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Abstract

The context of this work is the well studied dissemination of information in large scale distributed networks
through pairwise interactions. This problem, originally called rumor mongering, and then rumor spreading has mainly
been investigated in the synchronous model. This model relies on the assumption that all the nodes of the network
act in synchrony, that is, at each round of the protocol, each node is allowed to contact a random neighbor. In this
paper, we drop this assumption under the argument that it is not realistic in large scale systems. We thus consider the
asynchronous variant, where at random times, nodes successively interact by pairs exchanging their information on
the rumor. In a previous paper, we performed a study of the total number of interactions needed for all the nodes of
the network to discover the rumor. While most of the existing results involve huge constants that do not allow us to
compare different protocols, we provided a thorough analysis of the distribution of this total number of interactions
together with its asymptotic behavior. In this paper we extend this discrete time analysis by solving a conjecture
proposed previously and we consider the continuous time case, where a Poisson process is associated to each node to
determine the instants at which interactions occur. The rumor spreading time is thus more realistic since it is the real
time needed for all the nodes of the network to discover the rumor. Once again, as most of the existing results involve
huge constants, we provide tight bound and equivalent of the complementary distribution of the rumor spreading time.
We also give the exact asymptotic behavior of the complementary distribution of the rumor spreading time around
its expected value when the number of nodes tends to infinity.

keywords rumor spreading time, pairwise interactions, Poisson process, Markov chain, analytic performance
evaluation.

I. INTRODUCTION

Randomized rumor spreading is an important mechanism that allows the dissemination of information in large
and complex networks through pairwise interactions. This mechanism initially proposed by Demers et al. (1987)
for the update of a database replicated at different sites, has then been adopted in many applications ranging from
resource discovery as in Harchol-Balter et al. (1999), data-aggregation as in Kempe et al. (2003), complex distributed
applications as in Censor-Hillel et al. (2012), or virus propagation in computer networks as in Berger et al. (2005),
to mention just a few.

A lot of attention has been devoted to the design and study of randomized rumor spreading algorithms. Initially,
some rumor is placed on one of the nodes of a given network, and this rumor is propagated to all the nodes of the
network through pairwise interactions between nodes. One of the important questions raised by these protocols is
the spreading time, that is time it needs for the rumor to be known by all the nodes of the network.

Several models have been considered to answer this question. The most studied one is the synchronous push-pull
model, also called the synchronous random phone call model. This model assumes that all the nodes of the network
act in synchrony, which allows the algorithms designed in this model to divide time in synchronized rounds. During
each synchronized round, each node i of the network selects at random one of its neighbor j and either sends
to j the rumor if i knows it (push operation) or gets the rumor from j if j knows the rumor (pull operation). In
the synchronous model, the spreading time of a rumor is defined as the number of synchronous rounds necessary
for all the nodes to know the rumor. In one of the first papers dealing with the push operation only, Frieze and
Grimmet (1985) proved that when the underlying graph is complete, the ratio of the number of rounds over log2(n)
converges in probability to 1 + ln(2) when the number n of nodes in the graph tends to infinity.

Further results have been established (see for example Pittel (1987), Karp et al. (2000) and the references
therein), the most recent ones resulting from the observation that the rumor spreading time is closely related to the



conductance of the graph of the network, see Giakkoupis (2011). Investigations have also been done in different
topologies of the network as in Chierichetti et al. (2011), Daum et al. (2016), Fountoulakis and Panagiotou (2013),
Panagiotou et al. (2015), in the presence of link or nodes failures as in Feige et al. (1990), in dynamic graphs as
in Clementi et al. (2015) and spreading with node expansion as in Giakkoupis (2014).

