
HAL Id: hal-01888352
https://hal.science/hal-01888352

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning with Random Learning Rates
Léonard Blier, Pierre Wolinski, Yann Ollivier

To cite this version:
Léonard Blier, Pierre Wolinski, Yann Ollivier. Learning with Random Learning Rates. ECML PKDD
2019 - European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, Sep 2019, Würzburg, Germany. �hal-01888352�

https://hal.science/hal-01888352
https://hal.archives-ouvertes.fr

Learning with Random Learning Rates
Léonard Blier∗†‡

leonardb@fb.com
Pierre Wolinski†‡

pierre.wolinski@u-psud.fr
Yann Ollivier∗
yol@fb.com

Abstract

Hyperparameter tuning is a bothersome step in the training of deep learning mod-
els. One of the most sensitive hyperparameters is the learning rate of the gradient
descent. We present the All Learning Rates At Once (Alrao) optimization method for
neural networks: each unit or feature in the network gets its own learning rate sam-
pled from a random distribution spanning several orders of magnitude. This comes
at practically no computational cost. Perhaps surprisingly, stochastic gradient descent
(SGD) with Alrao performs close to SGD with an optimally tuned learning rate, for
various architectures and problems. Alrao could save time when testing deep learning
models: a range of models could be quickly assessed with Alrao, and the most promis-
ing models could then be trained more extensively. This text comes with a PyTorch
implementation of the method, which can be plugged on an existing PyTorch model:
https://github.com/leonardblier/alrao.

1 Introduction
Hyperparameter tuning is a notable source of computational cost with deep learning models
[50]. One of the most critical hyperparameters is the learning rate of the gradient descent
[42, p. 892]. With too large learning rates, the model does not learn; with too small learning
rates, optimization is slow and can lead to local minima and poor generalization [14, 21,
28, 40]. Although popular optimizers like Adam [18] come with default hyperparameters,
fine-tuning and scheduling of the Adam learning rate is still frequent [5], and we suspect the
default setting might be somewhat specific to current problems and architecture sizes. Such
hyperparameter tuning takes up a lot of engineering time. These and other issues largely
prevent deep learning models from working out-of-the-box on new problems, or on a wide
range of problems, without human intervention (AutoML setup, [8]).

We propose All Learning Rates At Once (Alrao), an alteration of standard optimization
methods for deep learning models. Alrao uses multiple learning rates at the same time in the
same network. By sampling one learning rate per feature, Alrao reaches performance close
to the performance of the optimal learning rate, without having to try multiple learning
rates. Alrao can be used on top of various optimization algorithms; we tested SGD and
Adam [18]. Alrao with Adam typically led to strong overfit with good train but poor test
performance (see Sec. 4), and our experimental results are obtained with Alrao on top of
SGD.

Alrao could be useful when testing architectures: an architecture could first be trained
with Alrao to obtain an approximation of the performance it would have with an optimal
learning rate. Then it would be possible to select a subset of promising architectures based
on Alrao, and search for the best learning rate on those architectures, fine-tuning with any
optimizer.
∗Facebook AI Research, Paris, France
†Université Paris Sud, INRIA, equipe TAU, Gif-sur-Yvette, France
‡Equal contribution

1

https://github.com/leonardblier/alrao

Alrao increases the size of a model on the output layer, but not on the internal layers:
this usually adds little computational cost unless most parameters occur on the output layer.
This text comes along with a Pytorch implementation usable on a wide set of architectures.

Related Work. Automatically using the “right” learning rate for each parameter was
one motivation behind “adaptive” methods such as RMSProp [43], AdaGrad [6] or Adam
[18]. Adam with its default setting is currently considered the default go-to method in many
works [49], and we use it as a baseline. However, further global adjustement of the learning
rate in Adam is common [26]. Many other heuristics for setting the learning rate have been
proposed, e.g., [35]; most start with the idea of approximating a second-order Newton step
to define an optimal learning rate [22].

Methods that directly set per-parameter learning rates are equivalent to preconditioning
the gradient descent with a diagonal matrix. Asymptotically, an arguably optimal precon-
ditioner is either the Hessian of the loss (Newton method) or the Fisher information matrix
[1]. These can be viewed as setting a per-direction learning rate after redefining directions
in parameter space. From this viewpoint, Alrao just replaces these preconditioners with a
random diagonal matrix whose entries span several orders of magnitude.

Another approach to optimize the learning rate is to perform a gradient descent on the
learning rate itself through the whole training procedure (for instance [29]). This can be
applied online to avoid backpropagating through multiple training rounds [32]. This idea
has a long history, see, e.g., [36] or [30] and the references therein.

The learning rate can also be treated within the framework of architecture search, which
can explore both the architecture and learning rate at the same time (e.g., [34]). Existing
methods range from reinforcement learning [50, 2] to bandits [25], evolutionary algorithms
(e.g., [39, 16, 34]), Bayesian optimization [4] or differentiable architecture search [27]. These
powerful methods are resource-intensive and do not allow for finding a good learning rate
in a single run.

Motivation. Alrao was inspired by the intuition that not all units in a neural network end
up being useful. Hopefully, in a large enough network, a sub-network made of units with a
good learning rate could learn well, and hopefully the units with a wrong learning rate will
just be ignored. (Units with a too large learning rate may produce large activation values,
so this assumes the model has some form of protection against those, such as BatchNorm
or sigmoid/tanh activations.)

Several lines of work support the idea that not all units of a network are useful or need to
be trained. First, it is possible to prune a trained network without reducing the performance
too much (e.g., [23, 9, 10, 37]). [24] even show that performance is reasonable if learning
only within a very small-dimensional affine subspace of the parameters, chosen in advance
at random rather than post-selected.

