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A B S T R A C T

A Markov model of semiconductor nanolaser is constructed in order to describe finely the effects of quantum
fluctuations in the dynamics of the laser, in particular by considering the transition to lasing. Nanolasers are
expected to contain only a small number of emitters, whose semiconductor bands are simulated using true
carrier energy states. The model takes into account carrier-carrier interactions in the conduction and valence
bands, but the result is a huge Markov chain that is often too demanding for direct Monte-Carlo simulation. We
introduce here a technique to split the whole chain into two subchains, one referring to thermalization events
within the bands and the other to laser photonic events of interest. The model is applied to the analysis of laser
transition and enlightens the coexistence of a pulse regime triggered by the quantum nature of the photon with
the birth of the known coherent cw regime. This conclusion is highlighted by calculated time traces. We show
that on the ultrasmall scale of nanolasers, we are unable to define perfectly the threshold.

1. Introduction

Nanolasers are becoming increasingly important in the scientific
and technical community. Their potential applications for high-bit-rate
optical interconnections can solve the need for an exponential increase
in information flow, even in microelectronics at inter or intra-chip le-
vels, for example. Regardless of the application and due to their ultra-
small size, nanolasers have unique advantages for this type of re-
quirement as low consumption becomes an essential need. Their rea-
lization relies historically on semiconductor technologies based on
heterostructures [1,2], but was extended recently to spasers [3] whose
plasmonic effects allow resonant cavities of a volume much lower than
λ3, with λ the wavelength of operation in vacuum [4–6]. Because of
these small ultimate sizes, only a few individual emitters can be in-
volved in a single device, which results in a very small number of
photons emitted and an increasing importance of the fluctuations due to
the quantum nature of processes, either optical or electrical. In semi-
conductor laser technology, the tiny number of emitters is either
reached with quantum dots or with very small VCSELs, although even
some commercial VCSELs behave like nanolasers [7]. Laser models
must then account for this quantization to move from continuous
variable descriptions like rate equations [8] toward a quantum micro-
scopic description of the device [9]. The expected physical answers are

then a better description of the transition from incoherent to coherent
emission [10,11] and the associated ultimate noise performances of a
device [12,13].

One class of very accurate models able to describe nanolasers relies
purely on quantum mechanics [14]. It numerically includes only very
few two-levels emitters (Ne≤ 5) in the optical cavity [15,16] because
the numerical complexity of the density matrix increases exponentially
with Ne. However, in spite of this limitation these models have shown
that coherence effects between excited atoms are smoothed as soon as
their count exceeds a few units. The consequence is that the extensive
consideration of these coherences is not necessary to give a detailed
account of a real nanolaser.

If an accurate description of the quantum-well (QW) active medium
is required, a quantum-mechanical nonequilibrium theory for the cou-
pled carrier-photon system in semiconductor micro cavity lasers was
built to analyze the laser dynamics and the stationary emission prop-
erties [17]. It shows dynamical response of the microlaser strongly in-
fluenced by nonequilibrium carrier effects.

Alternatively a quantum semiclassical description of the excited
states and photon bath is much simpler and allows a complete sto-
chastic description of both the photon and atom populations. Numerical
models may rely either on a Fokker-Planck equation [18,19] or on a
detailed account of the underlying birth-death Markov processes [20].
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On the one hand, this representation was used to elucidate the popu-
lation oscillation in nanolasers or the transition to lasing in high-β na-
nolasers [11,21]. Models however include a large number of emitters
that are only simulated within the approximation of small Gaussian
fluctuations. If fewer emitters are considered, a more rigorous modeling
is possible using the exact algorithm of Gillespie [22] applied to the
birth-death Markov process. This has allowed the description of sub-
Poissonian light generation from regularly pumped semiconductor la-
sers [12] or the increase of the apparent threshold of a nanolaser be-
cause of photon-carrier correlation [13].