In distributed networks, and in particular in large scale distributed systems, assuming that all nodes act syn-
chronously is unrealistic. Several authors have recently dropped this assumption by considering an asynchronous
model. In the discrete time case, Acan et al. (2015) study the rumor spreading time for any graph topology. They
show that both the average and guaranteed spreading time are Ω(n ln(n)), where n is the number of nodes in the
network. Angluin et al. (2008) analyze the spreading time of a rumor by only considering the push operation (which
they call the one-way epidemic operation), and show that with high probability, a rumor injected at some node
requires O(n ln(n)) interactions to be spread to all the nodes of the network. This result is interesting, nevertheless
the constants arising in the complexity are not determined. In the continuous time case, Ganesh (2015) considers
the propagation of a rumor when there are n independent unit rate Poisson processes, one associated with each
node. At a time when there is a jump of the Poisson process associated with node i, this node becomes active, and
chooses another node j uniformly at random with which to communicate. Ganesh (2015) analyzes the mean and
the variance of the spreading time of the rumor on general graphs and Panagiotou and Speidel (2017) proposes a
thorough study for spreading a rumor on particular Erdös-Rényi random graphs. In Daley and Kendall (1965) the
authors propose a different model in which, in addition to spreaders and ignorants, is introduced the notion of stiflers.
A stifler learns the rumor but does not propagate it. A stifler results from the interaction between two spreaders, or
between a spreader and a stifler. These authors have conjectured that the number of stiflers is asymptotically normal
with mean and variance linear in n, where n is the size of the system. This conjecture has been proved in Pittel
(1990). This model has been generalized by Lebensztayn et al. (2011) where the authors assume moreover that
each spreader ceases to propagate the rumour right after being involved in a random number of stifling experiences.
Under a general initial configuration they establish the asymptotic behaviour of the ultimate proportion of ignorants
as the population size grows to infinity. In Comets et al. (2014), the authors propose a model in which spreaders
have a random emission capital that decreases at each emission. They study the proportion of ignorants that receive
the information before the emission capital of all the spreaders is exhausted, as well as the exhaustion time. This
work is extended Erdös-Rényi random graphs in Comets et al. (2016).

In the present paper we consider the rumor spreading time in the asynchronous push-pull model for both the
discrete and continuous time cases. This model provides minimal assumptions on the computational power of the
nodes.

In the discrete time case, nodes interact by pairs at random and if at least one node possesses the rumor, the
other one also gets informed of it. In this case, the spreading time is defined by the number of interactions needed
for all the nodes of the network to learn the rumor. In the continuous time case, as suggested by Ganesh (2015),
a Poisson process is associated with each node and at a jump occurrence of Poisson process of a node, this node
contacts randomly a neighbor to interact with it as in the discrete time case, i.e. to get informed of the rumor if one
of these two nodes possesses the rumor. The n Poisson processes are supposed to be independent with the same
rate.

In Mocquard et al. (2016) we analyzed the rumor spreading time in the discrete time asynchronous push-pull
model. In the present paper we extend the results obtained in Mocquard et al. (2016) in two ways. First, we prove
the conjecture formulated therein and second, we deal with the continuous time asynchronous push-pull model.

The remainder of this paper is organized as follows. Section II presents the main results obtained in Mocquard
et al. (2016) in the discrete time model needed to solve the continuous time model. We also prove in this section
the conjecture formulated in Mocquard et al. (2016). More precisely, if Tn denotes the total number of interactions
needed for all the n nodes to get the rumor then, limn−→∞P{Tn > E(Tn)} ≈ 0.448429663727, where E(Tn) =
(n − 1)Hn−1 and Hk is the harmonic series truncated at step k. In Section III, we consider the continuous time
model. A Poisson process is associated with each node and each jump of these independent Poisson processes
correspond to an interaction between two different nodes. In this model, the time needed for all the n nodes to
get the rumor is denoted by Θn. We first give simple expressions of the expected value and variance of Θn. Then
we give an explicit expression of its distribution and we obtain a simple bound of its complementary distribution
which is proved to also be an equivalent of its tail. It is also shown that this bound is much more tight than already
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known bounds. Finally, we give the limiting distribution of the ratio Θn/E(Θn) when the number n of nodes tends
to infinity. Finally, Section IV concludes the paper.

II. THE DISCRETE TIME CASE

We recall in this section the main results obtained in Mocquard et al. (2016) needed to deal with the continuous
time case. We also prove the conjecture formulated in Mocquard et al. (2016).

In the discrete time case, the total number of interactions needed so that all the n nodes get the rumor is denoted
by Tn. We suppose without any loss of generality that among the n nodes, a single one initially knows the rumor.
The case where the number of initial nodes possessing the rumor is greater than one has been considered in
Mocquard et al. (2016). A value 0 or 1 is associated with each node. A node with value 1 means that this node
knows the rumor and a node with value 0 means that it is not aware of the rumor. For every t ≥ 0, we denote by
C

(i)
t the value (0 or 1) of node i at time t. At time 0, all the C(i)

0 are equal to 0 except one which is equal to 1
and which corresponds to the node initially knowing the rumor.

At each discrete instant t, two distinct indexes i and j are successively chosen among the set of nodes {1, . . . , n}
randomly. We denote by Xt the random variable representing this choice and we suppose that this choice is uniform,
i.e we suppose that

P{Xt = (i, j)} =
1

n(n− 1)
1{i 6=j}.