Second, training only some of the weights in a neural network while leaving the others at
their initial values performs reasonably well (see experiments in Appendix F). So in Alrao,
units with a very small learning rate should not hinder training.

Alrao is consistent with the lottery ticket hypothesis, which posits that “large networks
that train successfully contain subnetworks that—when trained in isolation—converge in a
comparable number of iterations to comparable accuracy” [7]. This subnetwork is the lottery
ticket winner : the one which had the best initial values. Arguably, given the combinatorial
number of subnetworks in a large network, with high probability one of them is able to learn
alone, and will make the whole network converge.

Viewing the per-feature learning rates of Alrao as part of the initialization, this hy-
pothesis suggests there might be enough sub-networks whose initialization leads to good
convergence.

2

2 All Learning Rates At Once: Description
Alrao: principle. Alrao starts with a standard optimization method such as SGD, and
a range of possible learning rates (ηmin, ηmax). Instead of using a single learning rate, we
sample once and for all one learning rate for each feature, randomly sampled log-uniformly
in (ηmin, ηmax). Then these learning rates are used in the usual optimization update:

θl,i ← θl,i − ηl,i · ∇θl,i
`(Φθ(x), y) (1)

where θl,i is the set of parameters used to compute the feature i of layer l from the activations
of layer l − 1 (the incoming weights of feature i). Thus we build “slow-learning” and “fast-
learning” features, in the hope to get enough features in the “Goldilocks zone”.

What constitutes a feature depends on the type of layers in the model. For example, in
a fully connected layer, each component of a layer is considered as a feature: all incoming
weights of the same unit share the same learning rate. On the other hand, in a convolutional
layer we consider each convolution filter as constituting a feature: there is one learning
rate per filter (or channel), thus keeping translation-invariance over the input image. In
LSTMs, we apply the same learning rate to all components in each LSTM unit (thus in the
implementation, the vector of learning rates is the same for input gates, for forget gates,
etc.).

However, the update (1) cannot be used directly in the last layer. For instance, for
regression there may be only one output feature. For classification, each feature in the
final classification layer represents a single category, and so using different learning rates for
these features would favor some categories during learning. Instead, on the output layer we
chose to duplicate the layer using several learning rate values, and use a (Bayesian) model
averaging method to obtain the overall network output (Fig. 1).

We set a learning rate per feature, rather than per parameter. Otherwise, every feature
would have some parameters with large learning rates, and we would expect even a few large
incoming weights to be able to derail a feature. So having diverging parameters within a
feature is hurtful, while having diverging features in a layer is not necessarily hurtful since
the next layer can choose to disregard them. Still, we tested this option; the results are
compatible with this intuition (Appendix E).

Definitions and notation. We now describe Alrao more precisely for deep learning mod-
els with softmax output, on classification tasks (the case of regression is similar).

Let D = {(x1, y1), ..., (xN , yN)}, with yi ∈ {1, ...,K}, be a classification dataset. The
goal is to predict the yi given the xi, using a deep learning model Φθ. For each input x,
Φθ(x) is a probability distribution over {1, ...,K}, and we want to minimize the categorical
cross-entropy loss ` over the dataset: 1

N

∑
i `(Φθ(xi), yi).

A deep learning model for classification Φθ is made of two parts: a pre-classifier φθpc

which computes some quantities fed to a final classifier layer Cθc , namely, Φθ(x) = Cθcl(φθpc(x)).
The classifier layer Cθc with K categories is defined by Cθc = softmax ◦

(
WTx+ b

)
with

θcl = (W, b), and softmax(x1, ..., xK)k = exk/(
∑
i e
xi) .The pre-classifier is a computational

graph composed of any number of layers, and each layer is made of multiple features.
We denote log-U(·; ηmin, ηmax) the log-uniform probability distribution on an interval

(ηmin, ηmax): namely, if η ∼ log-U(·; ηmin, ηmax), then log η is uniformly distributed between
log ηmin and log ηmax. Its density function is

log-U(η; ηmin, ηmax) = 1ηmin≤η≤ηmax

ηmax − ηmin
× 1
η

(2)

Alrao for the pre-classifier: A random learning rate for each feature. In the
pre-classifier, for each feature i in each layer l, a learning rate ηl,i is sampled from the
probability distribution log-U(.; ηmin, ηmax), once and for all at the beginning of training.1

1With learning rates resampled at each time, each step would be, in expectation, an ordinary SGD step
with learning rate Eηl,i, thus just yielding an ordinary SGD trajectory with more noise.

3

P
re

-c
la

ss
if
ie

r
m

o
d
el

C
la

ss
if
ie

r

Input

Output

...

...

Softmax

P
re

-c
la

ss
if
ie

r
m

o
d
el

C
la

ss
if
ie

r

Input

Output

Softmax Softmax Softmax

Model Averaging

...

...

...

Figure 1: Left: a standard fully connected neural network for a classification task with
three classes, made of a pre-classifier and a classifier layer. Right: Alrao version of the same
network. The single classifier layer is replaced with a set of parallel copies of the original
classifier, averaged with a model averaging method. Each unit uses its own learning rate for
its incoming weights (represented by different styles of arrows).

Then the incoming parameters of each feature in the preclassifier are updated in the usual
way with this learning rate (Eq. 4).

Alrao for the classifier layer: Model averaging from classifiers with different
learning rates. In the classifier layer, we build multiple clones of the original classifier
layer, set a different learning rate for each, and then use a model averaging method from
among them. The averaged classifier and the overall Alrao model are:

CAlrao
θcl (z) :=

Ncl∑
j=1

aj Cθcl
j

(z), ΦAlrao
θ (x) := CAlrao

θcl (φθpc(x)) (3)

where the Cθcl
j

are copies of the original classifier layer, with non-tied parameters, and
θcl := (θcl

1 , ..., θ
cl
Ncl

). The aj are the parameters of the model averaging, and are such that
for all j, 0 ≤ aj ≤ 1, and

∑
j aj = 1. These are not updated by gradient descent, but via a

model averaging method from the literature (see below).
For each classifier Cθcl

j
, we set a learning rate log ηj = log ηmin + j−1

Ncl−1 log(ηmax/ηmin),
so that the classifiers’ learning rates are log-uniformly spread on the interval (ηmin, ηmax).

