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Abstract. To amortize the cost of MPI collective operations, non-
blocking collectives have been proposed so as to allow communications
to be overlapped with computation. Unfortunately, collective communi-
cations are more CPU-hungry than point-to-point communications and
running them in a communication thread on a dedicated CPU core makes
them slow. On the other hand, running collective communications on the
application cores leads to no overlap. To address these issues, we pro-
pose an algorithm for tree-based collective operations that splits the tree
between communication cores and application cores. To get the best of
both worlds, the algorithm runs the short but heavy part of the tree
on application cores, and the long but narrow part of the tree on one
or several communication cores, so as to get a trade-off between overlap
and absolute performance. We provide a model to study and predict its
behavior and to tune its parameters. We implemented it in the MPC
framework, which is a thread-based MPI implementation. We have run
benchmarks on manycore processors such as the KNL and Skylake and
get good results for both performance and overlap.

1 Introduction

MPI is the standard interface for communications in HPC applications. It is
used by applications for inter-node (i.e. network) and intra-node (processes on
the same node) communications. The cost of communications is one of the main
obstacles to get a good speedup for parallel applications. To amortize the cost of
MPI communications, application programmers try to overlap communications
with computation by using non-blocking communication primitives, and let them
progress in background while keeping the CPU busy with computation.

Initially the non-blocking communications were only available for point-to-
point communications. The extension of the non-blocking communications to
collective operations (i.e. primitives that involve more than two nodes, such as
broadcast, reduce, scatter, gather, ...) is an addition of the latest major MPI



version [1]. It opens the door to communication/computation overlap for collec-
tive operations too. However, collective communications are more CPU-hungry
than point-to-point communications, and are therefore it is harder to make them
progress in background.

In this paper, we tackle the problem of overlapping communication and com-
putation for non-blocking collectives on manycore processors. We study the case
of MPI tasks spread on a manycore processor, with one task per core, and how to
improve overlap with cores dedicated to communications. We explore the trade-
off between executing collective communication on dedicated CPU cores versus
using application cores. We restrict ourselves to the case of tree-based collective
operations (broadcast, reduce, scatter, gather, allreduce) because they are the
one where this trade-off has the most impact on the performance as we are able
to tune it dynamically.

In short, this paper makes the following contributions:

– we propose an algorithm that splits the tree of the collective operation,
running parts of the tree on cores dedicated to communication, and parts of
the tree on the application core;

– we propose a model for the above algorithm, so as to demonstrate the im-
provement of global performance when overlapping communication and com-
putations, and to tune its parameters;

– we implemented the algorithm in the MPC MPI implementation [2].

The rest of the paper is organized as follows. Section 2 presents related works
about communication/computation overlap in general, and for collective commu-
nication in particular. Section 3 presents our split-tree algorithm for tree-based
collective communications. In Section 4, we present a model of the algorithm and
how to tune it for optimal performance. Section 5 describes how the algorithm is
implemented in the MPC software. Section 6 reports experimental results, and
Section 7 concludes.

2 Related Works

The topic of communication progression has already been studied for some as-
pects in the literature. Several strategies do exist for background progression of
point-to-point communications, such as offloading the communication to hard-
ware [3, 4] and let the hardware do the progression; use of a thread [5] or pro-
cess [6] dedicated to communication progression; opportunistic scheduling of
communication tasks [7, 8].

MPI non-blocking collective communications are more difficult to make
progress in the background, since not only the data transfer but the collective al-
gorithm too needs to progress, which makes it harder to rely on hardware. There
is specific work [9] for hardware-assisted progression on Blue Gene, or offload-
ing shared memory collectives to a kernel module [10] (although authors only
address performance of blocking collectives, not progression of non-blocking col-
lectives). The reference NBC implementation [11] relies on a progression thread,



with some tricks [12] to improve overlap on InfiniBand. This approach is quite
different from ours since it leads to one progression thread per MPI task, while
our approach runs multiple MPI ranks in the same process and the algorithm
for the collectives is shared across all MPI ranks in the same process.

3 A split-tree algorithm for MPI collective operations

In this Section, we propose a split tree algorithm for MPI collective communi-
cations which improves communication/computation overlap.

