e - (x 2 -x 2 ) 2 4ν T (t-20) ,
a concrete solution can only be generated if the initial condition U 1(20, x2) is priorly known or pre-established.

Specifying a particular equivalence solution

In the following, let the set of open constants and arbitrary functions in (2.13) up to second moment be specifically chosen as:

c 1 = t 0 , c 2 = 0, F 3 = F 4 = F 5,i,1 = F 5,i,12 = 0, F 5,i,jj = -δ ij , ∀i, j, F 5,i,0 = α i √ t -t 0 e - βx 2 2 t-t 0 , F 8 = -3 2 P U 1 0 -U 1 F 5,2,0 + G 1 , F 9 = -3 2 P U 2 0 + G 2 ,        (3.1)
where α i and β are arbitrary constants, and G 1 and G 2 arbitrary functions of space and time only. The equivalence generators (2.13) then take the explicit form

ξ t = t -t 0 , ξ x 2 = 1 2 x 2 , η U 1 = -1 2 U 1 , η H 0 12 = -H 0 12 , η H 0 ii = -H 0 ii + α i √ t -t 0 e - βx 2 2 t-t 0 , η H 0 122 = -3 2 H 0 122 + U 1 α 2 √ t -t 0 e - βx 2 2 t-t 0 -G 1 (t, x 2 ) + F 6 (t, x 2 ), η H 0 ii2 = -3 2 H 0 ii2 -2δ i2 G 2 (t, x 2 ) + F 7,i,0 (t, x 2 ), η P U 1 0 = -3 2 P U 1 0 -U 1 α 2 √ t -t 0 e - βx 2 2 t-t 0 + G 1 (t, x 2 ), η P U 2 0 = -3 2 P U 2 0 + G 2 (t, x 2 ),                                                    (3.2)
where, up to the four global constants α i and β, the generators for the mean velocity U 1 and the Reynolds stresses

R 0 ij = H 0 ij -δ 1i δ 1j U 2 1 (2.
3) are fully specified now. To note is that (3.1) is an empirical choice and not dictated by theory. It is only one particular choice among infinitely many other choices that, as we will see in the next section, will scale the numerical profiles for the mean velocity and the Reynolds stresses appropriately. Hence, other choices may exist 'out there' that will scale equally well or even better. The only theoretical guideline that was explicitly used for (3.1) was the classical principle of cause and effect (see e.g. [START_REF] Frewer | Comment on "Statistical symmetries of the Lundgren-Monin-Novikov hierarchy[END_REF]Frewer et al. ( , 2016) ) and Appendix A in [START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF] for theoretical details), to assure as a minimal requirement that the choice made in (3.1) is at least physically consistent.

Indeed, as shown in Appendix B, the above choice (3.2) is physically consistent in the sense that there exists at least a single cause on the instantaneous (fluctuating) level such that the set of transformations (3.2) can emerge as a collective invariance on the statistical level. This particular choice (3.2) stands in stark contrast to the choice made in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], in particular the proposed triple-velocity transformation η H 0 122 (Eq. ( A8)) which, in relation to all preceding lower-order moment transformations Eqs. ( A1)-(A7), is unphysical, since no cause of any type and form on the fluctuating level exists such that this transformation can emerge as an invariance on the statistical level. In relation to the specified lower-order moments Eqs. ( A1)-(A7), the invariant transformation η H 0 122 (Eq. ( A8)) would only be physically consistent if it would contain a term proportional to the mean velocity U 1 , but, which is not the case, even when adding the terms that are originally missing from this expression (see last footnote on p. 3).

Following the procedure as outlined in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], the corresponding invariant variables of system (3.2) for the mean velocity and the Reynolds stresses, which would let collapse differently timed spatial profiles in the range 20 ≤ t ≤ 30 into a single profile, † are generated by solving the following invariant surface conditions

ξ t ∂ t U 1 + ξ x 2 ∂ x 2 U 1 -η U 1 = 0, ξ t ∂ t H 0 12 + ξ x 2 ∂ x 2 H 0 12 -η H 0 12 = 0, ξ t ∂ t H 0 ii + ξ x 2 ∂ x 2 H 0 ii -η H 0 ii = 0,    (3.3)
in each dependent variable for the constant of integration, which, since we are dealing here with PDEs, will be arbitrary functions symbolized in the following by Ψ. Hence, when incorporating the definitions (2.7) and (2.8) into the general solutions of (3.3), the invariant variable for the mean velocity and for the off-diagonal Reynolds stress then take the explicit form

U 1 (t, x 2 ) = Ψ 1 x 2 √ t-t 0 √ t -t 0 ≡ A Ψ 1 x 2 B √ t-t 0 √ t -t 0 ⇐⇒ Ũ 1 (x 2 ) = U 1 (t, x 2 ) U c (t) , H 0 12 (t, x 2 ) = R 0 12 (t, x 2 ) = A 2 Ψ 12 x 2 B √ t-t 0 t -t 0 ⇐⇒ R0 12 (x 2 ) = R 0 12 (t, x 2 ) U 2 c (t) ,                              (3.4)
which correspond to the classical scaling (2.6), while the three diagonal or normal Reynolds stresses scale differently as

H 0 ii (t, x 2 ) = R 0 ii (t, x 2 ) + δ i1 U 2 1 (t, x 2 ) = 2α i √ t -t 0 e - βx 2 2 t-t 0 + A 2 Ψ ii x 2 B √ t-t 0 t -t 0 ⇐⇒ R0 ii (x 2 ) = R 0 ii (t, x 2 ) + δ i1 U 2 1 (t, x 2 ) U 2 c (t) - 2α i √ t -t 0 A 2 e - βx 2 2 t-t 0 . (3.5)

