
HAL Id: hal-01888298
https://hal.science/hal-01888298

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Fly Detection of the Top-k Items in the
Distributed Sliding Window Model

Emmanuelle Anceaume, Yann Busnel, Vasile Cazacu

To cite this version:
Emmanuelle Anceaume, Yann Busnel, Vasile Cazacu. On the Fly Detection of the Top-k Items
in the Distributed Sliding Window Model. NCA 2018 - 17th IEEE International Symposium
on Network Computing and Applications, IEEE, Nov 2018, Boston, United States. pp.1-8,
�10.1109/NCA.2018.8548097�. �hal-01888298�

https://hal.science/hal-01888298
https://hal.archives-ouvertes.fr


On the Fly Detection of the Top-k Items in the
Distributed Sliding Window Model

Emmanuelle Anceaume
CNRS, IRISA
Rennes, France

Email: emmanuelle.anceaume@irisa.fr

Yann Busnel
IMT Atlantique, IRISA
Cesson-Sévigné, France
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Abstract—This paper presents a new algorithm that detects on
the fly the k most frequent items in the sliding window model.
This algorithm is distributed among the nodes of the system. It is
inspired by a recent and innovative approach, which consists in
associating a stochastic value correlated with the item’s frequency
instead of trying to estimate its number of occurrences. This
stochastic value corresponds to the number of consecutive heads
in coin flipping until the first tail occurs. The original approach
was to retain just the maximum of consecutive heads obtained
by an item, since an item that often occurs will have a higher
probability of having a high value. While effective for very skewed
data distributions, the correlation is not tight enough to robustly
distinguish items with comparable frequencies. To address this
important issue, we propose to combine the stochastic approach
together with a deterministic counting of items. Specifically, in
place of keeping the maximum number of consecutive heads
obtained by an item, we count the number of times the coin
flipping process of an item has exceeded a given threshold. This
threshold is defined by combining theoretical results in leader
election and coupon collector problems. Results on simulated
data show how impressive is the detection of the top-k items in
a large range of distributions.

I. INTRODUCTION

The need to analyze in real time large-scale and distributed
data streams has recently became tremendous to detect attacks,
anomalies or performance issues. In particular the identifi-
cation of recent heavy-hitters (or hot items) is essential but
highly challenging. This problem has been heavily studied
during the last decades with both exact and probabilistic
solutions [1], [2]. A great survey and empirical comparisons of
available and most used techniques were done by Cormode and
Hadjieleftheriou [3]. While simple to state and fundamental for
advanced analysis, answering this issue over a time sliding
window [4], [5] and among distributed nodes [6] is still an
active research field. The distributed detection of frequent
items over a sliding window presents two extra challenging
aspects with respect to the centralized detection of frequent
items since the inception of the stream:
• Treat time decaying items as they enter and exit the

sliding window;
• Produce mergeable local stream summaries in order to

obtain a system-wide summary.
Very recently, Song, Liu and Ge [7] formalized this problem

as the windowed top-k frequent items (WTK) problem and
proposed an efficient and very elegant solution, named the

floating top-k (FTK) method, to solve WTK. In a nutshell,
instead of counting items or estimate their frequency, FTK as-
sociates a stochastic value correlated with the item’s frequency
in order to identify the most frequent ones.

Our contributions. We improve upon their solution by
providing a new algorithm called FTKCE . It is based on
a deterministic counting of the most over-represented items
in the data streams, which are themselves probabilistically
identified using a dynamically defined threshold. Performance
of our new algorithm are astonishingly good, despite any items
order manipulation or distributed execution1.

Paper roadmap. The remaining of our paper is organized
as follows. Works related to our problem are presented in
Section II. Section III provides a specification of the problem
addressed in this paper. Section IV is dedicated to our al-
gorithm description, and Section V details the construction of
the algorithm’s threshold. Performance evaluation is presented
in Section VI. Finally, Section VII concludes this paper and
presents some future works.

