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Temporal Vibration and Spin-1/2 Particle in a Quantum Field

We study the properties of a quantum field with time as a dynamical variable. Temporal vibrations are introduced to restore the symmetry between time and space in a matter field. The system with vibrations of matter in time and space obeys the Klein-Gordon equation and Schrödinger equation. The energy observed is quantized under the constraint that a particle's mass is on shell. This real scalar field has the same properties of a zero-spin bosonic field. Furthermore, the internal time of this system can be represented by a self-adjoint operator. The spectrum of this operator spans the entire real line despite the Hamiltonian of the system is bounded from below. Based on the properties developed, we further our study for spin-1/2 particles. We find that a rotating point particle with temporal oscillation can give rise to an intrinsic angular momentum of ±1/2. The particle requires the rotation of 4π to return the temporal oscillation to its original state.

Introduction

Spin is an intrinsic property of an elementary particle. Its peculiar features (especially for spin-1/2 particles) have intrigued many since its discovery. For instance, the spin-1/2 operators related to SU (2) are pseudovectors. Only rotations by multiples of 4π can bring the system back to its original state. In addition, spin cannot be explained by the self-rotation of a particle. Taking a particle as point-like with no spatial extension1 , a self-rotation that is needed for an angular momentum of 1/2 will have a velocity approaching infinity on the particle's surface. This will violate the principles of relativity. A spin-1/2 particle, therefore, has unique intrinsic structures that differ from a classical object [START_REF] Tomonaga | The Story of Spin[END_REF]. To get a better understanding of these intrinsic properties, we look for answers from the possibility that a particle can have vibration in time.

The asymmetric formulation between time and space in quantum theory has inspired the quest for a time operator. In its formulation, time is treated as a parameter. There is nothing dynamical about time in quantum theory. On the other hand, space-time is dynamical and weaved as unity in general relativity. There is no globally defined time in the theory. Therefore, the treatment of time is rather different in quantum theory and general relativity. This conflict has created constellation of problems when we try to reconcile the two fundamental theories from a single framework [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Anderson | Problem of time in quantum gravity[END_REF].

The reason why time is not treated as an operator can be traced back to Pauli [START_REF] Pauli | General Principles of Quantum Mechanics[END_REF][START_REF] Muga | Arrival time in quantum mechanics[END_REF]. Based on his reasonings, a time operator t and a Hamiltonian operator H should satisfy a commutation relation, [H, t] = -i. Since the Hamiltonian of a system is typically bounded from below or discrete, time cannot be treated as a self-adjoint operator. On the other hand, time seems to play a more dynamical role in some quantum systems, e.g. tunneling time [START_REF] Ordonez | Existence and nonexistence of an intrinsic tunneling time[END_REF][START_REF] Kiukas | Tunneling times with covariant measurements[END_REF], decay of an unstable particle [START_REF] Madrid | Time as a dynamical variable in quantum decay[END_REF], dwell time of a particle [10,[START_REF] Yearsley | Quantum arrival and dwell times via idealized clocks[END_REF], and others [START_REF] Aharonov | Time in the quantum theory and the uncertainty relation for time and energy[END_REF][START_REF] Holevo | Probabilistic and Statistical Aspects of Quantum Theory[END_REF][START_REF] Lee | Can time be a discrete dynamical variable?[END_REF][START_REF] Lee | Difference equations and conservation laws[END_REF][START_REF] Aharonov | Measurement of time of arrival in quantum mechanics[END_REF][START_REF] Olkhovsky | Time as a quantum observable[END_REF][START_REF] Wang | How to introduce time operator[END_REF][START_REF] Galapon | Post Pauli's theorem emerging perspective on time in quantum mechanics[END_REF][START_REF] Brunetti | Time in quantum physics: From an external parameter to an intrinsic observable[END_REF][START_REF] Hegerfeldt | Symmetries and time operators[END_REF][START_REF] Strauss | Study of a self-adjoint operator indicating the direction of time within standard quantum mechanics[END_REF][START_REF] Arsenovic | Dynamical time versus system time in quantum mechanics[END_REF]. To avoid contradiction with the orthodox idea of Pauli, a time operator in most of these cases are formulated in terms of the positive operator valued measures (POVM).