Comparing the scaling performance to DNS

The numerical simulation to be compared to is taken from the DNS performed by [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. The relevant data presented in Fig. 3 (p. 248) and Fig. 4 (p. 249) have been extracted using the plot-digitizer software WebPlotDigitizer, and is represented again in Fig. 1 in order to explicitly contrast it to the original data given in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. For each variable, only three data sets within the considered time range 20 ≤ t ≤ 30 have been extracted as it shows to be sufficient:

The lower end at t = 20 ( ), the mid-value at t = 25 ( ), and the upper end at t = 30 (•). While in Fig. 1 the classical normalizations (3.4) for the mean velocity Ũ 1 (x 2 ) and the off-diagonal Reynolds stress

g 12 (x 2 ) = R 0 12 (t, x 2 )/U 2 c (t) = R0
12 (x 2 ) already scale appropriately by showing a satisfactory global collapse for different times over the full invariant domain, this cannot be said for the three normal or diagonal Reynolds stresses which near the centre region of the jet (x 2 ∼ x2 ∼ 0) deviate significantly from being self-similar when using the same classical normalization as for the off-diagonal component: (Sadeghi et al., 2018, p. 248). Using, however, the non-classical renormalization (3.5) for the normal stresses by taking for the global parameters the best fitted values β = ln(2)/B 2 , α 1 = -0.028, α 2 = -0.035, α 3 = -0.022, all profiles for each stress then satisfactorily collapse into a single profile globally as shown in Fig. 2. Worthwhile to note here is that the fitting result β = ln 2/B 2 turns the initial specification of F 5,i,0 in (3.1) into a best-fit function for the mean velocity profile, but only up to its turning point around x2 = x0 2 ∼ 0.85, i.e., within this range the mean velocity profile of a temporally evolving turbulent plane jet can be well approximated by The axes labelling refer to the normalized variables: x2 = x 2 /δ 0.5 (t) (2.7), Ũ 1 (x 2 ) = U 1 (t, x 2 )/U c (t) (2.8), and

g ii (x 2 ) = R 0 ii (t, x 2 )/U 2 c (t)
U 1 (t, x 2 ) = A √ t -t 0 e - ln2•x 2 2 B 2 (t-t 0 ) , for x2 ≤ x0 2 ∼ 0.85, ( 4 
g ij (x 2 ) = R 0 ij (t,
x 2 )/U c (t) 2 as defined on p. 248 in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF].

augment the unclosed set of statistical moment equations (2.1) with the diffusion equation (2.11) as a defining equation for the mean velocity U 1 , is a rather poor approximation. A better approximation can be generated by using the finding of Bradbury (1965) † , namely to model the mean velocity in its invariant variable to higher order as

U 1 (t, x 2 ) = A √ t -t 0 e - ln2•x 2 2 B 2 (t-t 0 ) - γ•x 6 2 B 6 (t-t 0 ) 3 , (4.2)
which then offers a satisfactory approximation in the whole invariant domain x2 = x 2 /δ 0.5 (t) (2.7).

A best fit to the data shown in Fig. 1 will fix the higher order exponent to γ = 0.024 • ln 2, which, not surprisingly, corresponds more or less to the value proposed in [START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF].

The aim now is to associate the function (4.2) to a certain transport equation that will replace the initial approximation (2.11) by a better one, however, such that the classical scaling for the mean velocity (2.6) is not destroyed. In other words, the aim is to augment again the unclosed set of statistical moment equations (2.1) with a defining equation for the mean velocity, but now with a better, higher-order approximate equation than the one initially proposed by (2.11); but, also such that the infinitesimal equivalence generators for ξ t , ξ x 2 and η U 1 , as generally given by (2.4), can reduce to those of (3.2) when performing again a Lie-group invariance analysis on this new combined system. Now, since the function (4.2) can be seen as a particular solution of the following modified (non-autonomous) diffusion equation

∂ t U 1 = B 2 ∂ 2 x 2 U 1 + U 1 t -t 0 6 n=1 µ n x 2 B √ t -t 0 2n-2 , (4.3)
where the dimensionless parameters take on the values

µ 1 = 2 ln 2 -1 2 , µ 2 = ln 2 • (1 -4 ln 2), µ 3 = 30γ, µ 4 = γ • (3 -24 ln 2), µ 5 = 0, µ 6 = -36γ 2 ,    (4.4)
and since this equation meets all requirements mentioned above, (4.3) is an appropriate higherorder approximation to (2.11). Indeed, when re-performing a full Lie-group invariance analysis on the defining but unclosed system (2.1) augmented with (4.3) and restricted by the mass flux constraint (2.5), we will obtain the same general result (2.13) as before, except that c 1 , c 2 and F 3 are now specifically restricted to

c 1 = t 0 , c 2 = 0, ∂ t F 3 = B 2 ∂ 2 x 2 F 3 + F 3 t -t 0 6 n=1 µ n x 2 B √ t -t 0 2n-2 and ∞ -∞ F 3 dx 2 = 0. (4.5)
This allows us now to make the specific higher-order choice for F 5,i,0 in (3.1) as Figure 3: Renormalized diagonal Reynolds stresses according to the higher-order approximation (4.9). However, when comparing to the former scaling shown in Fig. 2, no improvement can be registered. As discussed in the text, maybe this improvement only will become visible when also considering the appropriate scaling for higher-order moments beyond the Reynolds stresses. Within a best fit, the three global parameters in (4.9) were fixed to: α 1 = -0.015, α 2 = -0.018, and α 3 = -0.011. As in Fig. 2, the above symbols again refer to: t = 20 ( ), t = 25 ( ), and t = 30 (•).