II. RELATED WORKS

A lot of research works have been dedicated to the detection
of top-k items in continuous and massive streams since the
seminal work of Misra and Gries [8] in 1982. As detailed
shortly, lines of work particularly focus on the space and time
complexity of the detection algorithms in order to cope with
the continuously increasing rates of data generation. Some
works also address orthogonal features related to the semantic
of the streams by providing the possibility to answer queries on
the recent past of a particular stream or on distributed ones [3].
Research in the detection of top-k items can be classified in
two groups: counter- and sketch-based algorithms.

A. Sketch-based techniques

The two most known, versatile and general purpose sketch
summaries are COUNTSKETCH (also known as AMS sketch)
due to Alon, Matias and Szegedy [9] and COUNTMIN sketch
due to Cormode and Muthukrishnan [2]. Actually, both tech-
niques are used to extract the number of times (also called the
frequency) each item occurs in a stream. Such an estimation
is done by relying on the properties of the linear projection

1Both algorithms, FTKCE and FTK, share these two properties (cf.
Section IV-D).



(using universal hash functions) of the initial data space onto
a smaller space of counters. In order to mitigate inevitable
collision of items, several pairwise-independent hash functions
are used in parallel. The top-k items are then extracted from
the sketch data structure.

B. Counter-based techniques

One of the most famous counter based technique is undeni-
ably the SPACESAVING algorithm by Metwally, Agrawal et El
Abbadi [10]. The underlying idea of SPACESAVING is just to
store a limited number of counters. The associated counter
is incremented when an already seen item arrives, and all
counters are decremented when a new item arrives and all
counters are already taken. While initially thought to answer
the frequent and the top-k items problems, SPACESAVING can
be extended to answer the frequency estimation problem too.

C. Mixed techniques

Recent works have mostly been focused on improving,
extending or mixing precedent works as achieved for example
in [5], [4], [6], [11], [12], [13]. A common idea of both [5]
and [13] to enhance the performance of SPACESAVING con-
sists in filtering out some of the items (i.e., the ones supposed
to have low frequencies) before applying SPACESAVING by
adding a hashed bitmap counter for [5] and two COUNTMIN
sketches for [13].

D. Probabilistic counting technique

Almost all of the previous works are based on improvements
and/or combinations of counting methods and hashing tech-
niques. Differently, in 2017, Song et al. [7] presented a new
type of algorithm to directly identify the top-k most frequent
items without counting or estimating their frequencies. The
core idea of their proposal is to generate a stochastic value
every time an item arrives and just to keep the maximum value
obtained by different items. The logic behind this technique is
that more often an item occurs, more numerous are its chances
to get a higher value. The estimated top-k most frequent items
are given by the items with the k highest values. Finally, this
innovative approach presents two very interesting properties:
• The algorithm is resilient to the permutation of items

within the data stream, and
• A distributed sliding window schema can be derived

straightforwardly.
These points will be discussed in Section IV.

III. PROBLEM STATEMENT

In this section we discuss some important features of the
sliding window and distributed version of the top-k most
frequent items problem.

A. Terminology

Sliding window. There are mainly two ways to define
a sliding window when treating a data stream. A sliding
window is either defined by the last nW received items or
by the items received during the last W units of time. We
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Fig. 1. System model

adopt the second definition, since it matches a larger range of
applications. Specifically, the time domain is partitioned into
time units (e.g., seconds, hours, days, etc.), which define the
time granularity of the sliding window over the data stream.
Indeed, the time unit acts like a micro batch for the windowed
top-k most frequent items problem: the top-k most frequent
items are extracted at each time unit, after what the top-k most
frequent items over the whole past time window is returned.
The choice of the time unit is completely arbitrary and has to
be defined by the user and depends on the problem at hand.

