N
N

N

HAL

open science

A Framework for Discovering and Automatically
Composing Services
M.-C Fauvet, 1.-B Caicedo-Castro, P Na-Lumpoon, Ahmed Lbath

» To cite this version:

M.-C Fauvet, I.-B Caicedo-Castro, P Na-Lumpoon, Ahmed Lbath. A Framework for Discovering and
Automatically Composing Services. ICSOC - demo session, 2015, GOA, India. hal-01888343

HAL Id: hal-01888343
https://hal.science/hal-01888343
Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01888343
https://hal.archives-ouvertes.fr

A Framework for Discovering and
Automatically Composing Services

M.-C. Fauvet! I.-B. Caicedo-Castro'?3, P. Na-Lumpoon', and A. Lbath!

! Univ. Grenoble Alpes, LIG (MRIM), F-38000 Grenoble, France
2 University of Cérdoba, Colombia
3 National University of Colombia
Marie-Christine.Fauvet@imag.fr

Abstract. The study described in this paper is a part of a broader
project on E-Tourism that aims at providing mobile users with context-
aware personalised services. This paper focuses on issues raised by service
discovery and automated composition. Given mobile users’ requirement
(e.g., buying airplane tickets, booking a hotel room, renting a car, etc.)
expressed in a free-text query, the framework we describe in the paper
deals with discovery and composition services to be executed in order to
fulfil users’ needs. First, behind the service discovery module is the idea
to match the users’ queries with a set of documents in a corpus such that
each document contains a service description. To achieve the design of
this module we have proposed a family of IR models. Second the module
which is responsible with on-the-fly composition of the operations of the
retrieved services is based on Al planning and produces an executable
business process model whose each task correspond to a call to a service
operation. The whole framework has been partially evaluated: we give in
the paper experimental evaluations that show that our discovery model,
based on query expansion via a co-occurrence thesaurus, outperforms
the effectiveness of all models we have reviewed.

Keywords: Web Service Discovery, Information Retrieval, Mobile Computing,
AT Planning, Service Automated Composition, BPM;

1 Introduction and background

Recently distributed computing systems based on context awareness have been
proposed in several domains such as healthcare, logistics and tourism. The study
described in this paper is conducted as a part of a broader project whose main
goal is to design and implement a software system which provides mobile users
with services according to their needs [15,14]. Figure 1 sketches the overall ar-
chitecture of this project. The role of each module and the flow of information
are detailed further in the text.

Here we consider the following definitions for context, profile and service con-
cepts. A context includes spatial, temporal, physical, and environmental proper-
ties that could be collected by sensors embedded on the devices used to submit

2 B

[‘ __q = User Interaction

&,

‘f/ and Query Management @)
R 2
User models, contexts
and profiles
Discovery Module
(3)
Service Descriptions

iy 1o ;
f Composition Module = _. |

AllMuseums.org

Hotel-louvre.com

Fig. 1. A context-aware discovering system for mobile users

the queries. Such properties are for example: GPS location, timestamp, external
temperature, screen size, etc. A profile captures users’ personal details, prefer-
ences and centers of interest. For instance, a profile could contain information
about users’ age, citizenship, gender, occupation, favorite recreational activi-
ties, etc.

We adopt the definition of service given by the W3C [25]: A Web service is
a software system designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a machine-processable
format (specifically WSDL*). Other systems interact with the web service in a
manner prescribed by its description using SOAP® messages, typically conveyed
using HTTP with an XML serialisation in conjunction with other Web-related
standards.

A problem generally associated with the Service Description is the one of
their publication and discovery. A proposed standard to tackle this problem is
UDDI®. UDDI defines a programming interface to publish service descriptions
in dedicated repositories, submit keyword-based queries, and navigate through
the service descriptions obtained through these queries. UDDI was specifically
designed for WSDL and SOAP. It was often recommended that people use it
at runtime to dynamically look up services. Nevertheless, the main drawback

* Web Service Description Language, http://www.w3.org/TR/wsdl
5 Simple Object Access Protocol
5 Universal Description Discovery and Integration, http://uddi.xml.org/

is that people easily end up with a service not wanted, whether it’s because
the functionality is slightly different, the service is slower, or it lacks redundant
backups. For these reasons UDDI was given up by the community.

This issue of service discovery has been dealt with information retrieval mod-
els, considering a corpus composed by WSDL documents. A WSDL document
contains a syntactically-based description including service name, operations
name and signature, and some descriptions in natural language that are com-
mentaries written by programmers.

// add some glue with the rest

The system whose architecture is sketched in Figure 1, is accessible by regis-
tered users through a web browser installed on their mobile device (see Figure 1,
the data flow (1)). This system is built on the top of four components:

To be actualise from your dissertations, but skip the part dedicated to privacy

1. User interaction and query management module aims at managing user con-
nections and getting queries submitted by users and sent using their mobile
device.

2. The module User management System is responsible for managing users’ con-
text and profile with respect of their privacy.

3. Discovery system: given the user’s query, her profile and context, what are
the services, discovered among a repository of services, that once composed
can potentially meet the user’s needs expressed by queries?

This paper focuses only on the issues raised by this question.

4. Eventually the module Composition and orchestration system is in charge of
automatically orchestrate and execute services returned by the discovery
phase.

The rest of this paper is outlined as follows: we motivate and illustrate this
work in Section 2, then Section 3 presents related work and highlights the lacks
of existing main approaches. While Section 4 details the approach, and discusses
the models implemented in the proposed framework and also compares them
with the related work. Finally, Section 7?7 concludes the paper and sketches
some further work.

2 DMotivating example

Alice is an American tourist visiting Paris in France. She has forgotten to book
a room. Thus, she picks up her smartphone and accesses the system above men-
tioned (see Figure 1), and submits the query: | want to book a room for 3 nights
from tonight. Moreover, the system captures Alice’s context information, namely:
coordinates = "48.2167° N, 2.3332° E" and date = "1/06/2014". Besides, the
system has the following information about Alice’s profile: name = "Alice”, citi-
zenship="USA", travelPurpose="tourism", gender=""female".

Thereafter, S?niffer searches services for booking a room. It gives to the Com-
position and Orchestration System (COS) a ranked list of candidate services for
booking rooms in hotels. The service which has the highest rank in this list

contains the following operation: BookARoom, this operation receives as param-
eters the name of the hotel, the number of nights and persons who shall stay
in the room, the date and time to check-in, and the user’s name and telephone
number. As a result, the operation returns a confirmation whether the room has
been booked or not.