Thus, the original model Φθ(x) leads to the Alrao model ΦAlrao
θ (x). Only the classifier

layer is modified, the pre-classifier architecture being unchanged.

The Alrao update. Alg. 1 presents the full Alrao algorithm for use with SGD (other
optimizers like Adam are treated similarly). The updates for the pre-classifier, classifier,
and model averaging weights are as follows.

• The update rule for the pre-classifier is the usual SGD one, with per-feature learning
rates. For each feature i in each layer l, its incoming parameters are updated as:

θl,i ← θl,i − ηl,i · ∇θl,i
`(ΦAlrao

θ (x), y) (4)

4

Algorithm 1 Alrao-SGD for model Φθ = Cθcl ◦ φθpc with Ncl classifiers
and learning rates in [ηmin, ηmax]

1: aj ← 1/Ncl for each 1 ≤ j ≤ Ncl . Initialize the Ncl model averaging weights aj
2: ΦAlrao

θ (x) :=
∑Ncl
j=1 aj Cθcl

j
(φθpc(x)) . Define the Alrao architecture

3: for all layers l, for all feature i in layer l do
4: Sample ηl,i ∼ log-U(.; ηmin, ηmax). . Sample a learning rate for each feature
5: for all Classifiers j, 1 ≤ j ≤ Ncl do
6: Define log ηj = log ηmin + j−1

Ncl−1 log ηmax
ηmin

. . Set a learning rate for each classifier j
7: while Convergence ? do
8: zt ← φθpc(xt) . Store the pre-classifier output
9: for all layers l, for all feature i in layer l do

10: θl,i ← θl,i − ηl,i · ∇θl,i
`(ΦAlrao

θ (xt), yt) . Update the pre-classifier weights
11: for all Classifier j do
12: θcl

j ← θcl
j − ηj · ∇θcl

j
`(Cθcl

j
(zt), yt) . Update the classifiers’ weights

13: a← ModelAveraging(a, (Cθcl
i

(zt))i, yt) . Update the model averaging weights.
14: t← t+ 1 mod N

• The parameters θcl
j of each classifier clone j on the classifier layer are updated as if

this classifier alone was the only output of the model:

θcl
j ← θcl

j − ηj · ∇θcl
j
`(Cθcl

j
(φθpc(x)), y) (5)

(still sharing the same pre-classifier φθpc). This ensures classifiers with low weights
aj still learn, and is consistent with model averaging philosophy. Algorithmically
this requires differentiating the loss Ncl times with respect to the last layer (but no
additional backpropagations through the preclassifier).

• To set the weights aj , several model averaging techniques are available, such as
Bayesian Model Averaging [47]. We decided to use the Switch model averaging [44],
a Bayesian method which is both simple, principled and very responsive to changes
in performance of the various models. After each sample or mini-batch, the switch
computes a modified posterior distribution (aj) over the classifiers. This computation
is directly taken from [44] and explained in Appendix A. The observed evolution of
this posterior during training is commented in Appendix B.

Implementation. We release along with this paper a Pytorch [33] implementation of this
method. It can be used on an existing model with little modification. A short tutorial is
given in Appendix H. The features (sets of weights which will share the same learning rate)
need to be defined for each layer type: for now we have done this for linear, convolutional,
and LSTMs layers.

3 Experiments
We tested Alrao on various convolutional networks for image classification (CIFAR10), and
on LSTMs for text prediction. The baselines are SGD with an optimal learning rate, and
Adam with its default setting, arguably the current default method [49].

Image classification on CIFAR10. For image classification, we used the CIFAR10
dataset [20]. It is made of 50,000 training and 10,000 testing data; we split the training set
into a smaller training set with 40,000 samples, and a validation set with 10,000 samples.
For each architecture, training on the smaller training set was stopped when the validation

5

Table 1: Performance of Alrao-SGD, of SGD with optimal learning rate from
{10−5, 10−4, 10−3, 10−2, 10−1, 1., 10.}, and of Adam with its default setting. Three con-
volutional models are reported for image classifaction (CIFAR10) and one recurrent model
for character prediction (Penn Treebank). For Alrao the learning rates lie in [ηmin; ηmax] =
[10−5; 10] (CIFAR10) or [10−3; 102] (PTB). Each experiment is run 10 times (CIFAR10) or
5 times (PTB); the confidence intervals report the standard deviation over these runs.

Model SGD with optimal LR Adam - Default Alrao-SGD

LR Loss Acc (%) Loss Acc (%) Loss Acc (%)
MobileNet 1e-1 0.37± 0.01 90.2± 0.3 1.01± 0.95 78± 11 0.42± 0.02 88.1± 0.6
GoogLeNet 1e-2 0.45± 0.05 89.6± 1.0 0.47± 0.04 89.8± 0.4 0.47± 0.03 88.9± 0.8
VGG19 1e-1 0.42± 0.02 89.5± 0.2 0.43± 0.02 88.9± 0.4 0.45± 0.03 87.5± 0.4

LSTM (PTB) 1 1.566± 0.003 66.1± 0.1 1.587± 0.005 65.6± 0.1 1.67± 0.01 64.1± 0.2

loss had not improved for 20 epochs. The epoch with best validation loss was selected
and the corresponding model tested on the test set. The inputs are normalized. Training
used data augmentation (random cropping and random horizontal flipping). The batch size
is always 32. Each setting was run 10 times: the confidence intervals presented are the
standard deviation over these runs.

