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COLLET, ECKMANN AND THE BIFURCATION MEASURE

by

Matthieu Astorg, Thomas Gauthier, Nicolae Mihalache & Gabriel Vigny

Abstract. — The moduli spaceMd of degree d ≥ 2 rational maps can naturally be endowed with
a measure µbif detecting maximal bifurcations, called the bifurcation measure. We prove that the
support of the bifurcation measure µbif has positive Lebesgue measure. To do so, we establish a
general sufficient condition for the conjugacy class of a rational map to belong to the support of
µbif and we exhibit a large set of Collet-Eckmann rational maps which satisfy this condition. As a
consequence, we get a set of Collet-Eckmann rational maps of positive Lebesgue measure which are
approximated by hyperbolic rational maps.
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1. Introduction

For an integer d ≥ 2, we let Ratd be the space of rational maps of degree d of the Riemann
sphere P1. The space Ratd of degree d rational maps is a quasi-projective subvariety of dimension
2d+ 1. More precisely, there exists an (irreducible) variety V such that Ratd ' P2d+1 \ V . The
J-stability locus in Ratd is defined as the set of maps f which are structurally stable on their
Julia set Jf . By the seminal work [MSS] of Mañé, Sad and Sullivan, it is an open and dense
subset of Ratd. The bifurcation locus in Ratd is its complement.

One can give a measurable description of this bifurcation as follows: any rational map
f ∈ Ratd has a unique measure µf of maximal entropy log d. The Lyapunov exponent of f
with respect to the measure µf can be defined as L(f) :=

∫
P1 log |f ′|µf , where | · | is any her-

mitian metric on P1. DeMarco [De] proved that the function L : f ∈ Ratd 7→ L(f) ∈ R+ is
plurisubharmonic (p.s.h for short) and continuous and that the bifurcation locus is the support
of the positive closed (1, 1)-current Tbif := ddcL.
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Moreover, Möbius transformations act by conjugacy on Ratd and the quotient space is an
orbifold affine variety of dimension 2d − 2 which is known as the moduli space Md of degree
d rational maps. As the function L is invariant by conjugacy, the function L induces a p.s.h
and continuous function L : Md −→ R. The support of ddcL coincides with the image of the
bifurcation locus under the quotient map Π : Ratd →Md.

Definition 1.1. — The bifurcation measure of the space Md is the positive measure

µbif := (ddcL)2d−2.

Notice that the support of µbif is strictly contained in the bifurcation locus. This measure has
been introduced by Bassanelli and Berteloot in [BB]. Its support is exactly the accumulation
set of the hyperbolic (conjugacy class of) rational maps (see [BB] and also Buff and Epstein
[BE] and the second author [G2] for other dynamical characterizations). Recall that a rational
map is hyperbolic if it is uniformly expanding on its Julia set Jf , i.e. there exist C > 0 and
λ > 1 such that for any n ≥ 1 and any z ∈ Jf , |(fn)′(z)| ≥ C · λn. Another way to define µbif

is as follows: it is the only finite measure on Md such that Π∗(µbif) = T 2d−2
bif as closed positive

(2d− 2, 2d− 2)-currents on Ratd (see [BB, §6]).

In the family {z2 + c}c∈C of quadratic polynomials, this measure is exactly the harmonic
measure of the Mandelbrot set and its support is exactly the boundary of the Mandelbrot set.
One of the important questions in complex dynamics which is still open is the following.

Question. — Does the boundary of the Mandelbrot set have positive area?

It is natural to ask similar questions in the moduli space Md of degree d rational maps. For
that, let us naturally endow Md with a volume form. the moduli space Md is a affine variety
in some PN . Let ωPN be the Fubini-Study form on PN . Its restriction defines a (1, 1) form ωd
on Md and we consider the volume form on Md

VolMd
:= ω2d−2

d .

This is (up to renormalization) a probability measure on Md. Moreover, in any (smooth) local
chart of Md it is smoothly equivalent to the Lebesgue measure, hence it is a non-degenerate
volume form inMd. For the bifurcation locus, Rees showed that it has positive VolMd

-measure
[R]. This leaves the question of the volume of the support of the measure µbif in Md.

Another major problem concerning the moduli space Md is the Hyperbolicity Conjecture:

Conjecture (Hyperbolicity). — Hyperbolic rational maps are dense in Ratd.

In the present paper, we are interested in the following simpler but related problem: is
any Collet-Eckmann rational map approximated by hyperbolic rational maps? Refining Rees’
results, Aspenberg [Asp2] showed that there is a set of positive VolMd

-measure of (suitable)
Collet-Eckmann rational map (such maps are in the bifurcation locus). A rational map f ∈ Ratd
is Collet-Eckmann if the critical set C(f) of f is contained in Jf and if there exist γ, γ0 > 0 such
that

(CE(γ, γ0)) |(fn)′(f(c))| ≥ enγ−γ0 ,

for any c ∈ C(f) and any n ≥ 0.
Our main result is the following
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Theorem A. — Pick an integer d ≥ 2 and let [f ] ∈ supp(µbif). Then for any open neighborhood
Ω ⊂Md of [f ], there is a set CEΩ ⊂ Ω ∩ supp(µbif) of Collet-Eckmann maps with:

VolMd
(CEΩ)) > 0.

This implies the following result reated to the above conjecture.

Corollary 1. — There exists a set of positive VolRatd-measure of Collet-Eckmann rational maps
f of Ratd with [f ] ∈ supp(µbif) such that f is approximated by hyperbolic rational maps.

We rely on the following strategy: we first give a very general sufficient condition for a conju-
gacy class of rational maps to belong to the support of the bifurcation measure (see Theorem B).
Then we exhibit a large set of rational maps fulfilling this condition. Theorem A becomes a
corollary of Theorem B, Theorem C and Theorem D below and of the Main Theorem of [BE].

When a rational map has simple critical points, one can follow them holomorphically as maps
c1, . . . , c2d−2 : V → P1 where V is an open neighborhood of f in Ratd. For any (2d − 2)-tuple
of positive integers n := (n1, . . . , n2d−2), one also can define a holomorphic map Vn : V −→
(P1)2d−2 by letting

Vn(g) := (gn1(c1(g)), . . . , gn2d−2(c2d−2(g))) .

This map detects, in a certain sense, the collective stability/instability of the critical points
c1, . . . , c2d−2. In the sequel, we will use the following definition in a crucial way.

Definition 1.2. — Let f ∈ Ratd with simple critical values and let Γn denote the graph of Vn.
We say that f satisfies the large scale condition if there exist a (local) complex submanifold
Λf ⊂ Ratd of dimension 2d − 2, a sequence nk = (nk,1, . . . , nk,2d−2) of (2d − 2)-tuples with
nk,j → +∞ for all j, a basis of neighborhoods {Ωk}k≥1 of f in Λf and δ > 0 such that for any
k, the connected component of Γnk ∩ Ωk × (D(fnk,1(c1(f)), δ)× · · · × D(fnk,2d−2(c2d−2(f)), δ))
containing (f,Vnk(f)) is contained in Ω′k × (D(fnk,1(c1(f)), δ)× · · · × D(fnk,2d−2(c2d−2(f)), δ))
for some Ω′k b Ωk.

This means that a rational map f satisfies the large scale condition if, infinitely many times,
the map Vn sends an arbitrarily small neighborhood of [f ] in the moduli spaceMd to a polydisk

of fixed size in (P1)2d−2 and its graph is vertical-like near [f ]. The first step of our proof consists
in proving that the large scale condition is actually a sufficient condition for maximal bifurcations
to occur at f . More precisely, we prove the following.

Theorem B. — Pick f ∈ Ratd. Assume that ω(c) ⊂ Jf for all c ∈ C(f), that f has simple
critical points and that f satisfies the large scale condition. Then [f ] ∈ supp(µbif).

This condition extracts the core of the ones previously used, such as having a uniform expan-
sion along the postcritical set, the famous Misiurewicz condition. To illustrate the interest of
this condition, we show in §4 that this condition is satisfied by Misiurewicz maps. The proof
drastically simplifies the proof of [G1, Theorem 1.4]. In particular, we now are able to avoid any
linearization process along the critical orbits which was a crucial step in the proof given by the
second author (see [G1, §5]). Indeed, we only use here the transversality and the holomorphic
motion of the hyperbolic set containing the post-critical set. The proof of Theorem B is based
on a phase-parameter transfer (giving a measurable version of Tan Lei’s work [Ta]). For clarity,
we give the proof in the easier case of one critical point in Section 3.1.
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A rational map is strongly Misiurewicz if all its critical points are preperiodic to repelling
cycles. Reformulating the main result of Aspenberg [Asp2] in terms of the conditions CE(γ, γ0),
CE2(µ, µ0), BA(α) and FA(η, ι) (defined at the beginning of Section 5) gives the following.

Theorem C. — Assume that f ∈ Ratd is strongly Misiurewicz, has simple critical points and
is not a flexible Lattès map. Then, there exist µ, µ0, γ, γ0 > 0 and α̂ > 0 such that for all
α < min( γ

200 , α̂), there exist η̂ > 0 and ι̂ > 0 such that for all η < η̂ and for all ι < ι̂, the
map f is a Lebesgue density point of rational maps satisfying CE(γ, γ0), CE2(µ, µ0), BA(α)
and FA(η, ι).

The last key ingredient to prove Theorem A can be formulated as follows (conditions (K1-6)
are defined in Section 5.1).

Theorem D. — Let γ, γ0, µ, µ0, η, κ > 0 and α < γ/200. There exists ι > 0 such that any
f ∈ Ratd with simple critical points and satisfying CE(γ, γ0), CE2(µ, µ0), BA(α), FA(η, ι) and
(K1-6) satisfies the large scale condition.

To prove Theorem D, we follow Tsujii’s generalization [Ts] of Benedicks and Carleson con-
struction [BC] that we need to adapt to the complex setting. The strategy of the proof is
summarized below.

• Take a Collet-Eckmann map f and a small ball in the dynamical plane centered at a critical
value. That ball will go to the large scale with exponential growth and good distortion
estimates under fn by (CE) as long as its orbit stays far away from the critical set C(f).
For each n we will choose such a starting ball Bn.
• Passages of the critical orbit near C(f) impose upper bounds of the size of Bn. The assertion

(BA) gives lower bounds for the approach rate to C(f). After a close visit near C(f), the
image is even closer to the visited critical value. Lemma 5.4 shows that the sequel of the
critical orbit copies the good properties of a long prefix of the orbit of the visited critical
value.
• Lemma 5.10 guarantees that just before going (again) near a critical point, we gain ex-

pansivity by (CE2), so we have restored the exponential growth and the bound for the
distortion on Bn. We use a Lemma à la Mãné (Proposition 5.11) for the suffix of a (finite)
critical orbit that does not visit a neighborhood of C(f).
• Lemma 5.13 gives a large density of times n for which Bn goes to the large scale ((FA)

tells that the critical orbit does not go too often near the critical set). We intersect over
all the critical values and still have positive density of times for which the starting balls go
to the large scale for all the critical values.
• Using Lemma 5.15 allows to bound parametric distortion on complex lines passing through
f thanks to the transversality of critical relations (using again (CE) and (BA)).
• Finally, we use a result of Sibony and Wong [SW] and the transversality to extend the

distortion to a ball on a neighborhood of f to get the large scale condition (Theorem 5.16).

Structure of the paper. — In Section 2, we recall facts on bifurcation currents. In Sec-
tion 3, we define a (generalized) large scale condition and show that if a parameter satisfies it
for some m then it is in the support of Tmbif. In Section 4, we apply this result to k-Misiurewicz
maps. In Section 5, we prove Theorems C and D. In Section 6, we prove Theorem A and a
strengthened version of Corollary 1.
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2. Basics on bifurcation currents

This section is devoted to the bifurcation currents. We begin with giving a description of the
bifurcation currents. We then give a new formula for the higher bifurcation currents.

2.1. The bifurcation currents of critical points

Let (fλ)λ∈Λ be a holomorphic family of rational maps equipped with 2d − 2 marked critical
points c1, . . . , c2d−2 : Λ→ P1.

Definition 2.1. — A critical point c is said to be marked if there exists a holomorphic function
c : Λ −→ P1 satisfying f ′λ(c(λ)) = 0 for every λ ∈ Λ.

We say that the critical point c is active at λ0 ∈ Λ if (fnλ (c(λ)))n≥0 is not a normal family in
any neighborhood of λ0. Otherwise we say that c is passive at λ0. The activity locus of c is the
set of parameters λ ∈ Λ at which c is active.

Let us construct the bifurcation current of the critical point ci. One can define a fibered
dynamical system f̂ acting on Λ× P1

f̂ : Λ× P1 −→ Λ× P1

(λ, z) 7−→ (λ, fλ(z)) .

