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Abstract. Non-blocking collectives have been proposed so as to allow
communications to be overlapped with computation in order to amor-
tize the cost of MPI collective operations. To obtain a good overlap ratio,
communications and computation have to run in parallel. To achieve this,
different hardware and software techniques exists. Dedicated some cores
to run progress threads is one of them. However, some CPUs provide Si-
multaneous Multi-Threading, which is the ability for a core to have mul-
tiple hardware threads running simultaneously, sharing the same arith-
metic units. Our idea is to use them to run progress threads to avoid
dedicated cores allocation. We have run benchmarks on Haswell pro-
cessors, using its Hyper-Threading capability, and get good results for
both performance and overlap only when inter-node communications are
used by MPI processes. However, we also show that enabling Simultane-
ous Multi-Threading for intra-communications leads to bad performances
due to cache effects.

1 Introduction

MPI is the standard interface for communications in HPC applications. It is
used by applications for inter-node (i.e. network) and intra-node (processes on
the same node) communications. The cost of communications is one of the main
obstacles to get a good speedup for parallel applications. To amortize the cost of
MPI communications, application programmers try to overlap communications
with computation by using non-blocking communication primitives, and let them
progress in background while keeping the CPU busy with computation.

Initially the non-blocking communications were only available for point-to-
point communications. The extension of the non-blocking communications to
collective operations (i.e. primitives that involve more than two nodes, such as
broadcast, reduce, scatter, gather, ...) is an addition of the latest major MPI ver-
sion [1]. It opens the door to computation/communication overlap for collective
operations too. However, collective communications are more CPU-hungry than
point-to-point communications, as they have to handle the collective algorithms,



and even some computations for reduction collectives. Therefore, it is harder to
make them progress in background.

Most processors nowadays include Simultaneous Multi-Threading [2] (SMT,
commercially known as Hyper-Threading on Intel processors), which is the abil-
ity for a core to have multiple hardware threads running simultaneously, sharing
the same arithmetic units. A lot of scientific applications don’t use all hardware
threads, leaving them idle. Thus it seems like a natural idea to use these idle
hardware threads to make communication progress. Since communication typi-
cally doesn’t use arithmetic units, it is expected that placing progress threads
on hardware threads will bring background progression for free. We distinguish
the case of network (inter-node) communication, where the progression thread
merely execute the algorithm for the collective operation, the rendez-vous pro-
tocol, programs DMA on the NIC, but overall doesn’t burn a lot of CPU cycles;
and the case of shared-memory (intra-node) communication, where the transfer
is essentially a memcpy, which may be heavier on the CPU.

This paper focuses on what happens when placing MPI non-blocking collec-
tive progress threads on hardware threads. We show that using SMT for network
communications leads to good results for both performance and progression.
We also show that using SMT for intra-node (shared memory) communications
leads to bad performances due to cache effects.

The rest of the paper is organized as follows. Section 2 presents related work
about computation/communication overlap in general, and for collective commu-
nication in particular. Section 3 describes how communication progression works
inside the MPC framework. Section 4 presents progress threads placement for
inter-node and intra-node communications and results on Haswell processors,
using Hyper-Threading.Then, Section 5 explains how intra-node communica-
tions can interfere on the computation when Hyper-Threading are used to make
communication progression, before concluding in Section 6.

2 Related Works

The topic of communication progression has already been studied for some as-
pects in the literature. Several strategies do exist for background progression of
point-to-point communications, such as offloading the communication to hard-
ware [3, 4] and let the hardware do the progression; use of a thread [5] or pro-
cess [6] dedicated to communication progression; opportunistic scheduling of
communication tasks [7, 8].

MPI non-blocking collective communications are more difficult to make
progress in the background, since not only the data transfer but the collec-
tive algorithm too needs to progress, which makes it harder to rely on hardware.
There is specific work [9] for hardware-assisted progression on Blue Gene, or
offloading shared memory collectives to a kernel module [10] (although authors
only address performance of blocking collectives, not progression of non-blocking
collectives). The reference NBC implementation [11] relies on a progress thread,



with some tricks [12] to improve overlap on InfiniBand, but without any study
about the impact of progress thread placement.

Hyper-Threading usage for non-blocking operations progression has already
been studied in [13], with the use of MONITOR/MWAIT instructions on progress
threads in order to avoid resource contention with the computational thread on
the same physical core using another Hyper-Thread on process based MPI (net-
work communication on intra node). However, MONITOR/MWAIT being privileged
instructions usable only from kernel, this approach may not be used broadly on
production clusters. Moreover, these instructions are inherently slow, which re-
serve them for coarse grain cases. Our approach is different because we rely only
on bare Hyper-Threading accessible from user-space, and study different place-
ments for both process based MPI (intra-node communications on network) and
thread based MPI (intra-node communication with memcpy).