Thresholded counts, heavy hitters, top-k. The thresholded
counts problem (e.g., [14]) aims to identify all the items that
crossed a previously defined threshold. Since this threshold is
independent of the stream length, this can lead to a potentially
unbounded number of different items crossing this threshold.
On the other hand, heavy-hitters are items whose frequency
exceeds a given proportion φ of the stream size (e.g., [15]).
There can be at most 1/φ heavy hitters at any time or during
one sliding window. The motivation behind the top-k most
frequent items problem is to avoid when possible the use of a
statically defined threshold, which in highly dynamic and large
data streams can produce a very fluctuating number of heavy
hitters since φ is likely to be relatively low. In addition, there
are many use cases (e.g., social networks hot topics, marketing
applications, etc.), where we are only interested in the top-k
most frequent items whatever the relative frequency of each
item. Section III-B formally defines the top-k most frequent
items.

B. System Model

We consider a set of N nodes S1, . . . , SN such that each
node Si receives a large sequence σSi

of data items. In
the following we use the generic term “item” to represent
any received element or symbol. We assume that streams
σS1 , . . . , σSN do not necessarily have the same size, i.e.,
some of the items present in one stream do not necessarily
appear in others or their number of occurrences may differ
from one stream to another one. We also suppose that node
Si (1 ≤ i ≤ N ) does not know the length of its input
stream. Items arrive at high rates and due to memory/resource
constraints, they need to be processed sequentially and in an
online manner. Indeed, nodes can locally store only a small
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Fig. 2. Coin tossing until first tail.

amount (i.e., a fraction) of the information with respect to
the size of their input data streams and only perform simple
operations on them (e.g., elementary arithmetic operations).

Moreover, we suppose that nodes S1, . . . , SN cannot com-
municate among each other. Thus we suppose the existence of
a specific node, called the coordinator in the following, with
which each node is allowed to communicate (see Figure 1). A
coordinator is there to avoid naive centralization of all data and
to significantly reduce communication cost over the network.
We assume that the communication is instantaneous.

Let σ = a1, a2, a3, . . . , an be a data stream of items that
arrive regularly and sequentially. Each data item i is drawn
from the universe Ω = {1, 2, . . . , N}, where N is very large.
A natural approach to study a data stream σ of length n is
to model it as a fingerprint vector over the universe Ω, given
by F = (f1, f2, . . . , fN ) where fi represents the number of
occurrences of item i in σ and 0 ≤ fi ≤ n. Note that in the
following by abusing the notation, we denote this “|Ω|-point
distribution” by “Ω-point distribution”, also known as the item
frequency vector of σ.

C. Problem statement

We now formalize the top-k frequent items problem, the
windowed top-k frequent items one, and the distributed version
of the windowed top-k frequent items problem.

Definition 1 (Top-k Frequent Items). Given a data stream σ
of n items a1, a2, a3, . . . , an, the top-k most frequent items
over σ is the set {i ∈ Ω | fi ≥ f(k)} where f(k) is the k-th
greatest value in F .

Definition 2 (Windowed Top-k Frequent Items (WTK) [7]).
For any time t and any number of time units W , the windowed
top-k frequent items problem consists in returning the top-k
most frequent items received from time t−W to time t.

Definition 3 (Distributed Windowed Top-k Frequent Items).
For any time t, any number of time units W and N nodes,
S1, . . . , SN , the distributed windowed top-k frequent items
problem consists in returning the top-k most frequent items
received among all N nodes from time t−W to time t.
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Fig. 3. Obtaining exactly two consecutive heads with one or two trials.

In the following we denote our algorithm by FTKCE and
the one proposed by Song et al. [7] by FTK.

IV. ALGORITHMS DESCRIPTION

A. Preliminaries

At the core of FTK and FTKCE algorithms lies a very
simple yet powerful mechanism: coin flipping. Tossing a
coin can be viewed as a Bernoulli process or a sequence of
independent and identically distributed Bernoulli trials. Each
trial has exactly two outcomes (e.g., 0 and 1 or tail and head)
and the same probability p to obtain 1 or head (H).

