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COUPLING LIMIT ORDER BOOKS AND BRANCHING

RANDOM WALKS

FLORIAN SIMATOS

Abstract. We consider a model for a one-sided limit order book proposed by
Lakner et al. [9]. We show that it can be coupled with a branching random
walk and use this coupling to answer a non-trivial question about the long-term
behavior of the price. The coupling relies on a classical idea of enriching the
state-space by artificially creating a filiation, in this context between orders of
the book, that we believe has the potential of being useful for a broader class
of models.

1. Introduction

Limit order books. A limit order book is a financial trading mechanism that
keeps track of orders made by traders, and allows them to execute trades in the
future. Typically, a trader places an order to buy a security at a certain level x. If
the price of the security is larger than x when the order is placed, then the order is
kept in the book and may be fulfilled later in the future, as the price of the security
fluctuates and falls below x. Similarly, traders may place sell orders, which gives
rise to two-sided order books. Because of the importance of limit order books in
financial markets, there has been a lot of research on these models, see for instance
the survey by Gould et al. [5].

There are many variants of information of the book which traders have access
to. For instance, traders may only have access to the current so-called bid and ask
prices, that correspond to the lowest sell order and the highest buy order. In this
case, traders have an incentive to place orders in the vicinity of these prices. More
generally, the dynamic of a limit order book is intricate because its current state
influences its future evolution. Stochastic models capturing this dynamic have for
instance been proposed in Cont et al. [4], Lakner et al. [9] and Yudovina [10]. In the
present paper we study the one-sided limit order book model of Lakner et al. [9],
and our goal is to show how some properties of this model can be efficiently studied
thanks to a coupling with a branching random walk.

From a high-level perspective, the coupling we introduce adds a new dimension
to the initial limit order book model by creating a filiation between the orders. Such
ideas have been extremely successful in queueing theory, see for instance Kendall [7],
and we believe they can also be useful beyond the context of the model proposed
here. For instance, the model proposed by Yudovina [10] is also amenable to a
tree representation, but the corresponding dynamic on trees is more challenging to
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analyze than the one here.

Branching random walks. The Galton Watson process is the simplest model
of a branching process. It represents the size of a population that evolves in discrete
time, where at every time step each individual dies and is replaced by a random
number of offspring, see for instance Athreya and Ney [1] for more details. A
branching random walk is an extension of a Galton Watson process that adds a
spatial component to the model. In addition to the genealogical structure given
by the Galton Watson process, each individual has some location, say on the real
line R, that is given by a random displacement of her parent’s location. Branching
random walks can therefore be represented by trees with labels on the edges: the
structure of the tree represents the genealogy of the underlying Galton Watson
process, and the labels on the edges represent the displacement of the child with
respect to her parent’s location. In this paper we will consider the simplest model
of branching random walks, where labels on the edges are i.i.d., and will use results
by Biggins [2] and Biggins et al. [3] to study the limit order book model.

Acknowledgements The author would like Josh Reed for introducing him to
the limit order book model of the present paper, Elie Aı̈dékon for interesting discus-
sions on branching random walks and an anonymous referee whose careful reading
led to substantial improvements in the proof of Theorem 1.

2. One-sided limit order book model

2.1. Model. Let us define a book as a finite point measure on R and an order as
a point of a book. Let B be the set of books. For a book β ∈ B, let |β| be its mass
(i.e., the number of orders it contains) and π(β), which we call the price of the
book, be the right endpoint of its support, i.e., the location of the rightmost order:

π(β) = max {x ∈ R : β({x}) > 0} , β ∈ B.

When the book is empty, i.e., |β| = 0, the value of the price is inconsequent
for the purposes of this paper, say for instance π(β) = 0. Fix p ∈ [0, 1] and a
real-valued random variable X . We are interested in the B-valued Markov chain
(Bn, n ≥ 0) with the following dynamic.

If the book is empty, the process goes to state δ0 in the next time step, where
here and in the sequel δx stands for the Dirac mass at x ∈ R. If the book is not
empty, a coin with bias p is flipped. If heads (with probability p), an order is added
to the current book at a random distance distributed according to X from the
current price of the book, independently from everything else. If tails (thus, with
probability 1 − p), an order sitting at the current price is removed. Formally, the
Markov chain (Bn) has the following dynamic: for any β ∈ B and any measurable
function f : B → [0,∞),

(1) E [f(Bn+1) | Bn = β] = f(δ0)1{|β|=0} + pE
[
f(β + δπ(β)+X)

]
1{|β|>0}

+ (1 − p)f(β − δπ(β))1{|β|>0}.

As explained in the introduction, this model (in continuous-time, and with a
different boundary condition) has been proposed by Lakner et al. [9] to model
a one-sided limit order book. The interpretation of the model is as follows: Bn

represents the state of a one-sided limit order book with only buy orders. In each



COUPLING LIMIT ORDER BOOKS AND BRANCHING RANDOM WALKS 3

time step, either a trader places a new buy order (with probability p), or a trader
places a market order (to sell the security, with probability 1 − p). In the latter
case, the trader sells the security at the highest available buy order, thus removing
one order sitting at the price. From this perspective, the behavior of the price
process (π(Bn), n ≥ 0) is of primary interest. In this paper, we show how one can
answer questions related to the price process by coupling (Bn) with a branching
random walk. Our coupling can be used to answer more elaborate questions on
this particular model, and we believe that it also has the potential to be applied to
other models.