F 5,i,0 = αi √ t -t 0 e - ln2•x 2 2 B 2 (t-t 0 ) - γ•x 6 2 B 6 (t-t 0 ) 3 , γ = 0.024 • ln 2, ( 4 
which now can be identified as a best-fit function proportional to the mean velocity field, that is, (4.6) can thus be well approximated by (4.2) as

F 5,i,0 = α i U 1 , where α i = αi /A. (4.7)
With this ansatz in (3.1), the equivalence generators (2.13) then take the explicit form

ξ t = t -t 0 , ξ x 2 = 1 2 x 2 , η U 1 = -1 2 U 1 , η H 0 12 = -H 0 12 , η H 0 ii = -H 0 ii + α i U 1 , η H 0 122 = -3 2 H 0 122 + α 2 U 2 1 -G 1 (t, x 2 ) + F 6 (t, x 2 ), η H 0 ii2 = -3 2 H 0 ii2 -2δ i2 G 2 (t, x 2 ) + F 7,i,0 (t, x 2 ), η P U 1 0 = -3 2 P U 1 0 -α 2 U 1 + G 1 (t, x 2 ), η P U 2 0 = -3 2 P U 2 0 + G 2 (t, x 2 ),                                        (4.8)
which now can be seen as a higher-order approximation to the former equivalence solution (3.2). Solving for (4.8) the associated invariant surface conditions (3.3), the invariant variables for the mean velocity and Reynolds stresses then read

Ũ 1 (x 2 ) = U 1 (t, x 2 ) U c (t) , R0 12 (x 2 ) = R 0 12 (t, x 2 ) U 2 c (t) , R0 ii (x 2 ) = R 0 ii (t, x 2 ) + δ i1 U 2 1 (t, x 2 ) -2 α i U 1 U 2 c (t)
. (4.9)

By construction the scaling for the mean velocity and the off-diagonal Reynolds stress stay unchanged and are shown in Fig. 1. Different is only the scaling ansatz for the normal Reynolds stresses, which for α 1 = -0.015, α 2 = -0.018 and α 3 = -0.011 is shown as a best fit in Fig. 3. However, when comparing to the former scaling shown in Fig. 2, no improvement can be registered. Hence, it seems that the improvement maybe only becomes visible when considering the scaling of higher-order moments beyond the Reynolds stresses as for the triple-velocities H 0 ij2 -but for these we have no prior theoretical guarantee that the initial choice (3.1) made for the second moments is also consistent to any higher-order moment; maybe a different choice has to be made when including and studying the scaling behaviour of higher-order moments beyond the Reynolds stresses.

To close this section and in order to pass over to the next section, it is worth noting that when comparing Fig. 2, or Fig. 3, with the corresponding Fig. 7 in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], it seems at first sight that in both cases a similar result is obtained, although by Eqs. (4.10)-(4.12) in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] a fundamentally different set of scaling relations for the normal Reynolds stresses is used than the one derived herein, either given by (3.5) or by (4.9). It seems that a key difference lies in the absolute value where the profiles collapse at x2 = 0, but even this difference levels out when considering relative values: The ratios R0

ii (0)/ R0 jj (0) from Fig. 2 This mismatch can be easily seen just by looking at the asymptotic behaviour of the scaling relations Eqs. (4.10)-(4.12) for large x 2 , or equivalently for large x2 = x 2 /(B √ t -t 0 ) at some fixed finite value t > t 0 , and then compare it to the asymptotic behaviour shown in Fig. 7 : While all self-similar solutions in Fig. 7 tend to zero, the corresponding self-similar solutions given by Eqs. (4.10)-(4.12) do not! Instead, for each field they tend to the finite value a H ii t, because in free planar jet flow all fields decay to zero for large lateral distances x 2 with the result that the field-proportional terms on the right-hand side of Eqs. (4.10)-( 4.12) are thus negligible compared to the field-free terms a H ii t, which survive this limit. † Also, the values of these terms a H ii t ‡ , first of all, are not small when compared to the maximum value of each profile for t ≥ 20, and secondly tend to a different value for each different t, i.e., the self-similarity in the asymptotic region is lost due to the presence of these terms. Fig. 4 shows the correct corresponding plots for the scaling relations Eqs. (4.10)-(4.12) proposed in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], clearly demonstrating the difference to what is shown in Fig. 7 -to note is that at x2 = 0 the plots for the normal Reynolds stresses in Fig. 4 exactly coincide in value with the corresponding plots in Fig. 7, thus corroborating that no mistake in Fig. 4 has been made. Fig. 4 also includes the similarity profile for the off-diagonal Reynolds stress R 0 12 , which should scale as Eq. ( B5) and shown in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] by Fig. 6. Also this figure cannot be reproduced, since in comparison with the correct plot shown in Fig. 4 it is off by a global scaling factor of nearly 3: The correct maximum value for R0

