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Let Λ be a complex manifold and let (f λ ) λ∈Λ be a holomorphic family of rational maps of degree d ≥ 2 of P 1 . We define a natural notion of entropy of bifurcation, mimicking the classical definition of entropy, by the parametric growth rate of critical orbits. We also define a notion a measure-theoretic bifurcation entropy for which we prove a variational principle: the measure of bifurcation is a measure of maximal entropy. We rely crucially on a generalization of Yomdin's bound of the volume of the image of a dynamical ball.

Applying our technics to complex dynamics in several variables, we notably define and compute the entropy of the trace measure of the Green currents of a holomorphic endomorphism of P k .

Introduction

Let f : P k → P k be a holomorphic endomorphism of degree d ≥ 2. The ergodic study of f is well understood:

-Gromov [START_REF] Gromov | On the entropy of holomorphic maps[END_REF] showed that the topological entropy of f is ≤ k log d.

-Fornaess and Sibony defined a Green measure µ f of f as the maximal self-intersection of the Green current T f of f . The current T f is an invariant positive closed current of bidegree (1, 1) and mass 1 whose support is the Julia set, the set where the dynamics is chaotic. They showed that µ f is mixing ( [FS]) and has maximal entropy k log d. -Briend and Duval then showed that µ f is hyperbolic (the Lyapunov exponents are positive) and µ f equidistributes the repulsive cycles [START_REF] Briend | Exposants de Liapounoff et distribution des points périodiques d'un endomorphisme de CP k[END_REF]. Furthermore, µ f is the unique measure of maximal entropy [START_REF] Briend | Deux caractérisations de la mesure d'équilibre d'un endomorphisme de P k (C)[END_REF].
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More generally, for a dominant meromorphic map of a compact Kähler manifold, one want to construct a measure of maximal entropy, to show that it is hyperbolic and that it equidistributes saddle cycles (e.g. for complex Hénon maps, this is done in [START_REF] Bedford | Polynomial diffeomorphisms of C 2 : currents, equilibrium measure and hyperbolicity[END_REF][START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF][START_REF] Bedford | Distribution of periodic points of polynomial diffeomorphisms of C 2[END_REF]).

On the other hand, let now Λ be a complex Kähler manifold and let f : Λ × P 1 → Λ × P 1 be a holomorphic family of rational maps of degree d ≥ 2: f is holomorphic and f (λ, z) = (λ, f λ (z)) where f λ is a rational map of degree d. Though the object of study is the notion of J-stability, this situation shares many similarity with the iteration of a holomorphic map of P k . Indeed, DeMarco [De] introduced a current of bifurcation T bif on Λ, it is a positive closed current of bidegree (1, 1) whose support is exactly the unstability locus (the closure of the set where the Julia set does not move continuously) and it is defined has dd c L where L is the Lyapunov function. Bassanelli and Berteloot [BB1] then defined its selfintersections T l bif , the maximal intersection µ bif := T dim(Λ) bif is known as the bifurcation measure. Parallel to the equidistribution of repulsive cycles, several authors have proved various equidistribution properties of specific dynamical parameters towards µ bif : parameters having a maximal numbers of periodic cycles of given multipliers letting the periods go to ∞, strictly post-critically finite parameters letting the preperiods/periods go to ∞ (e.g. [START_REF] Levin | On the theory of iterations of polynomial families in the complex plane[END_REF][START_REF] Favre | Equidistribution quantitative des points de petite hauteur sur la droite projective[END_REF][START_REF] Bassanelli | Distribution of polynomials with cycles of a given multiplier[END_REF][START_REF] Favre | Distribution of postcritically finite polynomials[END_REF][START_REF] Gauthier | Distribution of postcritically finite polynomials II: Speed of convergence[END_REF][START_REF] Gauthier | Distribution of postcritically finite polynomials III: Combinatorial continuity[END_REF][START_REF] Gauthier | Hyperbolic components of rational maps: Quantitative equidistribution and counting[END_REF]).

Is it possible to continue the analogy and show that µ bif is a measure of maximal entropy? This is the main goal of this paper. Of course, this requires to define a notion of entropy in this situation.

To do that, we assume that the family is critical marked: the 2d-2 critical points can be followed holomorphically (this is always possible up to taking a finite branched cover of Λ). In other words, there exist holomorphic maps c 1 , . . . , c 2d-2 : Λ → P 1 with f λ (c j (λ)) = 0 and the critical set of f λ is the collection, with multiplicity, (c 1 (λ), . . . , c 2d-2 (λ)).

For n ∈ N, we consider the n-bifurcation distance on Λ defined by

d n (λ, λ ) := max 1≤j≤2d-2 max 0≤q≤n-1 d f q λ (c j (λ)) , f q λ c j (λ ) ,
where d(x, y) denotes the Fubini-Study distance on P 1 . We say that a set E ⊂ Λ is (d n , ε)-separated if : min λ,λ ∈E, λ =λ d n (λ, λ ) ≥ ε.

Definition 1.1. -Let K ⊂ Λ be a compact set. We define h bif ( f , K), the bifurcation entropy of the family f in K, as the quantity

h bif ( f , K) := lim ε→0 lim sup n 1 n log max {card(E), E ⊂ K is (d n , ε) -separated} .
We let h bif ( f ) := sup K h bif ( f , K) be the bifurcation entropy of the family f .

A priori, h bif ( f , K) ∈ [0, +∞], but refining an argument of [START_REF] Gromov | On the entropy of holomorphic maps[END_REF] on the growth rate of the volume of the graph, we first show the following bound of the bifurcation entropy outside the support of

T l bif . Theorem A. -Pick 1 ≤ l ≤ dim(Λ) and K Λ. If K ∩ supp(T l bif ) = ∅, then h bif ( f , K) ≤ (l -1) • log d.
We now want to define a measure-theoretic entropy of bifurcation. The classical definition uses partitions and at some point relies on the invariance of the measure so having a variational principle seems very difficult with that respect. We thus proceed as in [K] and give a definition of (bifurcation) measure-theoretic entropy based on the concept of (d n , ε)-separated set.

Pick a positive Radon measure ν on Λ (for example a probability measure).

Definition 1.2. -Let K ⊂ Λ be a compact set with ν(K) > 0. For any Borel set X ⊂ K with ν(X) < ν(K), let

h ν,bif ( f , K, X) := lim ε→0 lim sup n→∞ 1 n max {log Card(E) ; E ⊂ X is (d n , ε)-separated} .
For 0 < κ < ν(K), we then let:

h ν,bif ( f , K, κ) := inf{h ν,bif ( f , K, X), ν(X) > ν(K) -κ}.
We defined the metric bifurcation entropy of ν in K, denoted by h ν,bif ( f , K), as

h ν,bif ( f , K) := sup κ→0 h ν,bif ( f , K, κ).
We define the metric bifurcation entropy of ν for the family f as

h ν,bif ( f ) := sup K h ν,bif ( f , K). Observe that h ν,bif ( f , K ∪ K ) = max(h ν,bif ( f , K), h ν,bif ( f , K )) and that h ν,bif ( f ) ≤ h bif ( f )
for all ν, though there is no natural notion of ergodicity for ν.

Denote by µ bif the bifurcation measure of the family f (see Section 3.4 for a precise definition). We prove the following Theorem B. -For any compact set K such that µ bif (K) > 0 then

h µ bif ,bif ( f , K) = dim(Λ) log d.
In particular, if µ bif = 0, one has

h µ bif ,bif ( f ) = h bif ( f ) = dim(Λ) log d.
Notice that the hypothesis µ bif = 0 is satisfied if and only if there exists a parameter in Λ which admits k critical points that are, in a non persistent way, strictly preperiodic to a repelling cycle ( [BE,[START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF][START_REF] Dujardin | The supports of higher bifurcation currents[END_REF]). It is in particular satisfied in any smooth orbifold parametrization of the moduli space of rational maps of degree d with marked critical points.