3 Non-blocking collective progression inside the MPC
Framework

The MPC [14] framework provides implementations for several parallel program-
ming languages, such as MPI, OpenMP or POSIX threads. MPC provides two
flavors for MPI: a process-based implementation and a thread-based implementa-
tion. Moreover, MPC also provides its own user thread scheduler. This scheduler
handles the threads of all programming languages implemented in MPC, or build
on top of the POSIX threads implementation provided by MPC, and allows to
bypass the system scheduler.

MPC uses a tuned version of libNBC [11] to implement MPI 3 Non-Blocking
Collectives. One progress thread is created for each MPI process. Thus, with the
thread-based version of MPI, the MPC scheduler has the knowledge of all MPI
processes and all progress threads present on a node. This knowledge allows
to easily implement different placement algorithms for all these threads. The
default behavior is for MPI “thread” to be bound with a scatter policy, and
their corresponding progress threads to be bound to the closest idle cores (or to
the same core if no idle cores are available).

In this implementation, a MPI non-blocking collective is decomposed in MPI
point-to-point non-blocking calls fulfilling the collective algorithm. When a MPI
non-blocking collective is called, each MPI process creates a schedule containing
requests for the point-to point non-blocking calls corresponding to its part of the
collective algorithm, and attach it to its associated progress thread. Thus, the
progress threads handle the communication described by the schedules while
MPI processes continue to execute computation. However, MPC has a non-
preemptive scheduler, thus it is not able to make communication progress on
the same core as the application with a seamless interleaved scheduling. A solu-
tion is to dedicate some cores to communication progression. In this paper we
investigate the use of hardware threads instead of full cores for communication
progression.



4 Progress Threads Placement for MPI Communications
on Hyper-Threads

In this Section, we benchmark various placement schemes for placement of
progress threads, using SMT or not, for network communications and shared-
memory communications.

We will use Haswell processors featuring Hyper-Threading, the incarnation
of Simultaneous Multi-Threading in Intel processors. It consists in allowing ex-
ecution of two different threads (or more depending on the architecture) at the
same time on a single core. Generally, applications do not use Hyper-Threading
to perform more computation because it leads to Floating-Point Unit (FPU)
contention. However, progress threads do not need the FPU to make commu-
nication progression, or scarcely for floating-point reduction operations. Thus,
progress thread placement using Hyper-Threading seems to be a good idea.

After describing our experimental setup, we present results and observations
on the use of Hyper-Threading to perform communications for the two distinct
cases: pure network communications, and pure intra-node communications.

4.1 Benchmark

We implemented our own micro-benchmarking tool to evaluate the performance
of different progress threads placement. This tool performs a non-blocking collec-
tive communication overlapped with a matrix-matrix multiply. It works similarly
to the Intel MPI Benchmarks [15] except that the problem size is fixed, allowing
us to have the same computation workload for the different progress threads
placement. We arbitrary set the buffer size to 2 MB and sized the computation
workload to reach perfect overlap when we have progress threads dedicated cores.

We ran our benchmark on a many-core architectures: an Intel Xeon E5-2698
v3 @2.30GHz with 32 cores per node, and 128 GB of RAM (Haswell).

While our placement policy for MPI processes stays the same (scatter policy),
we test three different progress threads placement configurations:

– “dedicated-core”: each progress thread is bound on another dedicated core.
We use twice more cores than both the other cases.

– “no-smt-bind”: the progress threads are bound on the MPI process core and
Hyper-Threading is disabled.

– “smt”: each progress thread is bound on its MPI process core but on another
Hyper-Thread.

For each configuration, we measure the time of the computation (tcpu), the
communication time (tcomm) and the total execution time (tovrl), all times mea-
sured when overlapping communication with computation. We get tovrl close
to the maximum of tcpu and tcomm in case of good overlap; it is closer to the
sum in case operations get serialized. Please note that tcomm and tcpu may vary
depending on threads placement if computation slows down communication or
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Fig. 1. Result of dedicated-core, no-smt-bind, smt-default and smt-sleep for Ialltoall
operation with constant-size buffer of 2 MB on 8 nodes with 8 MPI processes.

if computation slows down communication when both are run at the same time.
We use the same overlap definition as the Intel MPI Benchmarks [15]:

overlap ratio = 100 ∗ max(0,min(1, (tcomm + tcpu − tovrl)

min(tcomm, tcpu))

4.2 Inter-node Communications on Hyper-Threads

To study the impact of using hyper-threads only for inter-node communications,
we ran our benchmark on 8 Haswell nodes, with only one MPI process per
node. This is a usual configuration when MPI is combined with a threaded
programming model (e.g. OpenMP) handling intra-node communications.