12 is nearly three times higher than shown in Fig. 6. The reason for why the asymptotic self-similarity gets broken by Eqs. (4.10)-( 4.12) is that this scaling is in fact based on an unphysical set of equivalence transformations, namely the choice Eqs. ( A4)-(A11) made in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] violates the classical principle of cause and effect, in the sense that there exists no cause on the instantaneous (fluctuating) level of the Navier-Stokes equations such that these equivalences can emerge as an effect on the statistical level. In other words, the equivalences Eqs. ( A4)-(A11) put forward in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] have no physical justification, they even violate the underlying physical principles. This claim is proven at the end of Appendix B. It stands in stark contrast to the equivalence transformations proposed in this comment, either given by (3.2) or by (4.8), which both do not violate the causality principle. 4.12) for the normal Reynolds stresses and by Eq. ( B5) for the off-diagonal Reynolds stress. There is a clear discrepancy to the corresponding plots shown in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. In contrast to Fig. 7, the normal Reynolds stresses do not tend to zero and do not collapse into a single profile for large invariant distances x2 . In other words, the above plots for the three normal Reynolds stresses do not show a self-similar behaviour for large x2 , as incorrectly claimed in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. To note is that at x2 = 0 the above plots for the normal Reynolds stresses exactly coincide in value with the corresponding plots in Fig. 7, thus corroborating that no mistake in the above plots have been made. Regarding the above lower right plot for the off-diagonal Reynolds stress, this correct profile is globally in scale nearly 3 times larger than the corresponding one shown in Fig. 6. For more details about this overall discrepancy, please see the text in Sec. 4 & 5. As in all figures before, the above symbols refer again to: t = 20 ( ), t = 25 ( ), and t = 30 (•).

A critical examination of Sadeghi et al. (2018): Refuting the study's claims

This section lists all (major and minor) problems to be found in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], including two severe flaws (the first two listed below), which ultimately refutes the study as a whole:

(1): The interpretations and conclusions in that study are not justified by the results given. Particularly, Fig. 7 cannot be reproduced from the given DNS data shown in Fig. 4(a-c) as claimed. The analytic asymptotic behaviours of the underlying Eqs. (4.10)-(4.12) do not match the corresponding numerical asymptotic behaviours as shown in Fig. 7 : Firstly, when proposing a scaling as given by Eqs. (4.10)-(4.12), a collapse of the profiles for large x2 cannot be confirmed and, secondly, in this regime the profiles also do not tend to zero as incorrectly shown in Fig. 7.

That the profiles for the invariantized diagonal Reynolds stresses do not collapse and do not tend to zero in the asymptotic regime when scaled as Eqs. (4.10)-(4.12) can be easily seen by considering e.g. the case R0

22 (4.11) -the reasoning for the other two cases (4.10) and (4.12) is analogous: Since in free planar jet flow all fields, including R 0 22 , decay for large lateral distances x 2 and therefore also for large invariant distances x2 ∝ x 2 / √ t -t 0 (Eqs. (3.6),(4.8)-(4.9)) for any fixed finite time t, say t = 20, the first term -D • R 0 22 • (t -t 0 ) on the right-hand side of Eq. ( 4.11) tends to zero. † Now, since this first term is negligibly small compared to the second one on the right-hand side a H 22 t, which, according to Tab. 1 (p. 252) takes for t = 20 the finite and non-zero value a H 22 t = 0.0706 • 20 ∼ 1.4, † As already noted before, D and t0 in Eqs. ( 4 the asymptotic value for the invariantized Reynolds stress R0

22 does not tend to zero, as incorrectly shown in Fig. 7(b), but rather tends to the value 1.4. This is true also for any other profile, say t = 30, which would tend to the even higher value a H 22 t = 0.0706 • 30 ∼ 2.1, being even a different value than for the profile t = 20. Hence, for large x2 the profiles for different t do not only go to a non-zero value but also do not collapse. Fig. 4 in this comment shows the correct profiles to the scaling proposed by [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. The discrepancy to their Fig. 7 is clearly visible.

(2): The reason for this failure described above is that in that study again, as also already in all previous studies from the group of Oberlack et al., unphysical statistical symmetries † are being employed that violate the classical principle of cause and effect. If the statistical symmetries of the system are chosen as given in Appx. A (p. 254), then, for example, the translation group a H 22 of the double-velocity moment in Eq. ( A5) is inconsistent to the symmetry for the triple-velocity moment H 0 122 as given in Eq. (A8) or Eq. ( A9), which, in order to be consistent with the lower moment, needs to contain a term that is at least proportional to the mean velocity U 1 . See (3.2) or (4.8) in this comment for a choice of symmetries that do not violate the causality principle and which lead to a more convincing and robust collapsing of all profiles up to second order, as shown here in Fig. 2 and Fig. 3, respectively. The consistency proof is given in Appendix B.

(3): The result of their performed Lie-group symmetry analysis, as presented in Eqs. ( A1)-( A11), not only contains inaccuracies, ‡ but their analysis is also spectacularly incomplete. Irrespective of whether performing a 1-point symmetry analysis, or a more general 2-point symmetry analysis within the 1-point limit, in both cases, when done properly and correctly, will give an infinitely larger symmetry group than the one presented in Appx. A (p. 254), not only for all dependent variables but also for the independent variable x 2 : Any correctly performed symmetry analysis for the inviscid (ν = 0) free planar jet flow case will not lead to the linear x 2 -specification from the outset as given in Eq. ( A2), but rather to an arbitrary function in x 2 and t, given in this comment by (2.4). Even when including the lateral mass flux constraint Eq. ( 2.4), the symmetry generator ξ x 2 stays arbitrary and will not be restricted in a certain way -the mass flux constraint Eq. ( 2.4 ), also in its original form ∞ -∞ ∂ t U 1 dx 2 = 0, only restricts the symmetry of the mean velocity U 1 and not that of x 2 , since all the restricting terms for x 2 will cancel exactly (after partial integration) -see Appendix A.