In this paper, we focus on intra-node communications on a manycore ma-
chine, with one MPI task per core. To obtain a good overlap for communications
and computation, they have to run in parallel. On a manycore machine, the
straightforward way to get background progression of communication is to ded-
icate some cores to communications, thus some cores host an MPI rank, we call
them application cores; the remaining cores (one or several) host communication
progression threads, we call them communication cores.

However, collective communication algorithms involve a huge amount of
point-to-point communications, and thus a lot of communication tasks. When
communication cores perform all communications on behalf of all application
cores, the algorithm is folded and communications from a given step of the
collective algorithm may be serialized. As a consequence, when folded on few
communication cores, collective communications get much slower than when ex-
ecuted as a blocking call on all application cores simultaneously.

There are multiple topologies for collective communications. We restrict our-
selves to tree-based algorithms (reduce, broadcast, gather, scatter, allreduce).
The time steps of such a tree-based collective is depicted in Figure 1: each level
of the tree is a step in the algorithm, from the root to the leaves. The rank of
MPI tasks participating to each step is represented in the vertices. The left child
of a vertex is the same MPI task; only the right child involves a communication.
When represented as time steps of the algorithm, it is a binary tree, although
when considering the data flow by deduplicating vertices which are the same
task, the algorithm is really a binomial tree.

On such tree-based algorithms, we observe that the amount of work is very
unbalanced in time and space. On the example depicted in Figure 1 for 16 MPI

Fig. 1. Communication tree for a broadcast collective with 16 MPI tasks. S is the num-
ber of steps (tree levels) running on application cores. Plain edges are communications.
Vertices are the MPI tasks.



tasks, there are 15 communication tasks and the algorithm needs 4 steps. If
we fold these communications on a single communication core, it would need 15
steps which is 4 times slower. Since half of the work is in the last step, represented
as S = 1 with levels numbered from the leaves, we can trade some performance
against some overlap by executing different parts of the tree on different cores.
If only the upper part of the tree is executed on the communication cores, and
the last step S = 1 is executed on the application cores, then the total is twice
as fast as running everything on communication cores, while only a single step
cannot be overlapped with computation.

Our proposed algorithm is a generalization of this principle for a trade-off
between communication performance and overlap: split the communication tree
with the upper part running on communication cores, so as to have full overlap,
and the lower part running on all application cores. Let S the number of steps
(tree levels) running on application cores. S = 0 is equivalent to running all
the communication on communication cores. The algorithm runs S steps of the
tree on application cores as depicted in Figure 1. When S = 1, the algorithm
runs the short but heavy part of the tree on application cores whereas the long
but narrow part of the tree is running on one or several communication cores.
All the communications running on application cores cannot be overlapped by
computation because they are running on the same cores. However, this part of
the tree is the heaviest and running these communications on few communication
cores would jeopardize communication performance. The part of the tree running
on communication cores benefits of total overlapping of its communications.

If S is increased, the algorithm loses a bit of its ability of being over-
lapped but can increase its absolute performance depending on the communica-
tion/computation ratio. We have to get a trade-off between overlap and absolute
performance.

4 Modeling and tuning

In this Section, we propose a performance model of the algorithm described in
Section 3, so as to show its relevance and to tune its S parameter.

Model for collective operations. Let Nproc the total number of cores, and N the
number of cores for the application (i.e. number of MPI ranks), then the number
of dedicated cores for communication is P (N) = Nproc −N .

We consider collective operations as binomial trees only. The proposed model
could be easily extended to N-nomial trees if needed. It applies to operations
such as: reduce, broadcast, gather, scatter; scan and alltoall, not based on a tree
topology, are out of scope. We model communication cost as linear, neglecting
latency and cache effects. We take as unit the point-to-point transfer time of one
buffer of the size of the considered collective operation. We study first operations
with a constant buffer size across the whole tree (reduce, broadcast). We will
extend it to variable-buffer size operations (scatter, gather) in a second step.