In this paper, we show that the properties of a bosonic field can be reconciled from a field with vibrations of matter in time and space. The temporal vibrations are introduced to restore the symmetry between time and space in a matter field. The real scalar field describing this system with temporal and spatial vibrations obeys the Klein-Gordon equation and Schrödinger equation. It must be quantized under the constraint that a particle's mass is on shell. In addition, the internal time of this system can be represented by a self-adjoint operator. The spectrum of this operator spans the entire real line without contradicting Pauli's theorem. Furthermore, the concepts developed can be expanded to include particle's spin. In particular, we are interested in spin-1/2 particles. We find that a rotating point particle with vibration in time can have an intrinsic angular momentum of ±1/2. This particle requires a rotation of 4π to return the temporal oscillation to its original state.

Vibrations of Matter in Time and Space

In classical mechanics, matter can have vibration in the spatial directions but not in the temporal direction. If nature has a preference for symmetry [START_REF] Gross | The role of symmetry in fundamental physics[END_REF][START_REF] Livio | Why symmetry matters[END_REF], it is not implausible that matter can also have vibration in time. Here, we consider a Lorentz covariant plane wave with vibrations of matter in time and space,

t f = t + T sin(k • x -ωt) = t + Re(ζ t ), (1) 
x f = x + X sin(k • x -ωt) = x + Re(ζ x ), (2) 
where

ζ t = -iT e i(k•x-ωt) , (3) 
ζ x = -iXe i(k•x-ωt) , (4) 
ω 2 = ω 2 0 + |k| 2 , T 2 = T 2 0 + |X| 2 . ( 5 
)
The amplitude of this plane wave is a 4-vector (T, X). The angular frequency ω 0 is an intrinsic property of matter which we will later identify it as the frequency for mass-energy conjectured by de Broglie [29]. 'External time' t is measured by clocks that are not coupled to the system under investigation [START_REF] Busch | On the energy-time uncertainty relation. Part I: Dynamical time and time indeterminacy[END_REF][START_REF] Busch | On the energy-time uncertainty relation. Part II: Pragmatic time versus energy indeterminacy[END_REF][START_REF] Hilgevoord | Time in quantum mechanics: a story of confusion[END_REF][START_REF] Butterfield | A Companion to the Philosophy of Time[END_REF]. These clocks are located far away at spatial infinity such that the effects from our system are negligible. We will use the external time t as reference to measure the vibrations of time in the system. It is an independent variable in the equations of motion and a parameter used as adopted in quantum theory. There is nothing dynamical about this external time.

Time t f is an 'internal time' of matter. It is a function of the external time t and a dynamical variable for the system. Analogous to the amplitude of a classical oscillating system with vibrations in the spatial directions, we will define the time displacement amplitude T as the maximum difference between the time t f of matter inside the wave and the external time t. Therefore, if matter inside the wave carries an internal clock, an inertial observer outside will see the matter's clock measuring a time t f different from the external time t. Time measured by the matter's internal clock is running at a varying rate relative to the inertial observer's clock. The internal time t f is an intrinsic property of matter.

Apart from the vibration in time, matter in this plane wave also has vibration in space. At a particular time, matter is displaced from its equilibrium coordinate x to another coordinate x f as shown in Eq, (2). The amplitude X for this vibration is the maximum displacement of matter in the wave from its equilibrium spatial coordinate. This spatial vibration of matter is the same as defined in a classical system.

We can write ζ t and ζ x in terms of a plane wave ζ for describing the temporal and spatial vibrations of matter, i.e.

ζ = a ω 2 0 e i(k•x-ωt) , (6) 
where

ζ t = ∂ 0 ζ, (7) 
ζ x = -∇ζ, (8) 
a = ω 0 T 0 , (9) 
T = (ω/ω 0 )T 0 , X = (k/ω 0 )T 0 , (10) 
and T 0 is the amplitude of a plane wave with vibrations of matter in proper time.

In the rest of this paper, we will consider T , X and T 0 as complex amplitudes.