Of course, is clear that one aims to make a connection to the classical x 2 -invariant scaling x2 ∝ x 2 / √ t -t 0 and that for this very reason one has to choose a linear ansatz for the symmetry generator of x 2 , but this particular choice is not given as an explicit result from Lie-group analysis itself. In other words, this particular choice is not given by theory from within, as misleadingly claimed in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]; instead it is put as an external condition to match the collapsing DNS profiles of the mean velocity field. The same is true for all other variables, except for ξ t (Eq. ( A1)) which from the outset is already in its general form.

Hence, presenting the symmetry result in the reduced form as given in Eqs. ( A1)-( A11) is misleading, as the reader might think that a Lie-group symmetry analysis for the inviscid free planar jet will only lead to this particular result Eqs. ( A1)-(A11) without any further intervention by the user. But this is not the case: A consistent and complete symmetry analysis gives a highly arbitrary result, which, if one aims to match with experimental or numerical data, needs to be arranged and specified externally. Due to this arbitrariness in the symmetries, all derived scalings in that study (irrespective of their higher-order inconsistencies as described in (1) and (2) above) are thus only a posteriori scalings and not a priori scalings as wanted. Under such conditions as given in the theory of turbulence, a systematic Lie-group analysis cannot make and give any analytical prediction as to how turbulence scales statistically, due to that not only unknown parameters but also an abundance of arbitrary functions get induced. As convincingly shown in this comment, a collapse of all profiles can also be obtained when choosing a different set of symmetries than the one incorrectly proposed in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], i.e., when choosing any set of symmetries which does not violate the classical principle of cause and effect. There is no prediction or no unique choice in the scaling as how to † To keep in line with the (misleading) notation in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], we will call all equivalences in this section as symmetries. As discussed and explained in Sec. 1, such an identification is misleading here, since all results derived and presented in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] refer only to equivalence and not to symmetry transformations.

‡ For example, if the symmetries for the double-velocity moments are chosen as given by Eqs. ( A4)-(A7), then the symmetry of each triple-velocity moment H 0 ij2 misses the vital term proportional to H 0 ij . See also last footnote on p. 3.

that the invariant surface condition Eq. (3.1) is only a specification and not in its most general form, the arbitrariness in the set of invariant solutions is even higher from the outset than given by Eq. (3.1).

To obtain invariant scaling laws, a systematic Lie-group symmetry analysis is not of much help here, since it just shifts the arbitrariness from one function to another. For a further discussion of this point, see e.g. Frewer et al. (2014a);Frewer & Khujadze (2016).

(7): Update, 5. Dec. 2018: The criticism that was placed here in the earlier version (4. Oct. 2018), regarding a mislabelling of the horizontal axes for the plots in Figs. 567, was not justified. Because, when interpreting their small indication "x 2 (x 2 /δ 0.5 )" on p. 249 uniquely as x2 = x 2 /δ 0.5 and the fact that indeed from their defining relation Eq. (3.6) along with Eqs. (4.8)-(4.9) the more general result x2 = c • x 2 / √ t -t 0 (where c is an arbitrary integration constant) can be obtained, it seems more than likely that ultimately the correct explicit expression for x2 was used. The issue was that in the earlier version the indefiniteness of the integral in Eq. (3.6) was not fully recognized, thus the integration fell short a constant. Hence, the earlier criticism here that a mislabelling has occurred is removed. Yet, it should be noted that this correction has no effect on any of the comments (1)-( 6) made before.

• then the set of statistical equivalence transformations (B.1) are caused by (B.4), as can be easily verified by constructing the corresponding moments from (B.2) and recalling that for the flow case considered herein U 2 = U 3 = 0. In other words, the chosen set of equivalence transformations (B.1), or in their infinitesimal form (3.2), do not violate the classical principle of cause and effect, since at least one cause on the instantaneous level can be found, for instance (B.2)-(B.4), from which then the invariance (B.1) results as an effect on the statistical level. † This is in stark contrast to the equivalence transformations Eqs. ( A1)-(A11) chosen in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], for which no cause of any type and form can be found. The key problem is that the transformations for the triple-velocity moments Eqs. ( A8)-( A9) are inconsistent to ones chosen for the double-velocity moments Eqs. ( A4)-(A7), even when including the correct terms that are originally missing from this expression (see last footnote on p. 3): No transformation on the instantaneous level can be found as to make these two transformations consistent, and hence have to be discarded as unphysical. Let's prove this claim for the reduced version of Eqs. ( A1)-(A11) that finally has been used by [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] to derive the Reynolds stress scalings Eqs. (4.10)-(4.12) and Eq. ( B5), namely to choose

F 3 (t) = a 1 = a U 1 = 0 (p. 244), F 1 (t) = D(t -t 0 ), F 2 (t) = 1 2 D (p. 249
), and a H 12 = 0 (p. 255), which then reduces Eqs. ( A1)-(A11) simply to

