
HAL Id: hal-01888216
https://hal.science/hal-01888216

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Partitioning for Iterated Sequences of
Irregular OpenCL Kernels

Pierre Huchant, Denis Barthou, Marie-Christine Counilh

To cite this version:
Pierre Huchant, Denis Barthou, Marie-Christine Counilh. Adaptive Partitioning for Iterated Se-
quences of Irregular OpenCL Kernels. SBAC-PAD - 30th International Symposium on Com-
puter Architecture and High Performance Computing, Sep 2018, Lyon, France. �10.1109/SBAC-
PAD.2018.00051�. �hal-01888216�

https://hal.science/hal-01888216
https://hal.archives-ouvertes.fr


Adaptive Partitioning for Iterated Sequences of
Irregular OpenCL Kernels

Pierre Huchant
Inria / LaBRI

Bordeaux INP, U. of Bordeaux
Talence, France

pierre.huchant@inria.fr

Denis Barthou
Inria / LaBRI

Bordeaux INP, U. of Bordeaux
Talence, France

denis.barthou@inria.fr

Marie-Christine Counilh
Inria / LaBRI

Bordeaux INP, U. of Bordeaux
Talence, France

marie-christine.counilh@inria.fr

Abstract—OpenCL defines a common parallel programming
language for all devices, although writing tasks adapted to the
devices, managing communication and load-balancing issues are
left to the programmer. We propose in this paper a static/dynamic
approach for the execution of an iterated sequence of data-
dependent kernels on a multi-device heterogeneous architecture.
The method allows to automatically distribute irregular kernels
onto multiple devices and tackles, without training, both load
balancing and data transfers issues coming from hardware
heterogeneity, load imbalance within the application itself and
load variations between repeated executions of the sequence.

Index Terms—OpenCL, Irregular Workload, Load Balancing,
Static Analysis, Dynamic Analysis

I. INTRODUCTION

Graphic Processor Units (GPU) are ubiquitous and nowa-

days most computing nodes of a parallel machine consist

in GPUs and multicore CPUs. In terms of programming

language, OpenCL has emerged as the programming language

for heterogeneous computing, able to define code for GPUs

and CPUs alike. However, this introduces new challenges:

The application code has to be adapted to the number of

devices and the workload has to be balanced equally between

these devices. Load balancing is difficult to achieve in general,

because the architecture is heterogeneous, the parallel applica-

tion may not have a constant load and both computation and

communication times have to be taken into account.

In this paper, we focus on applications with an iterated

sequence of data-dependent OpenCL kernels. This occurs in it-

erative computations, for instance until a fixed point is reached

or for a simulation, where each iteration corresponds to a time

step. There is no necessarily enough parallelism between the

kernels. The method we propose is to automatically partition

each kernel at load time into sub-kernels, one per device. The

size of the partition is then adapted at runtime after each iter-

ation, taking into account both execution and communication

times. We show that our partitioning method is able to handle

sequences of kernels with irregular workload, dynamic load

variations and takes into account the communication times

between kernels induced by their respective partitioning. Our

method automatically transforms a single device multi-kernel

application into a portable, heterogeneous multi-device and

multi-kernel application.

The major contributions of this paper are the following:

• Design and implementation of a framework to automat-

ically adapt a single device application with multiple

kernels to any number of devices.

• Automatic partitioning of the data accessed across de-

vices with complex memory access patterns, including

indirections.

• Dynamic load balancing for each iteration of the compu-

tation, handling irregular workload inside kernels, load

variations and communication between devices.

II. MOTIVATION

Figure 1 illustrates two different strategies when distributing

a sequence of 2 kernels over 2 devices. The structure of the

application is shown Figure 1a. Threads from the iteration

spaces of kernels 1 and 2 are respectively represented with

diamonds and circles. The shades of gray represent the amount

of work of each thread. Both kernels have irregular workload:

for kernel 1 (resp. kernel 2), threads from the beginning of

the iteration space have more work (resp. less work) than

threads at the end of the iteration space. kernel 2 exhibits

the structure of a stencil: each thread from its iteration space

depends on the data produced by the thread from kernel 1

at the same position and also on the data produced by its

two neighbor threads. For kernel 1 however, each thread only

depends on the data produced by the thread at the same

position in kernel 2. Figure 1b illustrates a uniform partitioning

strategy over 2 GPUs, where the two sub-kernels of kernel 1

and kernel 2 have a partitioning ratio of 0.5. A partitioning

ratio of 0.5 on a device means that half of the iteration space

of the kernel is executed on this device. For this specific

application, this partitioning minimizes the amount of data

to transfer. However the execution times of the sub-kernels

are imbalanced. Figure 1c illustrates another partitioning that

minimizes the computation time of each kernel. kernels 1 and

2 must then have different partitioning ratios to balance the

execution time of their sub-kernels. However this partitioning

implies much more data transfers, and may result in a huge

slowdown.