In particular, the theorem asserts that µ bif has maximal entropy in a very strong sense: it only sees sets of maximal entropy and by Theorem A, any compact set outside its support does not carry maximal entropy. This gives a very precise interpretation of the bifurcation measure. A natural question is to know whether any measure satisfying those properties is equivalent to µ bif .

From the two above theorems, we deduce that µ bif satisfies a parametric Brin-Katok formula (see Theorem 3.8). We show similarly that the trace measure of T l bif is a measure of maximal entropy in supp(T l bif )\supp(T l+1 bif ) (see Theorem 3.7).

To prove Theorem B, we use Yomdin's bound of the volume of the image of a dynamical ball [Y]. The use of such ideas to compute the entropy of measures in complex dynamics in several variables has been introduced in [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF]; the first and third authors generalized this idea to give a very general criterion under which we can produce a measure of maximal entropy for a meromorphic map of a compact Kähler manifold ( [DTV], a great difficulty arises from the need to control precisely the derivatives near the indeterminacy set). Nevertheless, in both articles, one does not work with the measure directly (but with a Cesàro mean of approximations) and one uses the Misiurewicz's proof of the variational principle to conclude.

In here, the idea is to apply Yomdin's estimate on the parametric balls (with respect to d n ) directly for µ bif . We need a precise control on the convergence towards the bifurcation current (we did not have nor needed in [DTV] in the general case of meromorphic maps). Our proof leads us to deal with terms of the form

B dn (x,ε)∩M k j=1 (F i j ) * (Ω)
where all i j are ≤ n -1, F is a holomorphic map on some manifold X and M is a complex submanifold of X of codimension k endowed with a metric Ω. If all the i j were either 0 or n -1, this would be the classical Yomdin's bound. The idea of the proof is to work in the product space X k and to replace the manifold M with M k ∩∆ where ∆ is the diagonal of X k which still has bounded geometry (Proposition 2.2).

Going further in the analogy between the dynamics of an endomorphism of P k and bifurcation in a holomorphic family of rational maps, it is natural to try and define parametric Lyapunov exponents by χ j (λ) = lim n n -1 log |(f n λ ) (c j (λ))| and show that χ j (λ) = L(f λ ) for µ bif -almost every parameter λ (at least in the case of the moduli space of rational maps), where L(f λ ) is the Lyapunov exponent of f λ with respect to its unique measure of maximal entropy log d. This has been done successfully in [START_REF] Graczyk | Lyapunov exponent and harmonic measure on the boundary of the connectedness locus[END_REF] in the very particular case of the unicritic family (f λ (z) = z d + λ). The proof relies on subtle properties of external rays and Makarov theorem. Generalizing such result is a challenging question that goes beyond the scope of this article.

In a second part of the article, we use the previous technics (especially our variation of Yomdin's estimates) in the case of ergodic theory in several complex variables.

First, we give an alternate proof of the computation of the entropy of the Green measure µ of a Hénon maps [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF]). We apply for that our estimate on the dynamical ball B n (x, ε) directly for the measure µ. This allows us to get rid of Misiurewicz' proof of the variational principle (we explain as an application how we can retrieve Brin-Katok formula for Hénon maps).

Finally, we define a notion of entropy for the trace measure of the Green currents T l f of a holomorphic endomorphism f : P k → P k of degree d. We use a definition similar to the one we used for bifurcation currents, counting the growth rate of the number of ε-orbit, up to a set of positive but non total measure. We show that it is always ≥ l log d and that it is equal to l log d on compact sets of supp(T l f )\supp(T l+1 f ) = ∅ having positive trace measure; nevertheless, we give examples where it is equal to α for any α ∈ [l log d, k log d]. This makes the study of the entropy of the trace measure of Green currents richer than the entropy of Green measures (since the latter is always k log d). Finally, note that the idea to do ergodic theory for the trace measure of the Green currents was already exploited in [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF] where Dujardin defined, for those measures, a notion of Fatou directions, similar to the notion of Lyapunov exponents.

In Section 2, we shall give a general cut-off lemma for dynamical balls and prove our generalization of Yomdin's bound. Then, in Section 3, we recall the construction of the bifurcation currents and properties we need. We then prove Theorems A and B in the setting of families of holomorphic endomorphism of P q with marked points and explain how to get back to the above setting. Finally, Section 4 is devoted to our results in complex dynamics in several variables.

Preliminaries

A dynamical cut-off lemma

Let X be a Kähler manifold endowed with a Kähler form Ω and let f : X → X be a holomorphic map. Let d be the distance associated to Ω. For n ≥ 0, we have on X the Bowen distance:

d n (x, y) := max i∈{0,...,n-1} d(f i (x), f i (y)).
We denote by B dn (x, ε) the ball centered at x and radius ε for

d n . Let Y X be a relatively compact set such that f (Y ) ⊂ Y (if X is compact, one can simply take Y = X). Let ε 0 > 0 be such that Y 2ε 0 , the 2ε 0 -neighborhood of Y , is still relatively compact in X and f (Y 2ε 0 ) ⊂ Y 2ε 0 .
Lemma 2.1. -We take the above notations. There exists a constant C such that for all x ∈ Y , all 0 < ε < ε 0 and all n ∈ N, there exists a smooth function θ n satisfying:

-

θ n ≡ 1 in B dn (x, ε) and supp(θ n ) ⊂ B dn (x, 2ε). -C n 2 ε 2 n-1 i=0 (f i ) * (Ω) ± dd c θ n ≥ 0. Proof.
-Using a finite cover, one can construct for every x ∈ Y a smooth cut-off function

θ x such that θ x = 1 in B(x, ε) and supp(θ x ) ⊂ B(x, 2ε) (for the distance d). Let C > 0 be such that for all x ∈ Y , ε < ε 0 : C ε 2 • Ω ± dd c θ x ≥ 0 and dθ x ∧ d c θ x ≤ C ε 2 • Ω. Fix x ∈ Y . We then define θ n := Π n-1 i=0 θ f i (x) • f i . By construction, θ n ≡ 1 in B dn (x, ε) and supp(θ n ) ⊂ B dn (x, 2ε
). We compute:

dd c θ n = n-1 i=0 Π j =i θ f j (x) • f j dd c θ f i (x) • f i + = Π j = , j = θ f j (x) • f j dθ f (x) • f ∧ d c θ f (x) • f . Using that ±(dψ ∧ d c ϕ + dϕ ∧ d c ψ) ≤ dψ ∧ d c ψ + dϕ ∧ d c ϕ and the properties of θ x gives 0 ≤ ±dd c θ n + C ε 2 n-1 i=0 (f i ) * (Ω) + 2C ε 2 n-1 = (f ) * (Ω) + (f ) * (Ω).
The result follows, up to changing the constant C.

A Yomdin's Lemma

We keep the notations of the above subsection (f (Y ) ⊂ Y ⊂ Y 2ε 0 X). We will need the following variation of Yomdin's bound on the growth of the size of the image of a dynamical ball which uses the Algebraic Lemma (first stated in [Y], see [Bu] for a complete proof). In what follows, we say that a family of smooth manifolds has uniformly bounded geometry if for each r, each manifold can be covered by a uniform number of pieces of C r -size equal to 1.