COS executes this operation, and Alice successfully book a room in Nowotel
hotel. The Alice’s context information is used by the COS to execute services.

At 4 PM, she wants to book a table at the finest restaurant in the city, and
the direction to get there. Once again, she uses the same system and submits
the query: | want to book a table for 2 people at the finest restaurant in the
city, and the direction to the restaurant. At this time, Alice’s profile has not
been changed, and the system captures the following Alice’s context information:
coordinates = "48.8567° N, 2.3508° E" and date = "1/06/2014".

This query has two requirements, then the User Interaction and Query Man-
agement (UIQM) module splits this query in two subqueries. Therefore, the first
query submitted to SZniffer is | want to book a table at the finest restaurant in
the city. The second query submitted to S2niffer is the direction to the restaurant.
S2niffer shall send to the COS two ranked lists of candidate services, which cor-
respond with each subquery. From the list of candidate services that may fulfil
the first subquery, the one which has the highest rank contains the following
operations:

— FindFinestRestaurant: This operation receives as a parameter the name of
the city where the user is looking for the finest restaurant. The operation
returns the name and the address of the restaurant.

— BookRestaurant: This operation receives as parameters the restaurant name,
the number of persons, and the user’s name and telephone number. As a re-
sult, the operation returns a confirmation whether the table has been booked
or not.

In the another ranked list of candidate services that fulfils the second sub-
query, the one which has the highest rank contains the following operations:

— FromCoordinatesToCity: Given the geographical coordinates, this operation
returns the name of the city where is allocated the coordinates of certain
point of interest.

— CoordinatesFromAddress: Given an address, this operation returns its geo-
graphical coordinates.

— GetDirection: This operation provides instructions on how to reach a destina-
tion. This operation receives two parameters, the coordinates of the starting
point, and the coordinates of the destination.

COS takes the operations of both services and compose them. The execution
of the resulting composite service fulfils both Alice’s needs (i.e., booking a table
in the finest restaurant of the city, and knowing the direction to go there).

On that night, while she is enjoying a delightful dinner in Le Meurice restau-
rant, Alice is wondering about the weather in the next day. She needs this in-
formation to decide whether she will go to Louvre museum or Euro Disney. One

more time, she uses the system and submits the following query: | want to buy a
ticket for Euro Disney tomorrow if the weather forecast is sunny, otherwise, buy a
ticket for Louvre museum. At this time, Alice’s profile is still the same, however,
her new context information is as follows: coordinates = "48.8651° N, 2.3280° E”
and date = "1/06/2014".

Similar to the previous query, this one contains three requirements, therefore
the UIQM module splits the query in three subqueries. The first subquery is to
buy a ticket for Euro Disney tomorrow. The second subquery is the weather forecast
is sunny. The last subquery is buy a ticket for Louvre museum. All three subqueries
are sent to S2niffer, thereby it sends three lists of services to the COS. From
the list of candidate services that may fulfil the first subquery, the one which
has the highest rank contains the following operation: BuyTickets4EuroDisney,
this operation receives as parameters the name of the customer, the number
of required tickets, information of a credit card, etc. As a result, the operation
returns a confirmation whether the transaction has been successfully finished or
not.

In the another ranked list of candidate services that may fulfil the second
subquery, the one which has the highest rank contains the following operation:
GetWeatherForecast, this operation returns the weather for a given city of a
certain country, and for a given date.

In the ranked list of candidate services that may fulfil the last subquery,
the one which has the highest rank contains the following operation: BuyTick-
ets4LouvreMuseum, this operation receives similar operation as the one to by
tickets for Furo Disney, besides, the result of this operation is the same.

In the same fashion as before, the COS composes all operations of previous
services. The execution of the resulting composite service fulfils Alice’s require-
ments regarding her condition.

With the above mentioned system, users are able to consume services acces-
sible on the Internet, from their mobile devices. Besides, service providers do
not need to produce front-end applications, which serve as interfaces to access
their services. This thesis addresses the problem of searching services for fulfilling
specific users’ requirements.

3 Related Work

The section covers related work related to two different domain: (1) AI planning
and service composition, and (2) Information Retrieval based service discovery.

3.1 AI Planning and Service Composition

From Pathathai ICSOC’1 paper and dissertation

The text below is the one from ICSOC’1) paper...

OWL-S is an OWL based ontology for describing Semantic Web Services. It
will enable users and software agents to automatically discover, invoke, compose
and monitor web resources offering services under specified constraints [12]. To

facilitate the OWL-S capacities mentioned, OWL-S organizes the service struc-
ture into three parts which are service profile, process model and service ground-
ing. The service profile part is used to describe what the service does, which
includes the information such as the service name and description, quality of
service, publisher and contact information. The process model part describes
the types of service process and the elements (a set of inputs, outputs, precondi-
tions, effects of the service execution) inside each process. There are three types
of service process which are atomic, composite and simple processes. Atomic pro-
cess is process that runs completely independently of any other process. Com-
posite process is process that requires multiple actions from other process, in
which directed by one of control constructs such as sequence, iterate, choice
and if-then-else. While the simple processes provide an abstraction mechanism
to provide multiple views of the same process [12]. Finally, the service ground-
ing specifies the interaction information with the service such as communication
protocols, message formats and port number. We choose OWL-S as service de-
scription for our web service composition framework. Since OWL-S also works
with operations and each operation has properties inputs, output, preconditions
and effects optionally in which similar to operator in Al planning domain. And
the reason why we select OWL-S over other semantic web services like SAWSDL
and WSDL-S is that OWL-S can support control contracts in the composite
process.

Because most of the time user requirement can be complex that contains
control construct statements. Additional, OWL-S supports other OWL ontology
used as referred data type and is dominated to many researched works. Thus
many OWL-S supporting tools are available.

SAWSDL stands for Semantic Annotations for WSDL and XML schema in
which is a W3C Recommendation defines it as mechanisms using which semantic
annotations can be added to WSDL components [7]. SAWSDL standard solves
problems regarding to data heterogeneity in the web services description lan-
guage (WSDL 2.0) [5]. Two WSDL services can have similar descriptions while
meaning totally different things, or they can have very different descriptions yet
similar meaning. Therefore, SAWDL provides mechanisms by which concepts
from the semantic models that are defined either within or outside the WSDL
document can be referenced from within WSDL components as annotations.
These semantics when expressed in formal languages can help disambiguate the
description of Web services during automatic discovery and composition of the
Web services [7]. In additional, several project and application utilizing SAWDL
for Semantic Web Services automation [26]. We choose SAWSDL as service de-
scription for our web service composition framework. We can apply SAWSDL
into AI planning domain since SAWSDL can recognize inputs, outputs, precon-
ditions and effects of service operation in which is similar to that operator in
AT planning domain. And with modelReference attribute in SAWSDL, we can
model stateful service by adding input rule and output rule constraints related
to persisting state among operations.