ξ t = D(t -t 0 ), ξ x 2 = 1 2 Dx 2 , η U 1 = -1 2 DU 1 , η H 0 12 = -DH 0 12 , η H 0 ii = -DH 0 ii + a H ii , η H 0 ijk = -3 2 DH 0 ijk + a H ijk , η P U i 0 = -3 2 DP U i 0 + a P U i ,              (B.5)
which in its non-infinitesimal and one-parametrical Lie-group form then reads

t * = e D (t -t 0 ) + t 0 , x * 2 = e 1 2 D x 2 , U * 1 = e -1 2 D U 1 , H 0 * 12 = e -D H 0 12 , H 0 * ii = e -D H 0 ii + (1 -e -D ) a H ii D , H 0 * ijk = e -3 2 D H 0 ijk + 2 3 (1 -e -3 2 D ) a H ijk D , P U i 0 * = e -3 2 D P U i 0 + 2 3 (1 -e -3 2 D ) a P U i D .                (B.6)
To search for a cause for this equivalence, the most general ansatz, that can be made to induce (B.6) from an instantaneous transformation, is

t * = e D (t -t 0 ) + t 0 , x * 2 = e 1 2 D x 2 , U * i = e -1 2 D U i + f i (t, x 2 , U 1 , U 2 , U 3 , P, ), P * = e -D P + f P (t, x 2 , U 1 , U 2 , U 3 , P, ),      (B.7)
where in a first step, due to aiming at the most general ansatz, no prior restrictions or assumptions are made on the four functionals f i and f P . Now, in order to induce the transformations in (B.6) say, for example, for the mean velocity U 1 and the double-velocity moment H 0 11 , the moments for f 1 have to satisfy

f 1 = 0, 2e -1 2 D U 1 f 1 + f 2 1 = (1 -e -D ) a H 11 D . (B.8)
But now, since for any particular realization of the instantaneous functional f 1 , the above three moments will be functionals of velocity and pressure moments up to the order specified by f 1 , i.e., since for any particular realization of f 1 (B.7) we would have the following induced realization (B.9) the above relations (B.8) inherently will turn into algebraic restrictions for velocity and pressure moments, which, certainly, is not what to be aimed at, simply because these restrictions are algebraic equations then, which unnaturally will augment the defining set of moment equations (2.1) and therefore will alter the systems' invariant property as originally given by (B.6), or in its infinitesimal form by (B.5). This negative and destructive feedback property onto the original system (2.1) can only be avoided if one demands for the instantaneous functionals f i and f P not only full independence of the instantaneous fields U i and P but also, up to all orders, their statistical independence to them if chosen as random functions, i.e., f i (t, x 2 , U 1 , U 2 , U 3 , P, ) ≡ σ i (t, x 2 , ), f P (t, x 2 , U 1 , U 2 , U 3 , P, ) ≡ σ P (t, x 2 , ), and: However, if we demand = 0 or a H ii = 0 as in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF], then the zero-result for the three diagonal double-moments obtained in (B.12), namely σ 2 i = 0, stands in contradiction to the non-zero result σ 2 i = 0 obtained in (B.11). This contradiction can only be solved, either if we allow for no transformations at all, i.e., by putting the group parameter = 0, or if we allow for no translations in the diagonal double-velocity moments, i.e., by putting a H ii = 0, which thus would directly and analytically prove that the non-zero translation parameters presented in Tab. 1 in [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] are all unphysical. Hence, in either way, no cause on the instantaneous level (B.7) can be generated, such that the statistical invariance (B.6) for a H ii = 0 can emerge as an effect. † As was already stressed in [START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF], yet for a different setting, the randomness of σi and σP defined in (B.10), as well as that of γi and γP in (B.2), is of a different origin and nature than the randomness of the field variables Ui and P . Hence, a consistent random field transformation can only be performed if it occurs statistically independent to the field variables it transforms, otherwise the structure of the original statistical field equations will alter and thus will be different from the usual textbook equations. For more details on random field transformations, see e.g. [START_REF] Filipiak | Further assessment of the LET theory[END_REF]; [START_REF] Mccomb | Homogeneous, Isotropic Turbulence: Phenomenology, Renormalization and Statistical Closures[END_REF], where in particular the peculiarities and difficulties of the random Galilean transformations are discussed, explicitly showing that random field transformations are ensemble type of operations and not kinematical operations.
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Figure 1 :

 1 Figure 1: Extracted data sets from Figs. 3-4 of Sadeghi et al. (2018) for t = 20 ( ), t = 25 ( ), and t = 30 (•).The axes labelling refer to the normalized variables: x2 = x 2 /δ 0.5 (t) (2.7), Ũ 1 (x 2 ) = U 1 (t, x 2 )/U c (t) (2.8), andg ij (x 2 ) = R 0 ij (t,x 2 )/U c (t) 2 as defined on p. 248 in[START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF].

Figure 2 :

 2 Figure 2: Renormalized diagonal Reynolds stresses according to (3.5). In contrast to the classical normalization shown in Fig.1, a global self-similar behaviour can now be observed extending over the full invariant domain x2 . Within a best fit, the four global parameters in (3.5) were fixed to: β = ln(2)/B 2 , α 1 = -0.028, α 2 = -0.035, and α 3 = -0.022. As in Fig.1, the above symbols refer again to: t = 20 ( ), t = 25 ( ), and t = 30 (•).

  , or Fig 3, equal more or less those from Fig. 7 in Sadeghi et al. (2018). Despite all this resemblance between these figures, a key problem remains: Fig. 7 in Sadeghi et al. (2018) cannot be reproduced. Their defining scaling relations Eqs. (4.10)-(4.12) for Fig. 7 do not match to what is shown then in Fig. 7.