We denote by pΛ : Λ× P1 → Λ and pP1 : Λ× P1 → Λ the respective natural projections and by
ω̂ := (pP1)∗ωFS, where ωFS is the Fubini-Study form on P1 normalized so that

∫
P1 ωFS = 1. We

say that a function ψ is ω̂-psh if it can be locally written as the sum of a smooth function and
a plurisubharmonic function (psh for short) and ddcψ + ω̂ ≥ 0 in the sense of currents. Then,
there exists a ω̂-psh function g such that

(f̂)∗ (ω̂ + ddcg) = d · (ω̂ + ddcg) .(1)

Indeed, since d−1(f̂)∗ω̂ and ω̂ are in the same cohomology class, there exists a smooth ω̂-psh

function u such that d−1(f̂)∗ω̂ = ω̂ + ddcu. Taking

un :=
n−1∑
j=0

u ◦ (f̂)j

dj
,

we defined g := limn un. The function g is continuous and ω̂-plurisubharmonic on Λ× P1, since
‖g−un‖∞ = O(d−n). The function g is the Green function of f̂ and is unique up to an additive
constant. We shall use the following notation in the sequel

T̂ := ω̂ + ddcg .

One can give the following definition.

Definition 2.2. — The bifurcation current of the critical point ci in (fλ)λ∈Λ is

Ti := (pΛ)∗

(
(ω̂ + ddcg) ∧ [V̂i]

)
,

where V̂i = {(λ, vi(λ)) : λ ∈ Λ} is the graph of the map vi(λ) := fλ(ci(λ)).

The holomorphic family (fλ)λ∈Λ admits local lifts, i.e. for any small enough V ⊂ Λ, there
exists a holomorphic family (Fλ)λ∈V of non-degenerate homogeneous degree d polynomial endo-
morphims of C2, and the Green function of the lift is then

G(λ, x, y) := lim
n→∞

d−n log ‖Fnλ (x, y)‖ , (x, y) ∈ C2 \ {0} .
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It actually is a continuous and psh function on V × (C2 \ {0}). According to [B, Section 3.2.2],
one can prove that for any local holomorphic section σ : U ⊂ P1 → C2 \ {0} of the canonical
projection C2 \ {0} → P1, then

ω̂ + ddcg = ddcG(λ, σ(z)) , on V × U.
We thus can locally write Ti = ddcG(λ, σ ◦ vi(λ)) = d · ddcG(λ, σ ◦ ci(λ)) on U .

Remark. — The definition we give here is not the classical one. The usual definition of the
bifurcation currents is to take locally T̃i := ddcG(λ, σ ◦ ci(λ)) = d−1 · Ti, which does not change
the support of the current.

The important information concerning the current Ti is the following (see [DF]).

Proposition 2.3 (Dujardin-Favre). — The support of Ti is the activity locus of ci.

Another way to characterize the bifurcation current of ci is the following. Let ξin : Λ → P1

be the map given by ξin(λ) := fnλ (vi(λ)), for n ≥ 0 and 1 ≤ i ≤ 2d − 2. The sequence of forms
d−n(ξin)∗ωFS converge to the current Ti in the sense of currents (see e.g. [Du]).

2.2. Bifurcation currents of a holomorphic family

Recall that f ∈ Ratd admits a unique maximal entropy measure µf . The Lyapounov exponent of
f with respect to the measure µf is the real number L(f) :=

∫
P1 log |f ′|µf . For a holomorphic

family (fλ)λ∈Λ of degree d rational maps, we denote by L(λ):=L(fλ). Then, the function λ 7−→
L(λ) is called the Lyapounov function of the family (fλ)λ∈Λ. It is a psh and continuous function

on Λ (see [BB] Corollary 3.4). The Margulis-Ruelle inequality implies that L(f) ≥ log d
2 .

When (fλ)λ∈Λ is with 2d−2 distinct marked critical points c1, . . . , c2d−2, the bifurcation locus
in the sense of Mañé-Sad-Sullivan and Lyubich (see [Ly, MSS]) coincides with the union of the
activity loci of the ci’s. According to DeMarco [De], we have the following.

Theorem 2.4 (DeMarco). — Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps
with 2d − 2 distinct marked critical points. Then the current Tbif := ddcL is exactly supported

by the bifurcation locus. Moreover, Tbif = d−1
∑2d−2

i=1 Ti.

The current Tbif is the bifurcation current of of the family (fλ)λ∈Λ. The self-intersections of
the current Tbif have been first studied by Bassanelli and Berteloot [BB].

Definition 2.5. — We define the mth-bifurcation current of the family (fλ)λ∈Λ by setting

Tmbif :=

m∧
i=1

Tbif .

It is known that for all 1 ≤ i ≤ 2d− 2, we have Ti ∧ Ti = 0 (see [G1, Theorem 6.1]) and one
can show that

Tmbif = m!
∑

i1<...<im

Ti1 ∧ · · · ∧ Tim .(2)
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2.3. A formula for higher bifurcation currents

We want here to give a similar expression as the one given in Definition 2.2 for the higher
bifurcation current associated to a m-tuple of critical points. Let us introduce some notations.
Let (fλ)λ∈Λ be a holomorphic family of degree d rational maps with m marked critical points,
c1, . . . , cm : Λ → P1, with 1 ≤ m ≤ min(2d − 2,dim Λ). As above, we define vj : Λ → P1 for
λ ∈ Λ by vj(λ) := fλ(cj(λ)). This time, we let

Vj := {(λ, z) ∈ Λ× (P1)m : zj = vj(λ)}

We finally let πΛ : Λ× (P1)m −→ Λ and, for 1 ≤ j ≤ m, we let

πj : Λ× (P1)m −→ Λ× P1

(λ, z) 7−→ (λ, zj)

be the respective natural projection. Let Ti be the bifurcation current of ci in (fλ)λ∈Λ.

Lemma 2.6. — With the above notations, we have

m∧
j=1

Tj = (πΛ)∗

 m∧
j=1

(πj)
∗
(
T̂
)
∧ [Vj ]

 .

Proof. — It is a local problem, so we can assume that Λ = B is a ball of CN for some N ≥ 1.

Recall that, up to reducing the ball, one can also write T̂ = ddcλ,zGλ(σ(z)), where Gλ is the
Green function of a holomorphic family of non-degenerate homogeneous polynomial lift Fλ of
fλ, i.e.

Gλ(z1, z2) := lim
n→∞

d−n log ‖Fnλ (z1, z2)‖, (z1, z2) ∈ C2 \ {0} ,

and σ is any local section of the natural projection C2\{0} → P1. Let σj be such a section which
up to reducing the ball contains the image of the map vj : B→ P1, then ddcGλ(σj ◦ vj(λ)) = Tj
(see e.g. [B, Section 3.2.2]).
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Let now φ be a smooth test (N −m,N −m)−form on B and let V :=
⋂
j Vj . Let p(λ) :=

(λ, v1(λ), . . . , vm(λ)), so that πΛ ◦ p = idB and p(B) = V. Then〈
(πΛ)∗

 m∧
j=1

(
(πj)

∗T̂
)
∧ [Vj ]

 , φ

〉
=

∫ m∧
j=1

(πj)
∗
(
T̂
)
∧ [Vj ] ∧ (πΛ)∗φ

=

∫
V

m∧
j=1

(πj)
∗
(
T̂
)
∧ (πΛ)∗φ

=

∫
V

m∧
j=1

(πj)
∗ddcλ,z(Gλ ◦ σj) ∧ (πΛ)∗φ

=

∫
p(B)

m∧
j=1

ddcλ,zGλ(σj(zj)) ∧ (πΛ)∗φ

=

∫
B

m∧
j=1

ddcGλ(σj ◦ vj(λ)) ∧ ((p∗(πΛ)∗φ))

=

〈
m∧
j=1

Tj , φ

〉
.

3. Generalized large scale condition and the bifurcation currents

For the whole section, we let (fλ)λ∈Λ be a holomorphic family of rational maps with m ≥ 1
marked critical points c1, . . . , cm : Λ −→ P1. As above, we use the notation vj(λ) := fλ(cj(λ)).
We set c := (c1, . . . , cm) and we also use the following notation: For any m-tuple of positive
integers n = (n1, . . . , nm), any 1 ≤ j ≤ m and any λ ∈ Λ, we let

ξjnj (λ) := f
nj
λ (vj(λ)) , and Vc

n(λ) :=
(
ξ1
n1

(λ), . . . , ξmnm(λ)
)
.

This way, we define a holomorphic map Vc
n : Λ −→ (P1)m. We denote by Vn the graph of Vc

n.

We now can define the (generalized) large scale condition.

Definition 3.1 (Generalized large scale condition). — We say that a parameter λ0 ∈ Λ
satisfies the generalized large scale condition at fλ0 for the m-tuple (c1, . . . , cm) in Λ if there
exist a sequence nk = (nk,1, . . . , nk,m) of m-tuples with nk,j → +∞ and a basis of neighbor-
hood {Ωk}k≥1 of f in Λ and δ > 0 such that for any k, the connected component of Vnk ∩
Ωk ×

(
D(ξ1

nk,1
(λ0), δ)× · · · × D(ξmnk,m(λ0), δ)

)
containing (λ0,V

c
nk

(λ0)) is contained in Ω′k ×(
D(ξ1

nk,1
(λ0), δ)× · · · × D(ξmnk,m(λ0), δ)

)
for some Ω′k b Ωk.

We prove in this section the following result which we view as a general sufficient condition
for a parameter to belong to the support of a (higher) bifurcation current.

Theorem 3.2. — Let 1 ≤ m ≤ min(2d − 2,dim Λ) be an integer and let λ0 ∈ Λ. Assume
that λ0 satisfies the generalized large scale condition for c := (c1, . . . , cm) in a local submanifold
S 3 λ0 of Λ with dimS = m. Assume in addition that ω(ci(λ0)) ⊂ Jλ0 for all 1 ≤ i ≤ m. Then
λ0 ∈ supp(T1 ∧ · · · ∧ Tm).
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Proof of Theorem B. — By definition of µbif, we have [f ] ∈ supp(µbif) if and only if f ∈
supp(T 2d−2

bif ). On the other hand, since f has simple critical points, there exist a neighborhood
U ⊂ Ratd of f and holomorphic maps c1, . . . , c2d−2 : U → P1 with C(g) = {c1(g), . . . , c2d−2(g)}
for all g ∈ U . We then can apply the above Theorem 3.2 to c = (c1, . . . , c2d−2). Since, by (2),

T 2d−2
bif = (2d− 2)!T1 ∧ · · · ∧ T2d−2 on U , the result follows.

Remark. — Note that the assumption ω(cj(λ0)) ⊂ Jλ0 is satisfied not only when cj(λ0) ∈ Jλ0 ,
but also when cj(λ0) belongs to a parabolic basin.

First, note that it is sufficient to treat the case when dim Λ = m and λ0 satisfies the
large scale condition for c := (c1, . . . , cm) in a Λ. Indeed, by [G1, Lemma 6.3], if λ0 ∈
supp((T1 ∧ · · · ∧ Tm) |S), then λ0 ∈ supp (T1 ∧ · · · ∧ Tm). We hence may assume S = Λ has
dimension m and let

µ := T1 ∧ · · · ∧ Tm .

It defines a positive measure on Λ.

Let (λ1, . . . , λm) be a local system of holomorphic coordinates centered at λ0. We let Dmδ be
the polydisk of radius δ > 0 of Λ centered at λ0 in those coordinates.

3.1. The case m = 1: a toy-model for the general case

We give here the proof of Theorem 3.2 in the case m = 1. We let c : Λ → P1 be the marked
critical point satisfying the large scale condition at λ0. As above, for n ≥ 0 and λ ∈ Λ, write

ξn(λ) := fn+1
λ (c(λ)) = fnλ (ξ0(λ)) .

Of course, in that case, it is easy to see that the large scale condition implies the non-normality
of the family (fnλ (c(λ)))n but we provide here a proof that can be adapted to work with higher
degree bifurcation currents. For that, recall that Vn is the graph of ξn : Λ → P1. Recall that

d−1(f̂)∗T̂ = T̂ . Choose any ε > 0. We shall prove that µ(D(λ0, ε)) > 0 for all ε > 0 small
enough. For any n ≥ 1

µ (D(λ0, ε)) =

∫
D(λ0,ε)×P1

T̂ ∧ [V0]

= d−n
∫
D(λ0,ε)×P1

(f̂n)∗
(
T̂
)
∧ [V0] .