Once the couple (i, j) is chosen at time t ≥ 1, we have

C
(i)
t = C

(j)
t = max

{
C

(i)
t−1, C

(j)
t−1

}
and C(m)

t = C
(m)
t−1 for m 6= i, j.

The random variable Tn, defined by

Tn = inf
{
t ≥ 0 | C(i)

t = 1, for every i ∈ {1, . . . , n}
}
,

represents the number of interactions needed for all the nodes in the network to know the rumor.
We introduce the discrete time stochastic process Y = {Yt, t ≥ 0} with state space {1, . . . , n} defined, for all

t ≥ 0, by
Yt =

∣∣∣{i ∈ {1, . . . , n} | C(i)
t = 1

}∣∣∣ .
The random variable Yt represents the number of nodes knowing the rumor at time t. The stochastic process Y
is then a homogeneous Markov chain with n states, states 1, . . . , n− 1 being transient and state n absorbing. The
random variable Tn can then be written as

Tn = inf{t ≥ 0 | Yt = n}.

It is well-known, see for instance Sericola (2013), that the distribution of Tn is given, for every k ≥ 0, by

P{Tn > k} = αQk1, (1)

where α is the row vector containing the initial probabilities of states 1, . . . , n−1, that is αi = P{Y0 = i} = 1{i=1},
Q is the matrix obtained containing the transition probabilities between transient states, that is, as shown in Mocquard
et al. (2016),

Qi,i = 1− 2i(n− i)
n(n− 1)

for i ∈ {1, · · · , n− 1} and Qi,i+1 =
2i(n− i)
n(n− 1)

, for i ∈ {1, · · · , n− 2} (2)

and 1 is the column vector of dimension n− 1 with all its entries equal to 1.
For i ∈ {0, . . . , n}, we introduce the notation

pi =
2i(n− i)
n(n− 1)

and we denote by Hk the harmonic series defined by H0 = 0 and Hk =
∑k
`=1 1/`, for k ≥ 1.
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If we denote by Si, for i ∈ {1, . . . , n− 1}, the total time spent by the Markov chain Y in state i, then Si has a
geometric distribution with parameter pi and we have

Tn =

n−1∑
i=1

Si.

A. Analysis of the spreading time

The mean time E(Tn) needed so that all the nodes get the rumor is then given by

E(Tn) = α(I −Q)−1
1, (3)

where I is the identity matrix. Its explicit value has been obtained in Mocquard et al. (2016). It is given, for every
n ≥ 1, by

E(Tn) = (n− 1)Hn−1 ∼
n−→∞

n ln(n). (4)

In the same way, the explicit value of the variance Var(Tn) can be found in Mocquard et al. (2016). It is given
by

Var(Tn) =
(n− 1)2

2

n−1∑
`=1

1

`2
− n− 1

n
Hn−1 ∼

n−→∞

π2n2

12
.

An explicit expression of the distribution of Tn, for n ≥ 2, has been obtained in the following theorem wich
will used to deal with the continuous time case.

Theorem 1: For every n ≥ 1, k ≥ 0, we have

P{Tn > k} =

bn/2c∑
j=1

(cn−1,j(1− pj) + kdn−1,j) (1− pj)k−1,

where the coefficients cn−1,j and dn−1,j , which do not depend on k, are given, for j ∈ {1, . . . , n− 1}, recursively
by

c1,j = 1{j=1} and d1,j = 0

and for i ∈ {2, . . . , n− 1} by

ci,j =
pici−1,j

pi − pj
− pidi−1,j

(pi − pj)2
for i 6= j, n− j,

di,j =
pidi−1,j

pi − pj
for i 6= j, n− j,

ci,i = 1−
bn/2c∑
j=1,j 6=i

ci,j for i ≤ bn/2c,

ci,n−i = 1−
bn/2c∑

j=1,j 6=n−i

ci,j for i > bn/2c,

di,i = pici−1,i for i ≤ bn/2c,
di,n−i = pici−1,n−i for i > bn/2c.

(5)

Proof: See Mocquard et al. (2016).
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B. Bounds and asymptotic analysis of the distribution of Tn
The following bound and equivalent of the complementary distribution of Tn will be used in the continuous time

case to obtain similar bound and equivalent.
Theorem 2: For all n ≥ 2 and k ≥ 1 we have

P{Tn > k} ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

,

P{Tn > k} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Proof: See Mocquard et al. (2016).
Recall that E(Tn) = (n− 1)Hn−1, where Hk is the harmonic series. We proved in Mocquard et al. (2016) that

for all real c ≥ 0, we have

lim
n→∞

P{Tn > cE(Tn)} =

{
0 if c > 1
1 if c < 1. (6)

For c = 1, this result was formulated in Mocquard et al. (2016) as a conjecture. We are now able to give a proof
of it.

