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Abstract. The context of this paper is the two-choice paradigm which
is deeply used in balanced online resource allocation, priority scheduling, load
balancing and more recently in population protocols. The model governing the
evolution of these systems consists in throwing balls one by one and indepen-
dently of each others into n bins, which represent the number of agents in the
system. At each discrete instant, a ball is placed in the least filled bin among two
bins randomly chosen among the n ones. A natural question is the evaluation
of the difference between the number of balls in the most loaded and the one
in the least loaded bin. At time t, this difference is denoted by Gap(t). A lot of
work has been devoted to the derivation of asymptotic approximations of this
gap for large values of n. In this paper we go a step further by showing that for
all t ≥ 0, n ≥ 2 and σ > 0, the variable Gap(t) is less than a(1 + σ) ln(n) + b
with probability greater than 1− 1/nσ, where the constants a and b, which are
independent of t, σ and n, are optimized and given explicitly, which to the best
of our knowledge has never been done before.

1 Introduction

In this paper we address the important issue of the two-choice paradigm analy-
sis [10]. To illustrate the multi-choice paradigm, suppose that we have a set of m
balls which are sequentially throws into n bins, where each ball is placed in the
least filled bin among d ≥ 1 ones randomly chosen among the n bins. Azar et
al. [5] have characterized this problem by those three values (m,n, d). A natural
question is the analysis of the maximum load in any of the bins, or the maximal
gap that may exist between the least loaded bin and the most loaded one. It
has been proven that in the simplest case where d = 1 (see for example [14]),

the maximum load is equal to m/n + Θ
(√

(m/n) lnn
)

, leading to a gap that

increases with the square root of m. Now, instead of choosing a single bin at ran-
dom, d ≥ 2 bins are independently and randomly chosen, and the least loaded

? This work was partially funded by the French ANR project SocioPlug (ANR-13-
INFR-0003), and by the DeSceNt project granted by the Labex CominLabs excel-
lence laboratory (ANR-10-LABX-07-01)



bin one among those d ones receives a ball. Then Azar et al. [5] have shown
that when m = n the maximum load is ln(ln(n))/ ln(2) + O(1), and the largest
gap is also equal to ln(ln(n))/ ln(2) + O(1). These results show that by simply
introducing a small choice we get a drastically improved balanced load among all
the urns. Citing Mitzenmacher et al [10], ”having just two random choices (i.e.,
d = 2) yields a large reduction in the maximum load over having one choice,
while each additional choice beyond two decreases the maximum load by just a
constant factor”. Hence the name of the two-choice paradigm. Later Berenbrink
et al. [7] have studied the case (m,n, d) for d ≥ 2 and m � n, and proved that
the maximum load is equal to m/n + O(ln(ln(n))). Note that a simpler proof
of this result has been recently found by Talwar and Wieder [15]. Very recently,
Peres et al. [12, 13], using a measurement based on the hyperbolic cosine, have
generalized the problem in the (1 + β)-choice problem. The (1 + β)-choice con-
sists, with probability 1 − β, in choosing one bin uniformly at random and to
throw a ball in it, and with probability β, in choosing two bins uniformly at ran-
dom and to throw a ball in the least loaded one. The name comes from the fact
that E{d} = 1 + β. We can note that in their model, each ball is assigned with
a random weight. They found a logarithmic bound for both the gap between
the maximum loaded bin and the average one [12], and for the gap between
the maximum loaded bin and the minimum one [13]. In both cases the gap is
O (log(n)/β).

The two-choice paradigm can be used in a multitude of applications, including
balanced online resource allocation (where jobs need to be dynamically allocated
to the least loaded processor) [1, 6, 8], priority scheduling [4], load balancing
[2, 7, 9], and very recently, population protocols [3]. In the later case, the model
governing the evolution of these systems consists in throwing balls one by one
and independently of each others into n bins, which represents the number of
agents in the system. At each discrete instant, a ball is placed in the least filled
bin among two bins randomly chosen among the n ones. A natural question is the
evaluation of the difference between the number of balls in the most loaded and
the one in the least loaded bin. At time t, this difference is denoted by Gap(t).
A lot of work has been devoted to the derivation of asymptotic approximations
of this gap for large values of n. In this paper we go a step further by showing
that for all t ≥ 0, n ≥ 2 and σ > 0,

P {Gap(t) ≥ a(1 + σ) ln(n) + b} ≤ 1

nσ
, (1)

where the constants a and b, which are independent of t, σ and n, are optimized
and given explicitly, which to the best of our knowledge has never been done
before.