3.2 Related Work

Several automatic web service composition frameworks toward Al have beeb re-
viewed. We have analyzed the similarity and difference of techniques among them
in this section. One of classical previous works on automatic web service com-
position is SHOP2 [23]. The objective of SHOP2 is to synthesize a plan which
is a sequence of primitive operators. Using HTN (Hierarchical Task Network)
technique, SHOP2 Planner recursively decompose a given task until it reaches
to primitive operators. The framework transforms semantic web service OWL-S
[12] representing atomic and composite web services into operators in SHOP2
domain. However, SHOP2 dose not take into account of data heterogeneous and
stateful services.

Two frameworks we reviewed use semantic web service SAWSDL to rep-
resent service markup in automatic service composition. METHOR-S [32] is
a planning-based approach to solve both the process heterogeneity and data
heterogeneity. The approach uses service template to model the service require-
ment in STRIPS which is the formal planning language, and then discover the
SAWSDL services with profile that matches the defined abstract process in ser-
vice template. The output of the system is an executable BPEL. However, this
approach is not fully automated web service composition. Another framework is
Haley [33] which is a hierarchical framework for logical composition of web ser-
vices. Haley offers a method to exploit hierarchical decomposition of web service
composition problem and then utilizes technique of decision theoretic planning
on first order sentences of SAWSDL web services. This technique helps to solve
problems on the uncertainty inherent in web service invocation and also provide
an expected cost-based optimization. However, all services used in Haley are just
stateless services.

[2] proposes a planning under uncertainty framework for the automated com-
position for web services, which can handle stateful web services using industrial
standard like WS-BPEL. Thus, this approach support ability to model and solve
planning problems for asynchronous domains. The goal is extracted from the re-
quirement and then all the relevant abstract WS-BPEL are translated into state
transition system to automatically be composed into composited process. Even
though this approach can handle stateful services, but the issues of process het-
erogeneity and data heterogeneity are not discussed.

Two of previous works that are similar to our approach are [28] and [1]. Both
of them work on automatic generation of an abstract composition based on the
formalism of fluent calculus. [28] transforms request service and relevant web ser-
vices from OWL-S format into fluent calculus domain and use FLUX constraint
logic programming method to generate a plan. The plan output of the system is
the sequence of fluent calculus operator. The algorithm to transform OWL-S web
service into fluent calculus is proposed. However, the algorithm dose not cover
transformation of stateful service into fluent calculus. While [1] proposes the new
Web Service Specification Language (WSSL) based on fluent calculus for facili-
tating automatic web service discovery and composition process. The framework
is implemented using FLUX-based planning, supporting compositions with fun-

damental control constructs such as conditionals and loops. However, WSSL is
not linked with other external ontology. This may cause the problem of data
heterogeneous.

3.3 Information Retrieval-based Service Discovery

Needs to be actualise, and a lot synthetise

In several works, researchers have applied information retrieval concepts in
order to cope the web service discovery challenge. Typically, these existing ap-
proaches rely on either:

1. Vector space model or,
2. Latent Semantic Indexing, or
3. Hybrid models based on ontologies and information retrieval.

The VSM has been applied in many approaches (see for example: [27, 20,9,
10,6, 29, ?]). In these works, a set of WSDL documents composes the collection
of service descriptions. Some of these approaches does not tackle the term mis-
match problems [20, 10, 6,29, ?]. Whereas, these problems have been addressed
by expanding queries and WSDL documents with synonyms of their terms [27,
9]. Synonyms are extracted from WordNet lexicon [13]. Nevertheless, the query
expansion based on the injection of synonyms significantly decreases precision
because a term may have synonyms with different meanings depending of the
context of the term in the query.

In other approaches, researchers applied LSI to cope term mismatch problems
in the context of service discovery [21]. However, factorising a matrix through
SVD causes scalability issues in LSI. Therefore, other works handled this short-
coming instead of aiming to increase the effectiveness of LSI [11, 30, 31]. However,
scalability issues are out the scope of our research.

LDA is another model based on latent factors in text documents. In this
model the latent factors are topics, and their distribution is assumed to have
Dirichlet prior. This model is applied to discover the latent topics from concepts
contained in service descriptions written in OWL-S [3,4]. According to the re-
sults obtained in this research, LDA outperforms Probabilistic LSI (PLSI) (3, 4].
Nonetheless, in the same study LDA has not been compared with other models
used in prior research (e.g., LSI).

Another direction to deal with term mismatch problems is to use ontologies.
Therefore, several works combine LSI and ontologies [17,19,18]. An ontology
is used as a vocabulary to expand the query [18]. In another hybrid approach
K-means algorithm is used to divide the corpus in several clusters of docu-
ments [19]. Thereafter, given a query, SVD is applied on the most similar cluster
(similar to [11]). However, this technique is complemented with a semantic—
based matching, which is implemented on an ontology of services, by computing
the similarity between service input and output parameters. At the end of the
procedure, services are ranked according two both techniques.

The drawback of such ontology-based approach is that the human inter-
vention is necessary, as ontologies must be built with the assistance of human

experts of the domain. Therefore, the creation of ontologies is an expensive, time-
consuming, tedious, and error-prone task [8,22]. This is why we have decided
not to design and build any ontology.

In the discovery system we have implemented a model based on query ex-
pansion via co-occurrence thesaurus. In Section 4.2 we describe this model and
present the outcomes of an empirical evaluation conducted to compare our model
with those in the state-of-the-art.

4 A multi-layer framework...

4.1 Multi-layer Architecture

We propose a multi-layer architecture which comprise of multiple layers (see in
Figure 2). From the top layer, relevant services to fulfill users’ needs can be ac-

51 54
Service
Layar 53 52
85
58
01.51
Logical j \
Layer 02.52 02.51 01.54
03.58 /
Composite
Platfarm
Laver
o . BPMMN
ymamic Execution
Execution Irvoeation Engine
Layar

Fig. 2. Multi-layer for service composition and execution system

cessed from service providers in the Service layer. In this work, we consider web
services, which explain operation(s) with an invocation interface to call these op-

erations. For example, restaurant service offering two operations’ searchRestau-
rant:city,type — restaurantName and bookTable:restaurantName,guestName — con-
firmationBooking. The next is Logical layer, which contains a logical composition
of operations. The operations from the service layers are assembled into a work-
flow against user’s goals.