Remark 1. In order to recover the model of Lakner et al. [9] one needs to apply an

exponential transformation to (Bn), i.e., to consider the process B̃n =
∑

x∈Bn
δex .

This transformation makes the orders live on (0,∞), in which case the interpretation
of π as a price is reasonable. It also makes the price increase in a multiplicative
rather than linear fashion, which is a common behavior in mathematical finance
(e.g., geometric Brownian motion). We prefer to state the model on the line with
linear displacement because of the analogy with branching random walks.

2.2. Price dynamic. The behavior of the price is asymmetric due to the system’s
dynamic. On the one hand, the price increases when an order is added to the
right of the current price, and so an increase of the price is distributed according
to X given that X > 0. On the other hand, the price decreases when an order
is removed from the book, in which case the decrease of the price depends on the
distance between the price and the second rightmost order. In particular, orders to
the left of the price act as a barrier that slow down the price as it wants to drift
downward.

Thus, although EX < 0 seems at first a natural condition for the price to drift
to −∞, it seems plausible that if p is sufficiently close to 1, there will be so many
orders sitting to the left of the price that they will eventually make the price drift
to +∞. This intuition turns out to be correct as Theorem 1 below shows.

This kind of behavior is strongly reminiscent of the behavior of extremal parti-
cles in branching random walks. There, although a typical particle drifts to −∞
when EX < 0, one may still observe atypical trajectories due to the exponential
explosion in the number of particles, see the classical references by Hammersley [6],
Kingman [8] and Biggins [2]. This analogy has actually been our initial motiva-
tion to investigate the relation between (Bn) and branching random walks. And
indeed, we will show in Theorem 2 that Bn can be realized as some functional of
a branching random walk, and this connection will make the proof of Theorem 1
quite intuitive.

Theorem 1. Assume that p > 1/2 and that EX exists in (−∞,∞).
If EX > 0, then π(Bn) → +∞ almost surely.

Else, assume in addition to p > 1/2 that EX < 0 and that P(X > 0) > 0, and
let a = infθ≥0 E(e

θX) ∈ (0, 1]. If p > 1/(1 + a), then π(Bn) → +∞ almost surely,

while if p < 1/(1 + a) then π(Bn) → −∞ almost surely.

Remark 2. Let ϕ(θ) = E(eθX) for θ ≥ 0 and assume that EX < 0. We will
use the following dichotomy: either ϕ(θ) = +∞ for every θ > 0, in which case
a = 1; or ϕ(θ) < +∞ for some θ > 0, in which case a < 1 due to the fact that
ϕ′(0) = EX < 0 in this case.
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Note that the price process is recurrent if p ≤ 1/2 since (|Bn|, n ≥ 0) is a random
walk reflected at 0, so the previous result gives a full picture of the price behavior
(except for the boundary cases EX = 0 and p = 1/(1 + a)). It is interesting to
observe that if p > 1/2, EX < 0, P(X > 0) > 0 and X has a heavy right tail, in
the sense that ϕ(θ) = +∞ for every θ > 0 or equivalently, the random variable
max(X, 0) has no finite exponential moment, then the price will always diverge to
+∞, irrespectively of the values of p and EX . Although the fact that exponential
moments play a key role is clear from a branching process perspective, we find it
more surprising from the perspective of the limit order book.

3. Coupling with a branching random walk

3.1. Intuition. From the book process (Bn), one can construct a genealogical
structure by making an order x a child of some other order y if x was added
to the book at a time where y corresponded to the price of the book, i.e., x is
added at a time n where y = π(Bn). Since there is each time a probability p of
adding an order to the book, it is intuitively clear that this construction will give
each order (at most) a geometric number of offspring. By labeling the edge between
x and y with the displacement x − y, which has distribution X , we end up with
a Galton Watson tree with geometric offspring distribution and i.i.d. real-valued
labels on the edges, i.e., a branching random walk. The idea of the coupling is to
reverse this construction and to start from the branching random walk to build the
book process (Bn). To do so, we will essentially realize the process (Bn) as the
iteration of a deterministic tree operator Φ on a random tree, thus encoding all the
randomness in the tree.

Nodes of the tree represent orders of the books, and in order to distinguish
between orders that are currently in the book, orders that have been in the book
and removed, and orders that have not been in the book so far (but may be later)
we consider trees where nodes have one of three colors: green (orders currently in
the book), red (orders removed from the book) and white (orders not added in the
book so far). We also consider trees with real-valued labels on the edges: then,
each node is also given a label by adding to the label of its parent the label on the
edge between them, the root having some arbitrary real-valued label. The label of
a node represents the position of the corresponding order in the book. Then, the
green node with largest label, say γ, represents the order at the current price, and
so we will run the following dynamic on trees:

• if γ has at least one white child, then its first white child becomes green;
• if γ has no white child, then γ becomes red;
• if the tree has no green node then we need to draw a new random tree.