The remaining of the paper is structured as follows. In Section 2 we present
the addressed problem and a simple algorithm to solve it. Section 3 is the main
contribution of our work which consists in providing an accurate bound of the
distribution of the gap between any two nodes. Section 4 evaluates constants a
and b obtained by our analysis and compares it to constants that we derived from



the work of [4]. The gain in accuracy we obtained by our analysis is significant.
Finally Section 5 provides a summary of simulations results.

2 Problem description

We consider a very large set of n nodes (also called agents), interconnected by
a complete graph, that asynchronously start their execution in a given state.
Agents do not maintain nor use identifiers (agents are anonymous and cannot
determine whether any two interactions have occurred with the same agents
or not). However, for ease of presentation the agents are numbered 1, 2, . . . , n.
Each agent keeps a local counter, initialized at 0. Agents communicate through
random pairwise interactions. On each interaction, the two interacting agents
compare their counters, and the one with the lower counter value increments
its local counter. The objective of this simple algorithm is the construction of
a global clock by guaranteeing that the values of all agent counters are concen-
trated according to Relation (1). As interactions are uniformly random, this can
be related to the classic two choices load balancing process [13]. The goal of
the paper is to evaluate the gap between any two agents, that is the maximal
difference that may exist at any time t between any two local counters, by accu-
rately evaluating constants a and b. By accurately estimating the maximal gap
between any two counter nodes, other population protocols can use it as a global
clock to perform actions in a probabilistic synchronized way.

We denote by C
(i)
t the state of agent i at time t. The stochastic process

C = {Ct, t ≥ 0}, where Ct = (C
(1)
t , . . . , C

(n)
t ), represents the vector state of the

system at time t.

The choice of the two agents which interact is made using a uniform distri-
bution. Given the pair (i, j) of agents which interact at time t, we consider the
following evolution of the agents states

(
C

(i)
t+1, C

(j)
t+1

)
=


(
C

(i)
t + 1, C

(j)
t

)
if C

(i)
t ≤ C

(j)
t

(
C

(i)
t , C

(j)
t + 1

)
if C

(i)
t ≥ C

(j)
t .

Note that in the case where agents i and j interact at time t with C
(i)
t = C

(j)
t

then either of two agents can be chosen to have its value increased by 1 at time
t+ 1. A particular choice is made below.

The state space of process C is thus Nn and a state of this process is also

called a protocol configuration. At time 0, we set C
(i)
t = 0, for every i = 1, . . . , n.

At each instant the value of only one agent is increased by 1 which means that
we have, for every t ≥ 0,

n∑
i=1

C
(i)
t = t.



For every i = 1, . . . , n, we introduce the quantities xi(t) = C
(i)
t − t/n, which

leads, for every t ≥ 0, to
n∑
i=1

xi(t) = 0.

The value C
(i)
t maintained by agent i is its own view of the global clock t of the

system divided by n. More precisely, the approximation of time t, provided by

agent i, is nC
(i)
t .

At each discrete time t ≥ 0, any two indices i and j are uniformly chosen to
interact, independently of the vector state with probability 1/(n(n− 1)).

In order to simplify the presentation, we suppose without any loss of gener-
ality that at each instant t, the values of xi(t) are reordered in a decreasing way,
assigning an arbitrary order to agents with the same value. More precisely, at
time t the reordering gives

x1(t) = max
i=1,...,n

(C
(i)
t − t/n) ≥ · · · ≥ xn(t) = min

i=1,...,n
(C

(i)
t − t/n).