The model proposed in this document falls within the latter fra-
mework and considers microlasers with QW active medium. It takes
into account the semiconductor electronic band description [12,23] and
finely reproduces the carrier-carrier interactions within conduction and
valence bands. This is obtained owing to an evenly-spaced re-
presentation of energy levels within bands that was shown separately in
perfect agreement with the grand-canonical density of states expected
in semiconductors [24]. Although satisfactory from the point of view of
accuracy, this model suffers from its lack of numerical efficiency if too
many electrons have to be simulated in each band due to their ther-
malization. Extending results of [12,23] to more realistic nanolasers
operating at room temperature would thus have required excessive CPU
time. In the present paper we use a known principle on the Markov
chains [25,26] to split our birth-death process into a thermalization
part and a photonic events part to speed up the simulation process.
Extreme CPU time improvements are demonstrated owing to a sub-
sequent analytic account of the thermalization that we consider within
the thermodynamics canonical framework between each pair of pho-
tonics events. As a result, our new model reproduces all known nano-
laser peculiarities, especially in the transition to lasing [10,11,13,27]
but with a realistic semiconductor occupancy.

2. Material and methods

Our picture of a semiconductor (SC) laser consists of a quantized
electromagnetic field resonant with a cavity containing m photons and
a finite number of electrons occupying the two upper bands of the SC:
the conduction band (CB) and the valence band (VB), cf. Fig. 1. A finite
number of energy values is available for each electron, their levels
being evenly-spaced into the CB and the VB, separated by the SC
bandgap. We fix the number of energy levels at B per band and the
energy separation between levels to δ. Recalling the fermion nature of
electrons, each level can be occupied by one electron at maximum using
a Pauli exclusion principle without spin consideration. Moreover we
chose B electrons only for the whole system so as half of the energy
levels are filled.

Interactions between electrons and photons are prescribed to occur
only at a specified pair of energy levels whose energy difference be-
comes that of a photon stored in the cavity or emitted outside.
Correspondingly, only one frequency is supported by this laser model,
other frequency modes being considered filtered out by the cavity. For
convenience, lasing levels are located in the middle of the VB and the
CB. This will bring useful symmetry in further analytical calculations
and is not restrictive for the physical description of the system.

The laser is represented by a Markov chain in continuous time.
Individual states of the chain are completely described by the photon
number and the electron repartition over the set of 2B energy levels.
Since photonic events may occur only at lasing levels, they can be listed
as follows: If a hole fills the CB lasing level (CBLL) and an electron fills
the VB lasing level (VBLL), a photon can be absorbed with a rate gm
upgrading the electron at CBLL. In this expression, g figures the laser
gain expressed as the inverse of a time. Conversely, with an electron in
CBLL and a hole in the VBLL, a photon can be emitted with a rate g
(m + β) downgrading the electron to VBLL, with β the fraction of the
spontaneous emission coupled to the lasing mode. A photon emitted in
another mode is lost with a rate g(1− β). For convenience, g=1 is

assumed everywhere as it defines the time unit. It is omitted in the
sequel and therefore actual photon generation and absorption rates are
simply m + β, 1− β and m. According to band occupations, the energy
balance is ensured by pump events which promote the electron in the
VB lowest energy to the CB highest level with a constant rate J
(Poissonian pump). On the other side, cavity losses (photon exit) are the
useful external signal of the laser produced at a rate αm, with α−1 the
photon lifetime in the cavity.

Markov chain trajectories are numerically obtained using the
Gillespie algorithm [22], which gives a stochastically rigorous time
evolution of the process and does not require time discretization. Fur-
ther averaging produces first- and second-order statistics for electron
and photon distribution. Taking into account the ergodicity of the
process makes it possible in practice to take averages either in time or
with multiple trajectories.

Crucial information for calculating the temporal evolution of pho-
tonic variables within trajectories are the probabilities of occupation of
CBLL and VBLL by an electron. The latter, called occupancies, may be
known according to the different ensembles of statistical physics.
Although extensively used in SC physics, a rough application of the
grand-canonical ensemble without the account of the feedback induced
by photon emission and absorption leads to a nonsense in that occu-
pancies will be constant regardless of the photon flux, discarding the
population clamping that gives the coherent property of a laser.