We tested Alrao on three architectures known to perform well on this task: GoogLeNet [41],
VGG19 [38] and MobileNet [13]. The exact implementation for each can be found in our
code.

The Alrao learning rates were sampled log-uniformly from ηmin = 10−5 to ηmax = 10.
For the output layer we used 10 classifiers with switch model averaging (Appendix A);
the learning rates of the output classifiers are deterministic and log-uniformly spread in
[ηmin, ηmax].

In addition, each model was trained with SGD for every learning rate in the set {10−5,
10−4, 10−3, 10−2, 10−1, 1., 10.}. The best SGD learning rate is selected on the validation
set, then reported in Table 1. We also compare to Adam with its default hyperparameters
(η = 10−3, β1 = 0.9, β2 = 0.999).

The results are presented in Table 1. Learning curves with various SGD learning rates,
with Adam, and with Alrao are presented in Fig. 2. Fig. 3 tests the influence of ηmin and
ηmax.

Recurrent learning on Penn Treebank. To test Alrao on a different kind of archi-
tecture, we used a recurrent neural network for text prediction on the Penn Treebank [31]
dataset. The experimental procedure is the same, with (ηmin, ηmax) = (0.001, 100) and 6
output classifiers for Alrao. The results appear in Table 1, where the loss is given in bits
per character and the accuracy is the proportion of correct character predictions.

The model was trained for character prediction rather than word prediction. This is
technically easier for Alrao implementation: since Alrao uses copies of the output layer,
memory issues arise for models with most parameters on the output layer. Word prediction
(10,000 classes on PTB) requires more output parameters than character prediction; see
Section 4 and Appendix D.

The model is a two-layer LSTM [12] with an embedding size of 100 and with 100 hidden
features. A dropout layer with rate 0.2 is included before the decoder. The training set is
divided into 20 minibatchs. Gradients are computed via truncated backprop through time
[48] with truncation every 70 characters.

Comments. As expected, Alrao performs slightly worse than the best learning rate. Still,
even with wide intervals (ηmin, ηmax), Alrao comes reasonably close to the best learning rate,
across all setups; hence Alrao’s possible use as a quick assessment method. Although Adam
with its default parameters almost matches optimal SGD, this is not always the case, for

6

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0
lo

ss

Loss train
Adam default
alrao
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01
lr=1e+02

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) GoogLeNet

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
Adam default
alrao
lr=1e-06
lr=1e-05
lr=1e-04
lr=1e-03
lr=1e-02
lr=1e-01
lr=1e+00
lr=1e+01

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) MobileNetV2

Figure 2: Learning curves for SGD with various learning rates, Alrao-SGD, and Adam with
its default setting, with the GoogLeNet and MobileNetV2 architecture. Left: training loss;
right: test loss. While Alrao-SGD uses learning rates from the entire range, its performance
is comparable to the optimal learning rate.

example with the MobileNet model (Fig.2b). This confirms a known risk of overfit with
Adam [49]. In our setup, Alrao seems to be a more stable default method.

Our results, with either SGD, Adam, or SGD-Alrao, are somewhat below the art: in part
this is because we train on only 40,000 CIFAR samples, and do not use stepsize schedules.

4 Limitations, further remarks, and future directions
Increased number of parameters for the classification layer. Alrao modifies the
output layer of the optimized model. The number of parameters for the classification layer
is multiplied by the number of classifier copies used (the number of parameters in the pre-
classifier is unchanged). On CIFAR10 (10 classes), the number of parameters increased by
less than 5% for the models used. On Penn Treebank, the number of parameters increased
by 15% in our setup (working at the character level); working at word level it would have
increased threefold (Appendix D).

This is clearly a limitation for models with most parameters in the classifier layer. For
output-layer-heavy models, this can be mitigated by handling the copies of the classifiers
on distinct computing units: in Alrao these copies work in parallel given the pre-classifier.

7

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1e
0

1e
1

1e
2

Maximum learning rate ηmax

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

1e
-7

1e
-6

1e
-5

1e
-4

1e
-3

1e
-2

1e
-1

1e
0

1e
1

1e
2

Maximum learning rate ηmax

1e-7

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e0

1e1

1e2

M
in

im
um

 le
ar

ni
ng

 ra
te

 η
m

in

0.5

1.0

1.5

2.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3: Performance of Alrao with a GoogLeNet model, depending on the interval
(ηmin, ηmax). Left: loss on the train set; right: on the test set. Each point with coordi-
nates (ηmin, ηmax) above the diagonal represents the loss after 30 epochs for Alrao with this
interval. Points (η, η) on the diagonal represent standard SGD with learning rate η after 50
epochs. Standard SGD with η = 102 is left blank to due numerical divergence (NaN). Alrao
works as soon as (ηmin, ηmax) contains at least one suitable learning rate.

Still, models dealing with a very large number of output classes usually rely on other
parameterizations than a direct softmax, such as a hierarchical softmax (see references in
[15]); Alrao could be used in conjunction with such methods.

Adding two hyperparameters. We claim to remove a hyperparameter, the learning
rate, but replace it with two hyperparameters ηmin and ηmax.

Formally, this is true. But a systematic study of the impact of these two hyperparameters
(Fig. 3) shows that the sensitivity to ηmin and ηmax is much lower than the original sensitivity
to the learning rate. In our experiments, convergence happens as soon as (ηmin; ηmax)
contains a reasonable learning rate (Fig. 3).

A wide range of values of (ηmin; ηmax) will contain one good learning rate and achieve
close-to-optimal performance (Fig. 3). Typically, we recommend to just use an interval
containing all the learning rates that would have been tested in a grid search, e.g., 10−5 to
10.