Proposition 2.2. -For all γ > 0, there exists ε > 0 such that for any family of smooth manifolds M with uniformly bounded geometry and dimension k , there exists an integer n 0 such that for any n ≥ n 0 , any

0 ≤ i 1 ≤ i 2 ≤ • • • ≤ i k ≤ n -1 and any x ∈ Y , then: B dn (x,ε)∩M k j=1 (f i j ) * (Ω) ≤ e γn
Proof.

-We first briefly recall the strategy of the proof of the bound:

Vol Ω (f n-1 (B dn (x, ε) ∩ M )) ≤ e γn .
We follow Gromov's exposition [START_REF] Gromov | Entropy, homology and semialgebraic geometry[END_REF]. Fix some regularity r 1 and, up to reducing M assume that its C r -size is 1 (this is where we use that the geometry is uniformly bounded so that for n 0 large enough they are ≤ e γn 0 pieces). We work in some charts given by a finite atlas. Then, for any unit cubes 1 , . . . , i , let

M i := f i M ∩ f -1 ( 1 ) ∩ • • • ∩ f -i ( i ) , then the Algebraic Lemma implies (see [Gro1][(*) p 233]): (1)
Vol

Ω (M i ) ≤ (C D r f 2k r + 1) i
where C depends on r, the real dimensions of M (= 2k) and X but not on f nor M and where D r f is the supremum of the derivatives of all order ≤ r. Take some j ≥ 1 and some dynamical ball B dn (x, 1/j). We take 1 m n -1. Let us assume to simplify that n -1 = mi for some i ∈ N. Consider the 1/j-cubes ˜ l centered at f ml (x) for all 1 ≤ l ≤ i. Then

f n-1 (B dn (x, 1/j) ∩ M ) ⊂ (f m ) i (M ∩ (f m ) -1 ( ˜ 1 ) ∩ • • • ∩ (f m ) -i ( ˜ i )).
Rescaling to 1-cubes, we deduce from (1) that:

Vol Ω (f n-1 (B dn (x, 1/j) ∩ M )) ≤ (C D r f m j 2k r + 1) i ,
where f j is the rescaled map in each unit cube l := j. ˜ l so f j (t) := jf (j -1 t) (working in some charts). We choose j large enough so that D r f m j ≤ 2 Df m (rescaling reduces the norm of the derivatives of order > 1 and has no effect on order 1). In particular:

Vol Ω (f n-1 (B dn (x, 1/j) ∩ M )) ≤ (C Df m 2k r + 1) i ,
where C is another constant that depends only on r, the dimensions of M and X (we assume that Df ≥ 1, if not then the result is already obvious). In particular, using Df m ≤ Df m , n -1 = mi, we recognize:

Vol Ω (f n-1 (B dn (x, 1/j) ∩ M )) ≤ (C ) 1 m n-1 .( Df 2k r ) n .
In fact, r was chosen so that Df r ≤ e γ/2 and we now choose m large enough so that (C ) 1 m ≤ e γ/2 which proves the result (if n -1 = im we simply prove the bound for n = im and we have a extra Df m that appears).

We now prove the Proposition. We take ε ≤ ε 0 , in what follows, the norms are taken on Y 2ε 0 (we are only interested in points whose orbit stays in B dn (x, ε) ⊂ Y 2ε 0 ). Observe that if all i j are equal to n -1, then the proposition means that:

B dn (x,ε)∩M (f n-1 ) * (Ω k ) = Vol Ω (f n-1 (B dn (x, ε) ∩ M )) ≤ e γn
which is the classical bound. Similarly if i j = 0 for j ≤ j 0 and i j = n -1 for j > j 0 , then we can bound, near x, j≤j 0 Ω by a finite sum of currents of integration on lamination by linear subspaces of codimension j 0 :

j≤j 0 Ω ≤ C α α [L α (u)]dλ α (u)
where C is a constant that depends (locally uniformly) in x, the α are the subspaces of dimension j 0 given by the coordinates (we work in some chart), L α (u) is the subspace of codimension j 0 directed by the remaining coordinates that intersects α at u and λ α is the Lebesgue measure on α. In particular, it is sufficient to bound the term

B dn (x,ε)∩M (f n-1 ) * (Ω k-j 0 ) ∧ [L(u 1 ) ∩ • • • ∩ L(u j 0 )]
uniformly in u 1 , . . . u j 0 . Since it can be rewritten as:

Vol Ω f n-1 (B dn (x, ε) ∩ M ∩ L(u 1 ) ∩ • • • ∩ L(u j 0 )) and M ∩ L(u 1 ) ∩ • • • ∩ L(u j 0 )
) has uniformly bounded geometry, the wanted inequality is again the classical Yomdin's result.

Let γ > 0. Fix ι 1, independent of n, and let m = E(ιn) (E being the integer part). For all i j , write i j = l j m+r j with 0 ≤ r j < m. Then, as f * (Ω) ≤ Df 2 Ω (up to changing the norm Df by a constant), we have:

B dn (x,ε)∩M k j=1 (f i j ) * (Ω) ≤ Df 2km B dn (x,ε)∩M k j=1 (f l j m ) * (Ω).
In particular, Df 2km ≤ ( Df 2kι ) n ≤ e γn by taking ι small enough which we do.

Assume that l j = 0 for j ≤ j 0 Proceeding as above, we can replace Ω by a finite sum of currents of integration on lamination by linear subspaces of codimension j 0 . So we are reduced to the case of terms of the form B dn (x,ε)∩M ∩L j 0 <j≤k (f i j ) * (Ω) where L is a linear subspace, so it is the same estimate with M replaced by M ∩ L.

Let us thus assume that l j = 0 for all j. Write l := (l 1 , . . . , l k ). Let

f l := (f l 1 , . . . , f l k ) : X k → X k and ∆ be the diagonal in X k : ∆ := {(x, . . . , x) ∈ X k }.
Let δ k be the product distance on X k : δ k ((x i ) i≤k , (y i ) i≤k ) := max i d(x i , y i ) and let d k,p,f l be the Bowen distance in X k for the p-1-iterate associated to f l . We let B d k,p,f l ((x i ) i≤k , ε) be the associated Bowen ball. Finally, let Ω k := j π * j Ω where π j is the projection from X k to the j-th factor and M := M k ∩ ∆. With these notations, we have:

B dn (x,ε)∩M k j=1 (f l j m ) * (Ω) ≤ (π -1 1 (B dn (x,ε)))∩ M k j=1 π * j ((f l j m ) * (Ω)) ≤ B d k,m,f l ((x,x,...,x),ε)∩ M (f m l ) * (Ω k k ).
By the above proof of the bound

Vol Ω (f n-1 (B dn (x, ε) ∩ M )) ≤ e γn ,
where we replace M by M , f by f l and n by m, we infer that:

B d k,m,f l ((x,x,...,x),1/j)∩ M (f m l ) * (Ω k k ) ≤ (C Df l 2k r ) m ≤ (C ) ιn Df n r
where C is a constant that depends on r, the dimension 2k of M and the dimension of X k . Observe that it is crucial that, since ι is fixed, there is only finitely many l (roughly ≤ ι -k ) so we can find a j for which D r f l,j ≤ 2 Df l for all l simultaneously. We conclude as above by taking r large enough and adding the constraint (C ) ι ≤ e γ . For this section, we follow the presentation of [START_REF] Dujardin | Distribution of rational maps with a preperiodic critical point[END_REF][START_REF] Dujardin | The supports of higher bifurcation currents[END_REF]. Even though everything is presented in the case q = 1 and for marked critical points, the exact same arguments give what present below.