3.2. The coupling: notation and main result. Let T be the set of rooted trees
where:

• every edge has a real-valued label;
• every node has one of three colors, green, red or white;
• finitely many nodes are green or red, and the set of nodes that are either
green or red is connected;

• the root is green or red.

We will need to compare the labels and colors of the nodes and edges of various
trees. In that respect, it is convenient to consider V the set of all possible nodes and
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E the set of all possible edges, and to denote by V(t) ⊂ V the set of nodes, E(t) ⊂ E
the set of edges and G(t),R(t) ⊂ V(t) the set of green and red nodes, respectively,
of a tree t ∈ T . Nodes inherit labels as explained above, i.e., the label of a node is
obtained by adding to the label of its parent the label of the edge between them,
and the root has any real-valued label. If v ∈ V is a node and e ∈ E is an edge,
we denote by ℓ(v, t) and ℓ(e, t) the label of this node and edge in the tree t ∈ T ,
provided v ∈ V(t) and e ∈ E(t). We call genealogical structure of a tree t ∈ T the
tree obtained from t when forgetting about labels and colors, and we say that t is
a subtree of t′ and write t ⊂ t′ if the genealogical structure of t is a subtree of the
genealogical structure of t′ (in the usual graph-theoretic sense) and ℓ(e, t) = ℓ(e, t′)
for every e ∈ E(t) ⊂ E(t′). For t ∈ T let Γ(t) ∈ B be the point measure recording
the labels of the green nodes of t:

Γ(t) =
∑

v∈G(t)

δℓ(v,t).

Let T ∗ = {t ∈ T : |G(t)| > 0} be the set of trees with at least one green node. If
t ∈ T ∗ we denote by γ(t) the green node with largest label and by ω(t) the number
of white children of γ(t). If there are several green nodes with maximal labels,
we choose the last one (where in the sequel, nodes are ordered according to the
lexicographical order). For t ∈ T and v ∈ V(t) we will more generally define ω(v, t)
as the number of white children of v in t, so that ω(t) = ω(γ(t), t) for t ∈ T ∗. The
following operator will create the dynamic of (Bn).

Definition (Operator Φ). Let Φ : T → T be the following operator: if |G(t)| = 0
then Φ(t) = t, while if t ∈ T ∗, then Φ changes the color of one node according to
the following rule:

• if ω(t) > 0, Φ transforms the first white child of γ(t) into a green node;
• if ω(t) = 0, then Φ transforms γ(t) into a red node.

We also define Φn as the nth iterate of Φ, defined by Φ0 being the identity map
and Φn+1 = Φ ◦Φn for n ≥ 0. Finally, we define κ(t) = inf{n ≥ 0 : |G(Φn(t))| = 0}
for t ∈ T , so that κ(t) ∈ {0, 1, . . . ,∞} is the first time where iterating Φ on t creates
a tree with no green node.

We can now state our main result.

Theorem 2. Let T be the following random tree:

• the genealogical structure of T is a Galton Watson tree with geometric off-

spring distribution with parameter p;
• labels on the edges are i.i.d. with distribution X, independently from the

genealogical structure, and the root has label 0;
• all nodes are white, except for the root which is green.

Then (Γ(Φn(T )), 0 ≤ n ≤ κ(T )) is equal in distribution to (Bn, 0 ≤ n ≤ τ)
started at B0 = δ0, where τ = inf{n ≥ 0 : |Bn| = 0}.

3.3. Proof of Theorem 1 based on Theorem 2. Thanks to Theorem 2, we can
write Bn = Γ(Φn(T )) for n ≤ κ(T ) = τ . It is not hard to show that κ(T ) = +∞
if and only if T is infinite, and so we will call {τ = κ(T ) = +∞} the event of
non-extinction. Since we are in the supercritical case p > 1/2, this event occurs
with positive probability.
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3.3.1. First case: EX < 0, P(X > 0) > 0 and p < 1/(1 + a). We first consider the
case where the price drifts to −∞, i.e., we assume that EX < 0, P(X > 0) > 0 and
p < 1/(1 + a) and we prove that π(Bn) → −∞. Since p > 1/2 by assumption, we
have in particular a < 1 and so there must exist η > 0 such that E(eηX) < +∞ (see
Remark 2 following Theorem 1). Moreover, since we are interested in the long-time
behavior of the price which goes back to 0 at time τ in the event {τ < +∞}, we
work in the event of non-extinction.

Let Mn be the rightmost point of the branching random walk T at time n, i.e.,

Mn = max {ℓ(v, T ) : v ∈ V(T ) and |v| = n}

where |v| is the distance from v to the root. Under the assumptions made on X
and p, Theorem 4 in Biggins [2] shows that Mn → −∞ almost surely in the event
of non-extinction. We now show that π(Bn) → −∞ when Mn → −∞, which will
conclude the proof of this case.

Let K ≥ 0 and n0 such that Mn ≤ −K for any n ≥ n0, i.e., ℓ(v, T ) ≤ −K for
every v ∈ V(T ) with |v| ≥ n0. Since there are only finite many nodes of T at depth
< n0, we must have |γ(Φn(T ))| ≥ n0 for n large enough and for those n, we have
ℓ(γ(Φn(T )),Φn(T )) ≤ −K by choice of n0. This proves that π(Bn) → −∞.