Theorem 3:
lim

n−→∞
P{Tn > E(Tn)} = 1− 2e−γK1

(
2e−γ

)
≈ 0.448429663727.

where γ is the Euler’s constant given by γ = limn−→∞(Hn − ln(n)) ≈ 0.5772156649 and K1 is the modified
Bessel function of the second kind of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt.

Proof: See Online Supplement in Mocquard et al. (2018).
Relation (6) shows that for large values of n (n −→ ∞) and for all ε > 0, we have Tn ≤ (1 + ε)E(Tn)

with probability 1, Tn > (1− ε)E(Tn) with probability 1. Moreover Theorem 3 shows that for large values of n
(n −→∞), we have Tn > E(Tn) with probability 0.44843 and thus Tn ≤ E(Tn) with probability 0.55157.

III. THE CONTINUOUS TIME CASE

As in the discrete time case, we suppose without any loss of generality that among the n nodes, a single one
initially knows the rumor and a value 0 or 1 is associated with each node. A node with value 1 means that this
node knows the rumor and a node with value 0 means that it is not aware of the rumor. For every t ≥ 0, we denote
by C(i)

t the value (0 or 1) of node i at time t. At time 0, all the C(i)
0 are equal to 0 except one which is equal to

1 and which corresponds to the node initially knowing the rumor.
In the continuous time case, a Poisson process is associated with each node. These n Poisson processes are

independent and have the same rate λ > 0. When the Poisson process associated with node i has a jump, this node
chooses another node j randomly, with a given distribution to interact with node i. This is equivalent to consider a
single Poisson process with rate nλ at the jumps of which two distinct nodes are randomly chosen to interact with
a given distribution. Then as in the discrete time case, the two nodes change their value with the maximum value
of each node. Again, we want to evaluate the time needed to spread the rumor that is the time needed so that all
the nodes get value 1.

We denote by (τ`)`≥0 the successive jumps of the Poisson process with rate nλ, with τ0 = 0. Then once the
couple (i, j) is chosen at time τ`, we have

C
(i)
t = C

(j)
t = max

{
C(i)
τ`−1

, C(j)
τ`−1

}
and C(m)

t = C(m)
τ`−1

for m 6= i, j and t ∈ [τ`, τ`+1).

For every ` ≥ 1, we denote by X` the random variable representing this choice at time τ` and we suppose that
this choice is uniform, i.e. we suppose that, for all ` ≥ 1, we have

P{X` = (i, j)} =
1

n(n− 1)
1{i 6=j}.
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We consider the random variable Θn defined by

Θn = inf
{
t ≥ 0 | C(i)

t = 1, for every i ∈ {1, . . . , n}
}
,

which represents the time needed for all the nodes in the network to know the rumor.
We introduce the continuous time stochastic process Z = {Zt, t ∈ R+} with state space {1, . . . , n} defined, for

all t ≥ 0, by
Zt =

∣∣∣{i ∈ {1, . . . , n} | C(i)
t = 1

}∣∣∣ .
The random variable Zt represents the number of nodes knowing the rumor at time t. The stochastic process Z is
then a homogeneous Markov chain with transition rate matrix B. The non zero entries of matrix B are given, for
i ∈ {1, . . . , n}, by {

Bi,i = −nλpi,
Bi,i+1 = nλpi, for i 6= n.

Indeed, when Zt = i, the next node is activated with rate nλ. In order for process Z to reach state i+ 1 from state
i, this activated node, say node `, either possesses the rumor (probability i/n) and the node contacted by `, say m,
does not possess the rumor (probability (n−i)/(n−1)) or node ` does not possess the rumor (probability (n−i)/n)
and it contacts node m which possesses the rumor (probability i/(n− 1)). This means that, for i ∈ {1, . . . , n− 1},
the rate Bi,i+1 is given by

Bi,i+1 = nλ
2i(n− i)
n(n− 1)

= nλpi.

The states 1, . . . , n− 1 of Z are transient and state n is absorbing. The random variable Θn can then be written
as

Θn = inf{t ≥ 0 | Zt = n}.