On the other side, the microcanonical ensemble [28] applies only on
isolated systems. Although it was shown to give excellent band de-
scription [24], it is unpractical here because either photonic events or
thermalization events within CB or VB modify energy. That is why we
are moving from such a microcanonical model to a microscopic Markov
model (MMM) [12,23], which adds the possibility for an electron to
downgrade its energy with a rate p and upgrade it with the same rate
multiplied by the Boltzmann factor. This produces a correct electron
repartition within bands and consequently on CBLL and VBLL. As is, the
model is very accurate and correctly represents a laser based on the
picture of a quantizied gain medium interacting with a quantizied field
intensity. However, it is very inefficient in CPU time because of the

Fig. 1. Schematic of the semiconductor laser model. Bands (VB and CB) are
figured by B evenly-spaced energy levels separated by δ. The semiconductor
gain medium is coupled to the optical cavity where photons are stored and can
escape with a rate α. Emission E and absorption A apply only to laser levels
prescribed arbitrarily in the middle of the bands. The external pump promote
the lowest energy electron in VB to the upper energy level in CB.
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requirement to calculate the trajectory evolution for a very large
number of thermal events and a very small number of photonic events,
which are the only ones to produce outputs relevant for laser physics.

As a result, the Markov chain describes a dynamic system with two
very different time scales: a slow-changing chain with photonic events
and pumps, and a fast-moving chain with thermal events. A known
result in Markov theory shows the possible splitting of the initial chain
into two subchains [25,26]. In between two photonic events, the phy-
sical system evolves towards the canonical ensemble since no particle
exchange occurs outside whichever band. Assuming each band becomes
stationary during this time, it is possible to make an efficient shortcut in
the initial chain by calculating the thermal evolution of the system
separately. The major advantage is a possible analytical resolution of
this thermal chain producing the electron presence in each level, at
fixed temperature, with n as sole parameter. A state is therefore per-
fectly defined only with the couple (n, m) and considerable improve-
ment in CPU time consumption is expected. The whole set of possible
transitions into and out of this state is plotted on Fig. 2. The probability
of having an electron distribution that allows absorption is then the
product of the probability of having an electron in the VBLL and a hole
in the CBLL. Conversely, the probability of being in a distribution that
favors emission is the product of the probability of having an electron in
the CBLL and a hole in the VBLL.

We call this particular model the canonical Markov model (CMM) of
a SC laser, and it relies at each step on the knowledge of the photon
number m and CBLL and the VBLL occupancies. The calculation of all
values for all rates in Fig. 2 is now complete, thus defining all transi-
tions of the CMM. It should be compared to the other two models de-
scribing laser dynamics with a birth-death Markov process [20,29]. The
major difference lies in the calculation of the rates, which in our case
takes into account the occupation of the laser level and not only the
total number of excited states. It is therefore expected to be more in line
with semiconductor lasers. Moreover, it should be noted that Rice et al.
used β as a consistent emission rate multiplier, unlike us and Roy-
Choudhury et al. For nanolasers with a limited number of photonic
events, this way is more adapted because it counts all possible events,
which certainly allows a better account of the optical noise via quantum
jumps [12].

In addition to Monte Carlo simulation, working with the CMM
further offers the possibility to solve numerically for the stationary
distribution of the process and other measures of interest. The sta-
tionary distribution of the state (n, m), say π(n, m) is known to satisfy a
set of linear equations that can be summarized in the matrix equation

=π R 0. (1)

Here, R is the rate matrix formed of the transition rates, completed on
the diagonal with the negative of the total rate out of each state. Solving

numerically for this equation first requires truncating the infinite state
space by ignoring transitions leading to states with m > M, for an
appropriate M. This M should be chosen so that the probability mass
thus ignored is less than some precision requirement. The resulting
linear system is still large but manageable using iterative methods, see
e.g. Ref. [30].

3. Theory

The purpose of this model section is to bridge the gap between the
two models, the MMM and the CMM. Finally the occupancies at lasing
levels and a convergence criterion will be exhibited.

3.1. Microscopic model and occupancies

In the microscopic description of a SC laser, a state is represented as
a couple (o, m), where m is the number of photons in the cavity, and o
= (o1, …, o2B) is a sequence of 0 or 1 which describes the repartition of
the B electrons among the 2B energy levels: ok=1 means that the kth
level is occupied. The indices of the CBLL and VBLL are denoted by L
and ℓ respectively. These levels are assumed to be symmetric with re-
spect to the energy gap between the two bands, that is, ℓ+ L= 2B+ 1.

The Markov chain that models the laser operation is defined by the
transitions and rates given in Table 1. For a transition from state s= (o,
m) to state s′ = (o′, m′) to exist, states s and s′ must satisfy ok= o′k for
all levels k except those two indicated in the table.