So, even if the choice of ηmin and ηmax is important, the results are much more stable
to varying these two hyperparameters than to the learning rate. For instance, standard
SGD fails due to numerical issues for η = 100 while Alrao with ηmax = 100 works with any
ηmin ≤ 1 (Fig. 3), and is thus stable to relatively large learning rates. We would still expect
numerical issues with very large ηmax, but this has not been observed in our experiments.

Alrao with Adam. Alrao is much less reliable with Adam than with SGD. Surprisingly,
this occurs mostly for test performance, which can even diverge, while training curves mostly
look good (Appendix C). We have no definitive explanation for this at present. It might be
that changing the learning rate in Adam also requires changing the momentum parameters
in a correlated way. It might be that Alrao does not work on Adam because Adam is more
sensitive to its hyperparameters. The stark train/test discrepancy might also suggest that
Alrao-Adam performs well as a pure optimization method but exacerbates the underlying
risk of overfit of Adam [49, 17].

Increasing network size. With Alrao, neurons with unsuitable learning rates will not
learn: those with a too large learning rate might learn nothing, while those with too small

8

learning rates will learn too slowly to be used. Thus, Alrao may reduce the effective size of
the network to only a fraction of the actual architecture size, depending on (ηmin, ηmax).

Our first intuition was that increasing the width of the network was going to be necessary
with Alrao, to avoid wasting too many units. In a fully connected network, the number
of weights is quadratic in the width, so increasing width (beyond a factor three in our
experiments) can be bothersome. Comparisons of Alrao with increased width are reported in
Appendix G. Width is indeed a limiting factor for the models considered, even without Alrao
(Appendix G). But to our surprise, Alrao worked well even without width augmentation.

Other optimization algorithms, other hyperparameters, learning rate sched-
ulers... Using a learning rate schedule instead of a fixed learning rate is often effective [3].
We did not use learning rate schedulers here; this may partially explain why the results in
Table 1 are worse than the state-of-the-art. Nothing prevents using such a scheduler within
Alrao, e.g., by dividing all Alrao learning rates by a time-dependent constant; we did not
experiment with this yet.

The idea behind Alrao could be used on other hyperparameters as well, such as mo-
mentum. However, if more hyperparameters are initialized randomly for each feature, the
fraction of features having all their hyperparameters in the “Goldilocks zone” will quickly
decrease.

5 Conclusion
Applying stochastic gradient descent with random learning rates for different features is
surprisingly resilient in our experiments, and provides performance close enough to SGD
with an optimal learning rate, as soon as the range of random learning rates contains a
suitable one. This could save time when testing deep learning models, opening the door to
more out-of-the-box uses of deep learning.

Acknowledgments
We would like to thank Corentin Tallec for his technical help, and his many remarks and
advice, as well as Guillaume Charpiat. We thank Olivier Teytaud for pointing useful refer-
ences.

References
[1] S.-i. Amari. Natural gradient works efficiently in learning. Neural Comput., 10:251–276,

February 1998.

[2] B. Baker, O. Gupta, N. Naik, and R. Raskar. Designing neural network architectures
using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

[3] Y. Bengio. Practical recommendations for gradient-based training of deep architectures.
In Neural networks: Tricks of the trade, pages 437–478. Springer, 2012.

[4] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. 2013.

[5] M. Denkowski and G. Neubig. Stronger baselines for trustable results in neural machine
translation. arXiv preprint arXiv:1706.09733, 2017.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159,
2011.

9

[7] J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding Small, Trainable
Neural Networks. arXiv preprint arXiv:1704.04861, mar 2018.

[8] I. Guyon, I. Chaabane, H. J. Escalante, S. Escalera, D. Jajetic, J. R. Lloyd, N. Macià,
B. Ray, L. Romaszko, M. Sebag, et al. A brief review of the ChaLearn AutoML
challenge: any-time any-dataset learning without human intervention. In Workshop on
Automatic Machine Learning, pages 21–30, 2016.

[9] S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149, 2015.

[10] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both Weights and Connections
for Efficient Neural Networks. In Advances in Neural Information Processing Systems,
2015.

[11] M. Herbster and M. K. Warmuth. Tracking the best expert. Machine learning,
32(2):151–178, 1998.

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[13] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[14] S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey.
Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

[15] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits
of language modeling. arXiv preprint arXiv:1602.02410, 2016.

[16] R. Jozefowicz, W. Zaremba, and I. Sutskever. An empirical exploration of recurrent
network architectures. In International Conference on Machine Learning, pages 2342–
2350, 2015.

[17] N. S. Keskar and R. Socher. Improving generalization performance by switching from
Adam to SGD. arXiv preprint arXiv:1712.07628, 2017.

[18] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Interna-
tional Conference on Learning Representations, 2015.

[19] W. Koolen and S. De Rooij. Combining expert advice efficiently. arXiv preprint
arXiv:0802.2015, 2008.

[20] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

[21] K. Kurita. Learning Rate Tuning in Deep Learning: A Practical Guide — Machine
Learning Explained, 2018.

[22] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Efficient backprop. In Neural
Networks: Tricks of the Trade, pages 9–50. Springer, 1998.

[23] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages 598–605. Morgan-
Kaufmann, 1990.

[24] C. Li, H. Farkhoor, R. Liu, and J. Yosinski. Measuring the Intrinsic Dimension of
Objective Landscapes. arXiv preprint arXiv:1804.08838, apr 2018.

10

[25] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. The Journal of Machine
Learning Research, 18(1):6765–6816, 2017.

[26] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and
K. Murphy. Progressive neural architecture search. arXiv preprint arXiv:1712.00559,
2017.

[27] H. Liu, K. Simonyan, and Y. Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

[28] D. Mack. How to pick the best learning rate for your machine learning project, 2016.