As a consequence,

In := dnµ (D(λ0, ε)) =

∫
D(λ0,ε)×P1

(f̂n)∗
(
T̂
)
∧ [V0]

=

∫
D(λ0,ε)×P1

T̂ ∧ (f̂n)∗[V0] =

∫
D(λ0,ε)×P1

T̂ ∧ [Vn],

since on one hand f̂−1(D(λ0, ε)×P1) = D(λ0, ε)×P1 = f̂
(
D(λ0, ε)× P1

)
and, on the other hand,

(f̂n)∗[V0] = [Vn]. Let now δ > 0, (nk) and (Ωk) be given by the large scale condition. Up to
extraction, we can assume ξnk := ξnk(λ0) converges to some point x ∈ Jλ0 . As a consequence,
there exists k0 ≥ 1 such that Ωk ⊂ D(λ0, ε) and

ξnk (Ωk) ⊃ D (x, δ/2) ,
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for any k ≥ k0. We now let Sk be the connected component of Vnk ∩ Ωk × D(x, δ/2) containing
(0, ξnk). Then Sk ⊂ Ωk × D(x, δ/2), [Sk]/‖[Sk]‖ has mass 1 and

[Vnk ] ≥ 1D(λ0,ε)×D(x,δ/2)[Γnk ] ≥ [Sk] .

for all k ≥ k0. Let now S be any weak limit of the sequence [Sk]/‖[Sk]‖. Then supp(S) =
{λ0} × D(x, δ/2) and S has mass 1 by the large scale condition. By extremality of the current
[{λ0} × D(x, δ/2)], we deduce S = M · [{λ0} × D(x, δ/2)], where M−1 > 0 is the Fubini-Study

area of D(x, δ/2). As T̂ has continuous potential, T̂ ∧ [Sk]/‖[Sk]‖ → T̂ ∧ S as k → ∞ in the
sense of measures so:

lim inf
k→∞

‖[Sk]‖−1 · Ink ≥ lim inf
k→∞

∫
T̂ ∧ [Sk]

‖[Sk]‖
≥
∫
T̂ ∧ S = M ·

∫
T̂ ∧ [{λ0} × D(x, δ/2)]

= M · µλ0 (D(x, δ/2))

as T̂ |λ=0 = µλ0 . Since x ∈ Jf = supp(µλ0) then µλ0 (D(x, δ/2)) > 0, we get

lim inf
k→∞

‖[Sk]‖−1 · Ink > 0 ,

which means that Ink > 0 for k large enough so µ(D(λ0, ε)) > 0. Since this holds for all ε > 0,
this ends the proof.

3.2. First step: pulling-back by a fibered dynamical system

Let us define a family of fibered dynamical systems acting on Λ × (P1)m as follows: for any
m-tuple n := (n1, . . . , nm) ∈ (N∗)m, we let

Fn : Λ× (P1)m −→ Λ× (P1)m

(λ, z1, . . . , zm) 7−→ (λ, fn1
λ (z1), . . . , fnmλ (zm)) .

For a m-tuple n = (n1, . . . , nm) of positive integers, we also set

|n| := n1 + · · ·+ nm .

Let us first partially rewrite the mass of µ on any open set in terms of iterated pull-back by one
the Fn’s.

Lemma 3.3. — For any m-tuple n = (n1, . . . , nm) of positive integers, we let Vn be the graph
in Λ× (P1)m of Vn. Then, for any Borel set Ω ⊂ Λ, we have

µ(Ω) = d−|n|
∫

Ω×(P1)m

 m∧
j=1

(πj)
∗
(
T̂
) ∧ [Vn] .

Proof. — Recall that we defined in Section 2.1 a dynamical system f̂ acting on Λ× P1 by

f̂ : Λ× P1 −→ Λ× P1

(λ, z) 7−→ (λ, fλ(z)) .

By definition of Fn and f̂ , for all j, the following diagram commutes

Λ× (P1)m
Fn //

πj
��

Λ× (P1)m

πj
��

Λ× P1

f̂nj
// Λ× P1 .
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In particular, by (1), we get

d−nj (Fn)∗
(

(πj)
∗
(
T̂
))

= d−nj (πj ◦ Fn)∗
(
T̂
)

= d−nj (f̂nj ◦ πj)∗
(
T̂
)

= d−nj (πj)
∗
(

(f̂nj )∗
(
T̂
))

= (πj)
∗
(
T̂
)
.

According to Lemma 2.6, the change of variable formula gives

µ(Ω) =

∫
Ω

(πΛ)∗

 m∧
j=1

(πj)
∗
(
T̂
)
∧ [Vj ]


=

∫
π−1

Λ (Ω)

m∧
j=1

(πj)
∗
(
T̂
)
∧ [Vj ]

= d−|n|
∫

Ω×(P1)m
(Fn)∗

 m∧
j=1

(πj)
∗
(
T̂
) ∧

 m⋂
j=1

Vj


where the last equality comes from π−1

Λ (Ω) = Ω× (P1)m. Whence

µ(Ω) = d−|n|
∫

Ω×(P1)m

 m∧
j=1

(πj)
∗
(
T̂
) ∧ (Fn)∗

 m⋂
j=1

Vj


where we used (Fn)∗

∧
j [Vj ] = [Vn].

3.3. Second step: a phase-parameter transfer phenomenon

For the sake of simplicity, we let in the sequel Vk := Vc
nk

, where nk is given by the large scale

condition. Up to extracting a subsequence, we may assume that fnkλ0
(cj(λ0))→ xj ∈ Jλ0 for all

1 ≤ j ≤ m. We also let x := (x1, . . . , xm) ∈ (P1)m.
We want to reduce the problem to a purely dynamical datum of f . Building on the large

scale condition, one actually gets the following.

Proposition 3.4. — There exist k0 ≥ 1 and δ, α > 0 such that for any k ≥ k0, we have∫
Ωk×(P1)m

 m∧
j=1

(πj)
∗
(
T̂
) ∧ [Vnk] > 0 .

Proof of Proposition 3.4. — Set

Ik :=

∫
Ωk×(P1)m

 m∧
j=1

(πj)
∗
(
T̂
) ∧ [Vnk] ,

and let δ be given by the large scale condition. Let Sk be the connected component of Vnk ∩
Ωk × Dmδ (x) containing (0,Vnk(0)). Up to replacing δ with δ/2, for any k ≥ k1, the current
[Sk]/‖[Sk]‖ is of a vertical current of mass 1 in Λ× Dmδ (v∞) and

supp([Sk]) = Sk ⊂ Ωk × Dmδ (x) .

As in the case m = 1, let S be any weak limit of the sequence [Sk]/‖[Sk]‖. Then S is a closed
positive (m,m)-current of mass 1 in Bε × Dmδ (x) with supp(S) = {λ0} × Dmδ (x) by the large
scale condition. Hence, by extremality of [{λ0}×Dmδ (x)], we have that S = M · [{λ0}×Dmδ (x)],
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where M−1 > 0 is the volume of Dmδ (x) for the volume form
∧
j ωj , where ωj = (pj)

∗ωFS and

pj : (P1)m → P1 is the projection on the j-th coordinate.

As a consequence, [Sk]/‖[Sk]‖ weakly converges to S as k →∞. Since
∧m
j=1(πj)

∗
(
T̂
)

is the

wedge product of (1, 1) current with continuous potentials, we have
m∧
j=1

(πj)
∗
(
T̂
)
∧ [Sk]

‖[Sk]‖
→

m∧
j=1

(πj)
∗
(
T̂
)
∧ S

so

lim inf
k→∞

(
‖[Sk]‖−1 · Ik

)
≥ lim inf

k→∞

∫ m∧
j=1

(πj)
∗
(
T̂
)
∧ [Sk]

‖[Sk]‖
≥
∫ m∧

j=1

(πj)
∗
(
T̂
)
∧ S.

By the above, this gives

lim inf
k→∞

(
‖[Sk]‖−1 · Ik

)
≥M ·

∫
{λ0}×Dmδ (x)

m∧
j=1

(πj)
∗
(
T̂
)

≥
∫ m∧

j=1

(πj)
∗
(
T̂
)
∧ [{λ0} × Dmδ (x)] .

The proof of the proposition directly follows from the following lemma.

Lemma 3.5. — For any δ > 0, and any x = (x1, . . . , xm) ∈ (Jf )m, we have∫ m∧
j=1

(πj)
∗
(
T̂
)
∧ [{λ0} × Dmδ (x)] =

m∏
j=1

µλ0(D(xj , δ)) > 0.

Proof. — Let us set ωj := ((πj)
∗ω̂) |λ=λ0 . First, we can remark that g|λ=λ0 = gλ0 is the Green

function of the rational map fλ0 . We denote by pj : (P1)k → P1 the canonical projection onto

the jth coordinate. A classical slicing argument gives

((πj)
∗ddcg) |λ=λ0 = ddcz(gλ0 ◦ pj) = (pj)

∗ddcgλ0 .

In particular, since ωj = (pj)
∗ωFS, we have(

(πj)
∗(T̂ )

)∣∣∣
λ=λ0

= ((πj)
∗(ωFS + ddcg))|λ=λ0

= (pj)
∗(µλ0) ,

where µλ0 is the maximal entropy measure of fλ0 , hence

I :=

∫ m∧
j=1

(πj)
∗
(
T̂
)
∧ [{λ0} × Dmδ (x)] =

∫
{λ0}×Dmδ (x)

m∧
j=1

(πj)
∗
(
T̂
)

=

∫
Dmδ (x)

m∧
j=1

(
(πj)

∗
(
T̂
))∣∣∣

λ=λ0

=

∫
Dmδ (x)

m∧
j=1

(pj)
∗ (µλ0) .

Since supp(µλ0) = Jλ0 and x1, . . . , xm ∈ Jλ0 , Fubini Theorem yields

I =
m∏
j=1

(∫
D(xj ,δ)

µλ0

)
=

m∏
j=1

µλ0(D(xj , δ)) > 0 ,
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which ends the proof of Lemma 3.5.

The proof of Theorem 3.2 directly follows from Lemma 3.3 and Proposition 3.4.

4. Misiurewicz maps and the generalized large scale condition

Fix d ≥ 2 and pick 1 ≤ k ≤ 2d − 2. A rational map f ∈ Ratd is k-Misiurewicz if the following
properties hold:

• f has no parabolic periodic points,
• f has k critical points in its Julia set, counted with multiplicity,
• for any c ∈ C(f) ∩ Jf , we have ω(c) ∩ C(f) = ∅.

In this section, we want to emphasize that the large scale condition is the good condition for
proving that specific parameters lie in the support of the bifurcation measure. Our motivation
here is also to provide a simpler and more intrinsic proof of Theorem 1.4 of [G1]. Recall that
for a critical point cj , we denote by vj the critical value f(cj). According to Theorem 3.2, it is
sufficient to prove the existence of a (local) submanifold in which f satisfies the (generalized)
large scale condition. More precisely, we prove the following.

Theorem 4.1. — Let f ∈ Ratd and 1 ≤ k ≤ 2d− 2. Assume that f is k-Misiurewicz and that
C(f) ∩ Jf = {c1, . . . , ck}. Assume that for all n ∈ N and all i 6= j ≤ k, fn(vj) 6= vi. If f is not
a flexible Lattès map, then there exists a k-dimensional local submanifold Λf ⊂ Ratd such that
f satisfies the generalized large scale condition for (c1, . . . , ck) in Λf .

This approach allows us to exhibit the key expansion and distortion arguments, without
using more elaborate tools that will necessarily be missing in a more general situation, such as
linearizing coordinates along repelling orbits.

Observe also that the condition ”for all n ∈ N and all i 6= j ≤ k, fn(vj) 6= vi” is not an
issue: any k-Misiurewicz map that does not satisfy this condition can be approximated by k-
Misiurewicz maps that do satisfy it using Montel theorem. In particular, it is in the support of
the bifurcation current T1 ∧ · · · ∧ Tk.

4.1. Hyperbolic sets and holomorphic motions

We recall some classical definitions and facts. Let f ∈ Ratd and E ⊂ P1 be a non-empty compact
f -invariant set, i.e. such that f(E) ⊂ E. We say that E is f -hyperbolic if one of the following
equivalent conditions is satisfied:

1. there exist C > 0 and α > 1 such that |(fn)′(z)| ≥ Cαn for all z ∈ E and all n ≥ 0,
2. for some appropriate metric on P1, there exists K > 1 such that |f ′(z)| ≥ K for all z ∈ E.

Such a constant K is called a hyperbolicity constant for f .

Recall also that a holomorphic motion of a set X ⊂ P1 over a complex manifold Λ centered at
λ0 ∈ Λ is a map h : Λ×X → P1 such that:

• hλ0 := h(λ0, ·) : X → P1 is the identity map,
• hλ := h(λ, ·) : X → P1 is injective for all λ ∈ Λ,
• λ 7→ h(λ, x) is holomorphic on Λ for all x ∈ X.