Bifurcation entropy

Let Λ be a complex manifold and let f : Λ × P q → Λ × P q be a holomorphic family of endomorphisms of P q of algebraic degree d ≥ 2: f is holomorphic and f (λ, z) = (λ, f λ (z)) where f λ is an endomorphism of P q of algebraic degree d.

Let ω P q be the standard Fubini-Study form on P q and π Λ : Λ × P q → Λ and π P q : Λ × P q → P q be the canonical projections. Finally, let ω := (π P q ) * ω P q . It is known that the sequence d -n ( f n ) * ω converges to a closed positive (1, 1)-current T on Λ × P q with continuous potential. Moreover, for any 1 ≤ j ≤ q, it satisfies

f * T j = d j • T and T q | {λ 0 }×P 1 = µ λ 0 is the unique measure of maximal entropy q log d of f λ 0 for all λ 0 ∈ Λ.
For any n ≥ 1, we have

T = d -n ( f n ) * ω + d -n dd c u n
, where ( u n ) n is a locally uniformly bounded sequence of continuous functions.

Assume now that the family f is endowed with k marked points i.e. we are given holomorphic maps a 1 , . . . , a k : Λ → P q . Let Γ a j be the graph of the map a j and set a := (a 1 , . . . , a k ).

Definition 3.1. -For 1 ≤ i ≤ k, the bifurcation current T a i of the point a i is the closed positive (1, 1)-current on Λ defined by

T a i := (π Λ ) * T ∧ [Γ a j ]
and we define the bifurcation current T a of the k-tuple a as

T a := T a 1 + • • • + T a k .
For any ≥ 0, write

a (λ) := f λ (a 1 (λ)), . . . , f λ (a k (λ)) , λ ∈ Λ.
Let now K Λ be a compact subset of Λ and let Ω be some compact neighborhood of K, then (a ) * (ω P q ) is bounded in mass in Ω by Cd , where C depends on Ω but not on .

Applying verbatim the proof of [DF, Proposition-Definition 3.1], we have the following Lemma 3.2. -For any 1 ≤ i ≤ k, the support of T a i is the set of parameters λ 0 ∈ Λ such that the sequence {λ → f n λ (a i (λ))} is not a normal family at λ 0 . Moreover, writing a i, (λ) := f λ (a i (λ)), there exists a locally uniformly bounded family (u i, ) of continuous functions on Λ such that

(a i, ) * (ω P q ) = d T a i + dd c u i, , on Λ.

Higher bifurcation currents of marked points

As the convergence in Lemma 3.2 holds uniformly on compact subsets of Λ, for all j ≥ 1, we have (a i, ) * (ω j P q ) = d j T j a i + dd c O(d (j-1) ) on compact subsets of Λ. In particular, one sees that

T q+1 a i = 0 on Λ, (2)
and, for any 1 ≤ j ≤ kq, this easily gives

T j a = j m=1 T α 1 ar 1 ∧ • • • ∧ T αm ar m ,
where the second sum ranges over all m-tuples (r 1 , . . . , r m ) of indices with 1 ≤ r ≤ k and all m-tuples A m = (α 1 , . . . , α m ) with 1 ≤ α ≤ q and α = j, see e.g. [START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF][START_REF] Dujardin | The supports of higher bifurcation currents[END_REF] for the case q = 1.

Let us still denote π Λ : Λ × (P q ) k → Λ be the projection onto the first coordinate and for 1 ≤ i ≤ k, let π i : Λ × (P q ) k → P q be the projection onto the i-th factor of the product (P q ) k . Finally, we denote by Γ a the graph of a:

Γ a := {(λ, (z j )), ∀j, z j = a j (λ)} ⊂ Λ × (P q ) k .
Following verbatim the proof of [START_REF] Astorg | Eckmann and the bifurcation measure[END_REF]Lemma 2.6], for any i, we get

T i a = j 1 ,...,j k ≥0 j 1 +•••+j k =i k =1 T j a = j 1 ,...,j k ≥0 j 1 +•••+j k =i (π Λ ) * k =1 π * T j ∧ [Γ a ] .

Bifurcation Entropy for a k-tuple of marked points

We now assume that Λ is a complex Kähler manifold endowed with a Kähler form ω Λ and that the family f comes with k marked points. Recall that we have set a := (a 1 , . . . , a k ).

In analogy with topological entropy, we define a notion of bifurcation entropy of the marked family ( f , a) in the following way. For n ∈ N, we consider the n-bifurcation distance on Λ associated with a defined by

d a,n (λ, λ ) := max 1≤j≤k max 0≤i≤n-1 d f i λ (a j (λ)) , f i λ a j (λ ) ,
where d(x, y) denotes the Fubini-Study distance on P 1 . We say that a set

E ⊂ Λ is (d a,n , ε)-separated if : min λ,λ ∈E, λ =λ d a,n (λ, λ ) ≥ ε.
Definition 3.3. -Let K ⊂ Λ be a compact set, we define the bifurcation entropy h a ( f , K) of the marked family ( f , a) in K as the quantity:

h a ( f , K) := lim ε→0 lim sup n 1 n log max {card(E), E ⊂ K is (d a,n , ε) -separated} .
A priori, h a ( f , K) ∈ [0, +∞], but using the fact that, by definition, the bifurcation entropy is bounded by the topological entropy on K × (P q ) k of fk : Λ × (P q ) k → Λ × (P q ) k defined by fk (λ, z 1 , . . . z k ) = (λ, f λ (z 1 ), . . . , f λ (z k )), we have h a ( f , K) ≤ kq log d (see [START_REF] Gromov | On the entropy of holomorphic maps[END_REF] or the proof below). Observe that the entropy of fk is already kq log d on each (invariant set) {λ} × (P q ) k so it is not related to bifurcation phenomena. We show here that bifurcation entropy can be bounded from above outside the support of T i a . The proof follows the idea of the first author ( [START_REF] Thélin | Un phénomène de concentration de genre[END_REF], see also [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]):

Theorem 3.4. -Pick 1 ≤ i ≤ dim(Λ). Assume that K ∩ supp(T i a ) = ∅. Then h a ( f , K) ≤ (i -1) log d.
Proof. -Fix n ≥ 1 and ε > 0. Let p j : (P q ) k → P q be the projection onto the j-th coordinate. We define a Kähler metric on (P q ) k by letting ω := p * 1 (ω P q ) + • • • + p * k (ω P q ), here ω P q is the Fubini-Study metric on P q of mass 1.

Let ω Λ be a Kähler metric on Λ and ω := P * (ω), where P : (P q ) k n → (P q ) k is the projection onto the -th factor of the form (P q ) k . If Π Λ : Λ × (P q ) kn → Λ is the canonical projection onto Λ, we still denote by ω Λ the pull-back Π * Λ (ω Λ ). We endow Λ × (P q ) kn with the product Kähler metric

Ω := ω Λ + n =1 ω
and denote by d the induced distance on Λ × (P q ) kn .

As before, set a (λ) := (f λ (a 1 (λ)), . . . , f λ (a k (λ))) for all λ ∈ Λ and all ≥ 0. Let Γ n ⊂ Λ × (P q ) kn be the graph of the map A n := (a 0 , . . . , a n-1 ) : Λ → (P q ) kn , and pick a set E ⊂ Λ which is (d a,n , ε)-separated and let N := Card(E). For λ ∈ E, let λ := A n (λ).