It will be shown elsewhere by using classical criteria (e.g. Chap II in
Ref. [31]) that the latter chain is ergodic, and that the stationary oc-
cupancies nk satisfy the following symmetry. For each level index
k∈ [1, 2B],

= − + −n n1 .k B k2 1 (2)

3.2. Markov chains without thermal transitions

Almost all occurrences of transition in the MMM are thermal ones.
This is because their rates are by far the greatest ones: In Table 1 they
are labeled p and p q, with ≡ −q δ k Texp ( / )B the Boltzmann factor that
includes the lattice temperature T. Nonetheless laser operation is
mainly described by the other transitions. Thermal transitions are only
useful in determining whether the lasing and pumping levels are oc-
cupied or not, and they neither change the number m of photons nor the
number n of electrons in the CB. Therefore, we may get rid of them by
clustering the states with same n and m values, and weighting transition
rates by coefficients γ(n, m) in (0, 1] accounting for the likelihood of
fitting microscopic states. A state of the corresponding Markov chain is
then described by a couple (n, m), and the transitions are given in
Table 2.

For instance, γE(n, m) is interpreted as the probability of being in a

Fig. 2. Representation of the birth-death Markov process out of the state (n, m).
Arrows are the transition rates with their respective values: nL(n) is the occu-
pancy at lasing level in CB with n electrons in the band, n1(B− n) is the oc-
cupancy at lower level in VB in the same conditions, β is the fraction of the
spontaneous emission coupled to the lasing mode, J is the pump intensity and α
the optical cavity escape rate. Occupancies are calculated in §3.

Table 1
Transitions in the microscopic model.

Conditions on s, s′ Rate Rss′

m′=m o1= o′2B=1 J
o′1= o2B=0

m′=m − 1 oℓ= o′L=1 m
o′ℓ= oL=0

m′=m + 1 oL= o′ℓ=1 m + β
o′L= oℓ=0

m′=m oL= o′ℓ=1 1 − β
o′L= oℓ=0

m′=m − 1 αm
m′=m ok= o′k+1=1 (k≠ 2B) p q

o′k= ok+1=0 (k≠ B)
m′=m ok= o′k−1= 1 (k≠ 1) p

o′k= ok−1= 0 (k≠ B + 1)
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microscopic state allowing a coherent emission after the occurrence of a
large number of successive thermal events in the previous chain. The
clustered chain is called generic because coefficients γmay be chosen in
various ways. It is also ergodic whatever the choice.

Using the Fermi-Dirac distribution for a given pseudo-Fermi level is
the first trial we may think of. Since the γ coefficients do not depend on
(n, m) anymore, except for the forbidden values of n at which they
vanish, the coupling between n and m almost disappears. Separate
numerical experiments have shown that the distribution of m is merely
geometric in that case, which is not expected in correct laser operation.
We next show why using the canonical distribution fits our goal better,
and is easily implemented in the case of equidistant energy levels.

3.3. Canonical model and occupancies

In this subsection, we study the subchain of the MMM that only
consists in thermal events. If the events in Table 1 are restricted to
thermal ones, the induced chain only explores the finite subset S(n, m)
of all states with m photons and n electrons in the CB, where m, n are
given by the initial state. Once limited to S(n, m), the chain is irre-
ducible, reversible, and satisfies =′ ′

′q R q Ru
ss

u
s ss s . Here, us is the energy

of state s = (o, m), that is, us= ∑kok, and Rss′ is either 0 or p or pq.
Accordingly, the stationary distribution is the canonical one with re-
spect to n. Assuming that the latter distribution is reached between two
rare events of the microscopic chain, each γ coefficient may then be
defined as the canonical probability of being in a state allowing the
corresponding event.

Observe that the two bands evolve independently of each other, and
that symmetry relation (2) still holds. Therefore, the γ coefficients may
be written

= = = −γ n γ n γ n, , (1 ) .J A E1
2

ℓ
2

ℓ
2 (3)

The validity of the CMM is supported by the fact that, in each band, the
subchain converges very quickly. It is well-known that the speed of
convergence to π of the distribution πt at time t is controlled by the
greatest negative eigenvalue λ of rate matrix R:

− ≤π π C λtexp( )t (4)

for a constant C depending on the chosen norm. Formal computations
for small B values give

= − − +λ p q q π B[(1 ) 4 sin ( /2 )]2 2 (5)

independently of n. We conjecture this also holds for large B. Then, at
room temperature, λ≈− 4×10−4p while reasonable p values are of
magnitude 105.