3.3.2. Second case: EX > 0, or EX < 0, P(X > 0) > 0 and p > 1/(1+a). We now
consider the case where the price drifts to +∞, i.e., we assume that either EX > 0,
or EX < 0, P(X > 0) > 0 and p > 1/(1 + a) and we prove that π(Bn) → +∞.
Before going into the technical details, let us give a high-level idea of the proof.

The key observation is that as long as an order is in the book, the behavior of
the price does not depend on the state of the book to the left of this order. In
particular, in order to compute the probability that the order sitting initially in the
book at 0 is never removed from the book, we may as well assume that all orders
that are placed in (−∞, 0) are instantaneously removed, or killed.

In terms of the underlying tree T , removing all orders that are placed in (−∞, 0)
amounts to removing all nodes v, together with all their descendants, with label
ℓ(v, T ) < 0. We thus obtain a new tree T ′, a subtree of the original tree T , which
is a well-known object: this is precisely a branching random walk with a barrier at
0. Under our assumptions on X and p, the probability P(|T ′| = +∞) of T ′ being
infinite is strictly positive, as has been shown in Biggins et al. [3] (see Lemma 1
below).

Going back to the limit order book, T ′ being infinite means exactly that the
initial order sitting at 0 will never be removed. Since this happens with positive
probability, an order is eventually added to the book that is never removed. This
order then constitutes a barrier under which the price never falls. Then, a renewal
type argument shows that this phenomenon repeats itself: at regular intervals, an
order is added to the book that constitutes a new barrier under which the price
never falls. Eventually, this barrier moves up and forces to price to diverge to +∞.
Let us now formalize this heuristic argument.

For ℓ ∈ R, we define the three operators Sℓ,Ξℓ,Ξ : T → T for t ∈ T as follows:

• Sℓ(t) is obtained by adding ℓ to the label of the root;
• Ξℓ(t) is obtained by removing all nodes v ∈ V(t) with label ℓ(v, t) < ℓ,
together with all their descendants;

• Ξ(t) = ΞL(t) with L the label of the root of t.
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Note that since the label of each node is inherited from the label of its parent,
adding ℓ to the label of the root has the effect of adding ℓ to the label of every node
in the tree. Thus Sℓ can be seen as shifting the whole tree in space by ℓ. Moreover,
Ξℓ can be seen as a barrier operator: Ξℓ(t) is the branching random walk t where
particles entering (−∞, ℓ) are instantaneously killed; Ξ(t) is thus the branching
random walk with a barrier at the location of the root.

Further, we define q = P(|Ξ(T )| = +∞) as the probability that the tree Ξ(T ) is
infinite.

Lemma 1. q > 0.

Proof. If EX > 0, the result is clear since then any line of descent of T is a random
walk with positive drift. If EX < 0, P(X > 0) > 0 and p > 1/(1 + a), then the
result is given by Theorem 1 in Biggins et al. [3] under the additional assumption
that E(eηX) < +∞ for some η > 0. We now show that the result remains valid
when E(eηX) = +∞ for every η > 0 by a truncation and coupling argument. Note
that in this case we have a = 1, see Remark 2.

From T construct the tree TK for K ≥ 0 obtained by replacing each label on
an edge greater than K by K. Then TK is in distribution equal to T , but where
labels on the edges are distributed according to XK = min(X,K) instead of X .
Let aK = infθ E(e

θXK ), so that aK < 1 and aK → a as K → +∞. Since a = 1,
we thus have p > 1/(1 + aK) for K large enough, and since E(eXK ) < +∞, we can
invoke the first step of the proof to get that P(|Ξ0(TK)| = +∞) > 0 for K large
enough. Since nodes have smaller labels in TK than in T , this immediately implies
P(|Ξ0(T )| = +∞) > 0 as well which concludes the proof. �

For t ∈ T and v ∈ V(t), let θ(v, t) be the tree t shifted at v, i.e., θ(v, t) is the
subtree of t rooted at v. The following observation will underly our reasoning,
where we consider the process (Bn) as an iteration of Φ on T and in particular,
we identify an order with the corresponding node in the tree. Imagine that a node
v ∈ V(T ) is becoming the price at some time n, i.e., n = inf{k ≥ 0 : v = γ ◦Φk(T )},
and that v remains green up to time n′ ≥ n. Then for any n ≤ k < n′, each time
we iterate Φ, a node is changed color. Each such node must belong to θ(v, T ),
and furthermore, if a node v′ becomes the price, it must belong to Ξ ◦ θ(v, T ). In
particular, if v becomes red, then all the nodes belonging to Ξ ◦ θ(v, T ) must also
be red (note that this fact relies on our choice of γ(t) being the largest node, in the
lexicographic order, in case of several green nodes having the largest label).

With this in mind, we now proceed to proving that P(π(Bn) → +∞) = 1: we
break the proof in two steps.