Figure 4 :

 4 Figure4: The correct plots associated to the self-similar scaling proposed in[START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] by Eqs. (4.10)-(4.12) for the normal Reynolds stresses and by Eq. (B5) for the off-diagonal Reynolds stress. There is a clear discrepancy to the corresponding plots shown in[START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. In contrast to Fig.7, the normal Reynolds stresses do not tend to zero and do not collapse into a single profile for large invariant distances x2 . In other words, the above plots for the three normal Reynolds stresses do not show a self-similar behaviour for large x2 , as incorrectly claimed in[START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF]. To note is that at x2 = 0 the above plots for the normal Reynolds stresses exactly coincide in value with the corresponding plots in Fig.7, thus corroborating that no mistake in the above plots have been made. Regarding the above lower right plot for the off-diagonal Reynolds stress, this correct profile is globally in scale nearly 3 times larger than the corresponding one shown in Fig.6. For more details about this overall discrepancy, please see the text in Sec. 4 & 5. As in all figures before, the above symbols refer again to: t = 20 ( ), t = 25 ( ), and t = 30 (•).

  .10)-(4.12) are empirically fixed constants, taking the global values D = -7.57 (p. 249) and t0 = 8.64 (p. 247).

  10)Turning back to our original aim to induce (B.6) from (B.7), along with its consistency constraint (B.10), we now get the following relations for the moments of σ i transformations for the mean velocity U 1 and the double-velocity moments H 0 ij in (B.6), while when considering and including also the triple-velocity and pressure-velocity moments, the above set of relations (B.11) gets augmented by σ i σ j = 0, σ i σ j σ k = 2 3 (1 -e -

  x 2 , , U i , P , H 0 ij , H 0 ijk , P U i , . . . ), U 1 f 1 = Θ 1,2 (t, x 2 , , U i , P , H 0 ij , H 0 ijk , P U i , . . . ), f 2 1 = Θ 1,3 (t, x 2 , , U i , P , H 0 ij , H 0 ijk , P U i , . . . ),
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† Note that the collapsing of profiles can only occur approximately and not exactly. The aim of this whole endeavour is namely to find the best approximation, which again is directly related to find a physically consistent set of invariant transformations in (2.13) that does it best.

† Note that[START_REF] Bradbury | The structure of a self-preserving turbulent plane jet[END_REF] considered a spatially evolving jet flow, yet the self-similar result for the mean velocity can be transcribed to a temporally evolving flow just by switching the dimensionless invariant variable from x2/δ0.5(x1) to x2/δ0.5(t) -see also the introductory discussion in[START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF].

† Note that D given in Eqs. (4.10)-(4.12) in Sadeghi et al. (2018) is a constant and not some functional, taking the global value D = -7.57 (p. 249). ‡ Taken from Tab. 1 in Sadeghi et al. (2018), the globally constant and fixed values of aH ii are: aH 11 = 0.0383, aH 22 = 0.0706, and aH 33 = 0.0453.

† Worthwhile to note is that finding a particular realization or the associated probability distribution function (PDF) to the random functions γi and γP from the knowledge of their moments (B.4) is a challenging inverse problem, in particular as a solution is not necessarily unique and for which, thus, further fundamental physical constraints have to be placed: See e.g.[START_REF] Bandyopadhyay | Maximum entropy and the problem of moments: A stable algorithm[END_REF];[START_REF] Biswas | Function reconstruction as a classical moment problem: A maximum entropy approach[END_REF] in reconstructing a single PDF from its moments up to a certain finite order by using a maximum entropy approach. Here, in this comment, as well as e.g. in[START_REF] She | Quantifying wall turbulence via a symmetry approach: a Lie group theory[END_REF];[START_REF] Chen | Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses[END_REF], an explicit realization of the random field transformations are not needed to determine turbulent scaling invariants. Here, the only thing to look out for is that the induced moment relations (B.4) do not contradict each other.

make the profiles collapse; any other choice of symmetries with a cause will also do the job. Hence, it is incorrect to state that "within the present work, we develop a theoretical basis using a Lie symmetry group that predicts such behaviour for the flow evolution, as an exact solution of the twoand multi-point correlation equations, which can be an important key in 'filling the gaps' of our understanding of self-similarity" (p. 251). Instead of theoretically predicting flow evolution, [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] only presents and proposes a sophisticated post-processing scheme. Nothing more!

The real problem simply is that the underlying statistical transport equations are unclosed, and so are their symmetries. The closure problem of turbulence cannot be circumvented by just employing the method of Lie-group symmetry analysis alone. Hence, without modelling these unclosed equations, an a priori prediction as how turbulence scales is and will not be possible. a posteriori, by anticipating what to expect from numerical or experimental data, the adequate invariant scalings can be generated through an iterative trial-and-error process.

(4): For the above reason mentioned in beginning of (3), namely in presenting an incomplete symmetry analysis, it seems that the 1-point limit r → 0 in their symmetry analysis was not done correctly, thus leading to that overly restricted symmetry group. An indication for it is given on p. 242, when saying "we currently devote ourselves only to generating invariant scaling laws for the mean velocity and Reynolds stresses, and therefore, the r-dependency of the terms is skipped". Doing the 1-point limit, the r-dependency may not be simply dropped, as this may lead to missing terms. The problem here is that when performing the 1-point limit one has to respect the non-commutivity of this limit: For example lim

it is more than that if one chooses this particular form -for a detailed explanation, see e.g. Eq. (C.27) on p. 40 in Frewer et al. (2014b).