Let us finally turn to the effective computation of the γ coefficients
in the CMM defined in (3). Occupancies n1 and nℓ only depend on the
number N = B− n of electrons in VB. We claim they may be computed
recursively thanks to the following relation. Let k be any index in [1, B],

= =
−

−
− −

−
n n N

q q
q q

n N(0) 0, ( )
(1 )

( )
[1 ( 1)].k k

k N

N B k1 (6)

Since the value of n only turns to n ± 1 at each rare event of the MMM,
the array nk(N), N=0 … B, may be precomputed so that updating with
(6) is done immediately.

The proof of (6) goes as follows. Since canonical occupancies do not

depend on the ground energy value, we may consider the VB as a
system of N fermions distributed on B levels of energy 1 … B. It is well-
known that the partition function of such a system reads as follows (see,
e.g. Ref. [32])

∏=
−

−

+

=

+ −

Z N q
q

q
( )

1
1

.
N N

i

N B i

i

( 1)
2

1

1

(7)

Define W(N, u) as the number of configurations of the system whose
energy is u, and Mk(N, u) as the number of them that have a particle at
level k. Removing that particle leads to the following identity:

= − − − − −M N u W N u k M N u k( , ) ( 1, ) ( 1, ).k k (8)

Accordingly,

= ∑

= − −

≥

−

n N M N u

q n N

( ) ( , ) ,

[1 ( 1)],

k u k
q

Z N

k Z N
Z N k

0 ( )
( 1)

( )

u

(9)

which simplifies to (6) by using (7).

4. Results

We will first concentrate on the cross-validation of the CMM versus
the MMM, which was already used to predict ultimate noise perfor-
mances of SC lasers [12] or the stability of a two-mode regime [23].
Second we will use the CMM to question the threshold definition in
nanolasers already addressed by many authors [10,11,20,29].

4.1. Model differences

The comparison of the two models was done using the same phy-
sical parameters for both. We chose singlemode laser parameters si-
milar to those of a previous mode competition analysis [23]. They are
all given in Table 3 where a gain constant of 1 ns−1 is implicitly con-
sidered. This gain constant usually appears as a multiplier of the Rss′

rates for coherent transitions and was omitted in Tables 1 and 2 since its
value was implicitly assumed to be the inverse of the time unit.

The very first comparison between the MMM and the CMM concerns
the average photon count, ⟨ ⟩m , and variance, var(m), within the cavity
taken over 12 trajectories of the Monte Carlo simulation. Data are given
in Table 4 and first two lines evidence similar although not identical
output values. Since error margin estimates due to the reduced number
of trajectories involved are far less than these differences, the physical
origin of this discrepancy has to be found elsewhere. Average and
variance for the CMM have been confirmed in the third line of the Table
with the direct resolution of the steady-state solutions using (1) that are
in perfect agreement with Monte Carlo results.

The MMM exhibits average and variance ≈4% lower than that of
the CMM. This can only be achieved with a reduced effective pumping
of about the same magnitude arising because of the intrinsic pumping
mechanism in the MMM: a pump event requires the simultaneous
presence of an electron in the highest level in CB and of a hole in the
lowest level in VB. This configuration does not allow a new pump event
until these levels have been released and occupied again. It is thus
mandatory to wait to recover stationarity and allow a new pump event.

Table 2
Transitions in the generic fast model.

Conditions on s, s′ Rate Rss′

m′=m n′= n + 1 (n < B) JγJ(s)
m′=m− 1 n′= n + 1 (n < B) mγA(s)
m′=m + 1 n′= n− 1 (n > 0) (m + β)γE(s)
m′=m n′= n− 1 (n > 0) (1− β)γE(s)
m′=m− 1 n′= n αm

Table 3
Common laser parameters for model comparisons.

Parameter Value Unit/Remark

B 801
δ 1 meV
β 1
α 0.6 ns−1

p 50,000 ns−1

q 0.962 @ T=300 K
J 35 ns−1
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On the contrary in the CMM this time is considered infinitely short and
the residual occupancy of the highest level in the CB (respectively, the
lowest level in the VB) is almost negligible (respectively, extremely
close to unity). The consequence is an effective pump rate lower than
expected with the MMM that is strongly dependent on the thermali-
zation parameter p.