First step. In the first step we prove that it is enough to prove that

(2) P (π(Bn) → +∞ | |Ξ(T )| = +∞) = 1.

Note that P(|Ξ(T )| = +∞) > 0 by the previous lemma so this conditioning is
well-defined. Let a forest be a finite collection of trees in T . Consider a sequence
of i.i.d. trees (Tn) with common distribution T , and let (Cn, 0 ≤ n ≤ ζ) be the
(possibly finite, if ζ < +∞) sequence of forests defined recursively as follows. At
time 0 we have C0 = {T0}.

Let n ≥ 0: if Cn = ∅, then Cn+1 = {Tn+1}. Else, we pick the tree, say tn, in Cn
whose root has the largest label, say ℓn, and we remove it from Cn (ties are broken
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at random). If |Ξ(tn)| = +∞, we stop and define ζ = n. Otherwise, we consider
the (possibly empty, but finite) forest tn \Ξ(tn) = {t′n,1, . . . , t

′
n,K}. We then obtain

Cn+1 by the formula Cn+1 = (Cn \ {tn}) ∪ {t′′n,1, . . . , t
′′
n,K} where t′′n,k is obtained

from t′n,k by painting the root in green (note that, by construction, all other nodes

are white).
It follows from this construction that the trees (S−ℓn(tn), 0 ≤ n < ζ) are iden-

tically distributed, with common distribution T conditioned on {|Ξ(T )| < +∞}.
Moreover, although these trees are in general not independent, due to the fact that
tn′ for n′ > nmay be a subtree of tn, the trees (Ξ(S−ℓn(tn)), 0 ≤ n < ζ) are indepen-
dent. Indeed, consider for instance the tree Ξ(S−ℓ1(t1)) when ζ > 1: then, although
t1 is a subtree of t0, it depends on Ξ(t0) only through the label of its root. In par-
ticular, S−ℓ1(t1) is independent from Ξ(t0). The sequence (Ξ(S−ℓn(tn)), 0 ≤ n < ζ)
is therefore an i.i.d. sequence of trees with common distribution Ξ(T ) conditioned
on {|Ξ(T )| < +∞}.

It follows that ζ is a geometric random variable with parameter q, and since
q > 0 by Lemma 1, ζ is almost surely finite. We can therefore consider the tree
Ξ(S−ℓζ (tζ)), which, following similar arguments as before, is independent from the
sequence of trees (S−ℓn(tn), 0 ≤ n < ζ), and is distributed like Ξ(T ) conditioned
on {|Ξ(T )| = +∞}.

Furthermore, once we have the sequence of trees (tn, 0 ≤ n ≤ ζ), we can iterate
Φ on it: first, we iterate Φ on t0 until all nodes of Ξ(t0) are red; then we proceed
on iterating Φ on t1 until all nodes of Ξ(t1) are red, etc. . . Eventually, we will be
iterating Φ on tζ and since |Ξ(tζ)| = +∞, there will always be green nodes in Ξ(tζ)
in order to iterate Φ. Moreover, it follows from Theorem 2 that the process keeping
track of the labels of all the green nodes either in the tree being explored or in the
trees in the “waiting room” Cn is precisely a version of the process (Bn) started at
B0 = δ0.

Thus in order to study the long-term asymptotic behavior of the price, we may
as well start right away with T0 = tζ , i.e., in order to prove P(π(Bn) → +∞) = 1
it is enough to prove that P (π(Bn) → +∞ | T = tζ) = 1. But if π(Bn) → +∞
almost surely in the event T = tζ , shifting in space by ℓζ will not affect the result,
and so it is indeed enough to prove (2).

Second step. We now consider everything in the event {|Ξ(T )| = +∞} and prove (2)
(recall that {|Ξ(T )| = +∞} = {|Ξ0(T )| = +∞} since by definition the root of T
has label 0). Let v1, · · · , vI1 be the children of the root in T ranked in lexicographic
order. In {|Ξ0(T )| = +∞}, we have I1 ≥ 1 and the set {i : |Ξ0 ◦ θ(vi, T )| = +∞}
is not empty. Let i1 = min{i : |Ξ0 ◦ θ(vi, T )| = +∞} and v∗1 = vi1 , i.e., v

∗
1 is the

first child of the root that has an infinite line of descent that never enters (−∞, 0).
Iterating this procedure, we can define a sequence (v∗n) such that v∗n is the first
child of v∗n−1 such that |Ξ0 ◦ θ(v∗n, T )| = +∞. Note that the dynamic of Φ is such
that eventually, every node v∗n becomes green. Moreover, v∗n stays green forever if
and only if |Ξ ◦ θ(v∗n, T )| = +∞.

Let u(k) be the index of the kth node of the sequence (v∗n) that stays green
forever, i.e., u(1) = inf{k ≥ 1 : |Ξ ◦ θ(v∗k, T )| = +∞} and for n ≥ 1, u(n+1) = +∞
if u(n) = +∞ and otherwise,

u(n+ 1) = inf{k > u(n) : |Ξ ◦ θ(v∗k, T )| = +∞}.
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Let ℓ∗n = ℓ(v∗n, T ) be the label of v∗n: if u(k) is finite, then v∗
u(k) stays green

forever and in particular, lim infn→+∞ π(Bn) ≥ ℓ∗
u(k). Thus if u(n) is finite for each

n ≥ 1, we obtain, since the sequence (ℓ∗
u(n)) is by construction non-decreasing and

so admits a limit in (−∞,∞],

lim inf
n→+∞

π(Bn) ≥ lim
n→+∞

ℓ∗u(n).