Definition 4 (Bernoulli process). A Bernoulli process is a
finite or infinite sequence of independent random variables
X1, X2, X3, . . ., such that:
• For each integer i, the value of Xi is either 0 or 1;
• For all values of i, the probability that Xi = 1 is the

same number p.

Frequency correlated stochastic value. The Bernoulli
process we consider here is the number of trials needed to
obtain 0 (i.e., first hit time), which precisely corresponds to
tossing a coin until the first tail occurs (see Figure 2). Clearly,
more attempts implies longer hitting times. Thus the first hit
time is a stochastic value statistically correlated to the number
of attempts.

To get an insight on the correlation between the maximum
hitting time and the number of trials, consider the experiment
of obtaining two consecutive heads (until the first tail) with
respectively one and two trials of a fair coin (i.e., p = 1/2).
As shown in Figure 3, there is only one way to obtain “HHT”
with one trial, while there are three possibilities with two trials.

Overview. The left heatmap in Figure 4 presents the
global pattern of the hitting time probability evolution as a
function of the number of trials. As can be seen, there is
a logarithmic relationship between the number of trials and
the maximum expected number of consecutive heads. For
more empirical and theoretical evidence of this logarithmic
behaviour, one can consult for example [16], [17], [18]. A
logarithmic relationship implies that for a high number of
trials, the correlation with the maximum hitting time is less
significant than for a small number of trials. On the other hand,
there is a linear relationship between the number of trials and
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Fig. 4. Heatmap of probabilities to obtain a given number of consecutive
heads (left) or a given number of threshold exceeds (right) as a function of
the number of trials.

the number of times the hitting time exceeds a given threshold
(see right heatmap in Figure 4).

B. Original approach - FTK

The original approach to identify the top-k most frequent
items is to retain for each item in the stream the maximum
number of consecutive heads obtained over all the occurrences
of this item at each time unit. For each time unit, only the k
items with the highest maximum number of consecutive heads
are retained. Finally, the top-k most frequent items over a
sliding window of W time units are the items with the highest
maximum number of consecutive heads among all the items
retained during the W time units.

It turns out that this technique is efficient for very skewed
data distributions, but it is no more the case in presence
of more homogeneous data distributions where items have
comparable frequencies. This is in part due to the logarithmic
relationship between the number of trials and the expected
maximum number of consecutive heads as observed in Fig-
ure 4. In other words, the condition for FTK to correctly detect
the k most frequent items is a large frequency gap between
the top-k most frequent items and the other ones. Moreover,
this gap should increase as a function of the stream length.

C. Our approach - FTKCE

To address this important limitation, we propose another
stochastic value, which is robustly correlated to the item’s
frequency, while keeping as much as possible the properties
of the initial approach as detailed in the following.

Instead of keeping only the maximum number of consec-
utive heads, our algorithm counts the number of times the
Bernoulli process (i.e., number of consecutive heads) of an
item has exceeded a dynamically defined threshold θ. Relying
on a threshold, can be viewed as filtering out items with low
frequencies, which resembles in some aspects to the mixed
techniques presented in Section II-C. As will be shown in
the sequel, the value of this threshold has an impact on both
the precision of the returned top-k items and on the space
complexity of the algorithm.

As previously described, our algorithm FTKCE is locally
run at nodes S1, . . . , SN , and at the specific coordinator node.
The pseudo-code run at a given node Si, associated with its
stream σ, is presented in Algorithm 1. The main data structure
maintained by Algorithm 1 is a list denoted by Γ. Each element

Algorithm 1: MAINTAINFTKCE (σ, θ)
Input : σ: data stream,

θ: hitting time threshold
Output: continuously evolving data structure Γ

1 foreach time unit t do
2 Γ← empty list

3 foreach item u that arrives at t do
4 l← BERNOULLIPROCESS(p)

5 if l ≥ θ then

6 if u ∈ Γ then
7 (u, cu)← (u, cu + 1)
8 else
9 Γ← Γ ∪ (u, 1)

10 Send Γ to the coordinator

of Γ is a tuple (u, cu), where cu represents the number of
times the Bernoulli process of an item u has exceeded a given
threshold θ. Once all items received during a time unit t have
been processed, node Si sends to the coordinator its list Γ.