[29] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International Conference on Machine Learning,
pages 2113–2122, 2015.

[30] A. R. Mahmood, R. S. Sutton, T. Degris, and P. M. Pilarski. Tuning-free step-size
adaptation. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE Inter-
national Conference on, pages 2121–2124. IEEE, 2012.

[31] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Comput. Linguist., 19(2):313–330, June 1993.

[32] P.-Y. Massé and Y. Ollivier. Speed learning on the fly. arXiv preprint arXiv:1511.02540,
2015.

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer. Automatic differentiation in pytorch. In NIPS-W, 2017.

[34] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and A. Kurakin.
Large-scale evolution of image classifiers. arXiv preprint arXiv:1703.01041, 2017.

[35] T. Schaul, S. Zhang, and Y. LeCun. No more pesky learning rates. In International
Conference on Machine Learning, pages 343–351, 2013.

[36] N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. 1999.

[37] A. See, M.-T. Luong, and C. D. Manning. Compression of Neural Machine Translation
Models via Pruning. arXiv preprint arXiv:1606.09274, 2016.

[38] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[39] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[40] P. Surmenok. Estimating an Optimal Learning Rate For a Deep Neural Network, 2017.

[41] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[42] S. Theodoridis. Machine learning: a Bayesian and optimization perspective. Academic
Press, 2015.

[43] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26–31, 2012.

11

[44] T. Van Erven, P. Grünwald, and S. De Rooij. Catching up faster by switching sooner:
A predictive approach to adaptive estimation with an application to the AIC-BIC
dilemma. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
74(3):361–417, 2012.

[45] T. Van Erven, S. D. Rooij, and P. Grünwald. Catching up faster in Bayesian model
selection and model averaging. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 417–424. Curran
Associates, Inc., 2008.

[46] P. A. Volf and F. M. Willems. Switching between two universal source coding algo-
rithms. In Data Compression Conference, 1998. DCC’98. Proceedings, pages 491–500.
IEEE, 1998.

[47] L. Wasserman. Bayesian Model Selection and Model Averaging. Journal of Mathemat-
ical Psychology, 44, 2000.

[48] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings
of the IEEE, 78(10):1550–1560, 1990.

[49] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of
adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pages 4148–4158, 2017.

[50] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

12

A Model Averaging with the Switch
As explained is Section 2, we use a model averaging method on the classifiers of the output
layer. We could have used the Bayesian Model Averaging method [47]. But one of its
main weaknesses is the catch-up phenomenon [44]: plain Bayesian posteriors are slow to
react when the relative performance of models changes over time. Typically, for instance,
some larger-dimensional models need more training data to reach good performance: at
the time they become better than lower-dimensional models for predicting current data,
their Bayesian posterior is so bad that they are not used right away (their posterior needs
to “catch up” on their bad initial performance). This leads to very conservative model
averaging methods.

The solution from [44] against the catch-up phenomenon is to switch between models.
It is based on previous methods for prediction with expert advice (see for instance [11, 46]
and the references in [19, 44]), and is well rooted in information theory. The switch method
maintains a Bayesian posterior distribution, not over the set of models, but over the set of
switching strategies between models. Intuitively, the model selected can be adapted online
to the number of samples seen.

We now give a quick overview of the switch method from [44]: this is how the model
averaging weights aj are chosen in Alrao.

Assume that we have a set of prediction strategies M = {pj , j ∈ I}. We define the
set of switch sequences, S = {((t1, j1), ..., (tL, jL)), 1 = t1 < t2 < ... < tL , j ∈ I}.
Let s = ((t1, j1), ..., (tL, jL)) be a switch sequence. The associated prediction strategy
ps(y1:n|x1:n) uses model pji on the time interval [ti; ti+1), namely

ps(y1:i+1|x1:i+1, y1:i) = pKi(yi+1|x1:i+1, y1:i) (6)

where Ki is such that Ki = jl for tl ≤ i < tl+1. We fix a prior distribution π over
switching sequences. In this work, I = {1, ..., NC} the prior is, for a switch sequence
s = ((t1, j1), ..., (tL, jL)):

π(s) = πL(L)πK(j1)
L∏
i=2

πT (ti|ti > ti−1)πK(ji) (7)

with πL(L) = θL

1−θ a geometric distribution over the switch sequences lengths, πK(j) = 1
NC

the uniform distribution over the models (here the classifiers) and πT (t) = 1
t(t+1) .

This defines a Bayesian mixture distribution:

psw(y1:T |x1:T) =
∑
s∈S

π(s)ps(y1:T |x1:T) (8)

Then, the model averaging weight aj for the classifier j after seeing T samples is the posterior
of the switch distribution: π(KT+1 = j|y1:T , x1:T).

aj = psw(KT+1 = j|y1:T , x1:T) = psw(y1:T ,KT+1 = j|x1:T)
psw(y1:T |x1:T) (9)

These weights can be computed online exactly in a quick and simple way [44], thanks to
dynamic programming methods from hidden Markov models.

The implementation of the switch used in Alrao exactly follows the pseudo-code from
[45], with hyperparameter θ = 0.999 (allowing for many switches a priori). It can be found
in the accompanying online code.

B Evolution of the Posterior
The evolution of the model averaging weights can be observed during training. In Figure 4,
we can see their evolution during the training of the GoogLeNet model with Alrao, 10
classifiers, with ηmin = 10−5 and ηmax = 101.

13

We can make several observations. First, after only a few gradient descent steps, the
model averaging weights corresponding to the three classifiers with the largest learning rates
go to zero. This means that their parameters are moving too fast, and their loss is getting
very large.

Next, for a short time, a classifier with a moderately large learning rate gets the largest
posterior weight, presumably because it is the first to learn a useful model.