The height of the tree3 is H(N) = dlog2(N)e. In the case of a blocking
operation where communication is performed simultaneously by all application
cores, we get the following execution time:

Tblocking(N) = H(N) = dlog2(N)e (1)

Let C(N) the computation time on N nodes. To model computation and
communication overlap, we consider the application programmer tried to reach
perfect overlap and sized computation to have the same duration on all cores as
the blocking collective operation, i.e. C(Nproc) = Tblocking(Nproc). If we assume
computation scales linearly, we have the following time for computation on N
nodes:

C(N) =
N

Nproc
× C(Nproc) (2)

Model for the proposed algorithm. We now model the split tree algorithm itself.
As defined in Section 3, S is the number of steps running on application cores;
the time to run these steps is the depth of the sub-trees, namely S, unless
the tree height is smaller than S. The algorithm schedules operations from the
upper H(N) − S levels on communication cores, folded on P (N) cores. Let
R(N) = N−2blog2(N)c the number of leaves that are not on the largest complete
binary sub-tree of the tree. Let F (N, i) the number of communications for N
MPI tasks in the level i:

F (N, i) = 2blog2(N)c−(H(N)−i+1) +

⌊
R(N) + 2(H(N)−i)

2(H(N)−i+1)

⌋
(3)

Since each level of the tree contains F (N, i) communications for level i num-
bered from 1 for the root, it takes a time of dF (N, i)/P (N)e once folded on
P (N) communication cores, assuming each level is run in sequence because of
communication dependencies. As a result, the time for a non-blocking collective
with split steps algorithm is Equation 4 as below:

Tnon−blocking(S,N) = min(S,H(N))︸ ︷︷ ︸
last S steps from leafs

+

max(0,H(N)−S)∑
i=1

⌈
F (N, i)

P (N)

⌉
︸ ︷︷ ︸

upper levels of tree, up to S

(4)

With communication and computation overlap with the same collective oper-
ation, given that the part running on application cores cannot be overlapped and
the part running on communication cores is fully overlapped, we get the result
in Equation 5 as time for overlapped computation and non-blocking collective
with split tree:

3 We use a binomial tree where the N MPI tasks are leaves. In case of a binary tree,
we will have N vertices and H(N) = dlog2(N + 1)e − 1
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Fig. 2. Model of communication cost for operations with constant-size buffer (broad-
cast, reduce) on 64 cores.

Toverlapped(S,N) = min(S,H(N))︸ ︷︷ ︸
non-overlapable comms

+ max

(
C(N),

max(0,H(N)−S)∑
i=1

⌈
F (N, i)

P (N)

⌉)
︸ ︷︷ ︸

overlapable communications

(5)
The graph C(N), Tblocking, and Tnon−blocking(N,S) for increasing values for

S and Nproc = 64 is depicted in Figure 2. We observe that for large values of
N (i.e. small number of communication cores), the communication is huge for
S = 0 (all communication on communication cores). The cost decreases when S
increases.

Figure 3 represents the total time of computation overlapped with communi-
cations when using blocking communications (computation and communication
run in sequence) and when using non-blocking communications with split tree
algorithm. We observe that increasing values for S increases the cost for small
values of N (reduces overlap), but this cost is amortized for large values of N
where the total time is dominated by the cost of the communication folded on
few communication cores.

Discussion and tuning. From observation of Figure 3, the absolute minimum
time is reached for S = 0 and N = 51. However, it means that 13 cores are
dedicated to communications, which may not be desirable for the user since it
would degrade performance of parts of the application without communication.
With 7 cores dedicated to communications (N = 57), the optimal is S = 1; for
4 cores dedicated to communication (N = 60), the optimal is S = 2; and finally
S = 3 for N = 62 (2 communication cores).

As a general case, for a given value of N , it is enough to compute the pre-
dicted performance with the model for a few values of S to find the optimal
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Fig. 3. Model of communication/computation overlap for operations constant-size
buffer (broadcast, reduce) on 64 cores.
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Fig. 4. Model of communication cost (left) and communication/computation overlap
(right) for operations with increasing buffer size (scatter, gather) on 64 cores.

value. However finding N for the best overall performance depends on applica-
tion scalability and communication/computation ratio and is out of scope for
this paper. We can extend the proposed model for collective operations where
not all tree edges have the same weight, such as scatter and gather; when going
from leaves to root, data size doubles at each level of the tree. If we modify
the model for such operations, we get the graphs for communication cost and
overlapped time as depicted in Figure 4, which exhibits a behavior similar to the
previous one.