It is well-known, see for instance Sericola (2013), that the distribution of Θn is given, for every t ≥ 0, by

P{Θn > t} = αeRt1, (7)

where α is the row vector containing the initial probabilities of states 1, . . . , n−1, that is αi = P{Z0 = i} = 1{i=1},
R is the sub-matrix obtained from B by deleting the row and the column corresponding to absorbing state n and
1 is the column vector of dimension n− 1 with all its entries equal to 1. For every i ∈ {1, . . . , n− 1} we denote
by Ui the sojourn time of process Z in state i, that is the time during which the system counts exactly i nodes
knowing the rumor. The random variables Ui are independent and exponentially distributed with rate µi = nλpi
and we have

Θn =

n−1∑
i=1

Ui.

A. Expectation and variance of Θn

The expected value and the variance of Θn were obtained by Molchanov and Whitmeyer (2010) in the push
model case. We extend these results to the push-pull model in the following two lemmas.

Lemma 4: For all n ≥ 2, we have

E(Θn) =
(n− 1)Hn−1

nλ
and E(Θn) ∼

n−→∞

ln(n)

λ
.

Proof: We have

E(Θn) =

n−1∑
i=1

E(Ui) =
1

nλ

n−1∑
i=1

1

pi
=

1

nλ
E(Tn) =

(n− 1)Hn−1

nλ
.

The rest of the proof is evident since Hn−1 ∼
n−→∞

ln(n).
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Lemma 5: For all n ≥ 2, we have

Var(Θn) =
(n− 1)2

2n2λ2

(
n−1∑
i=1

1

i2
+

2Hn−1

n

)
≤ 1

λ2

(
π2

12
+
Hn−1

n

)
and lim

n−→∞
Var(Θn) =

π2

12λ2
.

Proof: The random variables U` being independent, we have

Var(Θn) =

n−1∑
i=1

Var(Ui) =
1

n2λ2

n−1∑
i=1

1

p2
i

=
(n− 1)2

4λ2

n−1∑
i=1

1

i2(n− i)2

=
(n− 1)2

4n2λ2

n−1∑
i=1

(
1

i
+

1

n− i

)2

=
(n− 1)2

4n2λ2

(
n−1∑
i=1

1

i2
+

n−1∑
i=1

1

(n− i)2
+ 2

n−1∑
i=1

1

i(n− i)

)

=
(n− 1)2

4n2λ2

(
2

n−1∑
i=1

1

i2
+

2

n

n−1∑
i=1

(
1

i
+

1

n− i

))
=

(n− 1)2

4n2λ2

(
2

n−1∑
i=1

1

i2
+

4Hn−1

n

)

≤ 1

λ2

(
π2

12
+
Hn−1

n

)
.

The rest of the proof is evident since Hn−1 ∼
n−→∞

ln(n).
Note that the difference betwen the push model and the push-pull model is due to simply a factor of 2 in the

transition probabilities, giving corresponding factors of 2 in the mean and 4 in the variance.

B. Explicit expression of the distribution of Θn

The distribution of Θn, for n ≥ 2, which is given by Relation (7) can be easily computed as follows. We
make use of the uniformization technique, see for instance Sericola (2013). We introduce the uniformized Markov
chain associated with the Markov chain Z which is characterized by its uniformization rate ν and by its transition
probability matrix G. The uniformization rate ν must satisfy ν ≥ maxi∈{1,...,n}(−Bi,i) and matrix G is related to
the infinitesimal generator R by

G = In +B/ν,

where In denotes the identity matrix of order n. We denote by Nt the number of transitions occurring during
the interval [0, t]. The process Nt is a Poisson process with rate ν and since B = −ν(In − G), we have R =
−ν(In−1 − P ), where P is the sub-matrix obtained from G by deleting the row and the column corresponding to
absorbing state n. Relation (7) can then be written as

P{Θn > t} = αeRt1 =

∞∑
k=0

e−νt
(νt)k

k!
αP k1.

It is easily checked that
max

i∈{1,...,n}
(−Ri,i) = max

i∈{1,...,n}
(nλpi) ≤ nλ.