The pseudo-code run by the coordinator node is described
in Algorithm 2. The coordinator maintains a first-in first-
out linked list denoted by Γcoord. At each time unit, the
coordinator merges the information sent by S1, . . . , SN to
extract the top-k most frequent items received during the last
W time units over the N distributed data streams. Technically,
at each time unit and for each item u in (u,−) of Γi,
the coordinator sums the total number of times item u has
exceeded threshold θ across all the nodes Si and stores this
information in Γcoord[0]. Upon query the coordinator sums all
ccoordu of each item u in (u,−) of Γcoord over the last w time
units. Let cQu be this sum. The coordinator returns then the
top-κ items u with the highest cQu values (see Section IV-D,
flexibility of parameters).

D. Properties of FTK and FTKCE

In this section we present the four main properties com-
mon to both approaches, which are essential to answer the
distributed and windowed top-k most frequent items problem.
These properties are a direct consequence of the independence
of the Bernoulli processes.

Sliding window. The first and most useful property of
these algorithms is their memoryless feature, i.e., every time
an item is received both algorithms attribute a stochastic value
to this item which is independent from what happened in the
past. This is the feature which allows us to deal with sliding
windows.

Distributed monitoring. The above feature is also the
one which allows us to deal with distributed streams. Thus, a
distributed execution of both algorithms produce exactly the
same result at the coordinator node as if all N data streams
were directly received by a single node (e.g., the coordinator).



Algorithm 2: RETRIEVETOPK (Γ1, . . . ,ΓN , w = W ,
κ = k)

Input : Γ1, . . . ,ΓN : local nodes updates,
w: query size of the sliding window
(default w = W ),
κ: query number of top items
(default κ = k)

Output: the top-κ most frequent items
during the last w time units

1 foreach time unit t do
2 Remove last element Γcoord[W − 1]
3 Append a new element at the beginning of Γcoord

4 Γcoord[0]← empty list

5 for i← 1 to N do

6 foreach (u, cu) ∈ Γi do

7 if u ∈ Γcoord[0] then

8 (u, ccoordu )← (u, ccoordu + cu)

9 else

10 Γcoord[0]← Γcoord[0] ∪ (u, cu)

11 Q← empty list

12 for j ← 0 to w − 1 do

13 foreach (u, ccoordu ) ∈ Γcoord[j] do

14 if u ∈ Q then

15 (u, cQu )← (u, cQu + ccoordu )

16 else

17 Q← Q ∪ (u, ccoordu )

18 Sort Q in descending order by cQu
19 TopItems← first κ items of Q

20 return TopItems

Flexibility of parameters. An important property of both
algorithms is to return the top-k most frequent items ordered
according to their frequency. This allows both algorithms to
dynamically answer any top-κ most frequent items query, with
κ ≤ k. In addition, the size of the sliding window can also be
dynamically adjusted to any w, with w ≤W .

Permutation independence. Another important property
of both approaches, is their resilience to any ordering manip-
ulation of the items within any sliding window of the data
streams.

All this properties shared by FTK and FTKCE are illustrated
in Figure 5.
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Fig. 5. Windowed and/or distributed FTK algorithm execution.

V. THRESHOLD DEFINITION

Even though both FTK and FTKCE algorithms use a
Bernoulli process, they differentiate from each other by the
way they aggregate the stochastic values. In the following of
this section we detail the computation of the threshold θ used
by our algorithm FTKCE .

A. Rationale of the threshold θ in FTKCE

Although the initial approach FTK is interesting when
applied on skewed data distributions, simulations on homo-
geneous data distributions reveal its weakness. This is due to
the choice of the aggregated value over the Bernoulli process.
Indeed, the maximum number of heads is not a robust metric
and it does not efficiently discriminate items based on their
frequencies.