If Ẽ := A n (E), we have d( λ1 , λ2 ) ≥ ε, for any distinct λ1 , λ1 ∈ Ẽ. In particular, if

K ε := {λ ∈ Λ ; d Λ (λ, K) ≤ ε}, we have λ∈ Ẽ B d λ, ε 2 ∩ Γ n ⊂ Π -1 Λ (K ε ) ∩ Γ n ,
and the union is disjoint. So

Vol Ω Π -1 Λ (K ε ) ∩ Γ n ≥ λ∈ Ẽ Vol Ω B d λ, ε 2 ∩ Γ n .
Since Γ n is an analytic subvariety of Λ × (P q ) kn of complex dimension dim(Λ) passing through the center of the balls B d( λ, ε/2), Lelong's inequality implies

Vol Ω B d λ, ε 2 ∩ Γ n ≥ cε 2 dim(Λ)
where c is a constant that does not depend on n. Since Card( Ẽ) = Card(E) = N , we get

Vol Ω Π -1 Λ (K ε ) ∩ Γ n ≥ N • cε 2 dim(Λ) . (3) 
We now bound Vol Ω Π -1 Λ (K ε ) ∩ Γ n from above. Let A s denote the set of α := (α 1 , . . . , α k ) such that 0 ≤ α j ≤ q and α j = s. Let L n be the set of k-tuples = ( 1 , . . . , k ) of distinct integers in {1, . . . , n}. Note that the cardinality of A s is ≤ (q + 1) s and the cardinality of L s n is ≤ n k . Write d Λ := dim(Λ). Up to reducing ε > 0, we can assume

K (d Λ +1)ε ∩ supp(T α 1 a 1 ∧ • • • ∧ T α k a k ) = ∅ for all α ∈ A i .
Choose C 2 non-negative functions θ 1 , . . . , θ i on Λ such that θ j ≡ 1 on K jε and supp(θ j ) ⊂ K (j+1)ε for all 1 ≤ j ≤ i. We then have

Vol Ω Π -1 Λ (K ε ) ∩ Γ n ≤ Λ×(P q ) kn (θ 1 • Π Λ ) Ω d Λ ∧ [Γ n ] ≤ Λ θ 1 • (Π Λ ) *   d Λ s=0 d Λ s (ω Λ ) d Λ -s ∧ α∈As ∈Ln s j=1 ω α j j ∧ [Γ n ]   ≤ Λ θ 1   d Λ s=0 d Λ s ω d Λ -s Λ ∧ α∈As ∈Ln k j=1 (a j ) * (ω α j )   .
Fix an integer s ≤ d Λ , a k-tuple α ∈ A s and a k-tuple ∈ L n . Recall that, by definition, we have T a = j≤k T a j . As seen in Section 3.1, there exists a locally uniformly bounded family (u ) of continuous functions on Λ such that (a ) * (ω) = d T a + dd c u for all ≥ 0 and that (a ) * (ω j ) = ((a ) * (ω)) j for all 1 ≤ j ≤ q. Assume for simplicity that α 1 = 0. Then, letting S = k j=2 (a j ) * (ω α j ), by Stokes and using θ 2 ≡ 1 on supp(θ 1 ):

Λ θ 1 • ω d Λ -s Λ ∧ k j=1 (a j ) * (ω α j ) = Λ θ 1 • ω d Λ -s Λ ∧ d 1 T a + dd c u 1 α 1 ∧ S = Λ θ 1 • ω d Λ -s Λ ∧ d 1 T a ∧ d 1 T a + dd c u 1 α 1 -1 ∧ S + Λ u 1 dd c (θ 1 ) ∧ ω d Λ -s Λ ∧ d 1 T a + dd c u 1 α 1 -1 ∧ S ≤ d n Λ θ 1 • ω d Λ -s Λ ∧ T a ∧ d 1 T a + dd c u 1 α 1 -1 ∧ S +C Λ θ 2 ω d Λ -s+1 Λ ∧ d 1 T a + dd c u 1 α 1 -1 ∧ S,
where C is a constant that depends on the C 2 -norm of θ 1 and the supremum of the L ∞norm of the (u ) but not on n. Iterating the process, we get the bound:

Λ θ 1 • ω d Λ -s Λ ∧ s j=1 (a j ) * (ω α j ) ≤ C j≤s d jn Λ θ s • ω d Λ -j Λ ∧ T j a
where C is (another) constant that does not depend on n. The quantity

Λ θ s • ω d Λ -j Λ ∧ T j a is bounded by K (d Λ +1)ε ω d Λ -j Λ ∧ T j a .
By hypothesis, we have

T j a = 0 on K (d Λ +1)ε for all j ≥ i. In particular, K (d Λ +1)ε ω d Λ -j Λ ∧ T j a = 0 for j ≥ i. It follows that: Λ θ 1 • ω d Λ -s Λ ∧ k j=1 (a j ) * (ω α j ) ≤ C j<i d jn K (d Λ +1)ε ω d Λ -j Λ ∧ T j a ≤ C d (i-1)n
where C depends on (a neighborhood of) K and j but not on n. Summing over all α ∈ A s and all ∈ L n implies

Vol Ω Π -1 Λ (K ε ) ∩ Γ n ≤ C • n kq • d n(i-1
) again for some constant C > 0 which depends on K but not on n. The inequality (3) gives

1 n log N ≤ (i -1) log d + kq log n n + 1 n log C - 1 n log(cε 2 dim(Λ) )
and the conclusion follows letting n → ∞.

Metric bifurcation entropy

Metric entropy of a probability measure

Pick a probability measure ν on Λ. Let K ⊂ Λ be a compact set with ν(K) > 0. For any Borel set X ⊂ K, let

h ν ( f , a, K, X) := lim ε→0 lim sup n→∞ 1 n max {log Card(E) ; E ⊂ X is (d a,n , ε)-separated} .
For 0 < κ < ν(K), we then let

h ν ( f , a, K, κ) := inf h ν ( f , a, K, X) ; ν(X) > ν(K) -κ .
Finally, we define:

h ν ( f , a, K) := sup κ→0 h ν ( f , a, K, κ)
Observe that for any compact sets K 1 and K 2 , it follows from our definition that

h ν ( f , a, K 1 ∪ K 2 ) = max(h ν ( f , a, K 1 ), h ν ( f , a, K 2 )).
We define the metric bifurcation entropy of ν as

h ν ( f , a) := sup K h ν ( f , a, K).
It will be convenient, in what follows, to consider a small variation of the Bowen bifurcation distance defined as: da,n (λ, λ

) := max d a,n (λ, λ ), d Λ (λ, λ ) .
Notice that if we define accordingly ha ( f , K), hν ( f , a, K, X), hν ( f , a, K) and hν ( f , a) using da,n instead of d a,n then as da,n ≥ d a,n we have that ha

( f , K) ≥ h a ( f , K), hν ( f , a, K, X) ≥ h ν ( f , a, K, X), hν ( f , a, K) ≥ h ν ( f , a, K), hν ( f , a) ≥ h ν ( f , a).
On the other hand, by compacity of K ⊂ Λ, a d Λ -separated set in K as bounded cardinality so the above inequalities are in fact equalities. In particular, we will still denote the above entropy as h (and not h). Fix ε > 0. For any integer n, any α > 0 and any γ > 0, we let

X n,γ (ν, α) := λ ∈ Λ ; ν B da,n (λ, ε) ≤ e -n(α-γ) .
The following is a volume argument.

Proposition 3.5. -Fix α > 0 and a compact set K ⊂ Λ. Assume that for any κ > 0 and any γ > 0, there exists n 0 ≥ 1 such that for all n ≥ n 0 , ν(X n,γ (ν, α) ∩ K) ≥ ν(K) -κ > 0.