This pump bias effect was confirmed in the framework of the MMM
by reproducing the same simulations with a 4 times greater thermali-
zation rate, i.e. p=200 000 ns−1. The new average and variance, given
in the fourth line of Table 4 are now very close to that of the CMM, but
exact convergence would have required an even greater p-value leading
to excessive CPU time consumption. This last characteristic is the big-
gest difference between the two models: where the MMM requires more
than 1 h of calculation with p=50 000 ns−1 only 1 s is required with
the CMM. This difference is further increased by a factor of 4 if
p=200 000 ns−1, making extensive simulations almost impracticable.

If the bottleneck encountered by the levels involved in laser
pumping is responsible for the change in the mean value of m, a similar
phenomenon may occur for the levels involved in coherent emission.
Fig. 3 shows the histogram of waiting times between two emission
events under Table 3 conditions for both the MMM and the CMM. As a
result, the waiting time distribution is nearly exponential for the CMM.
This is no longer the case if we consider the MMM whose distribution
shows that it is unlikely that two very close emission events will occur.
Again, some laser level bottlenecks impose a minimum waiting time
between two emissions to fill the upper level and empty the lower level,
a condition requiring at least two thermal events. Even if for very small
lasers it seems impossible to have two very close photonic events in
time, this is not the case for lasers of mesoscopic size where multiple
emission sites exist. Consequently, if the MMM is well adapted to ide-
ally small lasers the CMM is more in line with the physical reality of the
achievable components. Moreover, it is still possible to encapsulate the
emission within multiple exponential processes in series (Erlang dis-
tribution) in order to reproduce factually the impossibility of an almost
simultaneous double emission without becoming non-Markovian. Such
a technique will reproduce with the CMM the histogram of Fig. 3

obtained for the MMM, and will also preserve the extreme efficiency of
the CMM simulation with all the subtlety of particle interactions and
quantum jumps within the laser.

4.2. Threshold

The question of the laser threshold has been revived in the last years
because of the advent of very small lasers involving only a few emitters
[11]. Far below (respectively far above) this threshold, the emission is
predominantly incoherent (respectively coherent) and well understood
in the corresponding framework whatever the overall size of the laser
(number of emitters) or its β. For the first order output ⟨ ⟩m , our model
produces light vs pump characteristics that are quite classic (see Fig. 4)
with a typical ‘S’-shape whose bending is usually considered as the
threshold. These curves are comparable to those obtained with similar
models, the only notable difference being found in the positioning of
the curvature which depends on pumping in Ref. [20] and not here, as
was also the case in Ref. [29]. This discrepancy is due to whether or not
β is taken into account in the stimulated emission rate, which is dif-
ferent between models as we noticed in §2.

Anyway for β=1, ⟨ ⟩m grows linearly with J according to a slope
α−1 which is imposed by the conservation of particles in our model. For
lower β-values, the linear evolution is only present at high pump and
drops off at J≈ 1 ns−1 with a depth all the more important as β is
weak. On the contrary when β=1, the laser seems ‘thresholdless’ but it
is well-known that a distinction must always be made between in-
coherent spontaneous emission at very low pump and coherent stimu-
lated emission at high pump [33]. Whatsoever, the bend in these light-
pump characteristics is a poor estimator of the threshold because of the
difficulty of defining it at high β-values and of its inaccuracy.

Another threshold definition involves the noise via the Fano factor,
which is defined as = ⟨ ⟩m mvar( )/F . The largerF , the more important
the photon noise produced by the laser, a situation that occurs pre-
ferably at the threshold where the competition between spontaneous
and stimulated emission is most important. The maximum of F is
therefore a better threshold estimator [20] also able to distinguish be-
tween the transition from incoherent to coherent emission in ideal
β=1 devices. Fig. 5 plots F as a function of pumping in log-log scale
for various β-values. We clearly see an increase of the maximum ofF ,
together with a shift of the position of this maximum towards higher J,
when β decreases. As a result the corresponding threshold is expected to
increase, a subtlety difficult to catch in a linear scale with a similar
model (see Ref. [29]). At the same time, the logarithmic scale also re-
veals that J( )F looks like a double spike system with a shoulder around
J≈ 0.5 ns−1.