Conditionally on the event {|Ξ0(T )| = +∞ and ∀n : u(n) < +∞}, we see by
shifting the tree successively at the nodes v∗

u(1), v
∗
u(2), . . . that the random variables

(ℓ∗u(n+1) − ℓ∗u(n), n ≥ 1) are i.i.d., non-negative and strictly positive with strictly

positive probability, from which it follows that ℓ∗
u(n) → +∞ as n → +∞. Thus to

conclude the proof, it remains to show that for every n ≥ 1,

P (u(n) < +∞ | |Ξ(T )| = +∞) = 1.

By regeneration (i.e., by shifting at v∗
u(1)) it is enough to prove this result for

n = 1, and so we have to prove that

P (E1 ∩E2 ∩ · · · | |Ξ(T )| = +∞) = 0 where En = {|Ξ ◦ θ(v∗n, T )| < +∞} .

Let w(1) = 1 and w(n+ 1) = inf
{
k > w(n) : ℓ∗k < ℓ∗w(n)

}
: then w(2) is finite in

Ew(1) and more generally, w(n + 1) is finite in Ew(1) ∩ · · · ∩ Ew(n). In particular,
defining

rN = P
(
Ew(1) ∩ Ew(2) ∩ · · · ∩ Ew(N) | |Ξ(T )| = +∞

)

we have P (E1 ∩ E2 ∩ · · · | |Ξ(T )| = +∞) ≤ rN . Moreover, by definition of rN it
holds that

rN = rN−1

[
1− P

(
|Ξ ◦ θ(v∗w(N), T )| = +∞ | Ew(1) ∩ · · · ∩ Ew(N−1), |Ξ(T )| = +∞

)]
.

Let ℓ ≥ 0: conditionally on the event

Ew(1) ∩ · · · ∩Ew(N−1) ∩ {|Ξ(T )| = +∞, ℓ∗w(N) = ℓ},

θ(v∗
w(N), T ) is equal in distribution to Sℓ(T ) conditioned on {|Ξ0 ◦ Sℓ(T )| = +∞}

(note that this last event has probability at least q > 0). In particular,

P

(
|Ξ ◦ θ(v∗w(N), T )| = +∞ | Ew(1) ∩ · · · ∩ Ew(N−1), |Ξ(T )| = +∞, ℓ∗w(N) = ℓ

)

= P (|Ξ ◦ Sℓ(T )| = +∞ | |Ξ0 ◦ Sℓ(T )| = +∞)

and by shifting the trees by −ℓ, we obtain

P (|Ξ ◦ Sℓ(T )| = +∞ | |Ξ0 ◦ Sℓ(T )| = +∞) = P (|Ξ(T )| = +∞ | |Ξ−ℓ(T )| = +∞) .

If T survives with a barrier at 0, it certainly survives with a barrier at −ℓ: in
particular,

P (|Ξ(T )| = +∞ | |Ξ−ℓ(T )| = +∞) =
P (|Ξ(T )| = +∞)

P (|Ξ−ℓ(T )| = +∞)
≥ q.

This shows that rN ≤ rN−1(1 − q) and by induction, rN ≤ (1 − q)N−1. Since
q > 0 and rN is an upper bound on P(u(1) = +∞ | |Ξ(T )| = +∞), by letting
N → +∞ we finally get the desired result P(u(1) = +∞ | |Ξ(T )| = +∞) = 0 which
achieves the proof of Theorem 1.
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4. Proof of Theorem 2

4.1. Study of an auxiliary tree-valued Markov chain. Theorem 2 is very
intuitive. Unfortunately, the rigorous proof involves quite a lot of formalism, since
we need to go into the details of the tree dynamic induced by iterations of Φ. In
order to slightly reduce the notational burden, we will assume that X is a discrete
random variable; it is just a matter of formalism to extend the proof below to the
general case. Let us introduce the following tree operators:

• for t ∈ T , Υ(t) is the tree obtained from t by deleting all white nodes;
• for t ∈ TΩ = {t ∈ T : |G(t)| > 0 and ω(t) > 0}, Ω(t) is the tree obtained
from t by turning the first white child of γ(t) into a green node;

• for t ∈ T ∗ and λ ∈ R, Ω′(t, λ) is the tree obtained from t by adding a green
child to γ(t) with label λ on the corresponding edge;

• for t ∈ T ∗, Ψ(t) is the tree obtained from t by turning γ(t) into a red node.

It will also be convenient to introduce the following subsets of T :

• TΥ is the set of finite rooted trees with only green or red nodes;
• TΨ = {t ∈ T : |G(t)| > 0 and ω(t) = 0};
• T0 is the set of trees of which every node is white, except for the root which
is green.