By taking ν = nλ, we get, from Relation (2), P = Q and thus, using (1), this leads to

P{Θn > t} =

∞∑
k=0

e−nλt
(nλt)k

k!
P{Tn > k} =

∞∑
k=0

e−nλt
(nλt)k

k!
αQk1. (8)

Using this expression we obtain the following explicit expression of the distribution of Θn.
Theorem 6: For every n ≥ 1, t ≥ 0, we have

P{Θn > t} =

bn/2c∑
j=1

(cn−1,j + nλtdn−1,j) e
−nλpjt,

where the coefficients cn−1,j and dn−1,j are given by Relations (5).
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Proof: From Theorem 1, we have for every n ≥ 1 and k ≥ 0,

P{Tn > k} =

bn/2c∑
j=1

(cn−1,j(1− pj) + kdn−1,j) (1− pj)k−1,

where the coefficients cn−1,j and dn−1,j are given by Relations (5). Using now Relation (8), we obtain

P{Θn > t} =

∞∑
k=0

e−nλt
(nλt)k

k!

bn/2c∑
j=1

cn−1,j(1− pj)k +

bn/2c∑
j=1

kdn−1,j(1− pj)k−1


=

bn/2c∑
j=1

cn−1,je
−nλpjt + nλt

bn/2c∑
j=1

dn−1,je
−nλpjt,

which completes the proof.

C. Bounds and tail behavior of the distribution of Θn

We obtain in this section a very simple bound of the complementary distribution of Θn and we show that this
bound is also an equivalent of its tail. This bound and equivalent of the quantity P{Θn > t} are derived from
Theorem 2.

Theorem 7: For all n ≥ 3 and t ≥ 0 we have

P{Θn > t} ≤
[
2(n− 2)2λt+

n

n− 2

]
e−2λt,

P{Θn > t} ∼
t−→∞

[
2(n− 2)2λt+

n

n− 2

]
e−2λt.

Note that for n = 2, we have Θ2 = U1 which is exponentially distributed with rate µ1 = 2λ and thus P{Θ2 >
t} = e−2λt.

Proof: From Theorem 2, we have for n ≥ 2 and k ≥ 1,

P{Tn > k} ≤
(

1 +
2k(n− 2)2

n

)(
1− 2

n

)k−1

.

Since P{Tn > 0} = 1, this leads to

P{Θn > t} =

∞∑
k=0

e−nλt
(nλt)k

k!
P{Tn > k}

≤ e−nλt +
∞∑
k=1

e−nλt
(nλt)k

k!

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

= e−nλt +

∞∑
k=1

e−nλt
(nλt)k

k!

(
1− 2

n

)k−1

+ 2(n− 2)2λt

∞∑
k=1

e−nλt
((n− 2)λt)

k−1

(k − 1)!

= e−nλt +
ne−nλt

(
e(n−2)λt − 1

)
n− 2

+ 2(n− 2)2λte−nλte(n−2)λt

=

[
2(n− 2)2λt+

n

n− 2

]
e−2λt − 2

n− 2
e−nλt

≤
[
2(n− 2)2λt+

n

n− 2

]
e−2λt.

which completes the first part of the proof.
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On the one hand since p1 < pj for j ∈ {2, . . . , bn/2c}, we have, from Theorem 1,

P{Tn > k} ∼
k−→∞

dn−1,1k

(
1− 2

n

)k−1

.

On the other hand, from Theorem 2, we have

P{Tn > k} ∼
k−→∞

(
1 +

2k(n− 2)2

n

)(
1− 2

n

)k−1

.

These two results imply that

dn−1,1 =
2(n− 2)2

n
.

In the same way, from Theorem 6, we get

P{Θn > t} ∼
t−→∞

dn−1,1nλte
−nλp1t = 2(n− 2)2λte−2λt ∼

t−→∞

[
2(n− 2)2λt+

n

n− 2

]
e−2λt,

which completes the proof.
We give in the following two different bounds for the quantity P{Θn > cE(Θn)}, with c ≥ 1. These bounds

will be compared and used to obtain the limiting behaviour of this quantity when the number n of nodes goes to
infinity.

Recalling that E(Θn) = (n− 1)Hn−1/(nλ), a first bound is obtained by an immediate application of Theorem
5.1 of Janson (2014), which leads, for all n ≥ 3 and for all real number c ≥ 1, to

P{Θn > cE(Θn)} ≤ 1

c
exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
. (9)

Note that the right-hand side term is equal to 1 when c = 1.
Applying Theorem 7 at point cE(Θn), we obtain the following second bound.

P{Θn > cE(Θn)} ≤
[
2(n− 2)2λcE(Θn) +

n

n− 2

]
e−2λcE(Θn)

=

[
2c(n− 2)2(n− 1)Hn−1

n
+

n

n− 2

]
exp

(
−2c(n− 1)Hn−1

n

)
.

From now on we denote this bound by ϕ(c, n) and in the same way, we denote by ψ(c, n) the bound of
P{Θn > cE(Θn)} obtained in (9). We then have, for n ≥ 3 and c ≥ 1,

ϕ(c, n) =

[
2c(n− 2)2(n− 1)Hn−1

n
+

n

n− 2

]
exp

(
−2c(n− 1)Hn−1

n

)
,

ψ(c, n) =
1

c
exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
.