We denote by X the rank of the agent whose value is incremented when inter-
action occurs between 2 agents. In the case where two agents interacting, say i

and j, are such that C
(i)
t = C

(j)
t , we choose to increase by 1 the one with the

highest rank. If X1 and X2 are the ranks of the successive agents which interact,
then the probability p` that agent of rank ` is incremented is, for ` = 1, . . . , n,

p` = P{X = `} = P{X1 = `,X2 < `}+P{X1 < `,X2 = `} =
2(`− 1)

n(n− 1)
(2)

As mentioned in the introduction, the goal of the paper is the evaluation of the
distribution of difference between the maximum and the minimum of the entries
of vector Ct. This difference is denoted by Gap(t) and is given, for t ∈ N, by

Gap(t) = max
1≤i≤n

C
(i)
t − min

1≤i≤n
C

(i)
t = x1(t)− xn(t).

In order to bound the complementary distribution of Gap(t), we introduce the
following potential functions defined, for α ∈ R, by

Φ(t) =

n∑
i=1

eαxi(t), Ψ(t) =

n∑
i=1

e−αxi(t) and Γ (t) = Φ(t) + Ψ(t).

The use of these two functions has been proposed in a very clever way by Y.
Peres et al. in [13]. The potential function Γ (t) is then related to function Gap(t)
by the following lemma.

Lemma 1 For every t ≥ 0, we have

Γ (t) ≥ 2eαGap(t)/2. (3)



Proof. The exponential function being convex, we have, for every a, b ∈ R,
2e(a+b)/2 ≤ ea + eb. Recalling that Gap(t) = x1(t)− xn(t), we obtain

Γ (t) =

n∑
i=1

eαxi(t) +

n∑
i=1

e−αxi(t) ≥ eαx1(t) + e−αxn(t) ≥ 2eαGap(t)/2,

which completes the proof.

This result will be used at the end of the paper for the evaluation of the
distribution of Gap(t) which is based on the evaluation of the one of Γ (t), which
forms the main part of the paper.

3 Analysis

We first need the two following technical lemmas which are proved in [11].

Lemma 2 For all x ∈ R, we have 1+x ≤ ex. For all x ∈ (−∞, c], we have ex ≤
1 +x+x2, where c is the unique positive solution to equation ec−1− c− c2 = 0.
The value of c satisfies 1.79 < c < 1.8.

Lemma 3 Let u = (uk)k≥1 and v = (vk)k≥1 be two monotonic sequences of real
numbers and let mn be the sequence of mean values of sequence v defined, for
n ≥ 1, by

mn =
1

n

n∑
k=1

vk.

If the sequences u and v are both non-decreasing or both non-increasing then
we have

n∑
k=1

ukvk ≥ mn

n∑
k=1

uk.

If one of these two sequences is non-increasing and the other is non-decreasing
then we have

n∑
k=1

ukvk ≤ mn

n∑
k=1

uk.

For every t ≥ 0, we introduce the notation x(t) = (x1(t), . . . , xn(t)).

Lemma 4 For all α ∈ (−1, 1), we have

E{Φ(t+1)−Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi−

(
α

n
− α2

n2

)
Φ(t). (4)

Proof. Since the xi(t)’s are ordered, they may change value at each time. We
can thus define a permutation on {1, 2, . . . , n} named σt such that, for every

u = 1, . . . , n, if xi(t) = C
(u)
t − t/n then xσt(i)(t+ 1) = C

(u)
t+1− (t+ 1)/n. Suppose



that the rank of the agent (say agent u), whose value is incremented at time t,
is equal to i. In this case, we have

xσt(i)(t+ 1) = C
(u)
t+1 −

t+ 1

n
= C

(u)
t + 1− t+ 1

n

= C
(u)
t − t

n
+ 1 +

t

n
− t+ 1

n
= xi(t) + 1− 1

n
.

This leads, for every i = 1, . . . , n, to xσt(i)(t + 1) = xi(t) + 1{X=i} − 1
n , where

1A is the indicator function of event A. We then get

Φ(t+ 1)− Φ(t) =

n∑
i=1

(
eαxi(t+1) − eαxi(t)

)
=

n∑
i=1

(
eαxσt(i)(t+1) − eαxi(t)

)
=

n∑
i=1

(
eα(1{X=i}−1/n) − 1

)
eαxi(t).