The plane wave ζ and its complex conjugate ζ * satisfy the wave equations:

∂ u ∂ u ζ + ω 2 0 ζ = 0, (11) 
∂ u ∂ u ζ * + ω 2 0 ζ * = 0. ( 12 
)
The corresponding Lagrangian density for the equations of motion is,

L = K[(∂ u ζ * )(∂ u ζ) -ω 2 0 ζ * ζ], (13) 
and the Hamiltonian density is,

H = K[(∂ 0 ζ * )(∂ 0 ζ) + (∇ζ * ) • (∇ζ) + ω 2 0 ζ * ζ], (14) 
where K is a constant of the system to be determined. The plane wave ζ therefore satisfies an equation of motion similar to the Klein-Gordon equation. However, we shall bear in mind that there is nothing so far that requires the energy in this wave to be quantized. Substitute ζ from Eq. ( 6) into Eq. ( 14), the Hamiltonian density for a plane wave with vibrations of matter in time and space is,

H = a * aK ω 4 0 [ω 2 + k • k + ω 2 0 ] = 2a * aKω 2 ω 4 0 . ( 15 
)
3 Quantized Proper Time Oscillator

Let us consider a plane wave with proper time amplitude T 0 and angular frequency ω 0 ,

ζ 0 = a ω 2 0 e -iω0t , (16) 
and

ζ 0t = ∂ 0 ζ 0 = -iT 0 e -iω0t . (17) 
The internal time of matter in this plane wave is:

t f = t + Re(ζ 0t ). ( 18 
)
Matters observed in this plane wave are assumed to be at rest. Substitute ζ 0 into Eq.( 14), the Hamiltonian density of a plane wave with vibrations in proper time is:

H 0 = 2a * aK ω 2 0 = 2KT * 0 T 0 . ( 19 
)
This result is similar to the Hamiltonian density of a harmonic oscillating system in classical mechanics, except that the vibrations are in time. Analogous to its classical counterpart, we make an ansatz,

K = mω 2 0 2V , (20) 
for a system that can have multiple number of point particles with mass m in a cube with volume V . Periodic boundary conditions are imposed on the box walls.

From Eqs. ( 19) and ( 20), the energy inside volume V is,

E = mω 2 0 T * 0 T 0 . (21) 
The vibration in proper time is an intrinsic property of matter. Energy E shall therefore correspond to certain energy intrinsic to matter. Since the vibration in proper time does not involve any force field, E is not energy resulting from charges. In fact, the only energy present in this system is the matter with mass m. Here, we will consider E as the internal mass-energy resulting from the proper time vibrations of matter.

The internal mass-energy of matter must be on shell. For a system with only one particle, Eq. ( 21) becomes

E = mω 2 0 T * 0 T 0 = m, (22) 
or from Eq. ( 9),

ω 2 0 T * 0 T 0 = a * a = 1. ( 23 
)
This implies only an oscillator with proper time amplitude,

| T0 | = 1/ω 0 , (24) 
can be observed. From Eqs. ( 18) and ( 24), the internal time tf of the point mass observed in the proper time plane wave with T 0 = 1/ω 0 is:

tf (t) = t - sin(ω 0 t) ω 0 . (25) 
The internal time tf is a function of the external time t. It is an intrinsic dynamical property of matter with nothing to do with the relative velocity of the particle nor gravitational effects. In addition to the classical concepts of mass [START_REF] Jammer | Concepts of Mass in Contemporary Physics and Philosophy[END_REF][START_REF] Okun | Energy and Mass in Relativity Theory[END_REF], we suggest here a possibility that a point mass is a quantized oscillator in time with an angular frequency of ω 0 . In the rest of this paper, we will consider the angular frequency ω 0 as the de Broglie's frequency for the mass-energy of a particle, We have assumed matter is not traveling along a true time-like geodesic but with vibration over time. From Eq. ( 25), the internal time of the particle's clock passes at the rate of ∂ 0 tf = 1 -cos(ω 0 t) with respect to the external time. It has an average value of 1 and bounded between 0 and 2. Therefore, the internal time of the oscillator moves only forward. It cannot go backward to the past. On the other hand, the particle will appear to travel along a time-like geodesic if the observer's clock is not sensitive enough to detect the high frequency of the oscillation. The accuracy of the measuring clock shall be restricted by the energy-time uncertainty relation [START_REF] Aharonov | Weighing" a closed system and the time-energy uncertainty principle[END_REF][START_REF] Greenberger | Conceptual problems related to time and mass in quantum theory[END_REF].