Then, h ν ( f , a, K) ≥ α.

Proof. -Let X ⊂ K such that ν(X) > 0. Choose κ > 0 small enough and pick n 0 ≥ 1 so that ν(X n,γ (ν, α) ∩ K) ≥ ν(K) -ν(X)/2 and let X := X n,γ (ν, α) ∩ K. By construction, ν(X ) > 0.

Choose λ 0 ∈ X and, recursively choose λ k+1 ∈ X \ j≤k B da,n (λ j , ε), which is possible as long as X \ j≤k B da,n (λ j , ε) = ∅. Let N ≥ 1 be the cardinal of the set E := {λ j ; j}.

Remark that E is ( da,n , ε)-separated and for all k ≤ N ,

ν   k-1 j=0 B da,n (λ j , ε)   ≤ ke -n(α-γ) ≤ ν(X ).
In particular, this construction is possible, as long as k ≤ ν(X )e n(α-γ) . Whence N ≥ ν(X )e n(α-γ) and 1

n log(N ) ≥ 1 n log ν(X ) + α -γ,
and making n → ∞, we find h ν ( f , a, K, X) ≥ α -γ. Making γ → 0, we find h ν ( f , a, K, X) ≥ α. The result follows as X is arbitrary.

The entropy of the bifurcation measure of a k-tuple of marked points

We now come to the heart of the section. Let d Λ := dim Λ and let µ a be the probability measure which is proportional to T d Λ a . The measure µ a is the bifurcation measure of the k-tuple a = (a 1 , . . . , a k ) in Λ.

Theorem 3.6. -Let K be a compact set in Λ. For any γ > 0, there exists n 0 and ε > 0 such that for all λ 0 ∈ K and all n ≥ n 0 :

µ a B da,n (λ 0 , ε) ≤ e -nd Λ log d+nγ .
Consequently, for any compact set K such that µ a (K) > 0 then

h µa ( f , a, K) = d Λ log d. Thus h µa ( f , a) = d Λ log d.
Proof. -Choose ε > 0 and λ 0 ∈ K. Pick an integer n ≥ 1. We let X := Λ × (P q ) k and fk : X → X be the map defined by fk (λ, (z j ) j≤k ) = (λ, f λ (z 1 ), . . . , f λ (z k )). We consider the distance on X defined by d((λ, (z j )), (λ , (z j ))) := max d Λ (λ, λ ), max

j d P q (z j , z j )
where d Λ is the distance on Λ induced by ω Λ and d P q the distance on P q induced by ω P q . We let d n denote the Bowen distance on X associated to d:

d n ((λ, (z j )), (λ , (z j ))) := max 0≤i≤n-1 d( f i k (λ, (z j )), f i k (λ , (z j ))),
and we denote by B dn ((λ, (z j )), ε) the associated ball. With the notations of Section 3.1, recall that (up to a multiplicative constant)

µ a = j 1 ,...,j k ≥0 j 1 +•••+j k =d Λ (π Λ ) * k =1 π * T j ∧ [Γ a ] .
It is enough to prove the wanted estimate for each term of the sum. So from now on, fix a k-tuple J := (j 1 , . . . , j k ) with

j 1 + • • • + j k = d Λ and let µ J a := (π Λ ) * k =1 π * T j ∧ [Γ a ] . Then µ J a B da,n (λ 0 , ε) = (π Λ ) -1 (B da,n (λ 0 ,ε)) k =1 π * T j ∧ [Γ a ] = B dn ((λ 0 ,a(λ 0 )),ε) k =1 π * T j ∧ [Γ a ].
Moreover, since T = d -n+1 ( f n-1 ) * ω + d -n+1 dd c u n , where ( u n ) is a locally uniformly bounded family of continuous functions, letting u n,j := u n • π j , we get

µ J a B da,n (λ 0 , ε) ≤ d -(n-1)d Λ B dn ((λ 0 ,a(λ 0 )),ε) k =1 ( f n-1 k ) * (Ω + dd c u n, ) j ∧ [Γ a ],
where Ω := ω Λ + k =1 π * (ω P q ). Let θ n be the cut-off function of Lemma 2.1 in

B dn ((λ 0 , a (λ 0 )) , ε). Let S := k =2 ( f n-1 k ) * (Ω + dd c u n, ) j ∧ [Γ a ]
. By Stokes formula and Lemma 2.1, we deduce:

µ J a B da,n (λ 0 , ε) ≤ d -(n-1)d Λ θ n k =1 ( f n-1 k ) * (Ω + dd c u n,1 ) j 1 ∧ [Γ a ] ≤ d -(n-1)d Λ θ n ( f n-1 k ) * (Ω) ∧ ( f n-1 k ) * (Ω + dd c u n,1 ) j 1 -1 ∧ S+ d -(n-1)d Λ u n,1 dd c θ n ∧ ( f n-1 k ) * (Ω + dd c u n,1 ) j 1 -1 ∧ S ≤ Cn 2 ε 2 d nd Λ B dn ((λ 0 ,a(λ 0 )),2ε) n-1 r=0 ( f r k ) * (Ω) ∧ ( f n-1 k ) * (Ω + dd c u n,1 ) j 1 -1 ∧ S,
where C is a constant that depends only on the supremum of the (u n,j ) on the 2εneighborhood of {λ 0 } × (P q ) k . We iterate the process with all the j 1 -1 terms then for all the ≤ k. We deduce

µ J a B da,n (λ 0 , ε) ≤ C n 2d Λ d nd Λ B dn ((λ0,a(λ0)),2 d Λ ε) 0≤m 1 ,...,m k ≤n-1 k =1 ( f m k ) * (Ω j l ) ∧ [Γ a ],
where C is a constant that depends only on ε and the supremum of the (u n,j ) on the 2 d Λ εneighborhood of {λ 0 } × (P q ) k . Using Proposition 2.2 (in a neighborhood of K) implies that there exists some constant C such that:

µ J a B da,n (λ 0 , ε) ≤ C • C • n 2d Λ d nd Λ e γn ,
where γ can be chose arbitrarily small by taking ε small enough. This gives the wanted inequality in the theorem. Then, Proposition 3.5 implies the inequality h ν ( f , a, K) ≥ d Λ log d so we have the equality by Theorem 3.4.

Arguing similarly one proves that Theorem 3.7. -Pick an integer 1 ≤ j < d Λ . For any compact set K such that

T j a ∧ Ω d Λ -j (K) > 0, we have h T j a ∧Ω d Λ -j ( f , a, K) ≥ j log d. If furthermore supp(T j+1 a ) ∩ K = ∅, then h a ( f , K) = j log d.
The proof is the same than above, one proves first that for any λ 0 ∈ K Λ, then

T j a ∧ Ω d Λ -j B da,n (λ 0 , ε) ≤ e -nj log d+nγ .
For that, we proceed as above though we can only replace j-terms T by d -n ( f n ) * ω + d -n dd c u n . We conclude by Proposition 3.5 and Theorem 3.4. We also have the following parametric Brin-Katok formula for the bifurcation measure, similar to the dynamical one ( [BK], the ideas of our proof are similar).

