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Introduction

Internet traffic is currently dominated by TCP controlled data transfers [START_REF] Jean | Evaluation des performances bout en bout du trafic TCP sous le régime "Équité Équilibrée[END_REF]. This traffic is elastic in the sense that the duration of each transfer depends on the state of the network [START_REF] Brun | Flow-level modelling of TCP traffic using GPS queueing networks[END_REF]. Each document is transported by a flow of packets, whose rate is adapted, under the control of TCP protocol, according to the level of congestion in the network. The quality of the transfer depends then on the time necessary to successfully transfer all packets of a flow. In this sense, the performance of elastic traffic are principally studied in flow level and can be translated by the average throughput of each flow [START_REF] El | Evaluation des performances bout en bout du trafic TCP dans une architecture de réseau multi files d'attente[END_REF].

Although that this traffic does not have strict Corresponding author: Mohamed El Hedi Boussada, Ph.D, research field: Large-scale modeling of telecommunications traffic in next generation networks. Email: med.elhadi.boussada@supcom.tn constraints in terms of time and bandwidth, operators and Service providers generally offer all services at different service levels according to the Quality of service (QoS) levels required by the client. For example the Service Level Agreement (SLA) created between the operator and the client are presented in three classes, bronze, silver, and gold levels with increasingly better response times. A service level is used to define the expected performance behavior of a service, where the performance metrics are, for example, average response time, supported throughput, service availability, etc [10]. Then, operators have to use some congestion management techniques to provide the differentiation between these different service levels during high congestion periods. Congestion management entails the creation of queues, assignment of packets to those queues based on the classification of the packet, and scheduling of the packets in these queues for transmission [10].

Class-Based Weighted Fair Queuing (CBWFQ) is a scheduling discipline usually applied to QoS enabled routers [START_REF] Al-Sawaai | Performance Evaluation of Weighted Fair Queuing System Using Matrix Geometric Method[END_REF]. The Class Based Weighted Fair Queuing is an advanced form of Weighted Fair Queuing (WFQ) that supports user defined traffic classes. A queue is allocated for each class, and the traffic belonging to that class is directed to the queue for that class [14]. CBWFQ dynamically allocates the available bandwidth to each traffic class based on the class's weight [START_REF] Fischer | Simulating the performance of a class-based weighted fair queueing system[END_REF]. This paper presents an analytical key result to evaluate and qualify performance characteristics of elastic traffics under CBWFQ system. In the next section, we present our model. In section 3 we give useful results applying to a network whose resources are dedicated for elastic traffic only. Section 4 is devoted to present our approximations to evaluate the performance of elastic traffic carried by two CBWFQ queues. Some results are presented and validated with NS2 simulations in section 5.

Model

We consider a single link with capacity C (Mbits Seconde) ⁄ C(Mbits Seconde) ⁄ shared by a random number of elastic flow classes. Let E be the set of these elastic flow classes. Classi flows, i ∈ E ,arrive as an independent Poisson process with rate λ i (Flows/Second) and have independent, exponentially distributed volumes with means σ i (Mbits flow ⁄ ). We refer to the product ρ i = λ i σ i (Mbits Seconde ⁄ ) as the traffic intensity of class i. Let θ = ∑ ρ i i∈E be the total traffic volume generated by all elastic flows. We assume that θ < C to ensure the stability of our system. Each flow of a class i has a maximum bit rate d i ≤ C. This is the actual rate of each flow in the absence of congestion, it means when ∑ x i d i i∈E ≤ C, with x i is the number of classi flows. Congestion forces TCP to reduce flow rates and thus to increase their duration. We refer to the vector x = (x i ) i∈E as the network state.