These two bounds are compared in the next theorem.
Theorem 8: For every n ≥ 5, there exists a unique c∗ ≥ 1 such that ϕ(c∗, n) = ψ(c∗, n) and we have{

ϕ(c, n) > ψ(c, n) for all 1 ≤ c < c∗

ϕ(c, n) < ψ(c, n) for all c > c∗. (10)

Furthermore,

lim
c−→∞

ϕ(c, n)

ψ(c, n)
= 0.

Proof: Let us introduce the quantities

An =
(n− 1)Hn−1

n
,Bn = 2(n− 2)2An and Cn =

n

n− 2
.
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We then have
ϕ(c, n)

ψ(c, n)
=
(
Bnc

2 + Cnc
)
e−2An(1+ln(c)) =

(
Bnc

2−2An + Cnc
1−2An

)
e−2An .

It is easily checked that the sequence An is strictly increasing and that A3 = 1. It follows that for n ≥ 5, we have
An > 1 and so

1− 2An < 2− 2An < 0.

This implies that for every n ≥ 5, the function ϕ(c, n)/ψ(c, n) is strictly decreasing with c on [1,+∞) and that

lim
c−→∞

ϕ(c, n)

ψ(c, n)
= 0.

Consider now the sequences xn and yn defined for n ≥ 5, by

xn =
ϕ(1, n)

ψ(1, n)
= (Bn + Cn) e−2An and yn =

2e−2(n− 2)2An
(n− 1)2

.

The sequence An being increasing, it is easily checked that sequence yn is increasing too. Moreover, we have

xn ≥ Bne−2(1+ln (n−1)) =
e−2Bn

(n− 1)2
=

2e−2(n− 2)2An
(n− 1)2

= yn.

A simple computation shows that we have y34 > 1. The sequence yn being increasing, we obtain yn > 1 for
every n ≥ 34. It follows that we also have xn > 1 for all n ≥ 34. A numerical computation gives xn > 1 for
n ∈ {5, . . . , 33} which means that for all n ≥ 5, we have xn = ϕ(1, n)/ψ(1, n) > 1. The function ϕ(c, n)/ψ(c, n)
being strictly decreasing with c on [1,+∞), we deduce that there exists a unique solution, called c∗, to the equation
ϕ(c, n)/ψ(c, n) = 1 and (10) follows.

This theorem shows that our bound ϕ(c, n) is much more tight than the one obtained using the result of Janson
(2014), which has been denoted by ψ(c, n), for c > c∗, not only because the ratio ϕ(c, n)/ψ(c, n) decreases with
c and tends to 0 when c tends to infinity, but also because for every value of n, the value of c∗ is very close to 1
as shown in Table I. Moreover, from Theorem 7, our bound is optimal in the sense that

P{Θn > cE(Θn)} ∼
c−→∞

ϕ(c, n).

TABLE I
VALUES OF c∗ FOR DIFFERENT NETWORK SIZES n.

n 10 102 103 104 105 106 107 108 109

c∗ 1.253 1.163 1.128 1.109 1.095 1.085 1.078 1.071 1.066

TABLE II
VALUES OF P{Θ1000 > cE(Θ1000)}, ϕ(c, 1000) AND ψ(c, 1000) FOR DIFFERENT VALUES OF c.

c 1 1.2 1.4 1.6 1.8 2
P{Θ1000 > cE(Θ1000)} 0.446 0.063 0.005 3.9× 10−4 2.6× 10−5 1.6× 10−6

ϕ(c, 1000) ≥ 1 0.288 0.017 9.7× 10−4 5.5× 10−5 3× 10−6

ψ(c, 1000) 1.0 0.634 0.276 0.089 0.023 0.005

Table II and Figure 1 illustrate, for a network composed of n = 1000 nodes, the behavior of the bounds ϕ(c, 1000)
and ψ(c, 1000), as a function of c, compared to the exact value of complementary distribution function of Θ1000

at point cE(Θ1000), computed using Theorem 6. Table II illustrates clearly the result of Theorem 7. Indeed the
values of our bound ϕ(c, 1000) are very close to the real value of the complementary distribution function, while
the values of ψ(c, 1000) tend to move away from this real value even for small values of c. Note that when c = 1
both bounds are useless and the real value P{Θ1000 > E(Θ1000)} is very close to the limit obtained in Theorem
11 of next section. Figure 1 shows the large gap between the bounds ϕ(c, 1000) and ψ(c, 1000) when c is greater
than c∗ whose value is c∗ = 1.12819634. Moreover this large gap increases when n increases since the value of
c∗ decreases to 1 when n increases, as shown in Table I.
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D. Asymptotic analysis of the distribution of Θn

We analyze in this section the behavior of the complementary distribution of Θn at point cE(Θn) when the
number n of nodes in the network tends to infinity, in function of the value of c.