For example, the sequence of calls to searchRestaurant then bookTable is sat-
isfied against confirmationBooking. However, the generated workflow is not in an
executable form, this is why we perform the transformation of the workflow into
an executable business process in the Composition platform layer. The last layer
is the Fxecution layer, which handles runtime activities such as binding services,
acquiring missing parameters and enacting business process engine.

4.2 Service Discovery

In our approach we propose to automatically generate a thesaurus by computing
the Terms Similarity Matrix C = YY7, where C € R™*™ and each component
C;; represents the similarity score between terms ¢; and ¢;. Thereafter, the la-
tent factors of each column vector of this matrix are computed, by factorising
it through the above mentioned methods in order to obtain W € R™™ and
X € ®7*™ such that C = WTX. Let Q be a set of terms used in a query,
each term ¢; ¢ @ of the thesaurus is added to the query if sim(x;,x;) > 0
(see Equation ?7), where t; € Q. The parameter § is estimated by means of
experiments. We carried out experiments using the fourth version of the OWL-S
service retrieval test collection named OWLS-TC4® which contains the descrip-
tions of 1083 Web services from 9 domains (i.e., education, medical care, food,
travel, communication, economy, weapon, geography, and simulation). Each de-
scription is given in OWL-S 1.1. This collection includes 42 queries associated
with their relevance judgment provided by several users. A pooling strategy (as
used in TREC?Y) was conducted to collect the relevance judgment set which was
obtained from the top-100 results of participants of the S3 contest!® in 2008. The
judgment relevance has been graded in four different levels, i.e., highly relevant
(value 3), relevant (value 2), potentially relevant (value 1), and non-relevant
(value 0). Therefore, during the experiments the Normalised Discounted Cu-
mulative Gain at 10 (NDCG@10) has been used instead of the Mean Average
Precision (MAP) to measure the overall ranking effectiveness of each approach.

This collection is the unique one which exists in service retrieval domain
which has judgment relevance. Previous versions of this collection were used for
carrying out experiments in related recent works [3, 4].

Table 1 presents the results we obtained from the experiments. The three
first rows show the retrieval effectiveness we obtained for existing techniques

7 Parameters after colon refer to operation inputs while after arrow are for operation
outputs.

8 OWL-S Service Retrieval Test Collection, projects.semwebcentral.org/projects/owls-
tc/

9 Text Retrieval Conference, trec.nist.gov/

10 Semantic Service Selection, www-ags.dfki.uni-sb.de/ klusch/s3/

(VSM, LDA and LSI). Then the three last rows show results for our model ex-
tensions: Query Expansion via a Co-Occurrence Thesaurus (QECOT) automat-
ically generated through SVD is called QECOT-SVD, QECOT generated using
the method MSE, QECOT-MSE, QECOT generated through NMF, QECOT-
NMEF.

The results we got suggest that QECOT-MSE outperforms all the models
studied in the paper. Indeed, Table 2 shows that the effectiveness of QECOT-
MSE is better than LDA and VSM, which are the models applied for service
retrieval in [27,20,9, 10, 6,29, 3, 4], and the difference is statistically significant.
Despite the difference between the effectiveness of QECOT-MSE and LSI-SVD
is not statistically significant, the first model outperformed the second one in
more queries. Indeed, in 5 queries both models had the same effectiveness, in 24
queries QECOT-MSE outperformed LSI-SVD, and only in 13 queries LSI-SVD
has better effectiveness than QECOT-MSE (see Figure 3). Figure 3 depicts a
comparison of the effectiveness of both models regarding each query used in
the experiments. Points below the diagonal line correspond with queries where
LSI-SVD outperformed QECOT-MSE (13 points). Whereas points above the
line correspond with queries where QECOT-MSE outperformed LSI-SVD (24
points). Finally, points in the diagonal line correspond with queries where both
models had the same effectiveness (5 points).

4.3 Automated Composition of Service Operations

From Pathathai’s dissertation...

We separate the Abstract Service Composition system into two components:
Transformer and FLUX Planner as depicted in Figure 4. The Transformer compo-
nent is responsible for pre-processing inputs from problem domain into the user’s
planning domain. While FLUX Planner component is a service operation com-
poser, which performs assembling service operations to get the desired abstract
plan.

The user’s query along with her profile, context and service operations in
problem domain shall be considered as initial, goal states and possible actions
in FLUX query respectively. The FLUX query shall be solved by the FLUX
planner. We use Al-planning techniques to implement our FLUX planner to
perform automated abstract service composition.

The reason we chose FLUX over other Al systems because FLUX is im-
plemented based on fluent calculus''. Modeling user’s constraints and relevant
operations with fluent calculus, the FLUX Planner reasons on a variety of oper-
ations such nondeterministic, conditional and concurrency to obtain a resulted
abstract plan.

Transformer to fluent calculus The Transformer is the process in the Ab-
stract Service Composition system. It intents to pre-process data from user prob-
lem domain into initial knowledge state and constraints in planning domain. The

11 A formal mathematic expression for dynamical domain in first order logic.

NDCG: QECOT-MSE vs LSI-SVD

‘C’_ — 040 e
015
« O ’d_!S
@ _| 0024‘34%1;3
=] * (19
o @012 W9 e a2
+ 025
i §Q17 g4
w 003
w 009 %
sQ1¥and
= ™~ | e QWQ11 . O34
= o X
(] «0Q23 Q27
Q
w [1e}
] P + 08 #0736
wn
=
« 02
g- - + Q38
* 035

| T | | | | |
0.4 0.5 0.6 0.7 0.8 0.9 1.0

LSI-SVD

Fig. 3. Comparison between QECOT-MSE and LSI-SVD

data from user problem domain consists of parameters extracted from the user’s
query, the profile, the context and operations offered by service descriptions.
In Figure 5, the transformer parses the parameters and the service operations
and then transforms them into initial and goal states and operations in fluent
calculus axioms respectively. Their converted results are combined for a FLUX
query. The Flux query is then forwarded to FLUX planner. The following section
presents the transformer process with the motivating example (see Section 2),
which is subjected to user requirements and service operations mappings.