5 Implementation

In this Section, we present the implementation of the algorithm in MPC [2], our
thread based MPI implementation.



In MPC, MPI tasks are implemented with threads. MPC also implements
POSIX threads and an OpenMP runtime system. MPC has its own scheduler
allowing a fine-grained scheduling of all these threads. Thus, we bypass the
system scheduler. MPC uses a tuned version of libNBC [11] to implement MPI 3
Non-Blocking Collectives. One progress thread is created for each MPI task.
These threads can be bound through different algorithms. In the default behavior
used in our experiments, MPI tasks are bound with a scatter policy and progress
threads are bound to the closest idle cores.

In this implementation, a MPI non-blocking collective is decomposed in MPI
point-to-point non-blocking calls fulfilling the collective algorithm. When a MPI
non-blocking collective is called, each MPI task creates a schedule containing
requests for the point-to point non-blocking calls corresponding to its part of
the collective algorithm, and attach it to its associated progress thread. Thus,
the progress threads handle the communication described by the schedules while
MPI tasks continue to execute computation.

To implement our algorithms, we define the parameter S to be the number
of steps (tree levels) that we want to run on application cores. For all-to-one
algorithms (reduce, gather), we run the S steps on MPI tasks using MPI point-
to-point blocking communication before creating the NBC schedule of H(N)−S
steps. Then, we attach it to its associated progress thread. Thus, the first part of
the algorithm is running on application cores whereas the last part is running on
the cores dedicated to the progress threads. For one-to-all algorithms (broadcast,
scatter), we define the requests of H(N)−S steps and create the NBC schedule
first. We attach it in its associated progress thread. Then we implement the S
steps in the MPI Wait function executed by the MPI tasks. Hence, the first part
is running on the cores dedicated to the progress threads whereas the last part
is running on application cores.

6 Experimental Results

In this Section, we present experimental results of our algorithm implemented
within MPC.

We implemented our own micro-benchmarking tool to evaluate the perfor-
mance of our algorithm. This tool works similarly to the Intel MPI Bench-
marks [13] but with fixed problem size allowing us to have the same compu-
tation workload for different number of MPI tasks. We arbitrary set the buffer
size to 2MB and sized the computation workload to reach perfect overlap Then,
we reduce the number of MPI tasks while keeping the same global computation
workload. Thus, when we have less MPI tasks, the duration of computation in-
creases and more idle cores are available for progress threads. This contributes
to decreasing the time of communications and maximize the overlap. When all
cores are used by the MPI tasks, they are no cores left for progress threads. In
this case, the algorithm is the same as for the blocking call. Thus we do not show
these points in the following performance figures.



We ran our benchmark on two different manycore architectures: a 1.4GHz
Intel Xeon Phi Knights Landing with 64 cores (KNL) and a 2.7GHz bi-socket
Xeon Platinum Skylake with a total of 48 cores (SKL).

Comparing split-tree algorithm to default setup. In our first experiments, we
tested the interest of the split-tree algorithm. As described in Section 5, MPC
already provides progress threads for communication collectives. The progress
threads are gathered on the available cores. This mapping brings good per-
formances when the number of available cores is high. However, performances
collapse when too many progress threads are gathered on the same core. The
blue lines labeled ”Comp + comms, split-tree (S=0)” show this behavior on KNL
for collective Ibcast (Figure 5) and for collective Ireduce on KNL and Skylake
(Figure 6). The label ”Comp + comms, split-tree (S=0)” means that no level of
the communication tree is done on the MPI tasks, thus all communications are
realized on the progress threads.