The evolution of the system state defines a multidimensional Markov process with transition rates λ i from state x to state x + e i and d i (x) σ i ⁄ from state

x to state x -e i (provided x i > 0), where d i (x) is the bit rate of class-i flows in a state x: d i (x) ≤ d i . In this paper, we will suppose that all classes have the same maximum bit rate d i = d for all i ∈ E. Users perceive performance essentially through the mean time necessary to transfer a document [START_REF] El | Evaluation des performances bout en bout du trafic TCP dans une architecture de réseau multi files d'attente[END_REF]. In the following, we evaluate performance in terms of throughput, defined as the ratio of the mean flow size to the mean flow duration in steady state. Assuming network stability and applying Little's formula, the throughput of a flow for any class i ∈ E is related to the expected number of classi flows in steady state, (E[x i ]), through the relationship [START_REF] El | Flow level modelling of Internet traffic in Diffserv Queuing[END_REF]:

γ i = ρ i E[x i ]
(1)

Performance Evaluation of TCP traffic under "Best Effort" architecture

Let N = ⌊C d ⁄ ⌋ be the maximum number of flows that can be allocated with exactly d units on the link. Above this limit, congestion occurs and flows equally share the link capacity C. Our system will be identical to a "Processor sharing" queue. As we showed in [START_REF] El | Flow level modelling of Internet traffic in Diffserv Queuing[END_REF], for a single class case (with traffic intensity ρ), the arrivals and departure of flows can be modeled by a birth-death process. The stationary distribution of this Markov process is given by:

π(x) = � � ρ d � x x! π(0) if x ≤ N ρ x d N C x-N N! π(0) else (2)
where x is the number of ongoing flows in steady state, and π(0) is the probability that the link is empty:

π(0) = �∑ � ρ d � x x! N-1 x=0 + � ρ d � N N! C C-ρ � -1 (3) 
Therefore:

E[x] = ρ d + � ρ d � N N! C C-ρ ρ C-ρ π(0) (4) 
Let B be the congestion probability on the link. It is written as follows:

B = Pr[x ≥ N] = � ρ d � N N! C C-ρ π(0) (5) 
Thus:

E[x] = ρ d + B ρ C-ρ (6) 
In the case of many classes with identical maximum bit rate, an aggregation of all flows can be done to have a single class with total load θ. The average number of flows of this class is obtained using (6) and replacing ρ with θ. E[x i ] is then given by [START_REF] El | Flow level modelling of Internet traffic in Diffserv Queuing[END_REF]:

E[x i ] = ρ i θ E[x] = ρ i d + B ρ i C-θ (7)

Studying the CBWFQ case

In a similar way to the configuration of Internet routers, we assume in this section that packets are affected to two CBWFQ queues before being sent into the link. Let ϑ m ,m = 1,2, the weight of the CBWFQ queue number m. We assume that ϑ 1 + ϑ 2 = 1. The link capacity C can be viewed as a concatenation between two virtual links. We note by E m the set of elastic flow classes traversing the virtual link m and by θ m =∑ ρ i i∈E m the load offered to this virtual link.

The capacity C m * = ϑ m C is mainly dedicated to the flow classes of E m , but if a part of this capacity becomes available, it will be shared between the other virtual links which need more resources to transmit its traffic in a better condition. Therefore, C m * can be viewed as the minimum capacity allocated to the virtual link m. This approach of coupling between the queues is adopted by many authors [START_REF] Ashour | Performance analysis of weighted fair queues with variable service rates[END_REF] [8] [START_REF] Lapiotis | Quality of service analysis of shared buffer management policies combined with generalized processor sharing[END_REF]. Bonald implicitly expressed this idea in [START_REF] Bonald | Congestion at flow level and the impact of user behaviour[END_REF] saying that the QoS offered to the flows is always better than that obtained if the link were divided into M virtual links (M is the number of CBWFQ queues) of capacity C m * , 1 ≤ m ≤ M.

Such CBWFQ system is mostly treated under a decoupling approach, where the system is approximated by two servers [START_REF] Ashour | Performance analysis of weighted fair queues with variable service rates[END_REF] [11] [START_REF] Guillemin | Analysis of the Weighted Fair Queuing System with Two Classes of Customers with Exponential Service Times[END_REF]. In [START_REF] El | Flow level modelling of Internet traffic in Diffserv Queuing[END_REF], [START_REF] El | Evaluation des performances bout en bout du trafic TCP dans une architecture de réseau multi files d'attente[END_REF] and [START_REF] Garcia | End-to-End Performance Evaluation of TCP Traffic under Multi-Queuing Networks[END_REF], we gave a simple approximation to evaluate the average number of ongoing connections for each queue based on this approach for any value of M. In this section, we will differently treat a system of two CBWFQ queues. In our analysis, we will work with the entire system as a one entity and we aim to exploit the results proven in the previous section to analyze the performance of TCP traffic under two CBWFQ queues.