Example. As an illustrative example, think about identifying
the top-1 most frequent item with FTK. Unless the most
frequent item occurs more than 50% of times in the sliding
window, the algorithm fails in average to correctly identify it
as the top-1. Indeed, the top-1 expected precision corresponds
to the proportion of its frequency it the sliding window, as the
longest number of consecutive heads can be obtained by any
other item due to the independence of the Bernoulli processes.

As previously said, what needs to be done is to compute
an aggregated value which is more correlated to the item’s
frequency. Instead of keeping only the maximum number
of consecutive heads, our algorithm counts the number of
times the Bernoulli process of an item has exceeded a given
threshold θ.

Such a threshold should be finely chosen to act like a filter.
Indeed, a too restrictive filter (i.e., high θ) would only retain
a subset of the true top-k items, while a too permissive one
(i.e., low θ) would retain too many extra items. To fix a proper
threshold, we combine two known theoretical results issued



from the coupon collector and the leader election problems.
Briefly the coupon collector allows us to determine how many
items should exceed the threshold to ensure that the true top-k
most frequent items are among them. Then a result from the
leader election problem allows us to derive which threshold
enables this quantity of items to be retained.

B. Coupon collector problem

Suppose we have a set of N coupons (corresponding to
the N different items in the universe) and we denote by pu
the probability of the coupon u to be drawn (according to the
frequency distribution of items) such as p1+p2+· · ·+pN = 1.
For the sake of clarity and without any loss of generality,
we suppose that coupons (and items) are ordered decreasingly
according to their frequency, such as p1 ≥ p2 ≥ · · · ≥ pN .

The coupon collector problem consists in determining the
distribution of the number TN of coupons that need to be
drawn with replacement from the set {1, 2, . . . , N} in order
to obtain the full collection of N different coupons.

The generalized version of the coupon collector problem
allows us to consider a collection of coupons {1, 2, . . . , x}
where p = (p1, p2, . . . , px) is not necessarily a probability
distribution, i.e., p1 + p2 + · · · + px ≤ 1. This models the
presence of a null coupon 0, which is drawn with probability
p0 = 1− (p1 + · · ·+ px) and which is not allowed to belong
to the considered collection.

In our case, we consider the collection formed by the k
most frequent coupons {1, 2, . . . , k} and the null coupon 0 is
formed by all other coupons {k + 1, k + 2, . . . , N} which is
drawn with probability p0 = 1− (p1 + · · ·+ pk).

From [11] we have:

E[Tk(p)] =

k−1∑
i=0

(−1)k−1−i
∑
|J|=i

1

1− (p0 + Pj)
, (1)

where Pj =
∑

j∈J pj and J is a subset of {1, 2, . . . , k} of
size i. E[Tk(p)] represents the minimum expected number of
coupons to be drawn in order to obtain the collection formed
by the k most frequent coupons. And once we have the number
of all coupons (null and from the collection) to be drawn, we
can use the next result from the leader election problem to
compute the θ threshold.

C. Leader election problem

The leader election problem is fundamental in distributed
systems. A common use case is the selection of a coordinator
during the initialization of a service or after the failure of
an existing one. The most studied issues in the leader elec-
tion problems are their time and communication complexities
which are essential to adapt to large scale systems. In this
paper we are interested in the behaviour of the number of
contestants during the election rounds. This is related to
space complexity, since knowing in advance the distribution of
survivors throughout the election process can lead to a better
management of resources. We consider here a randomized
election algorithm with the binomial splitting protocol and we
adopt the definition of survivors from [19].