First, notice that the classical λ-lemma of Mañé-Sad-Sullivan [MSS] says that any holomor-
phic motion of X extends continuously to a holomorphic motion of the closure of X. It is known
that a hyperbolic set E admits a natural holomorphic motion (see, e.g., [S, Property (1.2) page
229] or [J, Theorem C]).
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Theorem 4.2. — Let (fλ)λ∈B(0,r) be a holomorphic family of degree d rational maps

parametrized by a ball B(0, r) ⊂ Cm. Let E0 ⊂ P1 be a compact f0-hyperbolic set. Then
there exist 0 < ρ ≤ r and a unique holomorphic motion

h : B(0, ρ)× E0 −→ P1

(λ, z) 7−→ hλ(z)

centered at 0 and such that fλ ◦ hλ(z) = hλ ◦ f0(z) for all z ∈ E0.

The proof of Theorem 4.2 relies on the compactness of E0 and on the next lemma, which is an
immediate corollary of the Implicit Function Theorem. Let K > 1 be a hyperbolicity constant
for E0 for a suitable metric α. In what follows, we denote by |.|α, Dα the distance and disk with
respect to that metric. Up to reducing K and r, we can find a δ-neighborhood Nδ of E0 in P1

such that

(3) |f ′λ(z)|α ≥ K > 1 for all (z, λ) ∈ Nδ × B(0, r) .

Lemma 4.3. — Under the assumption of Theorem 4.2, there exist ε > 0 and 0 < ρ ≤ r, such
that for all z0 ∈ E0, there exists a map f−1

z0,λ
(w) which depends holomorphically on (λ,w) ∈

B(0, ρ)× Dα(f0(z0), ε) and taking values in Dα(z0, ε) which satisfies

1. f−1
z0,0

(
f0(z0)

)
= z0,

2. fλ
(
f−1
z0,λ

(w)
)

= w for all (λ,w) ∈ B(0, ρ)× Dα(f0(z0), ε), and

3.
∣∣∣(f−1

z0,λ

)′
(w)
∣∣∣
α
≤ 1

K for all (λ,w) ∈ B(0, ρ)× Dα(f0(z0), ε).

4.2. Transversality for Misiurewicz maps

It is well known that if f is a k-Misiurewicz degree d rational map but not a flexible Lattès
map, then all periodic Fatou components of f are attracting basins and f does not carry any
invariant line field on its Julia set. Moreover, there exists a positive integer n0 ≥ 1 such that
the set

Ef := {fn(c) ;n ≥ n0 and c ∈ C(f) ∩ Jf}
is a compact hyperbolic f -invariant set (see e.g. [Asp1, G1]).

If f ∈ Ratd is k-Misiurewicz, C(f) ∩ Jf = {c1, . . . , ck} and, for all n ∈ N and all i 6= j ≤ k,
fn(vj) 6= vi, where vi = f(ci), we let h : B(f, r) × Ef → P1 be the dynamical holomorphic
motion of Ef . Since all the critical points in the Julia set of f are simple (vi 6= vj), we may
follow them holomorphically in the neighborhood of f , as well as the critical values: denote by
vi(λ), 1 ≤ i ≤ k, the corresponding critical values of fλ.

Given a holomorphic curve λ 7→ fλ ∈ Ratd passing through f = fλ0 , it will be convenient to
denote by η the meromorphic vector field on P1 defined by

η(z) :=

d
dλ |λ=λ0

fλ(z)

f ′(z)
.

Recall that the pullback of η by fn is given in coordinates by (fn)∗η(z) = η◦fn(z)
(fn)′(z) . As before,

let ξin(λ) := fnλ (vi(λ)).

Lemma 4.4. — Let (fλ)λ∈Λ be a holomorphic curve of rational maps with a marked critical
value vi(λ). Assume that the orbit of vi := vi(λ0) does not meet the critical set of f := fλ0. We
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have, for all n ≥ 1: :

1

(fn)′(vi)

d

dλ |λ=λ0

ξin(λ) =
d

dλ |λ=λ0

vi(λ) +

n−1∑
k=0

(fk)∗η(vi).

Moreover, if vi lies in a hyperbolic set Ef and hλ(vi) denote its holomorphic motion, then

d

dλ |λ=λ0

hλ(vi) = −
+∞∑
n=0

(fn)∗η(vi).

Proof. — To lighten the notations, we will denote by v̇i, ḟ(z), etc. the derivatives d
dλ |λ=λ0

vi(λ),
d
dλ |λ=λ0

fλ(z), etc.

We have: ξin(λ) = fnλ (vi(λ)) = fλ ◦ fn−1
λ (vi(λ)), so

d

dλ |λ=λ0

ξin(λ) = ḟ ◦ fn−1(vi) + f ′ ◦ fn−1(vi) ·
d

dλ |λ=λ0

ξin−1(λ).

Therefore
d
dλ |λ=λ0

ξin(λ)

(fn)′(vi)
=
η ◦ fn−1(vi)

(fn−1)′(vi)
+

d
dλ |λ=λ0

ξin−1(λ)

(fn−1)′(vi)
= (fn−1)∗η(vi) +

d
dλ |λ=λ0

ξin−1(λ)

(fn−1)′(vi)
.

The first statement then follows by induction on n.
Let us now prove the second statement. By Theorem 4.2, there exists a holomorphic family

of homeomorphisms hλ : Ef → P1, with hλ0 = Id and such that

hλ ◦ f = fλ ◦ hλ.

Differentiating with respect to λ at λ = λ0, we get:

ḣ ◦ f = ḟ + f ′ · ḣ,

which we may rewrite as f∗ḣ − ḣ = η. Since Ef is hyperbolic, the operator f∗ is strictly
contracting on the space of vector fields on Ef , and therefore

ḣ(vi) = −
+∞∑
n=0

(fn)∗η(vi),

ending the proof.

We can deduce the following from Theorem B of [Ast] (see the discussion after Theorem B
in [Ast]):

Proposition 4.5. — Let f ∈ Ratd be k-Misiurewicz, C(f)∩Jf = {c1, . . . , ck} and, for all n ∈ N
and all i 6= j ≤ k, fn(vj) 6= vi. Then, there exists a local complex submanifold Λf ⊂ Ratd which
contains f , such that the holomorphic map

λ ∈ Λf 7−→ (v1(λ)− hλ(v1), . . . , vk(λ)− hλ(vk)) ∈ Ck

defines local coordinates at f0 = f in Λf . Furthermore, the limits

τi := lim
n→∞

Dξin(0)

(fn)′(vi)

exist as linear maps on T0Λf , for 1 ≤ i ≤ k, and τ1, . . . , τk are linearly independent.
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4.3. The generalized large scale condition for k-Misiurewicz maps

We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. — Consider the set

Ωn :=

{
λ ∈ Λf , ∀i ≤ k, |hλ(vi)− vi(λ)| ≤ 1

|(fn)′(vi)|

}
,

then, by Proposition 4.5, it can written as L−1
n (Ω) where

Ln(t1, . . . , tk) =

(
t1

|(fn)′(v1)|
, . . . ,

tk
|(fn)′(vk)|

)
and Ω is some polydisk around f in Λf . For all 1 ≤ i ≤ k, let φin : Ω→ C be defined by:

φin(λ) := ξin

(
λ

|(fn)′(vi)|

)
− ξin(0).

Let φn : Ω→ Ck be defined by φn := (φin)1≤i≤k.
We start by proving that the sequence (φn)n∈N is bounded, hence normal, on some small

polydisk ρ̃ · Ω. Let i ≤ k, let us bound |ξin(λ)− ξin(0)|. We have:

|ξin(λ)− ξin(0)| = |fnλ (vi(λ))− fn(vi)|
≤ |fnλ (vi(λ))− fnλ (hλ(vi))|+ |fnλ (hλ(vi))− fn(v)|.(4)

By chaining Lemma 4.3, there exists ε > 0 such that for all λ small enough, for all n ∈ N,
there is an inverse branch gn,λ of fnλ that is well-defined on Dα(fnλ (hλ(vi)), ε), and that maps
fnλ (ht(vi)) to hλ(vi). As the standard metric and the metric α are equivalent, we have that
the map gn,λ is univalent on some disk D(fnλ (hλ(vi)), C · ε) for some constant C that does not
depend on n nor λ. By Koebe’s distortion theorem, the distortion of gn,λ is uniformly bounded
on D(fnλ (hλ(vi)), C · ε/2).

We prove by induction on n that there is a constant 0 < ρ̃ < 1 depending only on f such that
if |hλ(vi) − vi(λ)| ≤ ρ̃

|(fn)′(vi)| , then |fnλ (vi(λ)) − fnλ (hλ(vi))| ≤ Cε
4 . Assume it is true for n − 1.

Observe first that by Lemma 6.6 of [G1], there exists C1 > 0 depending only on f and on the
metric, such that we have:

(5) max

(
|(fn−1

λ )′(hλ(vi))|
|(fn−1)′(vi)|

,
|(fn−1)′(vi)|
|(fn−1

λ )′(hλ(vi))|

)
≤ e(n−1)C1‖λ‖ ≤ 2,

by our choice of λ. We can thus apply the induction hypothesis and the bound on the distortion
of gn−1,λ, and then (5) to find:

|fn−1
λ (vi(λ))− fn−1

λ (hλ(vi))| ≤ 2|(fn−1
λ )′(hλ(vi))| · |vi(λ)− hλ(vi)|

≤ 4|(fn−1)′(vi)| · |vi(λ)− hλ(vi)|.
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Let M := supλ∈B(0,ρ) ‖f ′λ‖∞ and m := ‖(f ′)−1‖Ef ,∞ < +∞ we deduce:

|fnλ (vi(λ))− fnλ (hλ(vi))| ≤M |fn−1
λ (vi(λ))− fn−1

λ (hλ(vi))|
≤ 4M |(fn−1)′(vi)| · |vi(λ)− hλ(vi)|
≤ 4Mm|(fn)′(vi)| · |vi(λ)− hλ(vi)|

≤ 4Mm|(fn)′(vi)| ·
ρ̃

|(fn)′(vi)|

≤ Cε

4

for ρ̃ small enough, independent of n. In particular,

|fnλ (vi(λ))− fnλ (hλ(vi))| = O(1).

It remains to bound the second term of (4). To do that, just note that |fnλ (hλ(vi))− fn(vi)| =
|hλ(fn(vi)) − fn(vi)|, and that hλ extends continuously to a holomorphic motion of P1 by the
λ-lemma, hence in particular h is uniformly continuous on B(f, r)× Ef .

Therefore (φn) is bounded, hence normal on ρ̃ · Ω. If φ is a limit of a subsequence of (φn),
then Proposition 4.5 implies that Dφ(0) is invertible, hence that φ is open near 0. So there
is some polydisk D(0, 2δ)k such that D(0, 2δ)k ⊂ φ(ρ̃ · Ω) and therefore, for arbitrarily large n,
D(0, δ)k ⊂ φn(ρ̃·Ω). Again, as Dφ(0) is invertible, its graph is vertical near the origin (restricting
δ if necessary); by normality, this is also the case for φn for n large enough which is exactly
what we want.

5. The large scale condition and good Collet-Eckmann maps

In the present section, we prove Theorem D and Theorem C. We start by recalling the conditions
appearing in Theorem C, which correspond to ”good” Collet-Eckmann maps for which we will
be able to prove that they also satisfy the large scale condition.

Let f be a rational map, and denote by C(f) its critical set. Recall the Collet-Eckmann
condition:

Collet-Eckmann (CE) : there exist γ, γ0 > 0 such that for all v ∈ f(C(f)) and n ≥ 0

|(fn)′(v)| ≥ enγ−γ0

and the so-called backward Collet-Eckmann condition:

Backward Collet-Eckmann (CE2) : for all n ≥ 0 and x ∈ f−n(C(f))

|(fn)′(x)| > enµ−µ0 .

Additionally, recall the following conditions appearing in the papers [Ts] and [Asp2]:

Basic Assumption (BA) : there exists α > 0 such that for all v ∈ f(C(f)) and n ≥ 0

ln |f ′(fn(v))| > −nα.

Free Assumption (FA) : there exist η, ι > 0 such that for all v ∈ f(C(f)) and n > 0

n−1∑
j=0

d(fj(v),C(f))≤η

ln |f ′(f j(v))| > −nι.
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Aspenberg’s Basic Assumption (BA’) : there exists α > 0 such that for all v ∈ f(C(f)),
c ∈ C(f) and n ≥ 0

|fn(v)− c| > e−nα

We will now describe a somewhat more technical key condition from [Asp2] (definition 1.15),
which we will soon prove implies the condition (FA) with appropriate constants. Let γ, γ0 > 0
and assume that f satisfies CE with constants γ, γ0. Fix 0 < β � γ and 0 < δ � 1. For some
v ∈ f(C(f)), we say that f makes a deep return at time ν if

d(fν(v), C(f)) < δ2.