Instead of considering a single particle system, we can also apply the concept to a multiple particles system, i.e.

a * a = n. ( 26 
)
The system can have n multiple number of oscillators. From Eq. ( 19), the Hamiltonian density for plane wave ζ 0 becomes H 0 = nω 0 /V , where n = 0, 1, 2..... The energy in the system is quantized. The system with vibrations in time must be treated as a quantized field. The oscillators in time are the field quanta.

The quantized energy may remind us of the properties in a quantum harmonic oscillator. However, there are two crucial differences. Firstly, the system we are considering has oscillation in the time direction and not in the spatial directions. Secondly, the state |n is not the state of a particle with energy levels E n = ω(n + 1/2). Instead, it is a state of the field with n particles. Following the same concepts developed in quantum theory, we can define an annihilation operator,

a = ω 0 T 0 , (27) 
and a creation operator,

a † = ω 0 T † 0 , (28) 
such that N = a † a is the number operator. The operators a, a † , T 0 and T † 0 satisfy the commutation relations,

[a, a † ] = 1, ( 29 
) [T 0 , T † 0 ] = 1 ω 2 0 . (30) 

Bosonic Field

Let us consider another plane wave,

ζ n = ω 0 ω ζ = T 0 √ ωω 0 e i(k•x-ωt) . ( 31 
)
Substitute ζ n into Eq. ( 14), the Hamiltonian density is,

H n = mωω 0 T * 0 T 0 V . (32) 
Based on Eqs. ( 1), ( 2), ( 7) and ( 8), the temporal and spatial vibrations in the plane wave ζ n are,

t nf = t + Re(ζ nt ), (33) 
x nf = x + Re(ζ nx ), (34) 
where

ζ nt = ∂ 0 ζ n = -iT n e i(k•x-ωt) , (35) 
ζ nx = -∇ζ n = -iX n e i(k•x-ωt) , (36) 
T n = T 0 ω ω 0 , X n = T 0 k √ ω 0 ω . ( 37 
)
For a normalized plane wave with T 0 = 1/ω 0 , the Hamiltonian density from Eq. ( 32) is H n = ω/V . This is equivalent to one particle with energy ω and momentum k in a volume V . If the oscillations are small, the particle observed will appear to have a velocity v = k/ω. Assuming a particle in the normalized plane wave ζ n is first observed at origin of the x coordinates at t = 0, the internal time of this particle traveling along the average path with x = vt and T0 = 1/ω 0 is,

tnf (t) = t -Tn sin(ω p t), (38) 
where

Tn = ω ω 3 0 , (39) 
ω p = ω 2 0 ω . ( 40 
)
The internal time rate relative to the external time is,

∂ tnf ∂t = 1 - ω 0 ω cos(ω p t). (41) 
On the other hand, the particle observed also has oscillation in the spatial directions. Its trajectory is,

xnf = vt -Xn sin(ω p t), (42) 
where Xn = k

ω 3 0 ω . (43) 
The observed velocity with oscillation is,

∂x nf ∂t = v[1 - ω 0 ω cos(ω p t)]. (44) 
We shall note that as |v| → 1, the magnitude of the amplitudes approach infinity, i.e. | Tn | → ∞ and | Xn | → ∞. On the other hand, ω p is the angular frequency of a moving particle. It is not the angular frequency ω of the plane wave. As |v| → 1, the angular frequency ω p slows down and approaches zero, ω p → 0. Therefore, a particle traveling at a higher speed will have a lower frequency and larger amplitudes of oscillation.

We can obtain a real scalar field by the superposition of the plane waves ζ n and their conjugates ζ * n , i.e.

ζ( x) = 1 √ 2 k [ζ nk ( x) + ζ * nk ( x)] = k (2ωω 0 ) -1/2 [T 0k e -i k• x + T * 0k e i k• x ]. ( 45 
)
To adopt the same convention in quantum field theory, we will define

ϕ( x) = ζ( x) ω 3 0 V = k (2ωV ) -1/2 [ω 0 T 0k e -i k• x + ω 0 T * 0k e i k• x ]. ( 46 
)
Periodic boundary conditions for a cube are imposed on the wave vector k. This real scalar field satisfies the Klein-Gordon equation.