Assume there are n contestants (corresponding to the n
items in the data stream) and every one flips a coin, not
necessarily fair, but common to all contestants. We note p the
probability of obtaining head and 1 − p the one of obtaining
tail. Contestants who obtain head are allowed to compete for
the next round, while those who obtain tail are eliminated from
the election. The set of contestants allowed to compete for the
next round is called the advancing set and is denoted by Kn.
In the coin flipping case, Kn ∼ Bin(n, p), hence the name
of binomial splitting protocol. Kn can be seen as the sum of
n Bernoulli random variables, with probability p to get 1 and
1 − p to get 0. The number of contestants remaining after t
rounds are called survivors and are designated by S̃n,t. Note
that as we are not directly interested in electing a winner, we
consider the winnerless process where the algorithm continues
even if there remains only one contestant. We are precisely
interested in the number of survivors after a given number of
election rounds. The distribution of the random variable S̃n,t

is given by Kalpathy, Mahmoud and Rosenkrantz [19].

Theorem 1 (Survivors distribution [19]). Suppose we con-
duct a leader election among n contestants, in which a
fair selection of a subset of contestants of a random size
Kn = Bin(n, p) advance to the next round, and the algorithm
is applied recursively on that subset, till all contestants are
eliminated (exactly as in the elimination by the coin flipping
process). The number of survivors, S̃n,t, has the binomial
distribution of Bin(n, pt).

Proof. For self-contained reasons, we include the proof of
Kalpathy et al [19]. The proof is done by induction on t
that φS̃n,t

(x), the moment generating function of S̃n,t, is
(1 − pt + ptex)n, which is that of Bin(n, pt). At t = 0,
S̃n,0 = n = Bin(n, p0), providing a basis for the induction.
Suppose now that, for t ≥ 1, S̃n,t−1 is distributed like
Bin(n, pt−1). If exactly k contestants survive till round t−1,
of these Bin(k, p) will advance to compete in round t. Thus,
letting q = 1− p, we have the conditional expectation

E
[
exS̃n,t | S̃n,t−1 = k

]
=

k∑
j=0

(
k

j

)
pjqk−jexj = (q + pex)k.

So, we have the unconditional expectation

φS̃n,t
(x) =

n∑
k=0

(q + pex)k Pr[S̃n,t−1 = k],

which gives (by the induction hypothesis)

φS̃n,t
(x) =

n∑
k=0

(q + pex)k
(
n

k

)
(pt−1)k(1− pt−1)n−k

= ((q + pex)pt−1 + 1− pt−1)n

= (1− pt + ptex)n,

completing the induction.



D. Threshold θ computation

Technically, threshold θ is computed as follows. We use
Formula (1) to determine the expected minimum number of
items E[Tk(p)] to be drawn with replacement and according
to their frequency distribution in the data stream in order to
ensure that in expectation the true top-k most frequent items
are among them. Then we determine the number of election
rounds t to be performed in order to elect in expectation the
number of items previously defined. This number of rounds
corresponds to the value of t when E[S̃n,t] = E[Tk(p)], i.e.,
when the number of survivors S̃n,t equals in expectation to
the minimum number of items to be drawn containing the
true top-k Tk(p).

In the case of a binomial splitting protocol,
S̃n,t ∼ Bin(n, pt) (cf. Theorem 1). Thus, t must be such that
E[Bin(n, pt)] = E[Tk(p)] and since E[Bin(n, pt)] = npt,
we have:

t =
log(E[Tk(p)])− log(n)

log(p)

Finally, threshold θ is defined as θ = t.
In practice, as the data stream length and the frequencies of

the top-k most frequent items are unknown, the computation
of t is impossible. Nevertheless, the threshold θ can be
heuristically initialized and dynamically maintained during the
execution of FTKCE . In Section VI we consider θ = dte, since
the ceil value of t maximizes the error of FTKCE .

VI. PERFORMANCE EVALUATION

The present section contains results on simulated data
and the main aspect covered here is the precision/recall of
our approach (FTKCE) compared to the original one (FTK)
proposed by Song et al. in [7], which is so far, and to the best
of our knowledge, the most impressive solution to solve the
(distributed) windowed top-k problem.

By precision, we mean the number of top-x items, with 1 ≤
x ≤ k, correctly detected by the algorithms divided by the total
number of detected items, i.e., k by design. A particularity of
the top-k problem is that precision and recall are equivalent in
this case. Indeed, the number of false positives in the returned
top-k set corresponds exactly to the number of false negatives
not returned by the algorithm.