User requirements mapping This subsection shows what are the user’s
requirements and the parameters of the user’s goals and her profile and context,
are transformed to initial and goal states. Consider user requirements mapping
in Table 3 as an example:

The parameters classified into query, context and profile categories are shown
in user problem domain column. We use the convention for each parameter as
name of parameter followed by its value beside parenthesis. The value itself

user's query,
profile and context

FLUX query abstract plan

Transformer FLUX, EE—
g Planner

—_—

list of
service descriptions

Fig. 4. Abstract Service Composition process

user's query,
profile and context Transformer
—P
FLUX quer
list of Fluent a Y
service descriptions Parser Calculus EEEE—
EE—N generation

Fig. 5. Transformer process

has two options: known value or goal value. The known values are extracted
from user queries, disclosed context and profile information. For example, Num-
berOfGuest(2), Time(8pm), Date(01/06/2014). The goal values are the unknown
values of things the users want to possess or achieve. For instance, Restaurant-
Name(goal), BookingReservation(goal), Direction(goal).

To map parameters from problem domain to fluents in planning domain, we
shall follow these two rules: 1) Parameters having the goal values are grouped into
a list of goals fluent. For instance, goals([RestaurantName, BookingReservation,
Direction]). 2) Individual parameter having known values is converted to initial
fluent. For example, initial(NumberOfGuest).

Service operations mapping Besides user requirements mapping, the
transformer converts service operations into input fluent operations. Each oper-
ation has its naming conventions of op_inputs and op_outputs clauses. For each
service operation, we have only one clause op_inputs and one clause op_outputs.
Generally, op_inputs and op_outputs refer a set of operation input and a set of
operation outputs. Consider service operation mapping in Table 4 as an example:

It’s a worth noting that we separate input and output operations into differ-
ent naming conventions. It enables the Planner to synthesize the control links
among operations in the abstract plan. More details about the Planner are given
in the next section.

FLUX Planner Planner is a process happening after the transformer process
in the Abstract Service Composition system. It intents to synthesize a plan from
abstract operations to fulfill the user’s goals. The outcome of this resulting plan
should satisfy all expected goals and initial constraints and also support linked
control constructs such as sequence, condition and parallel.

To achieve this operation, we propose FLUX planner, which is a constraint
programming based on fluent calculus see its architecture depicted in Figure 6.
The FLUX planner consists of three components: (1) FLUX library, (2) FLUX
query and abstract plan and (3) service composition agent.

The FLUX library contains a set of constraint handling rules and a constraint
solver for finite domain of our FLUX planner [24]. The FLUX query contains
encodings of the domain axioms including condition constraint, initial and goal
knowledge state and a list of service operations, while the abstract plan contains
encoding of the plan axioms including initial and goal nodes, flow of composable
operations and data transformation. The service composition agent performs
agent’s actions including action precondition axiom and update axioms, under
the behavior of planning composition.

FLUX query and Abstract plan We develop planning model for the
service composition agent. The model is formulated using fluents for the FLUX
query and the abstract plan structures. We use the special sorts OPERATION,
PARAMETER, VALUE and INDEX along with the fluents. One instance of FLUX
query necessarily consists of following basic fluents:

Initial(X): PARAMETER --> FLUENT

Goal(Xs): PARAMETER --> FLUENT

Op_inputs(X,Ys): OPERATION x SET OF PARAMETER --> FLUENT
Op_outputs(X,Ys): OPERATION x SET OF PARAMETER --> FLUENT

Initial(X) is a fluent for initial parameter X (i.e., initial(RestaurantType) and
initial(Coordinates)). Goal (Xs) is a fluent for a set of goal paramaters Xs (i.e.,
goals([RestaurantName, BookingReservation, Direction])). Op_inputs(X,Ys) is
a fluent for a set of input parameters Ys of a single operation X (i.e., op_inputs(
FromCoordinatesToCity, [Coordinates])) and Op_outputs(X,Ys) is a fluent for
a set of output parameters Ys of a single operation X (i.e., op_outputs(Find-
FinestRestaurant, [RestaurantName, RestaurantAddress])). Besides these basic
fluents, we have fluents for representing user constraints in the FLUX query. For
example:

Cond(C,if (guard(01,R01,V1),03) ,else(guard(02,R02,V2),04)):
INDEX x PARAMETER x OPERATOR x VALUE x PARAMETER x
PARAMETER x OPERATION x VALUE x PARAMETER --> FLUENT

Cond(C,if (guard(01,R01,V1),03), else(guard(02,R02,V2),04)) isa fluent
for condition guard request. The index C request contains two alternative paths
if the first guard condition indicating parameter value O1 with relational op-
eration RO1 equals to value V1 is true then parameter O3 exists; else if the
second guard condition saying parameter value O2 with relational operation
RO2 equals to V2 is true then parameter O4 exists. For instance, cond(cl,
if(guard(weather,==,sunny),ticketD), else(quard(weather,==,rainy), ticketM)). It’s
worth noting that DataTransform(X,X1) fluent might be hold if there is trans-
formation of data passing between parameter X, where X is a subset of operation
outputs and parameter X1, where X1 is a subset of another operation inputs.
Whereas, the partial fluents for abstract plan structures are listed below:

Add_initail(X): OPERATION --> FLUENT

Add_goal (X): OPERATION --> FLUENT

Flow(X,Y): OPERATION x OPERATION --> FLUENT

Flow(X, if(guard(01,R01,V1),Y1),else(guard(02,R02,V2),Y2)):
OPERATION x PARAMETER x OPERAND x VALUE x OPERATION x
PARAMETER x OPERAND x VALUE x OPERATION --> FLUENT

To construct the sequencing and paralleling plans, Add_initail (X), Add_goal (X)
and Flow(X,Y) fluents are required, where Add_initail (X) is a fluent for an ini-
tial node of operation X (i.e., add_initail(FromCoordinates ToCity)), Add_goal (X)
is a fluent for a goal node of operation X (i.e., add_goal(GetDirection)) and
Flow(X,Y) is a fluent for a flow node with a pair of head operation X and tail
operation Y (i.e., flow(FromCoordinatesToCity, FindFinestRestaurant)).

If fluent Op_inputs (X,Ys) is hold, this means all inputs Ys of operation X are
matched to either initial parameters or output parameters of other operations.
Thereafter, the agent adds the fluents either Add_initial (X) or Flow(X,Y) into
the abstract plan.