As discussed in the previous section, the energy in the system with temporal vibrations is quantized. Following the same concepts developed in quantum theory, the transition of the field with temporal and spatial vibrations to a quantum field can be done via canonical quantization. In other words, we can treat ϕ( x) and ζ( x) as operators. As we shall note, ϕ( x) is the same bosonic field from quantum theory after we rewrite Eq. ( 46) in terms of the creation operator, a † k = ω 0 T † 0k , and the annihilation operator,

a k = ω 0 T 0k , i.e. ϕ( x) = k (2ωV ) -1/2 [a k e -i k• x + a † k e i k• x ].
The operators a k , a † k , T 0k and T † 0k satisfy the commutation relations,

[a k , a † k ] = δ kk , ( 47 
) [a k , a k ] = [a † k , a † k ] = 0, ( 48 
) [T 0k , T † 0k ] = δ kk ω 2 0 , ( 49 
) [T 0k , T 0k ] = [T † 0k , T † 0k ] = 0. ( 50 
)
By expressing the creation and annihilation operators in terms of T 0k and T † 0k , we can rewrite other operators in quantum theory using the temporal and spatial vibrations field. For example, the particle number operator is

N k = ω 2 0 T † 0k T 0k , (51) 
and the Hamiltonian is,

H = k ω(a † k a k + 1 2 ) = k ω(ω 2 0 T † 0k T 0k + 1 2 ), (52) 
The real scalar field with vibrations in time and space has the same physical properties of a zero-spin bosonic field.

Internal Time Operator

After quantization, the field ζ( x) from Eq. ( 45) can be rewritten in terms of the temporal vibration amplitude operators T k and their Hermitian conjugates

T † k , i.e. ζ( x) = k ω 0 2ω 3 [T k e -i k• x + T † k e i k• x ], (53) 
where

T k = ω ω 0 T 0k = ω ω 2 0 a k , (54) 
T † k = ω ω 0 T † 0k = ω ω 2 0 a † k . (55) 
In addition, T † k and T k satisfy the commutation relations,

[T k , T † k ] = ω 2 ω 4 0 δ kk , (56) 
[T k , T k ] = [T † k , T † k ] = 0. ( 57 
)
From Eq. ( 7), the field ζ t ( x) describing the temporal vibrations in ζ( x) is,

ζ t ( x) = ∂ 0 ζ( x) = k -i ω 0 2ω [T k e -i k• x -T † k e i k• x ]. (58) 
In fact, ζ t ( x) can be expressed in terms of the conjugate momentum of ζ( x).

From Eq. ( 13), the Lagrangian density for ζ( x) is:

L = ρm ω 2 0 2 [(∂ 0 ζ) 2 -(∇ζ) 2 -ω 2 0 ζ 2 ], (59) where ρm 
= ω 0 V , (60) 
is a mass density constant of the system. Hence, the conjugate momentum of ζ( x) is:

η( x) = ∂L ∂[∂ 0 ζ( x)] = -iρ m ω 2 0 k ω 0 2ω [T k e -i k• x -T † k e i k• x ] = ρm ω 2 0 ζ t ( x). (61)
Therefore, both ζ t ( x) and η( x) can be used to describe the temporal vibrations in the real scalar field. The conjugate pair ζ( x) and η( x) are Hermitians and satisfy the equal-time commutation relations:

[ζ(t, x), η(t, x )] = iδ(x -x ), ( 62 
) [ζ(t, x), ζ(t, x )] = [η(t, x), η(t, x )] = 0. (63) Similarly, [ζ(t, x), ζ t (t, x )] = (ρ m ω 2 0 ) -1 δ(x -x ), ( 64 
) [ζ t (t, x), ζ t (t, x )] = 0. ( 65 
)
As we have learned from quantum theory, the real scalar field ϕ( x) and its conjugate momentum are self-adjoint operators. From Eq. ( 46), we show that ϕ( x) can be expressed in terms of ζ( x). It is, therefore, not surprising that ζ( x), ζ t ( x) and η( x) are also self-adjoint operators. The reason why the temporal vibration ζ t ( x) can be treated as a self-adjoint operator is because we are considering an oscillating system. An oscillator with temporal vibration can have displacement either in the positive or negative direction relative to the external time t. Its spectrum can, therefore, span the whole real line. In addition, the conjugate of η( x) is ζ( x) and not the Hamiltonian as shown in Eq. (61). Therefore, there is no commutation relation with the semi-bounded Hamiltonian that restricts the spectrum of the temporal vibration operator (using ζ t ( x) or η( x)) to be bounded.