The corresponding bound period p is defined by

p := min{k ≥ 0 : |fk+1(fν(v))− fk+1(c)| ≥ e−βk},

where c is the closest critical point to fν(v). Only deep returns outside bound periods are
considered. Thus, for a given critical value v we can enumerate them

ν0(v) < ν0(v) + p0(v) < ν1(v) < . . .

The length of the free orbit between two consecutive deep returns is in this case

µi(v) := νi(v)− (νi−1(v) + pi−1(v)) and µ0(v) := ν0(v).

We omit the definition of shallow returns in [Asp2], as they are not needed here.

Aspenberg’s Free Assumption (FA’) : there exist δ, β > 0 and τ ∈ (0, 1) such that for
all v ∈ f(C(f)) and s ≥ 0

s∑
i=0

µi(v) > (1− τ)(νs(v) + ps(v)).

We will use the notation BA(α), CE(γ, γ0), FA(η, ι), etc. to refer to those conditions with
the specified constants α, γ, η, ι, etc.

5.1. Getting a positive measure set of good parameters

This subsection is devoted to the proof of Theorem C. In order to find a set of positive measure
of good Collet-Eckmann rational maps, our strategy is as follows: first, we deduce from the
main result of [Asp2] the existence of a positive measure set of Collet-Eckmann rational maps
satisfying all of the previous conditions with appropriate constants. Then, we follow Tsujii’s
presentation and improvement [Ts] of the Benedicks-Carleson theory for interval maps [BC].
This will enable us to obtain precise distortion estimates for those good parameters, from which
we will deduce that the large scale condition is satisfied.

From now on and through all of this section, f0 is a fixed Collet-Eckmann rational map such
that each critical point of f0 is simple. We can parametrize analytically a neighborhood O of f0

in parameter space by means of an analytic map F : O × P1 → P1, and up to restricting O we
may assume that each of the following conditions hold for a certain constant κ > 0:

(K1) : ‖F‖C2 < κ.

(K2) : 1
κ <

|f ′λ(z)|
d(z,C(fλ)) < κ, if z /∈ C(fλ).

(K3) : |∂z log f ′λ(z)| < κ
d(z,C(fλ)) , if z /∈ C(fλ).

(K4) : d(ci(λ), cj(λ
′)) > 5

κ , for all λ′ ∈ O and i 6= j.
(K5) : ‖ci‖C1 < κ, for all i.
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(K6) : if 0 < r < κ−1 and c ∈ C(fλ), then

D(c, κ−1√r)⊆f−1
λ (D(fλ(c), r))⊆D(c, κ

√
r).

We start by recalling the definition of the distortion of an analytic map.

Definition 5.1. — Let ψ : Ω→ C be holomorphic. We define its complex distortion by

Dist(ψ,Ω) := sup
x,y∈Ω

∣∣logψ′(x)− logψ′(y)
∣∣ ∈ [0,∞].

We are only interested in small values of the distortion, and therefore log (referring to the
principal branch of the logarithm) will always be well-defined on ψ′(Ω). Let gi : Ui → Ui+1 be
holomorphic maps for i = 1, . . . , n. Observe that

(6) Dist(gn ◦ . . . ◦ g1, U1) ≤
n∑
i=1

Dist(gi, Ui).

Assume that ψ : D(a, r)→ C has Dist(ψ,D(a, r)) ≤ 50−1. It is relatively easy to check that

(7) D
(
ψ(a),

9r

10
|ψ′(a)|

)
⊆ψ(D(a, r))⊆D

(
ψ(a),

11r

10
|ψ′(a)|

)
.

Definition 5.2. — Let U⊆C be a connected open set. We define its inner diameter as follows

δ(U) := sup
x,y∈U

inf
x,y∈Γ⊆U

l(Γ),

where the inf is taken over all curves Γ⊆U which connect x to y.

Combining with the definition of the distortion, we obtain the following upper bound

(8) Dist(ψ,U) ≤ δ(U) sup
z∈U
|∂z logψ′(z)|.

Another natural property of the inner diameter is

(9) δ(ψ(U)) ≤ δ(U) sup
z∈U
|ψ′(z)|.

For any λ ∈ O, n ∈ N∗ and z ∈ P1 \
⋃n−1
j=0 f

−j
λ (C(fλ)), we define

(10) a+ = a+(z, n, fλ) :=

400eκ2
n−1∑
j=0

|(f jλ)′(z)|
|f ′λ(f jλ(z))|

−1

.

As an immediate consequence of the previous definition, we observe

(11) a+(z, n; fλ) · |(fnλ )′(z)| =

400eκ2
n−1∑
j=0

1

|(fn−jλ )′(f jλ(z))| · |f ′λ(f jλ(z))|

−1

<
1

400eκ
.

Lemma 5.3. — Let f be a rational map satisfying (K2, K3, K6). Let D(y, r)⊆D(z, a+). Then
for all 0 ≤ j < m ≤ n

Dist
(
fm−jλ , f jλ(D(y, r))

)
<

r

100a+
.
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Proof. — We show by induction that for all j = 0, . . . , n− 1

(12) Dist
(
fλ, f

j
λ(D(y, r))

)
< 4eκ2r

|(f jλ)′(z)|
|f ′λ(f jλ(z))|

,

and conclude by the definition (10) of a+ and the bound (6). Let 0 ≤ j < n and assume (12)
holds for all 0 ≤ i < j and all D(y, r)⊆D(z, a+). Using (6),

Dist(f jλ,D(z, a+)) ≤
j−1∑
i=0

Dist
(
fλ, f

i
λ(D(z, a+))

)
< 10−2,

thus, by (K2)

diam(f jλ(D(z, a+)))

d(f jλ(z), C(fλ))
< 2e0.01κa+ |(f

j
λ)′(z)|

|f ′λ(f jλ(z))|
< 10−2.

As a consequence of the above inequalities, using bounds (8), (K3), (K2) and (9), we obtain

Dist(fλ, f
j
λ(D(y, r))) < κ

δ(f jλ(D(y, r)))

d(f jλ(D(y, r)), C(fλ))
≤ κ

δ(f jλ(D(y, r)))

d(f jλ(D(z, a+)), C(fλ))

< 1.01κ
δ(f jλ(D(y, r)))

d(f jλ(z), C(fλ))
< 1.01e0.01κ2 |(f

j
λ)′(y)|δ(D(y, r))

|f ′λ(f jλ(z))|

< e0.03κ2 2r|(f jλ)′(z)|
|f ′λ(f jλ(z))|

,

which completes the inductive proof.

For any set A⊆P1 and any r > 0, we denote the r-neighborhood of A by

B(A, r) :=
⋃
z∈A

D(z, r)

and its punctured neighborhood by

B(A, r)∗ := B(A, r) \A.
Let C(f, δ) := B(C(f), δ) and C(f, δ)∗ := B(C(f), δ)∗.

For z ∈ C(f, κ−1)∗, we define

(13) k(z) := min{k ≥ 1 ; log |(fk)′(f(c))| > 1− 1.9 log |f ′(z)|},
where c is the closest critical point of f to z.

Lemma 5.4. — Let α, γ, γ0, µ, µ0 > 0, and let f be a rational map satisfying BA(α), CE(γ, γ0)
and CE2(µ, µ0). If α < γ

200 , there exist δ0 > 0 such that for all 0 < δ < δ0 and z ∈ C(f, δ)∗

(1) − log |f ′(z)|
log κ < k(z) + 1 < −2 log |f ′(z)|

γ ,

(2) log |(fk(z)+1)′(z)| > −0.9 log |f ′(z)| > γ
3 (k(z) + 1) + γ0 + µ0 + 1,

(3) log |f ′(f j(z))| > 0.1 log |f ′(z)| for all 0 < j ≤ k(z),

(4)
∣∣∣log

∣∣∣fj(f(z))−fj(f(c))
f(z)−f(c)

∣∣∣− log |(f j)′(f(c))|
∣∣∣ ≤ 1, for all 0 ≤ j ≤ k(z).

Proof. — Let c be the critical point which is closest to z and v := f(c). Claim (1) follows from
(K1) and (CE). From (BA) we deduce that

log |f ′(f i(v))| > −k(z)
γ

200
, for all 0 ≤ i ≤ k(z),
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provided δ is sufficiently small and thus k(z) is large. Combined with claim (1), we obtain

log |f ′(f i(v))| > 10−2 log |f ′(z)|, for all 0 ≤ i ≤ k(z).

By (K2)

(14) d(f(z), v) < κ3|f ′(z)|2.

By the definition (10), we immediately obtain

(15) a+(z, n; f) ≥
(

400eκ2n max
0≤j<n

|(f j)′(z)|
|f ′(f j(z))|

)−1

.

Combining the previous three inequalities with the definition (13) of k(z), we obtain

(16) d(f(z), v) < a+(v, k(z); f).

All other claims follow from Lemma 5.3 in v.

Remark. — An inspection of the proof of Lemma 5.4 shows that we did not in fact use the
property CE2. However, in further applications of this lemma, we will apply it to rational maps
that do satisfy CE2, and we will need the estimate from item (2) in which µ0 appears.

We are now able to reconcile the difference in the definition of the conditions FA and FA’:

Lemma 5.5. — Let γ, γ0, µ, µ0 > 0, let α < γ/200 and let fλ ∈ O satisfying CE(γ, γ0),

CE2(µ, µ0), BA’(α) and (K1-6). Let τ > 0. There exist δ̂ > 0 and β̂ > 0 such that if

fλ satisfies FA’(δ, β, τ) with δ < δ̂ and β < β̂, then fλ satisfies FA(η, ι) with η := δ2 and

ι := τ log κ ·max
(

1, 3β+log κ
γ+β )− 1

)
.

Proof. — Let δ̂2 := δ0 from Lemma 5.4, and let β̂ := 0.05γ. Let f := fλ be a rational map
satisfying all the above conditions and FA’(β, δ, τ) with δ < δ̂ and β < β̂. Let ν be a deep return
for a critical value v′, i.e. d(fν(v′), c) ≤ δ2 for some critical point c. Let v = f(c).

Let k0 := k(fν(v′)) and z0 = fν+1(v′). Then, by (16), z0 ∈ D := D(v, a+(v, k(fν(v′)))). We
claim that

(17) k0 + 1 < p

where p is the length of the bound period. In order to prove the claim, we need to prove that
for all j ≤ k0, |f j+ν(v′)− f j(c)| < e−βj (by definition of p). Let z := fν(v).

By Lemma 5.4(4), we have that for all j ≤ k0,

|f j+ν(v′)− f j(c)| ≤ e|(f j)′(f(c))| · |f(z)− f(c)|

and by (K6), we have d(f(z), f(c)) ≤ κd(z, c)2 ≤ κ3|f ′(z)|2. By definition of k0, we also have
|(f j)′(f(c))| ≤ e · |f ′(z)|−1.9. Therefore we have

|f j+ν(v′)− f j(c)| ≤ κ3|f ′(z)|0.1.

On the other hand, by Lemma 5.4(1),

e−βj ≥ e−βk0 ≥ |f ′(z)|2β/γ .

By the choice of β̂, we have 2β
γ ≤ 0.1, and therefore, up to taking an even smaller δ̂, we have

proved the claim (17).
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We consider the following sets:

Vk := D ∩ f−k(D(fk(v), 3e−kβ)), V k := ∩kj=k0
Vj , V := V p

Uk := D ∩ f−k
(
D
(
v, 2e−kβ

|(fk)′(v)|

))
, Uk := ∩kj=k0

Uj , U := Up

Wk := D ∩ f−k(D(fk(v), e−kβ)), W k := ∩kj=k0
Wj , W := W p

Let us show that for all k0 ≤ k ≤ p

(18) Dist(fk, V k) <
1

50
.

By inequality (6):

Dist(fk, V k) ≤ Dist(fk0 , V k) +
k−1∑
j=k0

Dist(f, f j(V k))

≤ Dist(fk0 , D) +
k−1∑
j=k0

Dist(f,D(f j(v), 3e−jβ)).

By Lemma 5.3, the first term is < 10−2. By Lemma 2.1 in [Asp2], it is enough to show that
for all y ∈ D(f j(v), 3e−jβ)

k−1∑
j=k0

∣∣∣∣ f ′(y)

f ′(f j(v))
− 1

∣∣∣∣ < 10−3.

By (BA) and (K1), for y ∈ D(f j(v), 3e−jβ), one has:∣∣∣∣ f ′(y)

f ′(f j(v))
− 1

∣∣∣∣ < κ3e−j(β−α).