Note that T = {t : |G(t)| = 0} ∪ TΩ ∪ TΨ. Let Yn = Υ(Φn(T )) with T ∈ T0 as
in Theorem 2. We denote by t0 = Υ(T ) the deterministic tree reduced to the root,
which is green. The goal of this section is to prove that the process (Yn, n ≥ 0)
defines a Markov chain started at t0 with the following dynamic: for any n ≥ 0,
any y, y′ ∈ TΥ (note that for any t ∈ T0 and any k ≥ 0, Υ(Φk(t)) ∈ TΥ) and any
x ∈ R,

P(Yn+1 = y′ | Yn = y) =





1 if |G(y)| = 0 and y′ = y,

pP(X = x) if |G(y)| > 0 and y′ = Ω′(y, x),

1− p if |G(y)| > 0 and y′ = Ψ(y),

0 otherwise.

To this end, we fix until the rest of this section n ≥ 0, x ∈ R and yk ∈ TΥ for
k = 0, . . . , n+ 1, and we aim to prove that

(3) P (Yk = yk, 0 ≤ k ≤ n+ 1) =

P (Yk = yk, 0 ≤ k ≤ n)×






1 if |G(yn)| = 0 and yn+1 = yn,

pP(X = x) if |G(yn)| > 0 and yn+1 = Ω′(yn, x),

1− p if |G(yn)| > 0 and yn+1 = Ψ(yn)

which will prove the Markov property of (Yn) with the prescribed dynamic. Let
us study the dynamic of (Yn). According to the various definitions made, we have
for any t ∈ T that Φ(t) is equal to t if |G(t)| = 0, to Ω(t) if t ∈ TΩ and to Ψ(t) if
t ∈ TΨ, so that

Υ(Φ(t)) =





Υ(t) if |G(t)| = 0,

Υ(Ω(t)) if t ∈ TΩ,

Υ(Ψ(t)) if t ∈ TΨ.

It is clear that if t ∈ TΩ, then Υ(Ω(t)) = Ω′(Υ(t), ℓ(t)) with ℓ(t) the label on the
edge between γ(t) and its first white child, while if t ∈ TΨ, then Υ(Ψ(t)) = Ψ(Υ(t)).
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Thus the previous display can be rewritten as

Υ(Φ(t)) =





Υ(t) if |G(t)| = 0,

Ω′(Υ(t), ℓ(t)) if t ∈ TΩ,

Ψ(Υ(t)) if t ∈ TΨ

and since Φn+1(t) = Φ(Φn(t)) we get

Υ(Φn+1(t)) =





Υ(Φn(t)) if |G(Φn(t))| = 0,

Ω′(Υ(Φn(t)), ℓ(Φn(t))) if Φn(t) ∈ TΩ,

Ψ(Υ(Φn(t))) if Φn(t) ∈ TΨ.

Since Υ does not affect the colors of green nodes, we have G(t) = G(Υ(t)) and in
particular, |G(Φn(t))| = |G(Υ(Φn(t)))|. Plugging in the definitions of TΩ and TΨ, it
follows that for any n ≥ 0 and any t ∈ T0, we have

(4) Υ(Φn+1(t)) =




Υ(Φn(t)) if |G(Υ(Φn(t)))| = 0,

Ω′(Υ(Φn(t)), ℓ(Φn(t))) if |G(Υ(Φn(t)))| > 0 and ω(Φn(t)) > 0,

Ψ(Υ(Φn(t))) if |G(Υ(Φn(t)))| > 0 and ω(Φn(t)) = 0.

This last equation shows that Υ(Φn+1(t)) is almost entirely determined by
Υ(Φn(t)), up to the knowledge (hidden by the action of Υ) of whether γ(Φn(t)) has
at least one white child in Φn(t) or not, and the value ℓ(Φn(t)) of the corresponding
edge. Further, since Yn = Υ(Φn(T )), (4) leads to

P (Yk = yk, 0 ≤ k ≤ n+ 1) = 1{|G(yn)|=0,yn+1=yn}P (Yk = yk, 0 ≤ k ≤ n)

+ 1{|G(yn)|>0,yn+1=Ω′(yn,x)}P (ω(Φn(T )) > 0, ℓ(Φn(T )) = x, Yk = yk, 0 ≤ k ≤ n)

+ 1{|G(yn)|>0,yn+1=Ψ(yn)}P (ω(Φn(T )) = 0, Yk = yk, 0 ≤ k ≤ n)

and so to prove (3), we only have to show that if |G(yn)| > 0, then

(5) P (ω(Φn(T )) > 0, ℓ(Φn(T )) = x, Yk = yk, 0 ≤ k ≤ n)

= pP(X = x)P (Yk = yk, 0 ≤ k ≤ n) .

This property is quite intuitive: the history of Yk for k ≤ n does not give any
information on the remaining number of white children of γ(Φn(T )) in Φn(T ), nor
on the label on the edge between γ(Φn(T )) and its first white child, if any. The fact
that every node has a geometric number of offspring and that labels on the edges
are i.i.d. should therefore imply (5). To formalize this intuition, we will prove the
following result, from which one can readily deduce (5). For t ∈ T , let in the rest of
the paper η(v, t) be the number of children of the node v ∈ V(t). Recall moreover
that R(t) stands for the set of red nodes of the tree t ∈ T .