Based on Eq. ( 1), the internal time in the real scalar field at a particular time t is,

t f (t, x) = t + ζ t (t, x). ( 66 
)
The internal time t f (t, x) is the summation of the temporal vibration ζ t (t, x) and the external time t. Since the temporal vibration ζ t (t, x) is a self-adjoint operator and the external time t is a parameter, the internal time t f (t, x) is also a self-adjoint operator.

6 Spin-1/2 Particle in the Non-Relativistic Limit

In the non-relativistic limit, we can define a function ψ in terms of the plane wave ζ,

ψ = ω 0 T 0 √ V e i(k•x-ωt) ≈ ω 2 0 √ V e iω0t ζ, (67) 
where

ω = k • k/(2ω 0 ) ≈ ω -ω 0 . (68) 
Here, T 0 , ψ and ζ are complex-valued functions and not operators. From Eqs. ( 9), ( 26) and (67), the square modulus of the function ψ is,

ρ = ψ * ψ = ω 2 0 T * 0 T 0 V = a * a V = n V , (69) 
which is a particle number density. However, as a function, n = a * a is not necessarily an integer and can be a fraction, i.e. 0 ≤ n ≤ 1. As we shall recall, a particle's energy is supposed to be on shell and a fraction of its energy cannot be observed. To explain the presence of a fraction of a particle, we have to consider the plane wave as a probability wave. Therefore, ρ from Eq. ( 69) shall be taken as a probability density for observing a particle at a particular location. A fraction of a particle shall be interpreted as the probability of finding a particle. Function ψ has the same basic properties of the wave function in quantum mechanics.2 √ V , where e iχ is an arbitrary phase factor. As we shall note, the introduction of this arbitrary phase factor does not change the probability density calculated in Eq. ( 69). The wave function with the arbitrary phase factor still satisfies the Schrödinger equation. Therefore, the plane wave ζ and the wave function ψ can have an arbitrary phase difference but this difference will not alter the results obtained in quantum mechanics. As demonstrated in quantum mechanics, the theory developed with wave functions ψ is invariant under global phase transformation but the relative phase factors are physical. Although the overall phase of the wave function ψ can be unobservable [START_REF] Gao | The Meaning of the Wave Function: In Search of the Ontology of Quantum Mechanics[END_REF], it serves only as a mathematical tool for describing an underlying wave with vibrations of matter in time.

Applying the superposition principle, we can write

ψ(x, t) = k ω 0 T 0k √ V e i(k•x-ωt) , (70) 
where periodic boundary conditions for a cube are imposed on the wave vector k. This wave function ψ(x, t) is a solution of the linear and homogeneous Schrödinger equation, i.e. i ψ(x, t) = -(2m) -1 ∇ 2 ψ(x, t). The probability amplitude a of the wave function can be expressed in terms of the proper time vibration amplitude T 0 using Eq. ( 9). The probability density can again be obtained from Eq. ( 69). In addition, we can use ζ to replace ψ in the formulation of quantum mechanics based on Eq, (67). As we have illustrated, the properties of the quantum mechanical wave can be reconciled from the system with vibrations of matter in time and space. In the following analysis, we will utilize ζ instead of ψ in our formulations. The concepts developed above can be expanded to include spin-1/2 particles. Let us consider a plane wave with vibrations of matter in proper time, i.e.