Finally, after the model has seen approximately 4,000 samples, a classifier with a slightly
smaller learning rate is assigned a posterior weight aj close to 1, while all the others go to
0. This means that after a number of gradient steps, the model averaging method acts like
a model selection method.

10−3 10−2 10−1 100 101

Epochs (log-scale)

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 a
ve

ra
gi
ng

 w
ei
gh

ts
 a

j

a1 : η1 = 1.0e-05
a2 : η2 = 4.6e-05
a3 : η3 = 2.2e-04
a4 : η4 = 1.0e-03
a5 : η5 = 4.6e-03
a6 : η6 = 2.2e-02
a7 : η7 = 1.0e-01
a8 : η8 = 4.6e-01
a9 : η9 = 2.2e+00
a10 : η10 = 1.0e+01

Figure 4: Model averaging weights during training. During the training of the GoogLeNet
model with Alrao, 10 classifiers, with ηmin = 10−5 and ηmax = 101, we represent the
evolution of the model averaging weights aj , depending on the corresponding classifier’s
learning rate.

C Alrao-Adam
In Figure 5, we report our experiments with Alrao-Adam. As explained in Section 4, Alrao
is much less reliable with Adam than with SGD.

This is especially true for the test performance, which can even diverge while training
performance remains either good or acceptable (Fig. 5). Thus Alrao-Adam seems to send
the model into atypical regions of the search space.

D Number of Parameters
As explained in Section 4, Alrao increases the number of parameters of a model, due to
output layer copies. The additional number of parameters is approximately equal to (Ncl−
1) × K × d where Ncl is the number of classifier copies used in Alrao, d is the dimension
of the output of the pre-classifier, and K is the number of classes in the classification task
(assuming a standard softmax output; classification with many classes often uses other kinds
of output parameterization instead).

The number of parameters for the models used, with and without Alrao, are in Table 2.
We used 10 classifiers in Alrao for convolutional neural networks, and 6 classifiers for LSTMs.
Using Alrao for classification tasks with many classes, such as word prediction (10,000 classes
on PTB), increases the number of parameters noticeably.

For those model with significant parameter increase, the various classifier copies may be
done on parallel GPUs.

14

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0
lo

ss

Loss train
alrao-adam
adam lr=1e-05
adam lr=1e-04
adam lr=1e-03
adam lr=1e-02

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) Alrao-Adam on GoogLeNet: Alrao-Adam compared with standard Adam with various learning
rates. Alrao uses 10 classifiers and learning rates in the interval [10−6, 1]. Each plot is averaged
on 10 experiments. We observe that optimization with Alrao-Adam is efficient, since train loss is
comparable to the usual Adam methods. But the model starkly overfits, as the test loss diverges.

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
alrao

0 10 20 30 40
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) Alrao-Adam on MobileNet: Alrao-Adam with two different learning rate intervals, with 10 clas-
sifiers. Each plot is averaged on 10 experiments. Exactly as with GoogLeNet model, optimization
itself is efficient (for both intervals). For the interval with the smallest ηmax, the test loss does not
converge and is very unstable. For the interval with the largest ηmax, the test loss diverges.

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train

0 10 20 30 40 50
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(c) Alrao-Adam on VGG19: Alrao-Adam on the interval [10−6, 1], with 10 classifiers. The 10 plots
are 10 runs of the same experiments. While 9 of them do converge and generalize, the last one
exhibits wide oscillations, both in train and test.

Figure 5: Alrao-Adam: Experiments on the VGG19, GoogLeNet and MobileNet networks.

15

Table 2: Comparison between the number of parameters in models used without and with
Alrao. LSTM (C) is a simple LSTM cell used for character prediction while LSTM (W) is
the same cell used for word prediction.

Model Number of parameters
Without Alao With Alrao

GoogLeNet 6.166M 6.258M
VGG 20.041M 20.087M
MobileNet 2.297M 2.412M
LSTM (C) 0.172M 0.197M
LSTM (W) 2.171M 7.221M

E Other Ways of Sampling the Learning Rates
In Alrao we sample a learning rate for each feature. Intuitively, each feature (or neuron)
is a computation unit of its own, using a number of inputs from the previous layer. If we
assume that there is a “right” learning rate for learning new features based on information
from the previous layer, then we should try a learning rate per feature; some features will
be useless, while others will be used further down in the network.

An obvious variant is to set a random learning rate per weight, instead of for all incoming
weights of a given feature. However, this runs the risk that every feature in a layer will have
a few incoming weights with a large rate, so intuitively every feature is at risk of diverging.
This is why we favored per-feature rates.

Still, we tested sampling a learning rate for each weight in the pre-classifier (while keeping
the same Alrao method for the classifier layer).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

lo
ss
 (b

its
 p
er
 c
ha
ra
ct
er
)

Loss train
alrao: (10−3, 104) ; one lr per weight
alrao: (10−3, 104) ; one lr per feat re
alrao: (10−4, 102) ; one lr per feat re
alrao: (10−4, 102) ; one lr per weight

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
epochs

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

lo
ss
 (b

its
 p
er
 c
ha
ra
ct
er
)

Loss test

Figure 6: Loss for various intervals (ηmin, ηmax), as a function of the sampling method
for the learning rates, per feature or per weight. The model is a two-layer LSTM trained
for 20 epochs only, for character prediction. Each curves represents 10 runs. (Losses are
much higher than the results reported in Table 1 because the full training for Table 1 takes
approximately 300 epochs.)

In our experiments on LSTMs, per-weight learning rates sometimes perform well but are
less stable and more sensitive to the interval (ηmin, ηmax): for some intervals (ηmin, ηmax) with
very large ηmax, results with per-weight learning rates are a lot worse than with per-feature
learning rates. This is consistent with the intuition above.