Using the fact that ex ≤ 1 + x + x2 for x ≤ 1, see Lemma 2, we obtain, since
α(1{X=i} − 1/n) ≤ 1,

eα(1{X=i}−1/n) − 1 ≤ α(1{X=i} − 1/n) + α2(1{X=i} − 1/n)2

= α(1{X=i} − 1/n) + α2

(
1{X=i}(1−

2

n
) +

1

n2

)
=

(
α+ α2

(
1− 2

n

))
1{X=i} −

(
α

n
− α2

n2

)
.

Taking the expectation of Φ(t+1)−Φ(t), given x(t), we obtain sinceE{1{X=i}} =
pi,

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
n∑
i=1

[
pi

(
α+ α2

(
1− 2

n

))
−
(
α

n
− α2

n2

)]
eαxi

=

(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t),

which completes the proof.

The following relations will be frequently used in the sequel. Since, for i =
1, . . . , n, pi = 2(i− 1)/(n(n− 1)), we have for all λ ∈ (0, 1) with λn ∈ N,

1

n

n∑
i=1

pi =
1

n
(5)

1

λn

λn∑
i=1

pi =
λn− 1

n(n− 1)
≤ λ

n
(6)

1

(1− λ)n

n∑
i=λn+1

pi =
(1 + λ)n− 1

n(n− 1)
≥ 1 + λ

n
(7)



Corollary 5 For all α ∈ (0, 1), we have

E{Φ(t+ 1)− Φ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Φ(t).

Proof. To prove this result, observe that sequence (eαxi)i is a non-increasing
sequence and (pi)i is an non-decreasing sequence, so using Relation (5) and
applying Lemma 3 we obtain

n∑
i=1

pie
αxi(t) ≤ 1

n

(
n∑
i=1

pi

)(
n∑
i=1

eαxi(t)

)
=
Φ(t)

n
.

Putting this result in inequality (4), we get

E{Φ(t+ 1)− Φ(t) | x(t)} ≤
(
α+ α2

(
1− 2

n

)) n∑
i=1

pie
αxi −

(
α

n
− α2

n2

)
Φ(t)

≤
[
α

n
+
α2

n

(
1− 2

n

)
−
(
α

n
− α2

n2

)]
Φ(t)

=
α2

n

(
1− 1

n

)
Φ(t),

which completes the proof.

Lemma 6 For all α ∈ (−1, 1), we have

E{Ψ(t+1)−Ψ(t) | x(t)} ≤
(
−α+ α2

(
1− 2

n

)) n∑
i=1

pie
−αxi +

(
α

n
+
α2

n2

)
Ψ(t).

(8)

Proof. It suffices to replace α by −α in the proof of Lemma 4.

Corollary 7 For all α ∈ (0, 1), we have

E{Ψ(t+ 1)− Ψ(t) | x(t)} ≤ α2

n

(
1− 1

n

)
Ψ(t)

Proof. See [11].

The two previous lemmas, which give a bound of the increase of functions
Φ(t) and Ψ(t), will be used to prove Theorem 12. The proof of the results fol-
low the clever ideas of the seminal paper [13] in which the authors prove that
Gap(t) is less than O(ln(n)) with high probability. In [4], Alistarh et al. provide
a more rigorous proof from which we have extracted constants associated with
this asymptotic behavior. Those constants are given at the end of Section 4. The
main original idea of our paper is to parametrize as much as possible the proofs
in order to obtain the smallest values of constants a and b used in Relation (1)



which is proved in Theorem 14. The numerical evaluation of these constants,
obtained in Section 4, shows that they are remarkably small with respect to the
ones of [4].

In the following, we introduce two variable parameters µ, ρ ∈ (0, 1/2) (which
are fixed to 1/4 in [13] and [4]). Since xi’s are non-increasing we have xρn ≥
x(1−µ)n. Lemmas 8 and 9 deal with the balanced conditions case that is xρn ≥
0 ≥ x(1−µ)n. The unbalanced conditions that are the complementary cases xρn ≥
x(1−µ)n > 0 and 0 > xρn ≥ x(1−µ)n are considered respectively in Lemmas 10
and 11. Theorem 12 examines systematically each case which lead to recurrence
relation forE{Γ (t)}. Theorem 13 uses this recurrence relation to boundE{Γ (t)}.
Finally, Theorem 14 gives a precise lower bound of Γ (t) with high probability.