ζ 1/2 (t) = e -iβ(t) ω 2 0 , (71) 
where

β(t) = ω 0 t = -φ(t)/2. (72) 
β is the phase of the temporal oscillation; φ is the angle of rotation about the z axis that 'runs through' the particle observed. Note that at t = 0, β = φ = 0. We will show that a particle observed in this plane wave has an intrinsic angular momentum of +1/2. The first equality in Eq. (72), β(t) = ω 0 t, simply states that the wave has vibrations in proper time. Substitute ζ 1/2 into Eqs. (67) and (69), we have ρdV = 1. The plane wave is normalized and the particle observed is at rest. As discussed in Section 3, the internal time of the observed particle is shown in Eq. ( 25) which can be expressed in terms of β(t),

tf (t) = t - sin[β(t)] ω 0 . (73) 
The second equality in Eq. ( 72), ω 0 t = -φ(t)/2, implies that the particle is rotating about its own z-axis. Its angular velocity, ∂ φ(t)/∂t = -2ω 0 , is twice as fast as the temporal oscillation. Since the point particle has no spatial extension, its moment of inertia is zero. There is no 'classical' explanation on how a point particle can give rise to an intrinsic angular momentum.

Eq. ( 71) can be rewritten explicitly in terms of φ(t),

ζ 1/2 (t) = e i φ(t)/2 ω 2 0 . ( 74 
)
This function has a different state (phase) after the particle is rotated by an angle of φ = 2π. It requires the rotation of φ = 4π to return ζ 1/2 to its original state. As we have pointed out in Footnote b, a particle at different phase of the temporal oscillation is physically different albeit the wave function's overall phase is unobservable.

The temporal oscillation and the particle rotation are like two wheels, a larger 'time wheel' and a smaller 'particle wheel'. Turning one of the wheels will drive the other to turn. However, it will require the 'particle wheel' to rotate two turns before the 'time wheel' can complete one. The temporal oscillation and the particle rotation are linked together with β = -φ/2, ζ 1/2 can be generalized as a function of the temporal oscillation phase β,

ζ 1/2 (β) = e -iβ/2 ω 2 0 . ( 75 
)
Since the temporal oscillation and the particle rotation are dependent on one another, ζ 1/2 can also be expressed as a function of φ,

ζ 1/2 ( φ) = e i φ/2 ω 2 0 . ( 76 
)
From what we have learned from quantum mechanics, an angular momentum is observed when there is a periodic structure to its wave function (or ζ 1/2 ( φ) in our case) as the angle varies. Defining the intrinsic angular momentum operator as,

S z = -i ∂ ∂ φ , (77) 
and taking ζ 1/2 ( φ) as its eigenfunction, the corresponding eigenvalue is 1/2 which is the intrinsic angular momentum of the particle. As we shall recall, the momentum of a particle depends only on its wavelength regardless of its mass (or moment of inertia for the case of angular momentum). Therefore, it is not implausible that the spin-1/2 point particle in ζ 1/2 ( φ) can have an angular momentum albeit its moment of inertia is approaching zero. The intrinsic angular momentum of this particle is a 'pure' quantum phenomenon with no classical analogy. In addition, there is no energy associated with the intrinsic angular momentum and its rotation. The energy of the particle arises solely from the oscillation of matter in time.

We can also define a normalized plane wave with intrinsic angular momentum -1/2 by reversing the direction of the particle's rotation,, φ → -φ, i.e.

ζ -1/2 ( φ) = e -i φ/2 ω 2 0 . ( 78 
)
Taking ζ -1/2 ( φ) as an eigenfunction of S z , the corresponding eigenvalue is -1/2. Thus, the particle can have two different spin states with intrinsic angular momentum of ±1/2 along its z axis. Following the same concepts developed in quantum mechanics, the two states with different spin shall be written as two-component complex-valued spinors, i.e.

|ζ 1/2 (t) = 1 0 e -iω0t ω 2 0 , (79) 
|ζ -1/2 (t) = 0 1 e -iω0t ω 2 0 , (80) 
The eigenspinors for the spin operator S z ,