By Lemma 5.4(1) and (K2), k0 > − log |f ′(fν(v))|
log κ − 1 > −2 log δ

log κ − 2. So, by Lemma 2.1 in [Asp2]:

k−1∑
j=k0

∣∣∣∣ f ′(y)

f ′(f j(v))
− 1

∣∣∣∣ < k−1∑
j=k0

κe−j(β−α)

<
3κe−k0(β−α)

1− e−(β−α)
<

κe2δ
2(β−α)

log κ

1− e−(β−α)

which completes our argument, as δ can be taken arbitrarily small.
We show that Uk ⊂ V k for all k0 ≤ k ≤ p. If not, let k0 < k such that there is x ∈ Uk\V k.

Taking k and x minimal, we assume that [x, v] ∈ V k−1, [v, x[⊂ V k and x ∈ ∂Vk. In particular,

Dist(fk, [v, x]) ≤ 1

50

hence, as x ∈ Uk:

3e−kβ = |fk(x)− fk(v)| ≤ 1.03|x− v|.|(fk)′(v)| ≤ 2.06e−kβ,

a contradiction.
We show now that W k ⊂ Uk for all k0 ≤ k ≤ p. If not, let k0 < k and x ∈W k minimal, such

that [x, v] ∈ Uk ⊂ V k, [v, x[⊂ V k and x ∈ ∂Uk. In particular,

Dist(fk, [v, x]) ≤ 1

50
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hence, as x ∈ ∂Uk:

e−kβ > |fk(x)− fk(v)| ≤ 0.97|x− v|.|(fk)′(v)| = 1.94e−kβ,

a contradiction.
In particular, we have W ⊂ U ⊂ V therefore [v, z0] ⊂ V which implies that ∀k0 ≤ k ≤ p:

(19) 0.97.|z0 − v|.|(fk)′(v)| < |fk(z0)− fk(v)| < 1.03.|z0 − v|.|(fk)′(z0)|

We have seen that p > k0 + 1 > − log |f ′(fν(v))|
log κ . Thus, by (FA’):

(20)
s∑
i=0

− log |f ′(fνi(v)(v))| < log κ
s∑
i=0

pi(v) < τ log κ(νs(v) + ps(v)).

By inequalities (K2) and (19) applied for j = p− 1, (CE) and the definition of p,

κ−2|f ′(z)|2 < |f(z)− f(c)| < eγ+γ0−p(γ+β)+1,

thus

p < − 3

γ + β
log |f ′(z)|.

Let Σ1 and Σ2 be the sums of log |f ′(f j(z))| respectively over the sets

{0 < j ≤ p : f j(z) ∈ C(f, δ2)} and {0 < j ≤ p : f j(z) /∈ C(f, δ2)}.

Observe that Σ := Σ1+Σ2 = log |(fp)′(z0)|. By (K2), inequalities (19) and (7) and the definition
of p, we have

Σ + 2 log |f ′(z)| > Σ + log |f(z)− f(c)| − 2 log κ ≥ −pβ − 3 log κ,

thus by (K1)

−Σ1 < Σ2 + 2 log |f ′(z)|+ pβ + 3 log κ < log |f ′(z)|+ p(β + log κ)

< − log |f ′(z)|
(

3
β + log κ

γ + β
− 1

)
.

Combined with inequality (20) it shows that Aspenberg’s (FA’) implies (FA) with constants

η := δ2 and ι := τ log κ ·max
(

1, 3β+log κ
γ+β − 1

)
.

By the main result of [GS], Collet-Eckmann rational maps satisfy the backward Collet-
Eckmann condition at critical points of maximal multiplicity. In our setting, all critical points
of f0 are simple. However, we need uniform constants for the backward contraction in a neigh-
borhood of O of f0.

Let γ, γ0 > 0 such that f0 satisfies CE(γ, γ0). A careful inspection of the proof of Proposition
1 in [GS] reveals the following facts. Dynamically defined constants M,R′ and R can be chosen
to be uniform in a neighborhood of f0. They also depend on λ1 and C1, which in our setting
are expressed by constants γ, γ0. A C1 continuity argument, similar to the proof of the above
proposition, shows that constants C2t and L can be chosen uniformly for maps fλ satisfying
CE(γ, γ0) in a neighborhood of f0. Observe that the constant K3.1 only depends on R′.

This observation proves the following:

Proposition 5.6. — There exist O, a neighborhood of f0 in parameter space, and constants
µ, µ0 > 0 such that every fλ with λ ∈ O satisfying CE(γ, γ0) also satisfies CE2(µ, µ0).

We now restate for the reader’s convenience the main result from [Asp2]:
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Theorem 5.7 (Aspenberg, [Asp2]). — Let f0 be a strongly Misiurewicz rational map with

simple critical points. If f0 is not a flexible Lattès map, there exist γ, γ0 > 0 and â, δ̂, τ̂ > 0
such that for all α < α̂, δ < δ̂, τ < τ̂ , the map f0 is a Lebesgue point of density of rational maps
satisfying CE(γ, γ0), BA’(α), and FA’(β, δ, τ) with β := 10α.

Putting together those results, we are now ready to prove Theorem C:

Proof of Theorem C. — Let γ, γ0 > 0 be the constants given by Theorem 5.7. Let µ, µ0 > 0 be
the constants given by Proposition 5.6. Let η̂ := δ̂2 and

ι̂ := sup
0<β≤10α̂

τ̂ log κ ·max

(
1, 3

β + log κ

γ + β
− 1

)
.

Let α < min(α̂, γ/200), η < η̂ and ι < ι̂.
Let E be the set of rational maps satisfying CE(γ, γ0), BA’(α/κ), and FA’(β, δ, τ) with β :=

10α, δ2 := η, and τ > 0 small enough to ensure that τ max
(

1, 3β+log κ
γ+β )− 1

)
≤ ι.

By Lemma 5.5, each f ∈ E satisfies FA(η, ι). By Proposition 5.6, each f ∈ E satisfies
CE2(µ, µ0). By (K2), each f ∈ E satisfies BA(α). By Theorem 5.7, f0 is a Lebesgue density
point of E.

5.2. Proving the large scale condition for good parameters

In the present section, we prove Theorem D. Let F be the space of complex lines passing through
0 in CN and let L be the unique volume form on F which is invariant under the action of the
unitary group U(N) and of total mass 1. We shall rely on the following result of Sibony and
Wong [SW].

Theorem 5.8 (Sibony-Wong). — Let m > 0 be a positive constant. Let F ′ ⊂ F be such that
L(F ′) ≥ m and let Σ denote the intersection of the family F ′ with the ball B(0, r) of CN . Then
any holomorphic function h on a neighborhood of Σ can be extended to a holomorphic function
on B(0, ρ̃r) where 0 < ρ̃ ≤ 1 is a constant depending on m and N but independent of F ′ and r.
Moreover, we have

sup
B(0,ρ̃r)

|h| ≤ sup
Σ
|h|.

Another key ingredient will be a transversality property of the differentials of the ξin. This
property first appeared in the work of Tsujii in the real dynamics case. It was proved for some
class of rational maps (containing notably Collet-Eckmann polynomials) by Levin in [Le]. In
[Ast], this property was extended to rational maps having no invariant line fields, and so (see
Lemma 5.14) this property is satisfied by all Collet-Eckmann rational maps.

From now on, we will not rely on the result of Aspenberg ([Asp2]). We will also not make any
more use of the conditions FA’ or BA’. Instead, we fix in this whole subsection some rational map
f satisfying CE(γ, γ0), CE2(µ, µ0), BA(α) and FA(η, ι). We denote by S2d−2 the unit sphere in
C2d−2.

The main goal of this section is to prove the following distortion estimate for rational maps
f satisfying all the previous conditions:

Proposition 5.9. — Let γ, γ0, µ, µ0 > 0 and α < γ/200. Let η > 0. There exists ι > 0
such that if f satisfy CE(γ, γ0), CE2(µ, µ0), BA(α) and FA(η, ι), then there exist C > 0, a set
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E ⊂ S2d−2 such that λ(E) > 0 and an infinite set G⊆N of natural numbers with the following
property: for every n ∈ G and all ci ∈ C(f) there exists rn,i > 0 such that for every u ∈ E

Dist(ξin,D(0, rn,i) · u) < 10−2, and

1

C
< rn,i|(fn)′(f(ci))| < C.

5.3. Distortion estimates for a single CE map

Lemma 5.10. — Assume α < γ/200. There exist δ1 > 0 such that for all 0 < δ < δ1, if n > 0
and z ∈ P1 satisfy

(21) f j(z) /∈ C(f, δ) for all 0 ≤ j < n and fn(z) ∈ C(f, δ),

we have
|(fn)′(z)| > enµ−µ0−1.

Proof. — For δ > 0 and n ∈ N denote

A(n, δ) := f−n(C(f)) \
n−1⋃
j=0

f−j(C(f, δ2)).

Let us prove that if W is a connected component of f−n(C(f, δ)) which intersects A(n, δ) then

(22) Dist(fn,W ) < 10−2.

Let z ∈W ∩A(n, δ), l := −2µ−1 log δ and Σ1,Σ2,Σ3 the sums of

|(fn−j)′(f j(z)) · f ′(f j(z))|−1

on the following sets of j ∈ N, respectively:

{n− l ≤ j < n : f j(z) ∈ C(f,
√
δ)},

{n− l ≤ j < n : f j(z) /∈ C(f,
√
δ)}, {0 ≤ j < n− l}.

If δ is small and y ∈ C(f,
√
δ) then Lemma 5.4, claims (3) and (4), provides k > 0 such that

log |(fk+1)′(y)| > −0.9 log |f ′(y)| and for all 0 < j ≤ k, f j(y) /∈ C(f, δ). Combined with (K2)
and (CE2) at fn(z) ∈ C(f), we obtain

Σ1 < l ·
(
δ2

κ

)−0.1

eµ0 , Σ2 < l · κδ−0.5eµ0 , Σ3 <
∑
j>l

κδ−2e−jµ+µ0 .

By inequality (11)

a+(z, n, f) · |(fn)′(z)| = (400eκ2(Σ1 + Σ2 + Σ3))−1 > 2δ .

Lemma 5.3 and observation (7) complete the proof of claim (22).
Let z ∈ P1 satisfying (21) for some n > 0. Let 0 ≤ k0 ≤ n be the smallest integer such that

fk0(z) ∈ W , a connected component of f−n+k0(C(f, δ)) which contains z′ ∈ A(n − k0, δ). We
prove that k0 = 0 and use inequality (22) and (CE2) to complete the proof.

Suppose k0 > 0. Let J be the connected component of f−1(W ) containing y := fk0−1(z).
There are two possibilities.
Case 1. There exists c ∈ C(f) ∩ J . Then by (21), y /∈ D(c, δ) and by (K6) diam(W ) ≥
d(f(y), f(c)) > κ−2δ2. Then by (22) and (7)

|(fn−k0)′(f(c))| < 2
2δ

diam(W )
< 4κ2δ−1.
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Then by (CE)

γ(n− k0) < log |(fn−k0)′(f(c))|+ γ0 < log(δ−1) + log(4κ2) + γ0.

As fn−k0+1(c) ∈ C(f, δ), by (BA) and (K2) we obtain

−(n− k0)α < log |f ′(fn−k0+1(c))| < log δ + log κ.

As α < γ/200, taking δ sufficiently small, we obtain a contradiction.
Case 2. J ∩ C(f) = ∅. Let z′′ := (f |J)−1(z′) /∈ A(n − k0 + 1, δ). There exists c ∈ C(f) with
d(z′′, c) < δ2. As c /∈ J , we may choose x ∈ [z′′, c] ∩ ∂J . By (K6), d(z′, f(x)) < κ2δ4. As

f(x) ∈ ∂W , by (22) and (7) applied to f−(n−k0)

W⊆D(z′, 2κ2δ4) and hence J⊆D(z′′,
√

2κ2δ2).

But this implies d(y, c) ≤ diam(J) + d(z′′, c) < δ, which contradicts (21).

Let δ2 := min(δ0, δ1) such that lemmas 5.4 and 5.10 apply for all δ < δ2.
We will use the following variant of a well known result due to Mañé [Ma]. We provide a

short proof using the ExpShrink property of (CE) maps [PRLS, Main Theorem]: there exist
r, γ′ > 0 such that for all z ∈ J (the Julia set of f), every n > 0 and every connected component
W of f−n(D(z, r))

diam(W ) < e−nγ
′
.

Proposition 5.11. — Let K := P1 \C(f, δ2) be a compact set. There exist γ′, γ′0 > 0 such that

for all n ∈ N and z ∈ ∩n−1
i=0 f

−i(K)

|(fn)′(z)| > enγ
′−γ′0 .