Lemma 8 Let α, µ ∈ (0, 1) with µn ∈ N and µ > α/(1 + α). If x(1−µ)n(t) ≤ 0
then we have

E{Φ(t+ 1) | x(t)}

≤
(

1− α

n

[
µ− α(1− µ) +

α(1− 2µ)

n

])
Φ(t) + α+ α2

(
1− 2

n

)
≤
(

1− α

n
[µ− α(1− µ)]

)
Φ(t) + α+ α2. (9)

Proof. See [11].

An analogous result is obtained for Ψ(t) in the following lemma.

Lemma 9 Let α, ρ ∈ (0, 1) with ρn ∈ N and ρ > α/(1− α). If xρn(t) ≥ 0 then
we have

E {Ψ(t+ 1) | x(t)} ≤
(

1− α

n

[
ρ− α(1 + ρ) +

α(1 + 2ρ)

n

])
Ψ(t) + αρ(1 + ρ)

≤
(

1− α

n
[ρ− α(1 + ρ)]

)
Ψ(t) + αρ(1 + ρ). (10)

Proof. See [11].

Lemma 10 Let α, µ ∈ (0, 1/2) with µn ∈ N and µ ∈ (α/(1 + α), (1− 2α)/(1−
α)), let µ′ ∈ (0, 1) with µ′n ∈ N and µ′ ∈ (µ/(1−µ), 1/(1+α)) and let γ1 ∈ (0, 1).

If x(1−µ)n > 0 and E{Φ(t + 1) − Φ(t) | x(t)} ≥ − (1− µ′(α+ 1))
αγ1
n
Φ(t)

and Φ(t) ≥ λ1Ψ(t) then we have Γ (t) ≤ c1n, where

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))

and

λ1 =
1− µ− α(2− µ)

2α
.

The condition µ < (1− 2α)/(1−α) is needed ta assure that constant λ1 > 0.
The value of λ1 will be used in Theorem 12. The condition µ′ > µ/(1 − µ) is
needed to assure that the power involved in constant c1 is positive.



Proof. See [11].

Lemma 11 Let α, ρ ∈ (0, 1/2) with ρn ∈ N and ρ ∈ (α/(1− α), 1/(1 + α)), let
ρ′ ∈ (ρ/(1− ρ), (1− 2α)/(1− α)) with ρ′n ∈ N and let γ2 ∈ (0, 1).

If xρn < 0 and E{Ψ(t + 1) − Ψ(t) | x(t)} ≥ − [1− 2α− ρ′(1− α)]
αγ2
n
Ψ(t)

and Ψ(t) ≥ λ2Φ(t) then we have Γ (t) ≤ c2n, where

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)
, C2 =

(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))

and

λ2 =
1− ρ(1 + α)

2α
.

The condition ρ < 1/(1 + α) is needed ta assure that constant λ2 > 0. The
value of λ2 will be used in Theorem 12. The condition ρ′ > ρ/(1 − ρ) is needed
to assure that the power involved in constant c2 is positive.

Proof. See [11].

Theorem 12. Let α, µ, ρ ∈ (0, 1/2) with µn, ρn ∈ N, µ ∈ (α/(1 + α), (1 −
2α)/(1 − α)) and ρ ∈ (α/(1 − α), 1/(1 + α)). Let µ′ ∈ (µ/(1 − µ), 1/(1 + α))
with µ′n ∈ N and let ρ′ ∈ (ρ/(1 − ρ), (1 − 2α)/(1 − α)) with ρ′n ∈ N. Let
γ1, γ2 ∈ (0, 1). We then have

E{Γ (t+ 1) | x(t)} ≤
(

1− c4
α

n

)
Γ (t) + c3,

where

c4 = min

{
µ− α(1− µ), ρ− α(1 + ρ), γ1 (1− µ′(α+ 1)) ,

α (1− µ− α(2− µ))