|1/2 z = 1 0 , | -1/2 z = 0 1 , (81) 
are the same as defined in quantum mechanics. Since the properties of these eigenspinors are well defined and can be found in standard textbooks, there is no need for us to repeat them in here. As we have illustrated, a rotating point particle with temporal oscillation can give rise to an intrinsic angular momentum of ±1/2. We shall note that φ is not the azimuthal angle φ in a spherical symmetric coordinate system. In quantum mechanics, a particle observed in a wave function ψ = e imφ has an angular momentum of m. The value of this wave function varies around the z-axis. If we apply the same function for a spin-1/2 particle (m = 1/2), there are two different values assigned to every point with coordinate φ. It is a two-valued function which is not suitable to be an eigenfunction [START_REF] Tomonaga | The Story of Spin[END_REF]. In addition, the spherical harmonics, which are related to the orbital angular momentum, can only have integer quantum numbers l and m. There is no equal solution for spin-1/2 particles. On the other hand, φ is the angle of rotation about the z axis that 'runs through' the particle observed. It is a parameter measuring how much a particle is rotated. The value of ζ ±1/2 at every point inside the plane wave is the same at a particular time. It does not vary around the z-axis of the coordinate system and it is not a spherical harmonics solution. Therefore, the uses of ζ ±1/2 in the above analysis have no conflict with the aforementioned problems discussed.

Conclusions and Discussions

Harmonic oscillators can be commonly found in quantum field theory. For example, a bosinic field is a field with infinite array of quantum oscillators known as bosons. Although a complete formulation of the theory is known, the true natures of these quantum oscillators are not fully understood. On the other hand, if we examine Einstein's equation, E = mc 2 , it has the appearance of an oscillator's energy. Interestingly, the speed of light c can also be interpreted as the time component of the 4-velocity for a rest mass. Thus, the Einstein's equation can be conceived as the energy equation for an oscillator in time. This is, in fact, what we have obtained after the symmetry between time and space is restored in a matter field. By allowing matter to vibrate in both time and space, we have reconciled the properties of a bosonic field. Our results show that the temporal oscillation of matter can give rise to the mass-energy of a particle. It is possible that time can have a more dynamical role in the quantum field.

A spin-1/2 particle can have a very simple intrinsic structure. Here, we suggest a possibility that a spin-1/2 particle can be a point particle with oscillation in time. This oscillation has an angular frequency of ω 0 which gives rise to the mass-energy of the particle. Apart from the temporal oscillation, the particle also has rotation about one of its axis. Its angular velocity is 2ω 0 . Furthermore, the particle requires a rotation of 4π to return to its original phase; and has an intrinsic angular momentum of ±1/2. In this paper, we demonstrate how a rotating point particle with temporal oscillation can give rise to an intrinsic angular momentum.

The temporal oscillation can theoretically affect the rate of change for the intrinsic properties of a particle, e.g. decay rate of an unstable particle, neutrino oscillation, etc. In addition, a particle has oscillation in the spatial directions as it propagates through space. To examine the magnitude of these oscillations, let us consider neutrino which is the lightest known elementary particle [START_REF] Gando | Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen[END_REF]. Assuming the mass of a neutrino is m = 0.07eV (ω 0 = 1.06 × 10 (83) As discussed in Section 4, a particle traveling at a higher speed will have a lower frequency and larger amplitudes of oscillation. As a result, it will be easier to detect the possible effects of the temporal and spatial oscillations at a higher speed. Neutrino can be an interesting candidate for investigating these effects because of its extreme light weight.

  14 s -1 and | T0 | = 9.4 × 10 -15 s), the amplitudes and frequency of the neutrino from Eqs. (39), (40) and (43) are, e.g.E = 1Mev ⇒ | Tn | = 3.5 × 10 -11 s, | Xn | = 1.07cm, ω p = 7.4 × 10 6 s -1 ,(82)E = 1Gev ⇒ | Tn | = 1.1 × 10 -9 s, | Xn | = 33.71cm, ω p = 7.4 × 10 3 s -1 .

In quantum theory, an elementary particle (e.g. electron) is considered as point-like with no spatial extension. This prediction works to a great accuracy when particles are entered as point particles in the Lagrangian. Although one may say that a zero-size particle is used out of mathematical necessity, there are results from scattering experiments that show the electron has no physical size down to a resolution of about 10 -18 m[START_REF] Gabrielse | New determination of the fine structure constant from the electron g value and QED[END_REF].

We can rewrite Eq. (67) as ψ = ae i(k•x-ωt+χ) / √ V ≈ ω 2 0 ζe i(ω 0 t+χ) /