Theorem 3.8. -For µ a -a.e. λ, one has:

lim ε→0 lim inf n→∞ -1 n log µ a B da,n (λ, ε) = lim ε→0 lim sup n→∞ -1 n log µ a B da,n (λ, ε) = d Λ log d.
Proof. -Observe first that Theorem 3.6 above states that lim

ε→0 lim inf n→∞ -1 n log µ a B da,n (λ, ε) ≥ d Λ log d,
for any λ (not necessarily in the support of µ a ). So all there is left to prove is that:

lim sup n→∞ -1 n log µ a B da,n (λ, ε) ≤ d Λ log d
for µ a -a.e. λ. Take α > d Λ log d and let γ 1 be such that α -γ > d Λ log d. Since h a ( f , supp(µ a )) = d Λ log d, we know that for ε small enough, there exists n 0 (ε) such that for all n ≥ n 0 (ε), the cardinality of a (n, ε)-separated set is ≤ e n(d Λ log d+γ) . Consider the set:

X n (µ a , α)

:= λ ∈ Λ ; µ a B da,n (λ, ε) ≤ e -nα .
Take λ 0 in X n (µ a , α), then take inductively λ l ∈ X n (µ a , α)\ ∪ i≤l-1 B da,n (λ i , ε). This is possible as long as µ a (X n (µ a , α)) > le -nα , so, in particular, we can find a (n, ε)-separated set of cardinality µ a (X n (µ a , a))e nα . By the bound of the entropy:

µ a (X n (µ a , α)) ≤ e -n(α-γ-d Λ log d) .
Thus, as the rest of a convergent geometric series goes to 0, we have:

µ a (lim sup X n (µ a , α)) = 0.
As α is arbitrary, the result follows.

Remark. -Using the same argument, we also have a Brin-Katok formula for the measures T j a ∧Ω d Λ -j on any compact sets K such that T j a ∧Ω d Λ -j (K) > 0 and supp(T j+1 a )∩K = ∅.

Bifurcation entropy of a holomorphic family of rational maps

Pick a holomorphic family f : Λ × P 1 → Λ × P 1 of degree d rational maps which is critically marked, i.e. such that there exists c 1 , . . . , c 2d-2 : Λ → P 1 , holomorphic and such that for all λ, the points c 1 (λ), . . . , c 2d-2 (λ) describe all critical points of f λ counted with multiplicity.

Let c := (c 1 , . . . , c 2d-2 ). A theorem of DeMarco [De] states that the support of the closed positive (1, 1)-current T c coincides with the bifurcation locus in the classical sense of Mañé-Sad-Sullivan [MSS, Ly]. The bifurcation measure of the family f is the positive measure µ bif on Λ defined as

µ bif := T dim(Λ) c
. Note that, the formula (2) reads as T 2 c i = 0 for any 1 ≤ i ≤ 2d -2, so that the i-th bifurcation current T i bif decomposes as

T i bif = j 1 ,...,j i distinct T c j 1 ∧ • • • ∧ T c j i .
In particular, Theorem A is just a reformulation of Theorem 3.4 and Theorem B a reformulation of Theorem 3.6.

Observe that we can easily generalize Theorems A and 3.6 to general families (i.e. non necessarily critically marked nor smooth). Indeed, pick a holomorphic family f : Λ × P 1 → Λ × P 1 of degree d rational maps. Take a finite branched cover π : Λ → Λ above the space of critically marked rational maps where Λ is smooth, then the family f defined by

f (λ, z) = (λ, f π(λ) (z)), (λ, z) ∈ Λ × P 1 , is critically marked. Definition 3.9. -The bifurcation entropy of the family f in a compact set K ⊂ Λ is h bif ( f , K) := h c ( f , π -1 (K)).
The above results apply then immediately.

Question. -In [IM], the authors showed that the bifurcation locus of the anti-quadratic family: (λ, z) → z2 +λ, the so-called Tricorn, contains undecorated real-analytic arcs at its boundary. In [START_REF] Gauthier | Distribution of postcritically finite polynomials III: Combinatorial continuity[END_REF], we built a bifurcation measure which is supported by the closure of PCF parameters (so it does not see those arcs). It is easy to extend the notion of bifurcation entropy in that setting and it would be interesting to show that the bifurcations in the anti-quadratic family in the real-analytic arcs have no positive entropy and to show that the above bifurcation measure has maximal positive entropy.

Application to point-wise dimension of the bifurcation measure

Let f be a rational map in M d (we identify f with its class). We let C(f ) denote its critical set. Assume f is not a flexible Lattès map; for simplicity we also assume that f has simple critical points and we let F : Λ × P 1 → Λ × P 1 be a holomorphic family of rational maps that parametrizes a neighborhood of f = f 0 in M d . Up ot reducing Λ, we thus can follow holomorphically the critical points of f in Λ.

We make the following assumptions on f :

1. f satisfies the Collet-Eckmann condition: ∀c ∈ C(f ), lim inf |(f n ) (f (c))| 1/n := exp(χ c ) > 0. 2. f satisfies the polynomial recurrence condition of exponent β: There exists a constant C > 0 such that ∀c, c ∈ C(f ), ∀n ≥ 1, dist(f n (c), c ) ≥ Cn -β .
Misiurewicz maps provide many such examples. Following [AGMV], we see that the ball:

Ω n := B f, C • 1 max c |(f n ) (f (c))| is sent into a ε-neighborhood of (f n+1 (c 1 ), . . . , f n+1 (c 2d-2 )) by the map λ → (f n+1 λ (c 1 (λ)), . . . , f n+1 λ (c 2d-2 (λ))),
where C is (another) constant that does not depend on n and (c k (λ)) denote the collection of marked critical points of f

λ . Let lim sup |(f n ) (f (c))| 1/n := exp χ c > 1. It follows that: B f, C • 1 max c exp(nχ c ) ⊂ B dc,n (0, ε).
So taking the bifurcation measure µ bif of both sets and we have (max

c exp(χ c )) -ndµ bif (f ) µ bif B f, C • 1 max c exp(nχ c )
where d µ bif (f ) denotes the (upper)-pointwise dimension of µ bif at f . From Theorem 3.6, we have µ bif (B dc,n (0, ε)) e -n(2d-2) log d . So comparing the growth-rate, we deduce (4) (max

c exp χ c ) dµ bif (f ) ≥ d 2d-2
which gives another proof of the second author's results [START_REF] Gauthier | Strong bifurcation loci of full Hausdorff dimension[END_REF]Corollary 7.4] in this more general context.

Remark. -The work [START_REF] Gao | Summability implies Collet-Eckmann almost surely[END_REF] implies, for multimodal maps of the interval, that they are many examples satisfying the Collet-Eckmann assumption and the polynomial recurrence condition. By the above, it would be interesting to extend their result to rational maps.

Recall that, if µ M denotes the harmonic measure of the Mandelbrot set, it is the bifurcation measure of the family f (λ, z) = (λ, z 2 + λ) for which 0 is the only marked critical point. A result of Graczyk and Swiatek [GS2] states: Theorem 3.10 ( [START_REF] Graczyk | Lyapunov exponent and harmonic measure on the boundary of the connectedness locus[END_REF]). -For µ M -almost every λ, the map f λ is Collet-Eckmann and

χ 0 = χ 0 = lim n 1 n log (f n λ ) (0) = log 2.
As their proof relies crucially on fine properties of external rays, and on the fact that the parameter space is C, it would be interesting to give a different proof, using the notion of bifurcation entropy which might also work in higher degree.

4. Measure-theoretic entropy in several complex variables

Entropy of the Green measure of Hénon maps

The purpose of this section is to give an alternate proof of the following result of Bedford and Smillie [START_REF] Bedford | Polynomial diffeomorphisms of C 2 . III. Ergodicity, exponents and entropy of the equilibrium measure[END_REF]Theorem 4.4].