1− µ(1− α)
,

γ2 (1− 2α− ρ′(1− α)) ,
α (1− ρ(1 + α))

1− ρ(1− α) + 2α

}
and

c3 = max
{
α (1 + α+ ρ(1 + ρ)) , α(1− µ)(2− µ), (α+ c4)αc1, α+ α2,

(α+ c4)αc2} ,

in which

c1 =

(
1 +

1

λ1

)
C1

(
C1

µλ1

)µ/((1−µ)µ′−µ)

, C1 =
(1− µ′) (2 + α)

(1− γ1) (1− µ′(1 + α))
,

c2 =

(
1 +

1

λ2

)
C2

(
C2

ρλ2

)ρ/((1−ρ)ρ′−ρ)
, C2 =

(1− ρ′) (2− 2α− ρ′(1− α))

(1− γ2) (1− 2α− ρ′(1− α))
,

λ1 =
1− µ− α(2− µ)

2α
, λ2 =

1− ρ(1 + α)

2α
.



Proof. See [11].

We are now able to give a upper bound of the expected value of Γ (t).

Theorem 13. For all t ≥ 0, under the hypothesis of Theorem 12, we have
E{Γ (t)} ≤ c3n/(αc4).

Proof. We prove this result by induction. For t = 0, we have Γ (0) = 2n. More-
over, we have

c3 ≥ α (1 + α+ ρ(1 + ρ)) ≥ α and c4 ≤ µ− α(1− µ) ≤ µ ≤ 1/2,

which implies that c3/(αc4) ≥ 2. We thus have E{Γ (0)} = 2n ≤ c3n/(αc4).
Suppose that the result is true for a fixed t ≥ 0. From Theorem 12, we have

E{Γ (t+ 1)} = E {E{Γ (t+ 1) | x(t)}} ≤ E
{(

1− c4
α

n

)
Γ (t) + c3

}
≤
(

1− c4
α

n

) c3
αc4

n+ c3 =
c3
αc4

n.

which completes the proof.

Theorem 14. For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 12, we
have

P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
≤ 1

nσ

Proof. From Lemma 1 and Theorem 13, we have

Γ (t) ≥ 2eαGap(t)/2 and
c3n

αc4
≥ E{Γ (t)}.

It follows that

2eαGap(t)/2 ≥ nσ c3n
αc4

=⇒ Γ (t) ≥ nσ c3n
αc4

=⇒ Γ (t) ≥ nσE{Γ (t)}.

Using Markov inequality, we obtain

P

{
Gap(t) ≥ 2(σ + 1)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
= P

{
2eαGap(t)/2 ≥ nσ c3n

αc4

}
≤ P {Γ (t) ≥ nσE{Γ (t)}} ≤ 1

nσ
,

which completes the proof.

The following corollary shows that at any time, and for any agent, its local
counter approximates the global clock with high probability.

Corollary 15 For all t ≥ 0 and σ > 0, under the hypothesis of Theorem 12, we
have

P

{∣∣∣∣C(i)
t −

t

n

∣∣∣∣ < 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)
, ∀i = 1, . . . , n

}
≥ 1− 1

nσ



Proof. By definition, we have xi = C
(i)
t − t/n, and since xn ≤ 0 ≤ x1, we have

|xi| ≤ x1 − xn = Gap(t). It follows, from Theorem 14, that

P

{∣∣∣∣C(i)
t −

t

n

∣∣∣∣ ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)
, ∀i = 1, . . . , n

}
≤ P

{
Gap(t) ≥ 2(1 + σ)

α
ln (n) +

2

α
ln

(
c3

2αc4

)}
≤ 1

nσ

which completes the proof.