To merge condition operations into the abstract plan, the service composition
agent uses Flow(X, if(guard(01,R01,V1),Y1), else(guard(02, R0O2,V2),Y2))
fluent. The Flow(X,if (guard(01,R01,V1), Y1), else(guard(02,R02,V2),
Y2)) is fluent for a flow with condition of two alternative outgoing paths. The
first one is a path from operation X to operation Y1 if the guard condition that
parameter value 01 with relational operation RO1 equals to V1 is true. The second
path is from operation X to operation Y2 if the guard condition that parameter
value 02 with relational operation RO2 equals to V2 is true.

4.4 Execution of the Resulting Composition

From Pathathai’s dissertation...

The Figure 7 illustrates the architecture of Composite Platform (or business
process) Generation. The process starts from the BPMN transformer that con-
verts the abstract plan, which is consisted of a sequence of operation fluents,
to BPMN model in Prolog language. Next, the BPMN model is analyzed and
verified in the BPMN Validation. The valid BPMN model as a result will be
implemented and executed in the experiment phase later on.

Abstract plan to BPMN semantics A BPMN is a standard notation main-
tained by OMG!2 for modeling business processes. Its goal is to provide a nota-
tion of business specification that is understandable by all business stake holders
(i.e. business analysts, software developer and business people), mainly at the
level of domain analysis and high-level systems design [16]. The BPMN is widely-
used in the early stages of systems life cycle. According to the OMG, 72 imple-
mentations of the BPMN are reported for known businesses [16]. Moreover, open

12 http://www.omg.org/

sourced software companies (i.e., Activiti'®, BonitaSoft'* and Yaoqiang BPMN
Edior!®) dramatically compete among each others to offer varied solutions to
edit and run BPMN models.

BPMN is comprised of an abstract of workflow components. However, this
dissertation focuses on a control-flow perspective of BPMN. Therefore, the subset
of the notation that handles the order of activities are allowed to occur. It
does not handle its non-functional features (i.e., artifacts and association) and
organizational modeling features (i.e., lanes and pools).

Figure 8 shows an overview of a set of graphical BPMN elements related
to the proposes of our work. For the event elements, only start event and
end event are taken into consideration. Service tasks are main knowledge of
processing elements; each task is a finite process with a set of inputs and a set
of outputs. Two gateways: split and join control a workflow. Split gateways
present when branching of the workflow takes place; two disjoint subtypes of
splits are AND-split gateway and XOR-split gateway. AND-split allows
a single flow to be split into two or more branches which can execute tasks
concurrently while XOR-split allows a flow to be split into two or more flows
when the incoming flow is enabled, the gateway is passed to one of the outgoing
flows based on a specified condition that can select one of the outgoing flows.
Join gateways happen when two or more paths meet; two further disjoint
subtypes of merge modes are considered: AND-join gateway and AND-split
gateway. AND-join allows two or more parallel flows to be joined into a single
subsequent flow when all input flows have been enabled while AND-split allows
a single flow to be split into two or more branches which can execute tasks
concurrently. Lastly, a sequence flow is used to link two entities of event,
activity or gateway in a process diagram and specify a control flow relation.

For BPMN transformation purpose, we map from logical analysis of BPMN
component to their logical models, properties and representation in Prolog. The
following table 5 lists BPMN elements along with their mapped semantic fluents
into consideration:

The BPMN elements are mapped into the BPMN semantics according to the
element type. For example, Start event is mapped to node(start) and so on. How-
ever, Service task and Sequence flow BPMN element require more informations
for semantic mapping. A semantic of Service task needs informations of task
name, inputs and outputs for defining task(Name, Inputs, Outputs), where Name,
Inputs and Outputs are variable names. The same principle applies to Sequence
flow that it needs a workflow information of head operation linking to tail op-
eration for flow(HOperation, TOperation), where HOperation and TOperation are
operation names.

BPMN Transformer The BPMN transformer is a process for mapping the
abstract plan consisting of a sequence of the fluents into semantic BPMN model
in the declaration of a formal language. The reason why we transform the abtract

13 http://activiti.org/
' http://www.bonitasoft.com/
!5 http://bpmn.sourceforge.net/

plan into the formal language is that a graphical notation of BPMN elements
binds information of data passing, data transformation and routing condition
from BPMN workflow specification. This shall be hard to fix defects when they
occur in BPMN model.

The following Table 6 shows mapping rules between particular fluents oc-
curred in the abstract plan and semantic BPMN we defined in Table 5. We have
classified the fluents into four groups: initial group, flow group, goal group and
data group.

The initial group contains add_initial(Op) fluents, where Op is a single op-
eration. Mapping these initial fluents into BPMN could create two possible sit-
uations. The first situation happens when the transformer detects only one initial
fluent in the abstract plan. The transformer creates node(start) and flow(start,Op),
linking between start event and operation Op, into BPMN model. While the sec-
ond situation occurs when there are more than one initial fluents in the plan.
This means operations derived from initial fluents can start a process at the
same time. A converted BPMN has one AND-split gateway to combine these
initial operations. For example, add_initial(Op1), add_initial(Op2) is mapped to
BPMN model, which is consisted of node(start), gateway(andS), flow(start,andS),
flow(andS,0Op1), flow(andS,0p2).

The flow group contains flow(_,), flow(_,if(guard(_,-,-,-),-),else(guard(_,-,,-),-))
and flow(if([-,_],-)) fluents. These flow fluents can be mapped into a sequence,
parallel and condition flows in BPMN model. For the sequence flow, the trans-
former does not change flow(_,_) fluent. For instance, flow(Op1,0p2), where Opl
and Op2 are instants of Task Opl and Task Op2, stays remain in BPMN since it
describes a control flow from task object to another task object in the same way
as a flow dose in BPMN. While creating parallel flow in BPMN, the transformer
checks all tasks in the head position of flow fluent. i.e., OP1 in flow(Op1,_) fluents
whether Opl exists in any head position of other flow(Opl,.) fluents. If these flow
fluents exist, the transformer convert them to one AND-split gateway, relevant
control flows and relevant tasks. For example, flow(Op2,0p3), flow(Op2,0p4) is
mapped to gatway(andS), flow(Op2,andS), flow(andS,0p3), flow(andS,Op4). This
checking parallel rule also is applied for AND-join gateway that the transformer
monitors the tail position of flow fluent. i.e., Opl in flow(_,Op1) fluent with oth-
ers flow(_,Opl) fluents instead. For the condition flow, the transformer checks
the abstract plan for flow(_,if(guard(-,-,-,-),-), else(guard(-,-,_,-),-)) fluent and
flow(if([-,-],-)). If the former fluent is detected, the transformer creates one XOR-
split gateway, one control flow and two control flows with condition into BPMN
model. For example, flow(Op1,if(guard(01,R01,V1),0p2) else(guard(02,R0O2,V2),0p3)
is mapped to gatway(xorS), flow(Opl,xorS), flow(xorS,0Op2,guard(O1,R0O1,V1)),
flow(xorS,0p3,guard(02,R02,V2)). While the flow with XOR-join gateway is cre-
ated if the latter fluent is captured. For instance, flow(if[Op2,0p3],0p4) is mapped
to gatway(xorJ), flow(Op2,xor]), flow(xorJ,0p3), flow(xorJ,0Op4).