A. Simulation protocol

To analyze the performance of our approach, we consider
simulated data following zipfian distributions, as the family of
power law distributions are widely observed in real word data
sets and natural phenomena [20], [21].

Furthermore, all of the following experiments have been re-
alized during an unique sliding window on a single node. Since
in accordance with the proprieties described in Section IV-D,
both algorithms will output the same precision for any sliding
window over multiple nodes as long as the data streams keep
the same distribution shape.

Concretely, we generate n = 106 items containing up to
N = 104 distinct items and whose frequencies follow a Zipf-
α distribution with 0 ≤ α ≤ 4.5. Note that Zipf-0 corresponds
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Fig. 6. FTKCE and FTK top-15 precision (a) and probability mass function
of the first 15 most frequent items (b) for different Zipf distributions.

to the uniform data distribution and Zipf-4.5 corresponds to a
extremely skewed data distribution (see Figure 6b). Moreover,
the results presented below are an average of 103 algorithms
executions and we also fix by default k = 15 for clarity and
readability of graphs.

B. Items frequency distribution

Figure 6a compares the precision of both FTKCE and FTK
algorithms as a function of different Zipf-α items frequency
distributions, when queried to answer the top-15 most frequent
items problem. FTKCE is capable to detect frequent items
even for relatively flat Zipf-1 distributions (see Figure 6b).
FTK starts to perform equivalently only from the Zipf-2 items
frequency distribution, in which case just the top-1 most
frequent item occurs more than 60% of times.

C. Number of top items

Both solutions perform consistently when employed to an-
swer top-k frequent items queries for different values of k (see
Figure 7). Moreover, the precision of FTKCE is improving
when k is increasing for both frequency distributions of items,
while for FTK it is only the case for the Zipf-1 distribution.
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Fig. 7. Top-k precision, with k ∈ {5, 10, 15, 20, 25}.

As seen in Section IV-D, a common property of both
FTKCE and FTK algorithms are their ability to answer any
top-κ query as long as κ ≤ k. Figure 8 compares their
precision when asked for all possible top-κ queries, i.e.,
1 ≤ κ ≤ k = 15, which confirms the impressive behavior
of our algorithm for all intermediate top-κ queries.
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Fig. 8. Intermediate top-κ query precision, with 1 ≤ κ ≤ k = 15.

D. Space complexity

In order to obtain an empirical overview of the memory cost,
Figure 9 presents the number of counters that is necessary
for the FTKCE algorithm in order to answer different top-
k queries, for 1 ≤ k ≤ 25. Simulation results show that
the good precision of the FTKCE algorithm for a relatively
homogeneous Zipf-1 distribution comes at a cost in terms of
required memory. Nevertheless, in order to answer the top-
25 most frequent items query, FTKCE uses less than 300
counters, i.e., less than 3 % compared to the total possible
number of different items N = 10000.

Note that the different “steps” are due to the different values
of threshold θ. For information, we plot the theoretical number
of counters that would be required if the thresholds were
directly defined as θ = t, i.e., a float value (cf. Section V-D).
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Fig. 9. Number of counters used by the FTKCE algorithm to answer the
top-k most frequent items problem, for 1 ≤ k ≤ 25.

VII. CONCLUSION

In this paper we have presented a new approach derived
from the state-of-the-art solution provided by Song et al. [7]
in order to answer the distributed sliding window top-k most
frequent items problem. We have shown some important im-
provements of the precision of the returned top-k items by our
method, especially for homogeneous frequency distributions of
data items.

In order to mitigate the necessity to estimate the probability
distribution vector p of the true top-k most frequent items,
we are currently investigating the means to incorporate or
bypass this limitation, although, it can already be done using

techniques presented in Section II. We plan to analyze more
in depth the theoretical behavior of our algorithm, such as
(ε, δ)-error approximation or memory and communication cost
bounds.
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