4 Evaluation of the constants

This section is devoted to the evaluation of constants a and b of Relation (1)
and, to compare them with the ones that we can derive from the analysis of
Alistarh et al. [4].
From Theorem 14, we have

a =
2

α
and b =

2

α
ln

(
c3

2αc4

)
,

where c3 and c4 are given by Theorem 12. First of all, note that constraints given
in Theorem 12 imply the following inequality: ρ/(1 − ρ) < (1 − 2α)/(1 − α),
that is, ρ ≤ (1 − 2α)/(2 − 3α), which combined with ρ ≥ α/(1 − α), leads to
α ≤ (5−

√
5)/10 ≈ 0.276.

For a fixed value of α, we have to determine the values of parameters µ, ρ, µ′,
ρ′, γ1, γ2 that minimize constant b. This is achieved by applying a simple Monte-
Carlo algorithm. Figure 1 shows several optimal values of the constants a and b,
used in Theorem 14, and computed for several values of α.

α 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27

a = 2/α 11.77 11.12 10.53 10 9.53 9.10 8.70 8.34 8 7.70 7.41

b = (2/α) log(c3/(2αc4)) 59 63 68 74 82 93 109 134 179 281 739

Fig. 1. Optimal values of a and b in function of α

Let us now evaluate constants a and b obtained in the paper of Alistarh
et al. [4]. Note that the goal of their work was not necessarily focused on the
optimization of a and b constants. Nevertheless, as we will see, the evaluation of
a and b constants is an important motivation of our work. From Relations (1)
and (2) of [4] and as β = 1, we get 0 < δ ≤ ε = 1/16 and thus we obtain, for
γ > 0 and c ≥ 2,

1 + γ + cα(1 + γ)2

1− γ − cα(1 + γ)2
≤ 17

16
,



which gives,

α ≤ 1

33c(1 + γ)2
− 1

c(1 + γ)2
≤ 1

33c(1 + γ)2
≤ 1

66
.

Considering the difference between the lower bound and the upper bound of the
inequality following (11), we obtain

exp

(
αB

n

(
3− 1

1− λ

))
≤ 16λC(ε)

ε
,

which can also be written as

exp

(
αB

(1− λ)n

)
≤
(

16λC(ε)

ε

)1/(2−3λ)

.

Using the last inequality obtained in the proof of Lemma 4.8, we get

Γ (t) ≤ 4 + ε

ε
λnC(ε) exp

(
αB

(1− λ)n

)
≤ 4 + ε

ε
λnC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

.

Using this result, we obtain from Lemma 4.11, E{Γ (t)} ≤ 4Cn/(α̂ε), where

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

, C(ε) =
(1 + δ)/λ− 1 + 3ε

3ε− ε/3

and α̂ = α(1− γ − cα(1 + γ)2).

Following the same ideas we used to prove Theorem 14, we get

a =
2

α
and b =

2

α
ln

(
2C

α̂ε

)
.

Since α ≤ 1/66, we have a ≥ 132. Moreover, since 0 ≤ δ ≤ ε = 1/16, λ =
2/3− 1/54 = 35/54, γ > 0 and c ≥ 2, we obtain

C(ε) =
(1 + δ)/λ− 1 + 3ε

3ε− ε/3
≥ 1/λ− 1 + 3ε

3ε− ε/3
=

1227

280

which leads to

C =
4 + ε

ε
λC(ε)

(
16λC(ε)

ε

)1/(2−3λ)

≥ 26585

144

(
6544

9

)18

.

Regarding α̂, we have α̂ = α(1−γ− cα(1+γ)2) ≤ α ≤ 1/66. Therefore, we have

b =
2

α
ln

(
2C

α̂ε

)
≥ 132 ln

(
1169740

3

(
6544

9

)18
)
≥ 17354.

It follows that constants a and b obtained from [4] satisfy a ≥ 132 and b ≥ 17354,
which are at least two orders of magnitude larger than the ones we derived (see
Figure 1).
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5 Simulations

We complete this paper by giving a summary of the experiments we have carried
out to illustrate the performances of our protocol. Recall that n is the number
of nodes in the system, and T = t/n is the total number of interactions divided
by n, which is often called the parallel time. We have conducted two types of
experiments, the first one illustrates the expected proportion of nodes YT (n, k)
whose counter is equal to T +k at time nT , for different values of n and k. More
precisely, YT (n, k) is defined by

YT (n, k) =
1

n

n∑
i=1

1{C(i)
nT=T+k}.