16

F Learning a Fraction of the Features

0.0 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6

test_nll as a function of p

Figure 7: Loss of a model where only a random fraction p of the features are trained, and
the others left at their initial value, as a function of p. The architecture is GoogLeNet,
trained on CIFAR10.

As explained in the introduction, several works support the idea that not all units are
useful when learning a deep learning model. Additional results supporting this hypothesis
are presented in Figure 7. We trained a GoogLeNet architecture on CIFAR10 with standard
SGD with learning rate η0, but learned only a random fraction p of the features (chosen
at startup), and kept the others at their initial value. This is equivalent to sampling each
learning rate η from the probability distribution P (η = η0) = p and P (η = 0) = 1− p.

We observe that even with a fraction of the weights not being learned, the model’s
performance is close to its performance when fully trained.

When training a model with Alrao, many features might not learn at all, due to too
small learning rates. But Alrao is still able to reach good results. This could be explained
by the resilience of neural networks to partial training.

G Increasing Network Size
As explained in Section 4, learning with Alrao reduces the effective size of the network to
only a fraction of the actual architecture size, depending on (ηmin, ηmax). We first tought
that increasing the width of each layer was going to be necessary in order to use Alrao.
However, our experiments show that this is not necessary.

Alrao and SGD experiments with increased width are reported in Figure 8. As expected,
Alrao with increased width has better performance, since the effective size increases. How-
ever, increasing the width also improves performance of standard SGD, by roughly the same
amount.

Thus, width is still a limiting factor both for GoogLeNet and MobileNet. This shows
that Alrao can perform well even when network size is a limiting factor; this runs contrary
to our initial intuition that Alrao would require very large networks in order to have enough
features with suitable learning rates.

17

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0
lo

ss

Loss train
alrao
SGD best lr: 1e-02
alrao, width * 3
SGD best lr: 1e-02, width * 3

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(a) GoogLeNet

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss train
alrao
SGD best lr: 1e-02
alrao, width * 3
SGD best lr: 1e-02, width * 3

0 1 2 3 4 5 6 7 8
epochs

0.0

0.5

1.0

1.5

2.0

lo
ss

Loss test

(b) MobileNet

Figure 8: Increasing network width. We compare the performance of the GoogLeNet and
MobileNet models, to the same models with 3 times as many units in each layer, both for
standard SGD and for Alrao.

H Tutorial
In this section, we briefly show how Alrao can be used in practice on an already implemented
method in Pytorch. The code is available on GitHub: https://github.com/leonardblier/alrao.

The first step is to build the preclassifier. Here, we use the VGG19 architecture. The
model is built without a classifier. Nothing else is required for Alrao at this step.
class VGG(nn.Module):

def __init__(self, cfg):
super(VGG, self).__init__()
self.features = self._make_layers(cfg)
The dimension of the preclassier’s output need to be specified.
self.linearinputdim = 512

def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
The model do not contain a classifier layer.
return out

def _make_layers(self, cfg):
layers = []
in_channels = 3

18

https://github.com/leonardblier/alrao

for x in cfg:
if x == ’M’:

layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:

layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]

in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)

preclassifier = VGG([64, 64, ’M’, 128, 128, ’M’, 256, 256, 256, 256, ’M’, \
512, 512, 512, 512, ’M’, 512, 512, 512, 512, ’M’])

Then, we can build the Alrao-model with this preclassifier, sample the learning rates for
the model, and define the Alrao optimizer
We define the interval in which the learning rates are sampled
minlr = 10 ** (-5)
maxlr = 10 ** 1

nb_classifiers is the number of classifiers averaged by Alrao.
nb_classifiers = 10
nb_categories = 10

net = AlraoModel(preclassifier, nb_categories, preclassifier.linearinputdim, nb_classifiers)

We spread the classifiers learning rates log-uniformly on the interval.
classifiers_lr = [np.exp(np.log(minlr) + \

k /(nb_classifiers-1) * (np.log(maxlr) - np.log(minlr)) \
) for k in range(nb_classifiers)]

We define the sampler for the preclassifier’s features.
lr_sampler = lr_sampler_generic(minlr, maxlr)
lr_preclassifier = generator_randomlr_neurons(net.preclassifier, lr_sampler)

We define the optimizer and the loss function
optimizer = SGDAlrao(net.parameters_preclassifier(),

lr_preclassifier,
net.classifiers_parameters_list(),
classifiers_lr)

criterion = nn.NLLLoss()

Finally, we can train the model. The only differences here with the usual training
procedure is that each classifier needs to be updated as if it was alone, and that we need to
update the model averaging weights, here the switch weights.
def train(epoch):

for batch_idx, (inputs, targets) in enumerate(trainloader):
We update the model averaging weights in the optimizer
optimizer.update_posterior(net.posterior())
optimizer.zero_grad()

Forward pass of the Alrao model
outputs = net(inputs)
loss = criterion(outputs, targets)

We compute the gradient of all the model’s weights
loss.backward()

We reset all the classifiers gradients, and re-compute them with
as if their were the only output of the network.
optimizer.classifiers_zero_grad()
newx = net.last_x.detach()
for classifier in net.classifiers():

loss_classifier = criterion(classifier(newx), targets)
loss_classifier.backward()

Then, we can run an update step of the gradient descent.

19

optimizer.step()

Finally, we update the model averaging weights
net.update_switch(targets, catch_up=False)

20

	Introduction
	All Learning Rates At Once: Description
	Experiments
	Limitations, further remarks, and future directions
	Conclusion
	Model Averaging with the Switch
	Evolution of the Posterior
	Alrao-Adam
	Number of Parameters
	Other Ways of Sampling the Learning Rates
	Learning a Fraction of the Features
	Increasing Network Size
	Tutorial