(5): The derivation of the invariant scaling Eq. (B3) from Eq. (B2) and Eq. ( B1) is a deception. The first step to (B1) is that U 1 x 2 is being identified as the invariant integration constant Ũ1 x2 in order to reduce the integration effort of equation (B1). This step is correct and not to complain about. However, this constant Ũ1 x2 is also multiplied by the factor dF 2 (t)/dt, which from the calibration done in Sec. 4 has to be zero, since F 2 (t) is fixed as the global constant F 2 (t) = -Dn (Eq. (4.9)), i.e., dF 2 (t)/dt = 0. This results into an equation (B1) which does not contain the term involving Ũ1 x2 , and thus when integrated to (B2) should not contain this term either, because it is zero. Nevertheless, this term appears as an overall non-zero constant in (B2), because F 2 (t) = -Dn is a non-zero constant. To solve this contradiction such that the integrated solution (B2) is consistent with its underlying equation (B1), which again does not contain the term involving Ũ1 x2 , this term appearing on the right-hand side of (B2) has to be transported and to be absorbed into the invariant tilde-expression on the left-hand side of (B2), which is the collection pool of all integration constants. But definitely not as done in (B3), by re-identifying the invariant constant Ũ1 x2 back to the noninvariant expression U 1 x 2 and then by rewriting the factor F 2 (t) as an expression of F 1 (t) using relation Eq. (3.11). Hence, the derivation of (B3) is not mathematically sound since the roundbracketed term on the right-hand side actually belongs on the left-hand side of (B3). In fact, when comparing the classical scaling in Fig. 4(d) with the corresponding new scaling in Fig. 6 described by (B3), no improvement can be seen. Instead, the new scaling for the Reynolds stress R 0 12 is rather weaker than the classical scaling, since next to the already exiting problematic region around x2 = 1, a new problematic region around x2 = 1.5 is induced which does not arise in classical scaling.

Besides this issue, it is further to note that also the plot for this newly scaled Reynolds stress R0 12 as shown in Fig. 6 cannot be fully reproduced too. It is off by a global scaling factor of nearly 3. The correct plot for R0 12 according to the scaling by [START_REF] Sadeghi | On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation[END_REF] is shown here in Fig. 4, revealing that the maximum value for R0

12 is nearly three times higher than shown in Fig. 6. (6): The title chosen for that study is misleading. Nowhere throughout that study any scaling laws are derived. Instead, scaling relations are derived with the aim to let numerical profiles of a certain field variable collapse. The functional structure of these collapsing profiles, however, remain unknown. Thus no prediction on the scaling behaviour of the statistical solutions is made, as incorrectly claimed on p. 251 and already discussed above in (3). For example, when integrating the invariant surface condition for the mean velocity profile, i.e., when integrating the first three terms of Eq. (3.1), the solution will be an arbitrary function in terms of an arbitrary invariant variable involving next to x 2 the arbitrary temporal functions F 1 , F 2 and F 3 . And knowing from the result (2.4) in this comment,

A. The general restrictions from the mass flux constraint

Imposing the mass flux constraint to be an invariant constraint on the general invariant solution (2.4), i.e., imposing

where c is the global invariant constant in space and time, and where the '*'-symbol refers to the variable transformation generated by (2.4), which in infinitesimal form can be read-off from (2.4) as

where 1 is the infinitesimal parameter, (A.1) will impose natural restrictions on (A.2) and thus overall on (2.4). As can be easily verified, by performing a Taylor expansion around = 0 and neglecting all higher order terms than linear in , the inverse transformation of (A.2) is given by

3)

The restrictions then follow as

which for all configurations U 1 can only be solved if a 1 = 0 and if F 3 is an antisymmetric function in x 2 , i.e., if ∞ -∞ F 3 (t, x 2 )dx 2 = 0, for all t ≥ 0. Interesting to examine is whether further restrictions will surface when considering the original differential consequence of (A.1), namely when imposing the original invariant differential constraint

saying that no further restrictions exist besides those already determined from (A.4).

B. The causality principle as a modelling guideline for invariant turbulent scaling

The question is, does the particular equivalence solution (3.2), chosen from an unclosed and thus infinite set of possible equivalence transformations (2.13), have a physical justification? Or asked differently, does this solution maybe violate an underlying physical principle so that it has to be ruled out as a possible candidate? One such principle to be checked is that of cause and effect. Because, if (3.2) emerges as an equivalence invariance on the statistical level, then there must be at least a cause on the instantaneous (fluctuating) level such that (3.2) can emerge as an effect on the statistical level. Obviously, the cause need not to be an invariant itself in order to induce an invariance of the statistical Navier-Stokes equations, simply because a mean field equation can have an invariant structure that need not to exist for its underlying fluctuating equation (for further details, see e.g. [START_REF] Frewer | Comment on "Statistical symmetries of the Lundgren-Monin-Novikov hierarchy[END_REF]Frewer et al. ( , 2016[START_REF] Frewer | Comment on 'Lie symmetry analysis of the Lundgren-Monin-Novikov equations for multi-point probability density functions of turbulent flow[END_REF] and the references therein).

The most simplest possible cause that exists as to induce the statistical invariance (3.2), which in its non-infinitesimal and one-parametrical Lie-group form reads

is to transform the four space-time coordinates and the four instantaneous field variables of the deterministic Navier-Stokes equations as follows:

where the γ i are three random fields with zero mean, γ P a random field with a non-zero mean, and where all of these four random fields are to all orders statistically independent of the instantaneous fields U i and P , i.e., in all, where

Now, if the fields γ i and γ P are realized such that their moments satisfy the relations 

(B.4) † Cf. [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF]; [START_REF] Bluman | Symmetries and Differential Equations[END_REF] on Lie's central theorem how to obtain a one-or multi-parametric Lie-group transformation from its infinitesimal generator.

‡ Note that the instantaneous transformation (B.2) neither need to be an equivalence nor a Lie-group transformation of the deterministic Navier-Stokes equations. Further note that the other two (not listed) space coordinates in (B.2) are to be considered as invariants, i.e., they both transform invariantly: x * 1 = x1 and x * 3 = x3.