Performance evaluation of TCP traffic in a CBWFQ queue with very high weight

When the weight of a WFQ queue tends toward 1, it can be considered as a priority queue [START_REF] Bockstal | Approximation du régime stationnaire d'un système wfq. 6eme rencontres francophones sur les aspects algorithmiques des télécommunications[END_REF]. So that, if a CBWFQ queue m, m = 1,2, has a very high weight (ϑ m → 1), the average number of flows traversing this queue (or this virtual link) can be approximated by :

E m WFQ = θ m d + B m θ m C-θ m (8) 
With:

B m = � θ m d � N N! C C-θ m π m (0) (9) π m (0) = �∑ � θ m d � x x! N-1 x=0 + � θ m d � N N! C C-θ m � -1 (10)

Conservation of the average total number of flows

Although that it is very difficult to prove it mathematically, all our numerical results prove that, when the system is stable, the average total number of flows traversing the system approximately remains the same with or without the use of the CBWFQ mechanism. We consider, for example, a link of capacity C = 100 shared by a number of elastic flow classes having the same maximum bit rate d = 10. In figure (1), we compare the numerical result of the average total number of flows traversing a two CBWFQ system, such as ϑ 1 = 0.7 and ϑ 2 = 0.3 , and the numerical results of the average total number of flows traversing a "Best Effort" system for different values of θ. We assume that θ 1 = 0.6 θ. These results are given by a resolution of a two-dimensional Markov chain modelling the arrival and departure of flows in the system. We can note that for values of θ/C inferior or equal to 0.85, the error rate is practically negligible. This error rate increases in areas close to the instability zone, but we can always assume that there is a conservation of the average total number of flows in the system.

We define by E BE and E WFQ the average total number of flows for a "Best Effort" system and WFQ system respectively. It is clear that E BE and E WFQ are the sum of the two values of the average number of flows for the two virtual links. Using [START_REF] Ashour | Performance analysis of weighted fair queues with variable service rates[END_REF], E BE can be written as follows:

E WFQ = E BE = θ d + B θ C-θ (11)
With B is the congestion probability in the system. It is given using ( 5) by replacing ρ by θ. 

Numerical based approximation

The average number of flows traversing a queue increases when the weight assigned to this queue decreases. Our numerical observations show that this decrease is not abrupt. This can be explained by the coupling between the two queues: Every capacity unused by one queue can be used by the other. Also, the numerical observations show that the average number of flows for each virtual link m, m = 1,2, can be expressed in function of its weight by:

E m WFQ = a ϑ m α +b + c ( 12 
)
The value of α can be numerically adjusted to 3. With α = 3, we have the best results and then the least error rate.

When ϑ m = 1 M ⁄ = 0.5,m = 1,2, the system equally share its resources. The system can be seen as a "Best-Effort" system. So that, we have:

a (1 M ⁄ ) 3 +b + c = θ m θ E BE (13) 
When ϑ m → 1, E m WFQ is given by [START_REF] Al-Sawaai | Performance Evaluation of Weighted Fair Queuing System Using Matrix Geometric Method[END_REF]. So that, we have:

a 1+b + c = θ m d + B m θ m C-θ m (14)
When ϑ m → 0, we have:

E m * WFQ = θ m * d + B m1 θ m * C-θ m * (15) 
With 𝑚 * = (m mod 2) + 1

Therefore:

a b + c = E BE -E m * WFQ (16)
For ( 13), ( 14) and ( 16) we deduce a, b and c:

a = � θ m θ E BE -c� �� 1 M � 3 + b� (17) b = θ m � B m C-θ m - B C-θ � (M 3 -1)θ 𝑚 * � B 𝑚 * C-θ 𝑚 * - B C-θ �-θ m � B m C-θ m - B C-θ � (18) c = θ m θ E BE + 1+b 1-(1 M ⁄ ) 3 θ m � B m C-θ m - B C-θ � (19)