The depinning of the number of carriers in CB, the fact that ⟨ ⟩n
exceeds its clamped value at high pumping, is shown in Fig. 6 for
various β conditions. In a grand-canonical view and provided that the

Table 4
Model comparisons.

Model ⟨ ⟩m var(m)

MMM 56.23 ± 0.14 110.3 ± 2.5
CMM 58.32 ± 0.09 115.6 ± 2.2
CMMa 58.333 ± 0.001 115.04 ± 0.01
MMMb 57.69 ± 0.16 115.7 ± 2.4

a As solved using (1).
b MMM with p=200 000 ns−1.

Fig. 3. Histogram of the time interval between two emission events as deduced
from trajectories calculated with the MMM and the CMM. Parameters are taken
from Table 3.

Fig. 4. Light vs pump characteristics given by the CMM as a function of β. The
external emitted intensity is ⟨ ⟩α m . B=10 000, α=0.1 ns−1, δ and q are taken
from Table 3.
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CB size is large enough, ⟨ ⟩n will be the Fermi level. It increases regularly
starting from low pump values and is fixed for higher pumps, as can be
expected with a classical laser theory. Between these two extremes an
excess of carriers that can be very large (up to 10% at β=10−3 in
Fig. 6) appears as a peak for the expected threshold pumping values.
Such a depinning of the Fermi level was already observed by Roy-
Choudhury et al. [13]. It was shown responsible of a delayed threshold
with respect to the predictions done with rate equations because of the
quantum correlations between photon and electron populations.

Fig. 7 represents a small fraction of a trajectory calculated near the
threshold as determined by the maximum of F for β=10−3. The
photon trace shows that the laser alternates between off- and on-states.
During on-states the m and n instantaneous photon and electron in CB
counts remain fairly stable until the last photon in the cavity has es-
caped. The average of n during this on-state then corresponds to the

clamped value reached at high pumping (see Fig. 6), suggesting a co-
herent laser during this period. The laser then goes off for an average
duration of β−1. The lack of photons causes an increase of n at a speed
of J − 1 + β. This extinction period ends when a photon is emitted
spontaneously, acting as a trigger of an exponential growth of m be-
cause of stimulated emission, stopping when the n excess has been
consumed. At that point the cavity reaches its maximum photon count
that subsequently decreases as governed by the cavity lifetime α−1. In
the trace of Fig. 7 the nanolaser then switches in continuous mode until
the last photon exits the cavity again, thereby shifting once more in the
pulse regime. Obviously this pulse regime is very similar to gain-
switching but it is here triggered by the quantum nature of photon
instead of the speed of a gain change driven by carrier injection. It is
called quantum gain-switching (QGS) in the sequel. Optical pulses are
very asymmetrical and their shape is close to a single-side decreasing
exponential, of height proportional to the accumulated n, and of width
at half maximum identical for all: ≈ln 2∕α.

If J is a little bit lower, for instance close to the shoulder of F
identified on Fig. 5, the trajectory is now composed almost completely
of QGS peaks. The companion regime of coherent emission at pulse end
progressively vanishes because of the too weak pump that cannot
maintain population inversion. When J decreases the average QGS peak
amplitude is approximatively maintained while their number decreases.
If J diminishes further, the number of QGS peaks still decreases but now
their average amplitude is also reduced. We assume that the origin of
the shoulder observed on Fig. 5 is that the amplitude of the peaks is first
maintained.

On the contrary, if J exceeds the value reached at Fano maximum,
the number of QGS peaks per time unit decreases. As a major result, the
Fano maximum exactly corresponds to the most important mixing be-
tween the two regimes, in perfect agreement with the noise maximum.
The close inspection of the trajectory straightforwardly explains the
overshoot on n shown in Fig. 6 because the occurence of QGS peaks
requires a non-stationary carrier concentration in excess as compared to
cw. The greater the QGS peak amplitude and their number, the higher
the corresponding overshoot.