Proof. — As all critical orbits of f satisfy the Collet-Eckmann condition, by the classification
of Fatou domains, J = P1. Using ExpShrink, by continuity and by eventually shrinking r, we
may assume that for all i < n

diam(f i(W )) <
d(K, C(f))

2
,

where W is an arbitrary connected component of f−n(D(z, r)). Then fn is univalent on W and
we conclude by the Koebe lemma applied to f−n on D(z, r/2) that if n is large enough and
f i(z) ∈ K for i = 0, . . . , n− 1 then

|(fn)′(z)| > 3.

which completes the proof.

Let γ′ and γ′0 be provided by Proposition 5.11. Let

(23) σ := min(γ/3, µ, γ′) and σ0 := log κ+ γ′ + µ0 + γ′0 + 1.

Lemma 5.12. — Let z ∈ P1 and n > 0 such that for all 0 ≤ i < n, f i(z) /∈ C(f). Let
I := {0 ≤ i < n : f i(z) ∈ C(f, δ2) and i + k(f i(z)) ≥ n}. Let β := 1 if I = ∅, otherwise
β := min{d(f i(z), C(f)) : i ∈ I}. Then

log |(fn)′(z)| > log β + nσ − σ0.

Proof. — If for all 0 ≤ i < n, f i(z) /∈ C(f, δ2), I = ∅ and we apply Proposition 5.11 to complete
the proof.

Let i1 := min{0 ≤ i < n : f i(z) ∈ C(f, δ2)} and for each p ≥ 1, ip+1 := min{ip + k(f ip(z)) <
i < n : f i(z) ∈ C(f, δ2)}. Let s be the largest index such that is <∞.
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We use Lemma 5.10 at z and obtain

log |(f i1)′(z)| > i1µ− µ0 − 1 ≥ i1σ − µ0 − 1.

Let kp := k(f ip(z)) for all 1 ≤ p ≤ s. By Lemma 5.4(2), we get

log |(fk1+1)′(f i1(z))| > (k1 + 1)
γ

3
+ µ0 + 1 ≥ (k1 + 1)σ + µ0 + 1.

We iterate this chaining of lemmas 5.10 and 5.4 from ip−1 +kp−1 + 1 to ip and respectively from
ip to ip + kp + 1.

The only exception occurs for p = s if is ∈ I. In this case, we stop at is and estimate directly
by (K2)

log |f ′(f is(z))| > log d(f is(z), C(f))− log κ ≥ log β − log κ.

We apply Proposition 5.11 from is + 1 to n and obtain

log |(fn−is−1)′(f is+1(z)| > (n− is − 1)γ′ − γ′0 ≥ (n− is)σ − γ′ − γ′0.
If is /∈ I, then we apply Proposition 5.11 from is + ks + 1 to n. We conclude by summing up

all above estimates.

Recall that η, ι characterize the (FA) condition on f . Shrinking η only improves condition
(FA), so we may assume η ≤ δ2.

Lemma 5.13. — There exists ρ > 0 such that for all v ∈ f(C(f)) and m > 0, there exists
G⊆N ∩ (m, 2m] with

(24)
|G|
m

> 1− 4ι

γ

(
1 + 1.2

log κ

σ

)
,

such that for all n ∈ G
(25) |(fn)′(v)| · a+(v, n; f) > ρ.

Proof. — Fix v ∈ f(C(f)) and let vj := f j(v) for j ≥ 0. For all n > 0 let R(n) := {0 ≤ j <
n : vj ∈ C(f, η)} = {j1 < j2 < . . . < js}. Note that s depends on n. Note that by (FA), for all
n > 0

(26)
∑

j∈R(n)

ln |f ′(vj)| > −nι.

For i = 1, . . . , s, let ki := k(vji), J
′
i := N ∩ (ji, ji + ki + 1] and J ′(n) := ∪si=1J

′
i . For any m ≥ 0

we define
G′ := N ∩ (m, 2m] \ J ′(2m).

Let θ > 1, Ji := N ∩ (ji, ji + θ(ki + 1)] and J(n) := ∪si=1Ji. As before,

G := N ∩ (m, 2m] \ J(2m).

Let us denote
dnj := log |(fn−j)′(vj)|, dj := dj+1

j and dn := dn0 .

By Lemma 5.4(1), ki + 1 < −2γ−1dji , thus by (26)

|J ′(2m)| < 4
mι

γ
and |J(2m)| < 4

mιθ

γ
.

It suffices to choose

θ := 1 + 1.2
log κ

σ
and show inequality (25) for all n ∈ G⊆G′.
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We employ Lemma 5.12 to estimate dnj for all j < n. First, observe that as n ∈ G′, β ≥ η for
all 0 ≤ j < n. Therefore, for all j < n we have

(27) dnj > log η + (n− j)σ − σ0.

By Lemma 5.4(2) and (27) for j = ji + ki + 1

dji + dnji > 0.1dji + dnji+ki+1 > 0.1dji + (n− ji − ki − 1)σ − σ0.

If n ∈ G, then by Lemma 5.4(1) n − ji − ki − 1 > (θ − 1)(ki + 1) > −dji
θ−1
log κ . Combine the

previous two inequalities with the choice of θ to obtain

(28) dji + dnji > −dji + (n− ji − θ(ki + 1))σ > −dji ,
as −dji > − log η − log κ.

To complete the proof, using inequality (11), we need to bound

S(n) :=

n−1∑
j=0

1

|(fn−j)′(vj)| · |f ′(vj))|
=

n−1∑
j=0

exp(−dj − dnj ).

Let S0(n) :=
∑

j∈R(n)

exp(−dj − dnj ) and S1(n) := S(n)− S0(n). By (27) and (K2),

S1(n) < κη−2eσ0

n−1∑
j=0

e−jσ.

Let Q(n) := {j ∈ R(n) : −dj > (n − j)σ/2}. Then by inequalities (28) and (27) we can
estimate

S0(n) =
∑

j∈Q(n)

exp(−dj − dnj ) +
∑

j∈R(n)\Q(n)

exp(−dj − dnj )

<
∑

j∈Q(n)

e−
(n−j)σ

2 +
∑

j∈R(n)\Q(n)

e−
(n−j)σ

2
−log η+σ0 < η−1eσ0

n−1∑
j=0

e−j
σ
2 .

This ends the proof.

Remark. — The scale ρ only depends on σ, σ0 and η.

5.4. Using the transversality property

From now on, we consider a local parametrization of the moduli space near f , given by a
holomorphic injection F : O× P1 → P1 where O is a small neighborhood of the origin in C2d−2,
and F (0, ·) = f . For all λ ∈ O, we denote fλ := F (λ, ·).

In [Ast], the first author proves a transversality property under the assumption that f has
no invariant line fields. We show that it is the case for Collet-Eckmann rational maps which is
not a flexible Lattès map. Though it is known by the experts, we did not find a complete proof
in the literature, so we provide it here.

Lemma 5.14. — Let f ∈ Ratd be Collet-Eckmann. If f carries an invariant line field on its
Julia set, then f is a flexible Lattès map.

Proof. — Recall that a point z0 ∈ Jf is said to be a conical point of f if there exist zj → z0,
integers nj → +∞ and positive numbers ρj → 0 such that fnj (zj + ρj · z) converges uniformly
on D to some non-constant holomorphic function (see, e.g., [BM] page 109). Denote by Λf the
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set of conical points of f . Przytycki proved (see [P] Proposition A.3.4) that for any f ∈ Ratd
which is a Collet-Eckmann rational map, we have Λf = Jf . In particular Leb(Λf ) > 0.

As a consequence, if f is Collet-Eckmann and carries an invariant line field on its Julia set,
by Theorem VII.22 of [BM], this implies that f is a Lattès map. Finally, Corollary 3.18 of [Mc]
asserts that if f is a Lattès map and carries an invariant line field on its Julia set, then f is a
flexible Lattès map.

Therefore, by Theorem B of [Ast] and Lemma 4.4, Collet-Eckmann rational maps satisfy the
following property:

Transversality (T) : The following limits exist (as linear forms on T0O ' C2d−2), and they
are linearly independent:

τi := u 7→ lim
n→∞

d
dt |t=0

ξin(tu)

(fn)′(f(ci))
=
∞∑
j=0

d
dt |t=0

F (tu, f j(ci))

(f j)′(f(ci))

where ξin(λ) := fn+1
λ (ci(λ)).

Note that the equality is just the first part of Lemma 4.4 with different notations. Indeed,
observe that v̇i = d

dt |t=0
F (tu, ci).

Since the (τi) are linearly independent, we can choose 2d−2 unit vectors u1, . . . , u2d−2 ∈ C2d−2

such that τi(uj) 6= 0 if and only if i = j. Moreover, there is an open subset E of S2d−2 such that
for all u ∈ E and all i,

(29) ‖τi(u)‖ ≥ 1

2d
min
j
‖τj(uj)‖ > 0

(we can take E to be a small enough neighborhood of u = ‖
∑2d−2

j=1 uj‖
−1∑2d−2

j=1 uj).

We fix some critical point ci. From the transversality condition (T) and the definition (29)
of the set of directions E in parameter space, we get m0 > 0 such that for all m ≥ m0 and all
u ∈ E, ∂uξ

i
m(0) 6= 0. For some r ≥ 0, let us define the corresponding parameter neighborhood

of 0 in direction u

(30) V (u, r) := (D(0, r) · u) ∩O.
For any m ≥ m0 and each i, we say that Γu(m) ≥ 0 satisfies (T1), (T2) and (T3) if:

(T1) : if V := V (u,Γu(m)), then for all m0 ≤ j ≤ m

Dist(ξij , V ) ≤ 10−2,

(T2) : Σ(u,m, V ) :=
m−1∑
j=0

max
α,β∈V

∣∣∣∣log
f ′α(ξij+1(α))

f ′β(ξij+1(β))

∣∣∣∣ ≤ 10−2,

(T3) : diam(ξij(V )) ≤ 1
eκ for all 0 ≤ j ≤ m.

Combining (T1) and (T3) with (7) we observe that

(31) Γu(m) < |∂uξim(0)|−1.

Recall that τi(u) 6= 0 is a condition of the transversality hypothesis (T) and the definition
(29) of E. Denote by vi = vi(0) := f0(ci(0)).

Lemma 5.15. — There exist l1 > 1 and m1 > m0 such that for all u ∈ E and m ≥ m1, then

(32) Γu(m) = l−1
1 · a

+(vi,m; f0),

satisfies (T1), (T2) and (T3).
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Proof. — By (CE) and (T), there exists m′ > m0 such that for all u ∈ E:

(33) κM

∞∑
j=m′

e−jγ+γ0+3 < 10−3,

(34)

∣∣∣∣∣∣
m′−1∑
j=0

d
dt |t=0

F (tu, f j0 (ci))

τi(u)(fm0 )′(vi)
− 1

∣∣∣∣∣∣ < 10−3,

where M := 1 + max{|τi(u)|, |τi(u)|−1 : u ∈ E}. Furthermore, for k ≥ m′, one has by (T) and
(CE) that

(35)

∣∣∣∣log
∂uξ

i
k(0)

τi(u)(fk0 )′(vi)

∣∣∣∣ < 10−2 and |∂uξik(0)| > 2eκ.

We choose 0 < ε1 small enough such that

diam(ξij(V (u, 2ε1)) < e−1κ−1 for any u ∈ E and all 0 ≤ j ≤ m′,

Dist(ξij , V (u, 2ε1)) < 10−3 for any u ∈ E and all m0 ≤ j ≤ m′ and

Σ(u,m′, V (u, 2ε1)) < 10−3,

recalling that V was defined by (30) and Σ in condition (T2). Put

l1 := 11eκM

and choose m1 > m′ such that

em1γ1−γ0 > max
(
4eκM, ε−1

1

)
.

We prove the lemma for these l1 and m1.
Take any m ≥ m1, u ∈ E. Let

Λ := V (u, l−1
1 a+(vi,m; f0)),

W := D(vi, 10−1a+(vi,m; f0)),

and prove by induction the following claim for all m0 ≤ j ≤ m
(∗)j Dist(ξij ,Λ) < 10−2 and Σ(u, j,Λ) < 10−2.

Since a+(vi,m; f) < |(fm0 )′(vi)|−1 < ε1 by the choice of m1, we can get (∗)j for m0 ≤ j ≤ m′

from the choice of ε1.
Assume that for some m′ < j ≤ m, (∗)k holds for all m0 ≤ k < j. Observe that ξik(Λ)⊆fk0 (W )

for all m′ ≤ k < j. On one hand, we use (35), Dist(ξik,Λ) < 10−2, (7) and the choice of l1. On
the other, we use Lemma 5.3 applied to fm0 on W and (7). In particular, by Lemma 5.3, for all
α ∈ Λ and m′ ≤ k < j

(36)

∣∣∣∣log
f ′0(ξik(α))

f ′0(ξik(0))

∣∣∣∣ < 10−3.