Testing the accuracy of our analysis

To examine the accuracy of the proposed analysis, we consider a comparison with the results given by a numerical resolution of the two-dimensional Markov chain for a scenario of a link of capacity C = 100 shared by a two TCP flow classes having the same maximum bit rate d = 10. We assume then that each virtual link,m = 1,2, is traversed by a class flows. The value of θ C ⁄ = 0.7 was chosen to be close to the saturation zone because the QoS differentiation is not significant for low values of θ [START_REF] Brun | Flow-level modelling of TCP traffic using GPS queueing networks[END_REF]. The error rate doesn't exceed 6% for the two cases, which confirms our good behavior of the approximation. The approximation seems to be more accurate when the distribution of the load is almost the same (The error rate for the first case doesn't exceed 3.5% for both the two classes). It is important to note, also, that the results given by our approximation are more accurate than those given by a decoupling approach: if we treat the system as two independent virtual links and each virtual link is characterized by a mean capacity. 

Simulations and validity of analytical results

In this section, we aim to compare our analytical analysis with the real behavior of TCP traffic. We simulate then with NS 2 the case of a link of capacity 𝐂 = 𝟏𝟎𝟎 shared by a two TCP flow classes having the same maximum bit rate 𝐝 = 𝟏𝟎. We assume then that each virtual link,𝐦 = 𝟏, 𝟐, is traversed by a class flows. We assume that𝛉 𝟏 = 𝟎. 𝟔 𝛉. The weight of the first queue varies from 0.7 to 0.9. Each simulation point is the average of 10 simulation runs and each simulation run lasts an hour and a half. In figures ( 4), ( 5) and ( 6), we compare the simulation results with the analytical results in term of average throughput per queue: all flows traversing the same queue have the same average flow throughput.

When the load doesn't exceed 80% of the capacity, the two results seems to be very close: the error rate is inferior to 5% for all cases. This error increases when the system is close to the instability zone. In practice, link bandwidth is not shared as precisely as assumed in the fluid models. TCP uses some complex algorithms (Slow Start, Congestion Avoidance...) to control congestion inside the network and restrict the throughput of flows. We maintain however that fluid models provide "very valuable insight into the impact on performance of traffic characteristics" [START_REF] Bonald | Congestion at flow level and the impact of user behaviour[END_REF]. The insensitivity of average performance to the detailed statistical properties of connections is of great importance for network engineering. This property is likely to be maintained approximately even when accounting for disparities due to packet level behavior [START_REF] Bonald | Congestion at flow level and the impact of user behaviour[END_REF]. The effect of the coupling is especially clear on figure 5. The fact that the average throughput of flows traversing the second queue doesn't tend quickly toward zero (although that the traffic intensity of this queue is superior to the capacity given to it) means that this queue exploited the capacity unused by the other queue. The proposed approximation can capture this effect and provide a reasonable estimation of its impact on the queueing performance.

The results show that our analyses provide a reasonable estimation of the average number of TCP flows for each class under a system of two WFQ queues. More work is needed to integrate these results to evaluate the performance of TCP traffic under a system of higher number of WFQ queues. 

Conclusion

This paper provides an analytical technique to estimate the performance of TCP traffic under a system of two CBWFQ queues with variable service rates. The core of the analysis relies on some numerical observations for the evolution of the average number of flows for each queue in function of the weight assigned to it. The important numerical result is that the average total number of flows traversing the system remains the same with or without the use of the WFQ policy. In this context, the results proven for a "Best Effort" system are used to estimate the average number of flows, for each virtual link. Comparison between analytical and simulation results shows the accuracy of our analytical approach. The key result of the paper is to propose an analytical solution for studying the performance of TCP traffic under CBWFQ system. More work is needed to improve the accuracy of the proposed model and to provide new approximations for calculating the performance of TCP traffic with more than two CBWFQ queues.
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Fig. 4 Fig. 5

 45 Fig. 4 Comparison between the analytical approximation and simulation in term of average flow throughput for the two virtual links: case 𝛝 𝟏 = 𝟎. 𝟕 .
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