An other illustration of the change of regime at threshold is given in
Fig. 8. P(n), the probability of having n electrons in the CB, is plotted as
a function of J for β=10−3. These data were obtained by the matrix
resolution of (1). At low J-values, P(n) is a single peak whose maximum
position shifts towards higher values: n=4994 at J=0.2 ns−1,
n=5022 at J=0.5 ns−1 and n=5094 at J=1 ns−1. Starting from
J=1 ns−1, a second maximum appears at the fixed position n=5006
corresponding of the birth of the cw coherent emission. Conversely the
other peak vanishes. In between, i.e. for example at J=1 ns−1, the n
distribution is bimodal, thus reflecting the coexistence of the two dif-
ferent laser regimes at the cw threshold. Notice that at J=1.7 ns−1,
where the maximum of F happens, P(n) exhibits a unique peak, but
remains over 5× 10−4 for the whole scale of n in Fig. 8. When J in-
creases further, this peak continues to grow while the secondary high n
peak disappears.

Fig. 5. Fano factorF vs pump J as a function of β. B=10 000, α=0.1 ns−1, δ
and q are taken from Table 3.

Fig. 6. Average number of electrons in CB ⟨ ⟩n vs pump J as a function of β.
B=10 000, α=0.1 ns−1, δ and q are taken from Table 3.

Fig. 7. Small portion of a time trajectory for electrons in CB, n, and photons stored in the cavity, m, calculated at J=1.7 ns−1, the maximum ofF shown in Fig. 5.
B=10,000, β=10−3, α=0.1 ns−1, δ and q are taken from Table 3.
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5. Conclusion

We built a Markov model of the semiconductor nanolaser to take
into account the realistic distributions of the carriers in the conduction
and valence bands. This is achieved using evenly-spaced energy levels
that allow both carrier-carrier interactions and semiconductor physics-
compliant occupations. Although precise, the complete Markov chain of
such a microscopic model (the MMM) is however very inefficient for
calculating the temporal evolution of successive photonic events that
occur in a nanolaser since most of the time is spent moving electrons to
reach the thermization of the bands.

Assuming that carrier and photonic events have very different
timescales, the Markov chain can be divided and the two parts are
treated separately. We proposed an analytical model for carriers based
on the hypothesis of thermalization in the canonical ensemble between
any two photonic events. This results in a direct assessment of laser
level occupancy that depends only on the number of carriers in the
band and allows another model (the CMM) to be built with a con-
siderable improvement in CPU time of at least a few thousands. The two
models compare favorably, with the possible exception of a bottleneck
that appears at laser levels with the MMM and is not reproduced with
the CMM. If physically relevant, this effect can be effortlessly added to
the CMM without leaving Markov's framework through Erlang dis-
tributions. This will be discussed elsewhere. The extreme speed of the
new model illustrated the physical characteristics during the transition
to lasing of nanolasers as a function of β that would not have been
obtained with the MMM because of its extreme CPU time requirement.

The numerical results underline the difficulty of precisely defining
the threshold of nanolasers, either with the first-order output (intensity)
or second-order output (Fano factor), as has already been pointed out in
the literature [10,13,27]. This is particularly well illustrated by the
temporal traces obtained from Monte Carlo evolutions as in Fig. 7 and
which present a double behavior in time: first a fairly stable optical cw
operation associated with a clamped carrier number until the last
photon in the cavity disappears, and then a pulse regime where the
number of carriers increases linearly because of the pump until an in-
tense optical pulse is emitted. We have called this regime “quantum
gain switching” because it is triggered by the first spontaneous photon
emitted in the laser mode. Such a description is closely linked to the
very small size of the laser as it is only possible with a very small
number of excited photons and carriers. We also believe that this be-
havior is responsible for the asymmetric increase in the Fano factor
observed during the laser transition in Fig. 5 which was also shown in
Ref. [13], and the bimodal distribution of the number of carriers in the
CB where we identified each of the two operating regimes by the two
observed bumps.

The simultaneous existence of these two laser operating modes

makes it impossible to precisely define the beginning of the coherent cw
emission since it is mixed with numerous pulses which consume part of
the excited states. No very precise pump value corresponding to the
threshold can be defined for a nanolaser, and moreover the transition is
all the less defined as β is higher, a mandatory condition for a real
nanolaser with a very low gain. An advantage will emerge if we are able
in the future to control the beginning of the emission of these pulses, a
nanolaser thus becoming a very compact and low power source of co-
herent optical pulses, useful for example in quantum information.
Nevertheless, the control trigger has yet to be invented.
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