This illustrative example shows the impact of the parti-

tioning of each kernel from the sequence on the volume of

data to transfer. Only considering the execution times is not

sufficient in order to minimize the overall execution time of
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Fig. 1: Different Partitioning Strategies

a kernel sequence. The partitioning that minimizes the overall

execution time of a kernel sequence is a trade-off between the

balancing of the execution times of the sub-kernels and the cost

of the data-transfers induced. This partitioning depends on the

architecture heterogeneity, the workload of the application, the

data-dependencies between kernels, and the iteration number

in case of dynamic load variations.

III. PRINCIPLE OF DYNAMIC ADAPTATION

This section describes how we automatically adapt OpenCL

kernels to heterogeneous multi-device architectures using a

combination of static and dynamic approaches.
a) Static Analysis and Transformation: At load-time, our

framework computes for each kernel the parametric read and

write array regions it accesses. These regions consist of a union

of intervals defining the values of indices in the array that

may be read/written by the kernel. These intervals may depend

on thread ids, on the values of the scalar parameters of the

kernels and on the values of other array elements in the case of

indirections. We assume here that indirections are monotonous

functions, preserving intervals, such as for Compressed Sparse

Row format (CSR) or for spatial binning structures. Then all

kernels are transformed into partition-ready kernels which can

be launched with a fraction of the original NDRange as in [3].
b) Runtime Adaptation: At each iteration, a new parti-

tioning of the parallel iteration space defined by the NDRange

of each kernel is computed. Each device then executes each

kernel on a fraction of its NDRange called sub-NDRange.

These sub-kernels correspond to the partition-ready kernels

instantiated with the sub-NDRange resulting from the par-

titioning computed. For the first iteration, each kernel is

partitioned using a Uniform strategy. For the following ones,

the partitioning of each kernel is computed by solving a linear

system. This linear system, presented in the next section, takes

into account both communication and computation times and

is based on previous iteration measures. Each time a new

partitioning of the kernel sequence is computed, the parametric

read and write array regions associated to each sub-kernel are

instantiated with the values of its scalar parameters, its current

sub-NDRange and possibly the value of some array elements

in case of indirections. We then use these instantiated regions

to only transfer the data missing on each device.

IV. DYNAMIC LOAD BALANCING

This section defines a new method to determine how to

partition an iterated sequence of m kernels onto n devices.

The partitioning of each kernel in the sequence is computed

by solving a linear system at each iteration. At the end of

iteration t, the linear system computes the partitioning ratios

of each kernel in the sequence, in order to minimize the overall

execution time of iteration t+ 1.

A. The Adaptive w/o Comm Strategy

The Adaptive w/o Comm strategy finds partitioning ratios

for each kernel from the sequence individually in order to

minimize their execution times. This strategy does not take

into account the transfer times between kernels induced by

their respective partitioning. In this case, the linear system

relies only on the execution times of the sub-kernels at

iteration t to determine the partitioning ratios for iteration t+1.

The linear system presented below is a generalization of the

formulation presented in [3] to a sequence of m kernels.

The Adaptive w/o Comm strategy consists in finding the

execution times T 1, . . . , Tm of each kernel, and the new

partitioning ratios ykd of each kernel k on each device d for

iteration t+1 such that the following system is fulfilled:⎧⎪⎪⎨
⎪⎪⎩

minT 1 + . . .+ Tm

∀k = 1..m :
∀d = 1..n : fk

d (x
k
1 , . . . , x

k
d, t) ∗ ngd ∗ ykd ≤ T k,∑

d y
k
d = 1

The partitioning ratio for a kernel k and device d is a value

xk
d in [0, 1] (with

∑n
d=1 x

k
d = 1) corresponding to the ratio

between the number of work-groups allocated to the device

d and the total number of work-groups (ngk). ngk is known

when kernel k is called. We define fk
d (x

k
1 , . . . , x

k
d, t) as the

mean time to execute one work-group on device d at iteration

t, when sub-kernels on device 1, . . . , d have respectively parti-

tioning ratios xk
1 , . . . , xk

d . The execution time of the sub-kernel

of k on device d is fk
d (x

k
1 , . . . , x

k
d, t) ∗ ngk ∗ xk

d and the total

execution time of kernel k is maxd=1,n(f
k
d (x

k
1 , . . . , x

k
d, t) ∗

ngk ∗ xk
d). The functions fk

d are not known precisely but we

determine the value of fk
d as the execution time of the sub-

kernel of k on device d at iteration t.

B. The Adaptive w/ Comm Strategy

The Adaptive w/ Comm strategy takes into account the data

transfer times induced by the partitioning of each kernel from

the sequence in order to minimize the overall iteration time.