The results for inter-node communications are depicted in Figure 1. The best
results are obtained for the “dedicated core” placement, with an overlap ratio
of 96% for an execution time of 3.0 ms. This is the expected behavior since a
dedicated core for each progress thread makes the communication progress run
smoothly in background, leading to an almost perfect overlap. However, this
configuration uses twice as many cores as the other cases.

For the “no-smt-bind” placement, no overlap happens and the execution time
doubles (5.8 ms). This is the expected behavior since MPC being non-preemptive,
computation and communication end up serialized if computation thread and
progress thread are placed on the same core. We observe that communications
need some CPU resources to progress, not necessarily for the network itself,



but at least to execute the algorithm of the collective and for the rendez-vous
protocol for large messages.

The “smt” placement with default settings leads to an overlap ratio of 94%
for an execution time of 4.6 ms. While the overlap ratio is good, we also observe
that the tcpu increases significantly. This is due to our MPI implementation.
When Hyper-Threading is enabled, MPC creates an OS thread per logical core
(Hyper-Thread). By default, this thread is populated with an idle user thread,
spending its time busy waiting for work. As nothing is planned for this thread,
it will permanently hinder the CPU with its busy waiting, thus slowing down
the computation done on the other hardware thread sharing the same core.

To assess this behavior, we inserted a usleep call (2µs) to diminish the
impact of this busy waiting in the idle thread.

With this version, called smt-sleep in Figure 1, we observe an improvement
of tovrl by a factor of 1.42 over the default MPC configuration (no-smt-bind)
and an overlap ratio of 98%. In this version, tcpu is only marginally impacted,
which shows this tuning successfully mitigates contention between communica-
tion and communication. Since the idle thread is sleeping most of the time, the
computation thread is indeed not hindered and the computation time is back to
normal. However, when progression happens, the sleep calls reduce progression
performance and the communication time is higher. Hence, it is possible to find
a trade off to get best of both worlds.

As a summary, placing progress thread on hyper-threads improves both ex-
ecution time performance and overlap ratio for network inter-node communica-
tions. It alleviates the need for dedicated cores for communication progression.

4.3 Intra-Node Communications on Hyper-Threads

The common way to achieve intra-node communications is to copy a buffer
from the source to the destination. For process based MPI implementation, such
as Open MPI, MPICH, MVAPICH, Intel MPI or NewMadeleine, this can be
performed using a shared memory segment across all the processes in the node.
This technique allows MPI ranks to copy the buffer directly in the shared memory
segment.

In the MPC framework, with the thread-based flavor, all MPI ranks are
threads. This implies that the whole memory is shared in the same address
space. Copies of buffers can be performed directly with a single memcpy call.

We ran our benchmark on one single Haswell node, with one MPI rank per
core. We test two different thread placement configurations: the “no-smt-bind
and the “smt” placement described in the Section 4.1. For each configurations, we
measure the computation time (tcpu), the communication time (tcomm) and the
total execution time (tovrl) when overlapping communications with computation.

The results are depicted in Figure 2. For both “no-smt-bind” and “smt”
placement, we observe that tovrl = tcpu + tcomm, which means no overlap hap-
pens. We also observe a 44% increase of the total time tovrl when placing progress
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Fig. 2. Result of no-smt-bind and smt for Ialltoall operation with constant-size
buffer of 2 MB on 1 nodes with 32 MPI processes.

threads on hyper-threads, due to the huge increase of computation time. This is
a completely different behavior than with inter-node communication.

From this observation, it is clear that placing progress threads on hyper-
threads has a huge impact on computation performance when communications
take place in shared memory. We investigate this issue in the Section 5.

5 Cache Effects with Hyper-Threading

In this Section, we investigate how a communication thread on a hyper-thread
negatively impacts the computation performance on the same core. We focus on
cache effects caused by multiple hardware threads on the same core competing
for cache lines, an effect known as cache thrashing.

We implemented a micro-benchmark to confirm our assumptions that cache
effects occur when Hyper-Threading is used to perform the progression of intra-
node communications. The benchmark runs a 1024×1024 matrix multiplication
in a thread bound to a single core; we call it the computation thread. Another
thread is created to simulate the progression of intra-node communications by
performing a memcpy call in a loop; we call it the memcpy thread. We focus on
the impact of this thread on the computation thread.