The goal group contains add_goal(Op) fluents, where Op is a single operation.
We follow BPMN specification that a workflow in BPMN model may have more
than one end events. Therefore, the transformer creates goal nodes up to number

of distinct add_goal(_) fluents found. For example, add_goal(Op4), add_(Op5) is
mapped to node(endl), node(end2), flow(Op4,endl), flow(Op5,end2).

Lastly, the data group contains data passing and data transforming fluents.

The data passing describes both the task Op creation and its data passing of
inputs and outputs. To do so, the transformer searches for service operations
used in the abstract plan. For each operation Op, the transformer combines
op_inputs(Op,[inputs]) and op_outputs(Op,[outputs]) fluents and map them to
task(Op,[inputs],[outputs]) fluent, referring to Task Op containing a set of its
inputs and its output. While dataTransform(X,X1) fluent, capturing a change
from a data form X into another form X1, in the abstract plan stays remain in
the semantic BPMN model.

5

Conclusion and further work

References

1.

10.

G. Baryannis and D. Plexousakis. Fluent calculus-based semantic web service com-
position and verification using WSSL. In Service-Oriented Computing - ICSOC
2013 Workshops - CCSA, CSB, PASCEB, SWESE, WESOA, and PhD Sympo-
sium, Berlin, Germany, December 2-5, 2013. Revised Selected Papers, pages 256—
270, 2013.

P. Bertoli, M. Pistore, and P. Traverso. Automated composition of web services
via planning in asynchronous domains. Artificial Intelligence, 174(3-4):316-361,
2010.

G. Cassar, P. Barnaghi, and K. Moessner. A probabilistic latent factor approach to
service ranking. In Proc. of the International Conference on Intelligent Computer
Communication and Processing, pages 103-109, Aug 2011.

G. Cassar, P. Barnaghi, and K. Moessner. Probabilistic matchmaking methods for
automated service discovery. IEEE Transactions on Services Computing, 7(4):1-1,
May 2013.

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services descrip-
tion language (wsdl) version 2.0 part 1: Core language. W3C recommendation,
W3C, June 2007. Web 12 Jan. 2015, http://www.w3.org/TR/2007 /REC-wsd120-
20070626/ .

M. Crasso, A. Zunino, and M. Campo. Easy web service discovery: A query-by-
example approach. Science of Computer Programming, 71(2):144-164, Apr. 2008.
J. Farrell and H. Lausen. Semantic annotations for WSDL and XML schema. W3C
recommendation, W3C, #aug# 2007. http://www.w3.org/TR/2007 /REC-sawsdl-
20070828/

A. Gomez-Perez, O. Corcho-Garcia, and M. Fernandez-Lopez. Ontological Engi-
neering. Springer-Verlag New York, Inc., 2003.

N. Kokash, W.-J. van den Heuvel, and V. D’Andrea. Leveraging Web Services
Discovery with Customizable Hybrid Matching. In Proc. of the jth International
Conference on Service Oriented Computing, pages 522-528, 2006.

K.-H. Lee, M.-Y. Lee, Y.-Y. Hwang, and K.-C. Lee. A framework for xml web
services retrieval with ranking. In Proc. of the International Conference on Multi-
media and Ubiquitous Engineering, 2007., pages 773-778. IEEE Computer Society,
2007.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Ma, Y. Zhang, and J. He. Web Services Discovery Based on Latent Semantic
Approach. In Proc. of the International Conference on Web Services, pages 740—
747. IEEE Computer Society, 2008.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mecllraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and
K. Sycara. Owl-s: Semantic markup for web services, 2004.

G. A. Miller. Wordnet: A lexical database for english. Communications of the
ACM, 38(11):39-41, Nov. 1995.

P. Na-Lumpoon, M. Lei, I. Caicedo-Castro, M.-C. Fauvet, and A. Lbath. Context-
Aware Service Discovering System for Nomad Users. In 7th International Confer-
ence on Software, Knowledge, Information Management and Applications (SKIMA
2013), 2013.

P. Na-Lumpoon, M. Lei, T. Kamnardsiri, A. Lbath, and M.-C. Fauvet. Illustrating
some issues raised when designing context-aware personalized services for mobile
users. In Proceeding of the 6th International Conference on Software, Knowledge,
Information Management and Applications (SKIMA 2012), 2012.

OMG. Business process model and notation (bpmn)) version 2.0.2. n.d. Web. 20
Dec. 2014, http://www.omg.org/spec/BPMN/2.0.2/.

A. V. Paliwal, N. R. Adam, and C. Bornhévd. Web Service Discovery: Adding
Semantics through Service Request Expansion and Latent Semantic Indexing. In
Proc. of the International Conference on Services Computing, pages 106—113.
IEEE Computer Society, 2007.

A. V. Paliwal, B. Shafiq, J. Vaidya, H. Xiong, and N. R. Adam. Semantics-based
automated service discovery. IEEE Transactions of Services Computing, 5(2):260—
275, 2012.

S.-L. Pan and Y.-X. Zhang. Ranked Web Service Matching for Service Descrip-
tion Using OWL-S. In Proc. of the International Conference on Web Information
Systems and Mining, pages 427-431, Nov 2009.

C. Platzer and S. Dustdar. A vector space search engine for web services. In Proc.
of the 3rd International Conference on Web Services, pages 14-16. IEEE Computer
Society, 2005.

A. Sajjanhar, J. Hou, and Y. Zhang. Algorithm for web services matching. In
J. Yu, X. Lin, H. Lu, and Y. Zhang, editors, Proc. of the 6th Asia-Pacific Web
Conference, volume LNCS 3007, pages 665—670. Springer Berlin Heidelberg, 2004.
M. Shamsfard and A. A. Barforoush. Learning ontologies from natural language
texts. International Journal of Human—Computer Studies, 60:17-63, 2004.