Thanks to the split tree algorithm, we were able to balance more efficiently
communications between the MPI tasks and the progress threads. The orange
line labeled ”Comp + comms, split-tree (S=1)” (resp. purple line labeled ”Comp
+ comms, split-tree (S=2)” and green line labeled ”Comp + comms, split-tree
(S=3)”) shows the performance of the same algorithms when 1 (resp. 2 and
3) levels of the communication tree remains on the MPI tasks. If enough cores
are available to correctly handle the progress threads, the split-tree version is
less performant. However, when the number of available cores is shrinking, the
split-tree version is more stable. For each additional level attached to the MPI
tasks, the sudden performance drop is observed with fewer available cores, until
S=3 allows to maintain better performances than the blocking call even in the
least favorable case (only one core available for all progress threads). Hence, it
is possible to select the best split-tree value S depending on the algorithm and
the number of cores hosting progress threads.

Comparing performance results to model. To help select the number of tree
levels to leave on the MPI tasks, we proposed a model in Section 4. The model
projection for Ireduce collective on 64 cores is shown in Figure 3. Comparing this
projection to the result of Ireduce on the 64 cores KNL displayed in Figure 6,
we can see that the model is really close to the results.

Moreover, the values for switching from a value S in the split-tree to the next
one are the same between the prediction and the measured performance. This
allows us to select the correct number of levels to leave on the MPI tasks by
implementing this model in the MPI runtime system.

Comparing MPI implementations. We also compare our algorithm with other
MPI implementation such as Intel-MPI and OpenMPI. We ran OpenMPI and
Intel-MPI tests with the same compute workload as for our previous experiments.
We compare these results to our split-tree algorithm with the S value chosen
accordingly to our model. Hence, when the model predicts that an S value is
better than another one, this value is automatically applied. For example, on
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KNL, we switch from S=0 to S=1 for 52 MPI tasks, from S=1 to S=2 for 58
MPI tasks, and from S=2 to S=3 for 62 MPI tasks.

The results for all tested MPI implementation, including our MPC model-
based results, are depicted in Figure 7 for MPI Ireduce.

We observe that our split-tree algorithm, with the selection of the num-
ber of levels left on the MPI tasks based on our model (MPC model-based –
green), performs well on KNL and Skylake. On KNL, MPC model-based (green
lines) is always better than OpenMPI (purple) and IntelMPI (royalblue). To
be fair, we activated for IntelMPI the flags allowing asynchronous progression
(I MPI ASYNC PROGRESS and and I MPI ASYNC PROGRESS PIN ), but
these flags reduced the performances (skyblue and blue lines) instead of im-
proving them. On Skylake, OpenMPI performs better than on KNL. However,
except for last number of MPI tasks, MPC model-based managed to have better
performance thanks to the split-tree algorithm.
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Very interestingly, we also see that in this case, the best performance is
obtained with 50 cores for the KNL and 38 cores for the SKL, meaning that the
best trade-off is far from using all the available cores.

7 Conclusion and Future Work

Overlapping communications with computation is the key to amortize the cost
of communications, especially for collective communications which are heavier
than point-to-point communications. Approaches for progression relying on a
progression thread per task suffer from competition between communication
and computation, and approaches relying on a pool of cores dedicated to com-
munication exhibit a slowdown in pure communication time when the collective
is folded on few cores.

In this paper, we have proposed a novel algorithm that combines the best of
both worlds. It splits the communication tree so as to execute the narrow part
of the tree, representing most of its depth, on dedicated communication cores;
this part may be fully overlapped with computation. It places the widest part of
the tree, which represents a small part of its depth but a large part of the total
work, on all applications cores to benefit from parallelism.

We have modeled the algorithm to demonstrate its relevance and to tune
its parameter. We have implemented the algorithm in the MPC software and
evaluated its performance on manycore processors (Intel KNL and Skylake).
Thanks to the excellent accuracy of the model we are able to almost always
find the best trade-off between using dedicated CPU cores or application cores
and hence exceed the performance of state-of-the-art competitors. Moreover,
it is important to notice that our solution is not bound to the MPC runtime
system but can be implemented in any MPI library featuring progress threads
for communication.

As future work, we plan to extend the approach of our algorithm to inter-node
communications, which have a different behavior than intra-node communica-
tions considered in this paper. Moreover, we also plan to extend auto-tuning to



choose the number of MPI tasks (parameter N) to optimize the overall perfor-
mance and not only sections with non-blocking collectives.
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