We show in Figure 2(a) the expected value of YT (n, k), for n = 1000 and
k = −2,−1, 0, 1, as a function of the parallel time T . These results have been
obtained after running 10, 000 independent experiments. Figure 2(a) shows that
the expected value of YT (n, k) seems to converge when T goes to infinity, and this
convergence is reached very quickly. Note that for other values of k, proportions
of nodes are too close to 0 to be depicted, as shown in Table 1. Table 1 shows the
expected proportion of nodes YT (n, k) whose counter is equal to T + k at time
T = 50, for different values of n = 103, 104, 105, 106, 107 and k = −13, . . . , 4.
These results have been obtained after running 5, 000 independent experiments,
for each value of n. The expected value of Y50(n, k) seems to be almost indepen-
dent of n for large values of n.

The second experiment illustrates the gaps (i.e., the maximal, average, and
minimal) for different values of the size n of the system. Let B = 2 × 109 be
the total number of interactions considered. The maximal gap is computed as
max100n≤t≤B Gap(t), the minimal one is given by min100n≤t≤B Gap(t), and the



@
@@k
n

103 104 105 106 107

-13 0.0 0.0 0.0 1.4E-9 1.42E-9
-12 0.0 2.0E-8 8.0E-9 9.0E-9 6.14E-9
-11 2.0E-7 4.0E-8 2.2E-8 2.8E-8 3.048E-8
-10 2.0E-7 8.0E-8 1.88E-7 1.436E-7 1.4814E-7
-9 4.0E-7 8.0E-7 7.7E-7 7.438E-7 7.2784E-7
-8 3.0E-6 3.6E-6 3.586E-6 3.48E-6 3.6029E-6
-7 1.42E-5 1.8E-5 1.8222E-5 1.7767E-5 1.7758E-5
-6 8.98E-5 8.602E-5 8.7176E-5 8.7372E-5 8.72753E-5
-5 4.372E-4 4.2706E-4 4.2957E-4 4.2901E-4 4.29349E-4
-4 0.0021144 0.0021023 0.0021071 0.0021092 0.0021086
-3 0.0102474 0.0102890 0.0102777 0.0102800 0.0102810
-2 0.0481626 0.0483366 0.0483382 0.0483465 0.0483437
-1 0.1930704 0.1932864 0.1933165 0.1933143 0.1933182
0 0.4389352 0.4380932 0.4380715 0.4380374 0.4380346
1 0.2824746 0.2827344 0.2826797 0.2827057 0.2827070
2 0.0243744 0.0245499 0.0245973 0.0245953 0.0245949
3 7.6E-5 7.224E-5 7.2248E-5 7.27752E-5 7.27974E-5
4 0.0 0.0 0.0 4.0E-10 3.6E-10

Table 1. Expectation of Y50(n, k) from number of nodes n and shift k

average gap is given by

1

B − 100n

B−1∑
t=100n

Gap(t).

Figure 2(b) shows respectively the minimal, average and maximal gap in a system
of size n over the interval [100n,B] of interactions. As one may expect, the
logarithmic progression of the Gap is clearly shown.

6 Conclusion

In this article we have gone a step further in the study of the two-choice paradigm
by providing an accurate analysis of the gap problem. An important application
of this study would be the improvement of leaderless population protocols. In-
deed, we have shown in this paper that agents can construct a global clock by
guaranteeing that the values of all agent counters are concentrated according to
Relation (1), and thus can locally use this global clock to determine the instants
at which some specific actions need to be triggered, or the instants from which all
the agents of the system have converged to a given state. In the former case, this
would allow agents to solve more complex problems by triggering a series of pop-
ulation protocols, whereas in the latter case this would allow agents to determine
the instant from which all the agents have successfully computed a given feature
of the population. The construction of efficient leaderless population protocols
inspired from this orchestration is left for future work.
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heavily loaded case. SIAM Journal on Computing, 35(6):1350–1385, 2006.

8. P. Berenbrink, F. Meyer auf der Heide, and K. Schröder. Allocating weighted jobs
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