We test three different threads placement configurations :
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Fig. 3. Result of Time dgemm for no-smt-bind and smt configurations for 4 KB, 128 KB
and 2 MB on a 32 core Haswell processor.

– “cache-not-shared”: the computation thread is bound on a single core and
the memcpy thread is bound on another socket. Threads do not share any
cache.

– “no-smt-bind”: the computation thread is bound on a single core and the
memcpy thread is bound on the same core. Hyper-Threading is disabled.

– “smt” the computation thread is bound on a single core and the memcpy
thread is bound on the same core but on the other Hyper-Thread.

For each configuration, we run our tests with three buffer sizes for the memcpy
thread, 4 KB, 128 KB and 2 MB on a dual socket Haswell processor, with 16 cores
per socket and 2 Hyper-Thread per core.

We measure the time of the computation for these three different threads
placements with different buffer sizes. We observe in Figure 3 that for all buffer
sizes, we obtain a 9 seconds execution time with the “cache-not-shared” place-
ment. This time doubles when we use the “no-smt-bind”. The reason is that the
first two placements do not compete for the caches. In the first case, the two
threads are not located on the same socket. In the second case, the two threads
are located on the same core, but without Hyper-Threading, execution is inter-
leaved. Hence, when the computation thread runs, the memcpy thread is paused,
and, after context switching between these threads, the memcpy thread runs
while the computation thread is paused. If data may be removed from the caches
after context switching, no competition for the cache occurs while a thread is
running between context switches. However, for the “no-smt-bind” placement,
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Fig. 4. Result of cache L1 miss for cache-not-shared, no-smt-bind and smt configura-
tions for 4 KB, 128 KB and 2 MB on a 32 core Haswell processor.

the two threads share the same core without Hyper-Threading. Thus, all the
workload from both threads are running on the same resources. Since we fixed
the memcpy thread to run as long as the computation thread, it doubles the
workload per core, hence also doubling the execution time.

For the “smt” placement, the memcpy thread is bound to the same core as
the computation thread but on another Hyper-Thread. We observe a different
behavior. Execution time is slower when the buffer size increases whereas the
execution time remains constant between buffer sizes for the other placements.
The computation is slower when the memcpy thread manipulates a larger amount
of data: it is a typical symptom of cache thrashing.

To assess this hypothesis, we use the Performance Application Programming
Interface (PAPI) [16] to collect the L1 cache misses. We see in the Figure 4 that
the number of cache misses is constant between both “no-smt-bind” and “cache-
not-shared” placements. This is expected because the computation thread and
the memcpy thread do not share the caches for the “cache-not-shared” placement.
For the “no-smt-bind” placement, these threads are scheduled one after the other
and no additional cache misses occurs.

For the “smt” placement, we observe additional cache misses compare to the
two previous placements. This is due to Hyper-Threading being enabled. Both
threads are executed on the same core simultaneously sharing the caches. Both of
them needs to fetch their cache lines to execute their jobs. Contention happens



and leads to additional cache misses because the memcpy thread evicts cache
lines of the computation thread.

It is now common to use non-temporal memory operations for shared memory
operations in MPI libraries. The non-temporal memory copy, introduced with
SSE2 instruction set, do not store in cache data sent to memory (i.e. it forces
a write around cache policy). However, only the write operation bypasses the
cache, not the read. Benchmarks with non-temporal memory copy exhibits the
same results as with regular memory copy.

These results demonstrate that using Hyper-Threading for communication
progression in shared-memory causes a flood of cache misses, which severely
degrades the performance of computation on the same core.

6 Conclusion and Future Work

Overlapping communications with computation is the key to amortize the cost of
communications, especially for collective communications which are heavier than
point-to-point communications. Approaches for progression relying on a progress
thread per MPI rank may suffer from competition between communication and
computation.

In this paper, we have studied the placement of progress threads for MPI non-
blocking collective on hyper-threads and compared it against dedicated cores.
We have brought a comprehensive benchmark and full performance analysis of
using hyper-threads for communication progression on Haswell processor.

We have tested several progress thread placements and obtained an overlap
ratio of 98% of network communications when placing progress threads on hyper-
threads. We have shown that this scheme leads to performance degradation for
shared memory communication, and highlighted its cause in cache thrashing.

As a consequence of this work, the optimal placement for a network com-
munication and a shared-memory communication is not the same, which is not
achievable through the use of a single progress thread making progress for all
communications. As future works, we plan to have communication progression
rely on tasks rather than on a thread, which will allow for a greater flexibility
in placement.
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