We model the volume of data to transfer between two data-

dependent kernels as a function of their partitioning ratios.

At each iteration, the parametric read and write regions of all
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sub-kernels are instantiated and we can determine the value

of this function for the current partitioning ratios. At runtime,

using a linear regression, we compute for each pair of data-

dependent kernels and for each device a coefficient giving the

volume of data to transfer depending on the partitioning ratios

of these kernels. Then, using these coefficients we add new

constraints to the linear system presented in IV-A modeling

the communication times between all data-dependent kernels.

The objective function to minimize becomes:

minT 1 + . . .+ Tm + T 1
H2D + T 1

D2H + . . .+ Tm
H2D + Tm

D2H

where T k
D2H and T k

H2D are devices-to-host and host-to-devices
transfer times before the execution of kernel k. For each kernel
k and device d we add the two following linear constraints:

T k
H2Dd

≤ T k
H2D (1)

m∑

h=1

ah,k
d ∗ Sd(y

h
1 , . . . , y

h
d , y

k
1 , . . . , y

k
d) ∗ Ωd ≤ T k

H2Dd
(2)

where: the ykd are the unknowns of the system; ah,kd and Ωd

are coefficients determined at runtime; Sd is a relation on the

partitioning ratios ykd of kernel k and on the partitioning ratios

yhd of kernel h on which k depends. (1) means that the transfer

time from the host to the n devices before executing kernel k is

equal to the longest host to device data transfer time (transfers

to different devices are performed in parallel). (2) means that

the host to device d transfer time before executing kernel k is

the sum of the host to device d transfer times from each kernel

h on which k depends. The meaning of the relation Sd and the

coefficients ah,kd and Ωd are explained in the next paragraph.

Similar constraints are added for device to host transfers. If

all kernels depend on all kernels, 2 ∗ (m +m ∗ n +m2 ∗ n)
constraints are added to the linear system. However in most

applications kernels do not depend on all other kernels and

we show in the next section that the overhead induced by

resolving the system at each iteration is negligible.
Let us now explain our communication modelization. When

a kernel h writes to a buffer B that is read by kernel k, data
transfers may be required when those kernels are partitioned
onto multiple devices. It is the case if a sub-kernel of k exe-
cuted on device d reads a region of B that is written by a sub-
kernel of h executed on another device. This data then comes
from another device and a communication is required. Let us
assume first that the kernels h and k have a NDRange of size
N and that each thread from h (resp. k) writes (resp. reads)
buffer B at the index corresponding to its id in the NDRange.
The region of B written by the sub-kernel of h on device d and
the region of B read by the sub-kernel of k are respectively:
Wd(y

h
1 , . . . , y

h
d ) = N ∗ [yh1 + . . . + yhd−1, y

h
1 + . . . + yhd ] and

Rd(y
k
1 , . . . , y

k
d) = N ∗ [yk1 + . . .+ ykd−1, y

k
1 + . . .+ ykd ].

The data not present on device d before execution of the
sub-kernel of k is defined by the region Rd(y

k
1 , . . . , y

k
d) −

Wd(y
h
1 , . . . , y

h
d ). When the two regions overlap, the amount

of data to transfer is:

Sd(y
h
1 , . . . , y

h
d , y

k
1 , . . . , y

k
d) = N ∗max(

d−1∑

i=0

yh
i −

d−1∑

i=0

yk
i , 0)

+N ∗max(

d∑

i=0

yk
i −

d∑

i=0

yh
i , 0),

otherwise the amount of data is simply N ∗ ykd . In real

applications, two dependent kernels do not necessary have the

same NDRange and threads can write buffers at any location.

We model the communication volume from host to device d
related to h and k as a function of their partitioning ratios

gh,kd = ah,kd ∗ Sd where ah,kd is a coefficient and Sd is over-

approximated by always considering that Wd overlaps Rd. At

each iteration the parametric regions of h and k are instantiated

and we know the value of gh,kd for their current partitioning

ratios. Hence, the coefficients ah,kd are computed at runtime

using a linear regression. Finally the data transfer time from

host to device d related to h and k is ah,kd ∗Sd ∗Ωd where Ωd

is the time to transfer one byte from host to device d.

V. EVALUATION

We evaluate our method on 2 regular benchmarks: Jacobi

and FDTD2D, 1 irregular benchmark 2SpMV and 1 applica-

tion with dynamic load variations: SOTL, on a platform with

a 16-core Intel Xeon E5-2650 2.00 GHz and 3 Nvidia Tesla

M2075 GPUs. The Jacobi benchmark (2 kernels) consists in

stencil kernel followed by a memcpy from the output buffer

to the input. FDTD2D consists in a succession of 3 stencil

kernels. The 2SpMV benchmark (2 kernels) consists in a

Sparse Matrix-Vector Multiplication applied on two different

matrices, the output vector of one kernel is the input vector

of the following one. Both kernels present irregular workload

among threads, due to the sparsity structure of each matrix.