Theorem 4.1. -h µ (f ) = log d.

Recall that f is a Hénon map of C 2 , that is a polynomial automorphism of degree d > 1 of C 2 . The measure µ is defined as µ := T + ∧ T -where T ± is the Green current of f ± : T ± := lim n→∞ d -n (f ±n ) * (ω) (ω is the Fubini-Study form on P 2 ). As I + , the indeterminacy point of f , is a super-attracting fixed point of f -1 , one can take an open set U + which is the complementary set of a neighborhood of I + such that f (U + ) ⊂ U + . One constructs similarly U -and we can choose them so that the support of µ is relatively compact in U := U + ∩ U -. We can write d -n+1 (f ±(n-1) ) * (ω) = T ± + dd c u ± n with the estimate u ± n ∞,U ± ≤ Cd -n (the constant C depends on U ± but not on n). As Bedford and Smillie did, observe that by Gromov's result and the variational principle, h µ (f ) ≤ log d so all there is to prove is the reverse inequality.

For that, they applied Yomdin's estimate on the dynamical ball B n (x, ε) for the measure d -n (f n ) * (ω) ∧ ω then using Misiurewicz' proof of the variational principle, they obtain the wanted lower bound of the entropy.

≤ l log d outside the support of T l+1 f .

Finally, we can also consider the map f → h µ l (f ).

Proposition 4.4. -Let f be an endomorphism of P k of algebraic degree d ≥ 2. Then h µ l (f ) ≥ l log d. Furthermore, for any α ∈ [l log d, k log d], there exists an endomorphism f such that h µ l (f ) = α.

Proof. -We start with an easy example where h µ l (f ) > l log d. Take for that f a Lattès maps of P k . Then µ l is absolutely continuous with respect to the Fubini-Study measure on P k and with respect to µ k (this is even a characterization of Lattes [BeD]). Now, any set of positive µ l measure contains a set of positive µ k measure so it gives an entropy k log d.

For simplicity, let us restrict ourselves to the case where l = 1, k = 2. We recall for that a construction in [START_REF] Dujardin | Fatou directions along the Julia set for endomorphisms of CP k[END_REF]p. 603]. Take h a rational map of P 1 of degree d which admits an ergodic measure ν absolutely continuous with respect to the Lebesgue measure of P 1 of entropy 0 < β < log d (they are many such examples). Let µ h denote the measure of maximal entropy log d of h.

Consider now the map f := (h, h) acting on P 1 × P 1 . Taking the quotient of P 1 × P 1 by (z, w) ≡ (w, z), we get a holomorphic map f of degree d on P 2 . Let π i denote the projection to the i-th factor of P 1 × P 1 . The trace measure of the Green current of f is π * 1 (µ h ) ∧ π * 2 (ω) + π * 2 (µ h ) ∧ π * 1 (ω) which is absolutely continuous with respect to π * 1 (µ h ) ∧ π * 2 (ν) + π * 2 (µ h ) ∧ π * 1 (ν). In particular, its entropy is log d + β. Descending to f , we deduce that the entropy of the trace measure of the Green current is log d + β.

Remark. -To study the entropy on supp(T f )\supp(µ f ) for an endomorphism of P 2 , the first author defined saddle measures, under general assumptions [START_REF] Thélin | Sur la construction de mesures selles[END_REF]. The advantage of that approach is that we deal with nice ergodic, invariant measures but the support of such measure can be much smaller than supp(T f ).
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3. 1 .

 1 Background in bifurcation theory 3.1.1. Defining the bifurcation currents and (locally uniform) estimates

As briefly explained in the introduction, in here, the idea is to apply Yomdin's estimate on the dynamical ball B n (x, ε) directly for the measure µ. This allows us to get rid of Misiurewicz' proof of the variational principle; in exchange, we need a precise control on the convergence towards the Green currents (we did not need in [DTV] in the general case of meromorphic maps). For that, we lift the different objects on the product space P 2 × P 2 , where the map (f, f -1 ) acts, using the diagonal (those are ideas Dinh used to prove the exponential decay of correlations for Hénon maps [START_REF] Dinh | Decay of correlations for Hénon maps[END_REF]).

Let F be the birational map F := (f, f -1 ) : P 2 × P 2 → P 2 × P 2 , Π i be the projection to the i-th coordinate and ∆ be the diagonal in

is the two-sided dynamical ball (d is the metric in P 2 induced by the Fubini-Study form), then B n (x, ε) = Π 1 (B 2 n ((x, x), ε)∩∆) where B 2 n ((x, x), ε) denotes the Bowen ball on P 2 ×P 2 for the map F with respect to the distance d on P 2 × P 2 defined by d((x, y), (x , y )) = max(d(x, x ), (y, y )). In other words:

Using the cut-off function θ n of Lemma 2.1, the estimates on the convergence toward the Green currents and Stokes formula, we have:

where C is a constant that does not depend on n. We proceed similarly for the term in dd c u - n using a dynamical cut-off function for B 2 n ((x, x), 2ε) and we get:

where C is again a constant that does not depend on n. We apply Proposition 2.2 to the above term for F and ∆, so we have the bound:

for γ arbitrarily small, reducing ε if necessary. Arguing as in Proposition 3.5 gives back Bedford-Smillie's theorem.

Remark. -Proceeding as in the proof of Theorem 3.8 allows us to prove Brin-Katok formula for µ directly. In particular we do not need to use the ergodicity of µ. It would be interesting and a priori difficult to get a speed in the convergence in Brin-Katok formula (for generic x). This raises the question of proving a quantitative Algebraic Lemma for holomorphic maps.

The above proof also works in the case of holomorphic map or the so-called regular birational maps ( [DS]).

Entropy for the trace measure of the Green currents

Let f : P k → P k be a holomorphic map of algebraic degree d ≥ 2. Recall that its Green current T f is a positive closed current of bidegree (1, 1) and mass 1 defined by:

where ω is the Fubini-Study form on P k . We can write

We can thus define the self-intersection of the current T f for l ≤ k:

Its trace measure µ l is then the well-defined probability measure:

µ k is known to be the (unique) ergodic measure of maximal entropy k log d [BrD1] so we shall assume that l < k. Our aim is to show similar results for µ l in supp(T k l ). Since µ l is not invariant, we need to give a meaning to its entropy in term of the asymptotic cardinality of (n, ε)-separated sets. The Bowen distance d n we consider here is the classical distance on P k : d n (x, y) := max j≤n-1 d(f j (x), f j (y)).

Definition 4.2. -Let K be a compact set in P k and let ν be a probability measure on P k . For κ > 0, we consider:

We define the entropy h ν (f, K) of f on K as the quantity

We also define the entropy h ν (f ) of f as h ν (f, P k ).

Theorem 4.3. -For any γ > 0, there exists an integer n 0 and ε > 0 such that for any x ∈ P k and any n ≥ n 0 µ l (B n (x, ε)) ≤ e -nl log d+nγ .

In particular, for any compact set K ⊂ supp(T l f )\supp(T l+1 f ) such that µ l (K) > 0, we have h µ l (f, K) = l log d.

The proof of the first part is similar to the one of Theorem 3.6 above so we omit it (replace T f by d -n+1 (f n-1 ) * ω + dd c u n , apply Stokes to the dynamical cut-off functions and conclude with Proposition 2.2). The second part then follows directly from the result of the first author ( [START_REF] Thélin | Un phénomène de concentration de genre[END_REF], see also [START_REF] Dinh | Attracting current and equilibrium measure for attractors on P k[END_REF]) who showed that the topological entropy is