Summing (12) for k = m′ to j − 1 implies:

j−1∑
k=m′

Dist(f0, f
k
0 (W )) < 10−3a+(vi,m; f)400eκ2

j−1∑
k=m′

|(fk0 )′(vi)|
|f ′0(fk0 (vi))|

,
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hence, by definition of a+(vi,m; f):

(37)

j−1∑
k=m′

Dist(f0, f
k
0 (W )) < 10−3.

Also, for all α ∈ Λ and m′ ≤ k < j, by (K1), (∗)k, (35) and direct calculation, we get

|f ′α(ξik(α))− f ′0(ξik(α))| < κ|α| < κl−1
1 a+(vi,m; f) < κ|(fk0 )′(vi)|−1,∣∣∣∣∣∂uξik+1(α)

∂uξik(α)
− f ′α(ξik(α))

∣∣∣∣∣ =
| ddt |t=0

F (α+ tu, ξik(α))|
|∂uξik(α)|

<
κe0.02

|τi(u)(fk0 )′(vi)|
.

Divide the last two inequalities by |f ′0(ξik(α))|, use Dist(f0, ξ
i
k(Λ)) < 10−3, the triangle inequality,

(CE) and (33) to obtain∣∣∣∣∣ ∂uξ
i
k+1(α)

∂uξik(α)f ′0(ξik(α))
− 1

∣∣∣∣∣ < κMe

|(fk+1
0 )′(vi)|

< κMe−(k+1)γ1+γ0+2 < 10−3,

which immediately implies∣∣∣∣∣log
∂uξ

i
k+1(α)

∂uξik(α)
− log f ′0(ξik(α))

∣∣∣∣∣ < κMe−(k+1)γ1+γ0+3.

Observe that

Dist(ξik+1,Λ) ≤ Dist(ξik,Λ) + sup
α,β∈Λ

∣∣∣∣∣log
∂uξ

i
k+1(α)

∂uξik(α)
− log

∂uξ
i
k+1(β)

∂uξik(β)

∣∣∣∣∣ .
The last two inequalities with the choice of ε1, inequality (37), the choice of W and bound (33)
imply:

Dist(ξij ,Λ) ≤Dist(ξim′ ,Λ) +

j−1∑
k=m′

Dist(f0, f
k
0 (W ))

+ 2

j−1∑
k=m′

κMe−(k+1)γ1+γ0+3 < 4 · 10−3.

Similarly, by the choice of ε1, inequality (37), the bound for |f ′α(ξik(α)) − f ′0(ξik(α))| above,
inequality (12), the choice of W and bound (33) imply

Σ(u, j,Λ) < Σ(u,m′,Λ) +

j−1∑
k=m′

(
Dist(f0, f

k
0 (W )) + 2κe−kγ1+γ0+1

)
< 3 · 10−3.

Therefore (∗)j holds for all m0 ≤ j ≤ m. Thus by inequality (35), the definition of Λ and
inequality (11)

diam(ξij(Λ)) < eM |(f j0 )′(vi)|diam(Λ) < e−1κ−1.

Conditions (T1-3) are satisfied by Γu(m) := l−1
1 · a+(vi,m; f), which completes the proof.
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5.5. Proof of Proposition 5.9

Proof of Proposition 5.9. — We assume that we have a rational map f = f0 that satisfies all
the assumptions of Proposition 5.9 and such that

θ := 1− 4ι

γ

(
1 + 1.2

log κ

σ

)
> 1− 1

2d− 2
,

where σ is defined by (23).
We apply Lemma 5.15. Fix ρ > 0 provided by Lemma 5.13, applied for each i = 1, . . . , 2d−2.

The intersection G of sets G1, . . . , G2d−2 of densities at least θ in N∩(m, 2m] has positive density,
thus the union of such sets G is infinite.

By inequalities (32), (25) and (35), for each n ∈ G and i = 1, . . . , 2d − 2 we compute, for
u ∈ E:

Γi(n) = l−1
1 · a

+(vi, n; f) >
l−1
1 ρ

|(fn)′(vi)|
>

l−1
1 ρM

e|∂uξin(0)|
,

where M := 1 + max{|τi(u)|, |τi(u)|−1 : u ∈ E}. The bounds for rn,i := Γi(n) compared to
C := e2l1Mρ−1 follow from the bounds (35), (7) and (T1) in the definition of Γi(n). This gives
the lower bound for rn,i|(fn)′(vi)|. On the other hand, (31) gives

rn,i|(fn)′(vi)| <
|(fn)′(vi)|
|∂uξin(0)|

≤ 2M

for all n ∈ G large enough and the upper bound follows. This completes the proof.

Theorem 5.16. — Let f be a rational map satisfying the conditions of Proposition 5.9. Then
f satisfies the large scale condition. Furthermore, it is possible to choose the sequence (nk)k in
Definition 1.2 of the form nk = (nk, . . . , nk) with nk → +∞.

Proof. — Let f = f0 be such a rational map, and let (fλ)λ∈O be a local holomorphic parametriza-
tion of the moduli space, where O is some neighborhood of the origin in C2d−2. Recall that by
the transversality property (T), there are unit vectors (uj)1≤j≤2d−2 in C2d−2 such that τi(uj) 6= 0
if and only if i = j. Let rn,i, G ⊂ N and E ⊂ S2d−2 be provided by Proposition 5.9. Recall that

E is an open neighborhood of ‖
∑2d−2

j=1 uj‖−1
∑2d−2

j=1 ui in the unit sphere S2d−2 of C2d−2, such

that for all 1 ≤ j ≤ 2d − 2 we have τj(u) 6= 0. We now fix an affine chart on P1 for the rest of
the proof.

For all n ∈ G, let
φn(λ) :=

(
ξin(rn,iλ)− ξin(0)

)
1≤i≤2d−2

As rn,i � |(fn)′(vi)|−1 → 0 when n→∞, for all i by transversality property (T), for all n ∈ G
large enough φn is defined in the neighborhood of a ball of fixed size in C2d−2. Up to rescalling,
we may assume it is the unit ball B ⊂ C2d−2. Observe that for all 1 ≤ i ≤ 2d− 2, we have

d

dt |t=0
φin(tu) = rn,iDξ

i
n(0) · u

so that by the definitions of τi we have

d

dt |t=0
φin(tu) = rn,iτi(u)(fn)′(vi) + o(1), as n→∞.

Using again Proposition 5.9 and inequality (29), we find that there is a constant C ′ > 0 depending
only on f such that for all n ∈ G and all u ∈ E,

1

C ′
≤
∣∣∣∣ ddt |t=0

φin(tu)

∣∣∣∣ ≤ C ′.
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From the distortion control of Proposition 5.9 and equation (7), we therefore have that for all
u ∈ E, for all t ∈ D, and for all 1 ≤ i ≤ 2d− 2,

|φin(tu)| ≤ 11

10
C ′.

Now applying Sibony-Wong’s theorem (Theorem 5.8) to φn on E, we see that there is a
constant 0 < ρ̃ < 1 independent of n ∈ G such that for all z ∈ B(0, ρ̃),

‖φn(z)‖ ≤ (2d− 2)
11

10
C ′.

Therefore the sequence (φn)n∈G is normal near the origin, hence up to extraction converges to
some holomorphic map φ : B(0, ρ̃) → C2d−2. By the transversality property (T) and the fact
that rn,i|(fn)′(vi)| ≥ 1

C , we have that Dφ(0) is invertible. Therefore φ(B(0, ρ̃)) contains some
ball B(0, 2r) for some r > 0, and so for all large enough n ∈ G, φn(B(0, ρ̃)) contains the ball
B(0, r). Recalling the definition of φn, we claim that this implies that f satisfies the large scale
condition for all n ∈ G with

Ωn := B
(

0, max
1≤i≤2d−2

rn,i

)
.

Indeed, since Dφ(0) is invertible, in particular, the graph of φ is vertical-like in a neighborhood
of the origin, restricting r if necessary; by normality, this is also the case for φn for n large
enough which is exactly what we want.

6. The proofs of Theorem A and Corollary 1

A map f ∈ Ratd is a flexible Lattès map if there exist an elliptic curve E, an affine map ` : E → E
with integral linear part and finite branched cover π : E → P1 such that the following diagram
commutes

E E

P1 P1

`

π π

f

It follows from the definition that any flexible Lattès map is strongly Misiurewicz, that P(f) ∩
C(f) = ∅ and that Card(P(f)) ≤ 4 and that its degree d is the square of the linear part of `
(see e.g. [Mi]). In particular, if f is a flexible Lattès map, then d ≥ 4.

Proof of Theorem A. — Recall that a rational map is strongly Misiurewicz if all its critical
points are preperiodic to repelling cycles. Let us denote by X ⊂ Md the set of all conjugacy
classes of strongly Misiurewicz degree d rational maps and by X ∗ ⊂ X those classes of rational
maps with P(f) ∩ C(f) = ∅ with simple critical values. Choose [f ] ∈ X ∗. If d ≤ 3, then
f can not be a flexible Lattès map. If d = deg(f) ≥ 4, since f has simple critical values,
Card(P(f)) ≥ Card(f(C(f))) = 2d − 2 > 4 hence X ∗ does not contain flexible Lattès maps.
Observe that X ∗ is countable.

Pick any [f ] ∈ supp(µbif) and Ω ⊂ Md an open neighborhood of [f ]. According to
[BE, Main Theorem], the set X ∗ is dense in supp(µbif), hence in particular X ∗ ∩ Ω 6= ∅.
Choose now such [f0] ∈ X ∗ ∩ Ω. By the above argument, we apply Theorem C: there exist

µ(f0), µ0(f0), γ(f0), γ0(f0) > 0 and α̂(f0) > 0 such that for all α < min(γ(f0)
200 , α̂(f0)), there

exist η̂(f0) > 0 and ι̂(f0) > 0 such that for all η < η̂(f0) and for all ι < ι̂(f0), the map f0 is
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a Lebesgue point of density of rational maps satisfying CE(γ(f0), γ0(f0)), CE2(µ(f0), µ0(f0)),
BA(α) and FA(η, ι).

We let CE[f0] be those conjugacy classes [g] ∈ Ω of maps g satisfying the properties
CE(γ(f0), γ0(f0)), CE2(µ(f0), µ0(f0)), BA(α) and FA(η, ι) with η < η̂(f0) and ι < ι̂(f0). Up to
reducing ι̂(f0), we may assume that such [g] satisfies the Large scale condition by Theorem D.
The set CE[f0] is contained in Ω ∩ supp(µbif) by Theorem B and has positive Lebesgue volume
by Theorem C. This concludes the proof of Theorem A.

Combining Theorem D with Theorem B, we also get the following result. In the light of the
proof above, it is an enhanced version of Corollary 1.

Theorem 6.1. — Let γ, γ0, µ, µ0 > 0, let α < γ/200 and let η > 0. Let ι > 0 be given by
Theorem D. Assume that f ∈ Ratd has simple critical points and satisfies CE(γ, γ0), CE2(µ, µ0),
BA(α) and FA(η, ι), then [f ] ∈ supp(µbif). In particular,

1. f is approximated by strongly Misiurewicz rational maps;
2. for any given θ1, . . . , θ2d−2 ∈ R \ 2πZ, f is approximated by rational maps having 2d − 2

distinct neutral cycles with respective multipliers eiθ1 , . . . , eiθ2d−2;
3. for any given w1, . . . , w2d−2 ∈ D, f is approximated by hyperbolic rational maps with 2d−2

distinct attracting cycles with respective multipliers w1, . . . , w2d−2.

Proof. — Combining Theorem D with Theorem B, we see that for any such Collet-Eckmann
rational map f , the class [f ] belongs to supp(µbif), or equivalently that f ∈ supp(T 2d−2

bif ).
The three points respectively follow from [BE, Theorem 1], from [G2, Theorem 1.1] and from
Theorem 134 of [B].

The support of the measure µbif has been proven to be the closure of classes of rational maps
having a maximal number of neutral cycles with given multipliers. The following is a direct
consequence of Theorem A and [G2, Theorem 1.1].

Corollary 6.2. — Fix any θ1, . . . , θ2d−2 ∈ R \ 2πZ, and let N (θ1, . . . , θ2d−2) be the set
of degree d rational maps having (2d − 2) distinct neutral cycles of respective multipliers
exp(iθ1), . . . , exp(iθ2d−2). Then

VolMd

(
{[f ] ∈Md ; f ∈ N (θ1, . . . , θ2d−2)}

)
> 0.

It is actually difficult to exhibit one example of such a rational map. Here, we prove that
they are dense in a set which is not negligible.
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