We prove in the following theorem that the bounds ϕ(c, n) and ψ(c, n), obtained from Theorem 7 and Relation
(9) respectively with t = cE(Tn), both tend to 0 when n goes to infinity.

Theorem 9: For all real number c > 1, we have

lim
n−→∞

ϕ(c, n) = 0 and lim
n−→∞

ψ(c, n) = 0.

Proof: It is easily checked that

ϕ(c, n) ∼
n−→∞

2cn2 ln(n)

n2c

which tends to 0 when n tends to infinity. Concerning ψ(c, n) we have

ψ(c, n) ∼
n−→∞

1

c
e− ln(n)(c−1−ln(c)).

For c > 1 we have c− 1− ln(c) > 0 which implies that ψ(c, n) tends to 0 when n tends to infinity.
Theorem 10: For all real c ≥ 0, we have

lim
n→∞

P{Θn > cE(Θn)} =

{
0 if c > 1
1 if c < 1.

Proof: From Theorem 9, both bounds ϕ(c, n) and ψ(c, n) of P{Θn > cE(Θn)} tend to 0 when n tends to
infinity, for c > 1. So using either ϕ(c, n) or ψ(c, n) we deduce that

lim
n−→∞

P{Θn > cE(Θn)} = 0 for all c > 1.

In the case where c < 1, Theorem 5.1 of Janson (2014) leads to

P{Θn > cE(Θn)} ≥ 1− exp

(
−2(n− 1)Hn−1(c− 1− ln(c))

n

)
.

Fig. 1. Bounds ψ(c, 1000), ϕ(c, 1000) and real value of P{Θ1000 > cE(Θ1000} as a function of c. The point at which the bounds are equal
is c∗ = 1.12819634.
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Since c− 1− ln(c) > 0 for all c ∈ [0, 1), the right-hand side term of this inequality tends to 1 when n −→∞.
Thus, limn−→∞P{Θn > cE(Θn)} = 1 when c < 1.

The following theorem considers the case c = 1. Note that the result is identical to the one of Theorem 3 in the
discrete time case.

Theorem 11:
lim

n−→∞
P{Θn > E(Θn)} = 1− 2e−γK1

(
2e−γ

)
≈ 0.448429663727.

where γ is the Euler’s constant given by γ = limn−→∞(Hn − ln(n)) ≈ 0.5772156649 and K1 is the modified
Bessel function of the second kind of order 1 given, for z > 0, by

K1(z) =
z

4

∫ +∞

0

t−2e−t−z
2/4tdt.

Proof: See Online Supplement in Mocquard et al. (2018).
Remark. Some possible extensions of this work are the following.

1. We have supposed that the initial number of nodes knowing the rumor is equal to 1. The case where this
number is equal to `, with ` ≥ 2, has been dealt with in Mocquard et al. (2016) in the discrete time case.
This extension to the continuous time case is almost straightforward since it suffices to redefine the random
variable Θn as Θn = U` + · · ·+ Un.

2. Instead of considering the total time needed for all the nodes to obtain the rumor, one could be interested in
the total time needed for a fixed percentage, say ρ, of the nodes to obtain the rumor. In that case the random
variable Θn to consider should be redefined as Θn = U1 + · · · + Udρne. Of course this extension could also
be combined with the first one above.

3. The instants at which the interactions between nodes occur have been modeled by a Poisson process. This could
be generalized by considering, instead of a Poisson process, a Phase-type renewal process which preserves the
Markov property and can approximate every point process.

Acknowledgement. We would like to thank Professor Philippe Carmona for his expert advice concerning the
proof of Theorem 3.

IV. CONCLUSION

In this paper we have provided a thorough analysis of the rumor spreading time in the asynchronous push-pull
model in the continuous time case by completing and extending the results already obtained in the discrete time
case. Such a precise analysis is a step towards the design of more complex problems such as, for instance, the
leader election in large distributed systems. Our analysis concerning the tail distribution of the rumor spreading
time and its limiting behavior when the number of nodes goes to infinity has never been done in such detail before.
It shows that the evaluation of the first moment of the rumor spreading time is far from sufficient to provide a
global control of the system.
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