SOTL is a N-Body application with 10 kernels, simulating

the electromagnetic Coulomb force applied on particles. This

force has a cut-off distance, meaning that particles separated

by a larger distance have no interaction. The space is divided

into bins of equal size and particles are sorted among these

bins with a counting sort. This is the role of the first kernels.

The last kernel in the sequence computes for each particle

the force applied by particles within the distance of one bin.

All kernels accesses particles within bins through indirect

accesses. Partitioning these kernels, even by hand, is very

complex. Figure 2 presents speed-ups compared to the best

single device performance for 4 different strategies : Uniform

(partitioning ratio of 1/4 for all sub-kernels), Adaptive w/o

Comm (cf. IV-A), Adaptive w/ Comm (cf. IV-B), Oracle. In the

Oracle strategy, the kernels in the sequence are directly parti-

tioned with the partitioning ratios found after convergence. For

the SOTL application, there is no Oracle since the workload

dynamically changes with iteration number and the solver

never converges. For the 3 benchmarks, we observe the results

of the Adaptive w/ Comm strategy are close to the optimal

Oracle strategy. The small difference of performance obtained

with these two strategies shows that the overhead of resolving

a linear system at each iteration is negligible. The Adaptive

w/o Comm strategy obtained poor performance for Jacobi

and FDTD2D. Since this strategy only minimizes computation

time, a slow down due to data transfers is observed. For

2SpMV the same speedup is obtained with both adaptive

strategies since the transfer times induced by the partitioning

minimizing the computation time is negligible. For the SOTL
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application, the time taken to compute one iteration is mostly

taken by the force kernel. To avoid penalizing transfers, other

kernels from the sequence must be partitioned according to this

kernel. This is achieved by the Adaptive w/ Comm strategy and

it explains the increase of the speedup from 1.68 to 1.86 when

using this strategy instead of Adaptive w/o Comm strategy. We

can see on Figure 3 that the load balancing is nearly optimal

with the Adaptive w/ Comm strategy since the 4 plots showing

the time per iteration on each device are close to each other.

VI. RELATED WORK

Recent works propose approaches to manage the execution

of an OpenCL code written for a single GPU on a multi-

device heterogeneous platform. In [5], the authors propose

to model workload distribution problem as a mixed-integer

non-linear programming minimizing the variance of execution

times among GPUs. A performance model, built from training

runs is required as input to the solver. MKMD [4] uses

a two phased approach based on a performance prediction

model built from profile data. It first performs a coarse-grain

scheduling of kernels and then performs kernel partitioning

to offload work-groups of selected kernels to idle devices. In

contrast to these works, our approach does not rely on prior

training or profiling information. In [1], the authors propose

a dynamic load-balancing algorithm for a single kernel. Their

approach respond to performance variability among devices. It

is limited, nevertheless, to kernels whose relative performance

for the small, initial chunks of work-groups may lead to a good

prediction of performance for larger chunks. In [8], the authors

adapted the OpenMP guided scheduling to partition OpenCL
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Fig. 3: Total time per iteration when SOTL is partitioned on

3 GPUs and 1 CPU using the Uniform strategy (top) and the

Adaptive w/ Comm strategy (bottom)

kernels. However this approach does not take into account the

data transfers induced by the partitioning of multiple depen-

dent kernels. FluidiCL [7] uses a dynamic work distribution

scheme where sub-kernels on the CPU and work-groups on

the GPU are executed in a coordinated fashion. Nevertheless,

their approach cannot be easily generalized for any number of

devices. Sakai et. al [9] propose a data decomposition method

for multi-dimensional data that cannot be entirely stored in

the GPU memory and aiming at accelerating a single-GPU

code on a multi-GPU system. This method uses a sample

run and is limited to kernels whose memory references are

given as affine functions of the thread indices. Some other

works target integrated CPU-GPU systems. There are no

explicit communication in this architecture. [2] proposes E-

ADITHE for improving performance and energy efficiency

of iterative computations. E-ADITHE does not take irregular

iterative computations into account. [6] presents LogFit, an

adaptive partitioning strategy in the context of parallel loops

in applications with irregular data accesses. FinePar [10] relies

on fine-grain partitioning and uses a sophisticated performance

modeling approach taking both architectural differences be-

tween the CPU and GPU and data irregularity in consideration.

VII. CONCLUSION

We have presented a novel automatic approach to dynam-

ically partition a multi-kernel OpenCL code for an heteroge-

neous architecture. The method handles applications with dy-

namic load variations and takes into account both computation

and communication time in order to balance the workload.
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