E. Sirin, B. Parsia, D. Wu, J.-A. Hendler, and D.-S. Nau. HTN planning for web
service composition using SHOP2. Web Semantics: Science, Services and Agents
on the World Wide Web, 1(4):377-396, 2004.

M. Thielscher. Flux: A logic programming method for reasoning agents. Theory
and Practice of Logic Programming, 5(4-5):533-565, 2005.

W3C. Web services glossary. www.w3c.org/TR/ws-gloss. Last accessed: 20th of
March, 2014.

W3C. SAWSDL candidate recommendation implementation report, 2002. n.d.
Web. 25 Dec. 2014, http://www.w3.0rg/2002/ws/sawsdl/CR/.

Y. Wang and E. Stroulia. Semantic structure matching for assessing web service
similarity. In Proc. of the 1st International Conference on Service Oriented Com-
puting, pages 194-207. Springer-Verlag, 2003.

S. M. Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, and D. Zaharie, editors.
11th International Symposium on Symbolic and Numeric Algorithms for Scientific

29.

30.

31.

32.

33.

Computing, SYNASC 2009, Timisoara, Romania, September 26-29, 2009. IEEE
Computer Society, 2009.

C. Wu. WSDL Term Tokenization Methods for IR-style Web Services Discovery.
Science of Computer Programming, 77(3):355-374, Mar. 2012.

C. Wu, E. Chang, and A. Aitken. An empirical approach for semantic web services
discovery. In 19th Australian Conference on Software Engineering, pages 412—421,
March 2008.

C. Wu, V. Potdar, and E. Chang. Latent Semantic Analysis — The Dynamics of
Semantics Web Services Discovery. In Advances in Web Semantics I: Ontologies,
Web Services and Applied Semantic Web, pages 346-373. Springer-Verlag, 2009.
Z. Wu, K. Gomadam, A. Ranabahu, A.-P. Sheth, and J.-A. Miller. Automatic
composition of semantic web services using process mediation. In 9th Interna-
tional Conference on Enterprise Information Systems, Volume SAIC, pages 453~
462, Madeira, Portugal, 2007.

H. Zhao and P. Doshi. A hierarchical framework for logical composition of web
services. Service Oriented Computing and Applications, 3(4):285-306, 2009.

Table 1. Retrieval effectiveness.

Model NDCG@10 Gain (%)
Models applied in prior research on IR-based service discovery
VSM (baseline) 0.5435 N/A
LDA 0.6661 22.55
LSI-SVD 0.7586 39.57
Proposed family of models for text-based service retrieval
QECOT-NMF 0.7792 43.37
QECOT-SVD 0.7804 43.59
QECOT-MSE 0.7897 45.29

Table 2. Student’s paired t-test on NDCG@10 to compare QECOT-MSE with other
models applied in prior research on IR-based service discovery

Model NDCG@10 p-value is statistically

QECOT-MSE 0.7897 significant?

VSM 0.5435 3.47x 1077 Yes

LSI-SVD 0.7586 0.08039 No

LDA 0.6661 7.613 x 10° Yes

User problem domain Planning domain
RestaurantName(goal) |goals([RestaurantName,
BookingReservation(goal) BookingReservation, Direction])

Query |Direction(goal) initial (NumberOfGuest)
NumberOfGuest(2) initial (Time)
Time(8pm)

Context |Date(01/06,/2014) wnitial(Date)

Profile |[Name(Alice) initial(Name)

Table 3. Example of a mapping between user problem domain and planning domain

Operations in FindFinestRestaurant

Problem domain |input: City

outputs: RestaurantName, Restaurant Address
Operations in op_inputs(FindFinestRestaurant, [City])

Planning domain|op_outputs(FindFinestRestaurant,
[RestaurantName,RestaurantAddress])
Table 4. Example of service operations mapping between problem domain and plan-
ning domain

FLUX Planner

FLUX query Abstract plan
—_— FLUX Service —
rules & composition
constraints agent
Fig. 6. FLUX planner
abstract plan,) valided
service operations BPMN BPMN in prolog BPMN BPMN model
= . E—
Transformer Validation

Fig. 7. BPMN generation process

BPMN elements

BPMN semantics

Start event

node(start)

End event

node(end)

Service task

task(Name,Inputs,Outputs)

Sequence flow

flow(HOperation, TOperation)

XOR-split gateway gateway (xorS)
XOR-join gateway gateway(xorJ)
AND-split gateway gateway(andS)
, AND-join gateway gateway(andJ)

Table 5. Mapping between BPMN elements and BPMN semantics

O

O

EVENT
start end
ACTIVITY
service task
—>
AR "
AND-split AND-join
gateway gateway
GATEWAY
c
‘><§> —
c
XOR-split XOR-join
gateway gateway
SEQUENCE e
FLOW

Fig. 8. BPMN notation related to the proposed of our work [16]

Group| Fluents in Abstract plan BPMN
initial
add _initial(Op1) node(start)

flow(start, Opl)

initial with parallel

e add _initial(Opl node(start
Initial add ,initiaIEOpQ; gatewa(y(and)S)
flow(start,andS)
flow(andS,Op1)
flow(andS,0Op2)
flow with sequence

flow(Op1,0p2) flow(Op1,0p2)

flow with AND Split parallel
flow(Op2,0p3) gateway (andS)
flow(Op2,0p4) flow(Op2,andS)
flow(andS,0Op3)
flow(andS,Op4)

flow with AND Join parallel
flow(Op3,0p5) gateway(andJ)
flow(Op4,0p5) flow(Op3,andJ)
Flow flow(Op4,andJ)

flow(andJ,Op5)

flow with XOR Split condition
flow(Opl, if(01,51,V1,0p2),
else(02,52,V2,0p3)

gateway (xorS)
flow(Op1, xorS)
flow(xorS,0p2,guard(01,51,V1))
flow(xorS,0p3,guard(02,52,V2))

flow with XOR Join condition
flow(if([Op2,0p3], Op4)

gateway(xorJ)
flow(Op2, xorJ)
flow(OP3,xorJ)
flow(xorJ,0P4)

goal

add_goal(Op4) node(endl)
add_goal(Opb) node(end2)
End flow(Op4, endl)
flow(Op5, end2)
data passing
op-inputs(Op,[Inputs]) task(Op, [inputs], [outputs])
Data op-outputs(Op,[Outputs])

data transforming

dataTransform(X,X1)

dataTransform(X,X1)

Table 6. Mapping between the abstract plan and BPMN workflow