Proposition. If |G(yn)| > 0 and P (Yk = yk, 0 ≤ k ≤ n) > 0, then for any t ∈ T0
we have

Υ(Φk(t)) = yk, 0 ≤ k ≤ n ⇐⇒ yn ⊂ t and η(v, yn) = η(v, t) for every v ∈ R(yn).

Proof. For t ∈ T , let in the rest of the proof σ(t) = |G(t)| + 2|R(t)| − 1, and recall
that κ(t) = inf{n ≥ 0 : |G(Φn(t))| = 0}. It is clear from the definition of Φ that
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σ(Φ(t)) = σ(t)+1{|G(t)|>0}. Since Φn(t) = t for any n ≥ 0 if |G(t)| = 0 and σ(t) = 0
for t ∈ T0, it follows that

(6) ∀t ∈ T0, σ(Υ(Φk(t))) = k ⇐⇒ k ≤ κ(t).

We break the proof of the proposition into two steps.

First step. Fix some t ∈ T0 and y ∈ TΥ. The first step of the proof consists in
proving that the following conditions are equivalent:

(i) Υ(Φσ(y)(t)) = y;
(ii) there exists t′ ∈ T0 such that Υ(Φσ(y)(t

′)) = y, y ⊂ t and η(v, y) = η(v, t) for
every v ∈ R(y).

Proof of (i)⇒(ii). Assume that (i) holds, i.e., Υ(Φσ(y)(t)) = y: we want to
prove (ii). Then taking t′ = t gives the existence of the desired t′. Moreover,
since Φ(a) does not change the genealogical structure of a ∈ T and Υ(a) only trun-
cates a, we have Υ(Φn(t)) ⊂ t for any n ≥ 0, in particular y ⊂ t. Then, consider
any v ∈ R(y). Since all the nodes of t except for the root are white, the color of v
results from the successive applications of Φ to t ∈ T0. In particular, v being red
in Φσ(y)(t) comes from the fact that at some point, none of the children of v were
white, i.e., ω(v,Φk(t)) = 0 for some k ≤ σ(y). Since Φ does not create white nodes,
this implies ω(v,Φσ(y)(t)) = 0 and since Υ conserves all non-white nodes, v has as
many children in Φσ(y)(t) as in Υ(Φσ(y)(t)) = y, i.e., η(v,Φσ(y)(t)) = η(v, y) which
gives η(v, t) = η(v, y).

Proof of (ii)⇒(i). Assume that (ii) holds: we want to prove (i). So in the rest
of the proof, consider some t′ ∈ T0 such that Υ(Φσ(y)(t

′)) = y, and assume that
y ⊂ t and η(v, y) = η(v, t) for every v ∈ R(y). We prove that y = Υ(Φσ(y)(t)) by
induction on σ(y).

If σ(y) = 0, then on the one hand, Υ(Φσ(y)(t)) = t0 while on the other hand,
|G(y)| + 2|R(y)| − 1 = 0 implies |G(y)| = 1 and |R(y)| = 0, so that y = t0. Thus
y = Υ(Φσ(y)(t)) when σ(y) = 0, which initializes the induction.

Assume now that σ(y) ≥ 1. Then σ(y) = σ(Υ(Φσ(y)(t
′)) and so (6) implies

that σ(y) ≤ κ(t′). Define y′ = Υ(Φσ(y)−1(t
′)): since σ(y) − 1 ≤ κ(t′), (6) implies

that σ(y′) = σ(y) − 1, i.e., σ(Φσ(y)(t
′)) = 1 + σ(Φσ(y)−1(t

′)). This last equality
means that applying Φ on Φσ(y)−1(t

′) creates a green node or changes a green
node into a red one, meaning in every case that |G(Φσ(y)−1(t

′))| > 0 and since
G(Φσ(y)−1(t

′)) = G(Υ(Φσ(y)−1(t
′))) = G(y′) this finally means that |G(y′)| > 0. In

view of y = Υ(Φσ(y)(t
′)), y′ = Υ(Φσ(y)−1(t

′)) and (4), we therefore only have two
possibilities:

(7) y =

{
Ω′(y′, ℓ(Φσ(y)−1(t

′))) if ω(Φσ(y)−1(t
′)) > 0,

Ψ(y′) if ω(Φσ(y)−1(t
′)) = 0.

In either case, we have y′ ⊂ y and since y ⊂ t by assumption, this gives y′ ⊂ t.
Moreover, the action of Ω′ is to add one green node to γ and the action of Ψ is to turn
γ into a red node, so that in either case we have R(y′) ⊂ R(y) and η(v, y′) = η(v, y)
for every v ∈ R(y′). Since η(v, y) = η(v, t) for every v ∈ R(y) by assumption, this
implies that η(v, y′) = η(v, t) for every v ∈ R(y′). Since finally y′ = Υ(Φσ(y′)(t

′))
and σ(y′) = σ(y) − 1 < σ(y), we can therefore invoke the induction hypothesis
to deduce that Υ(Φσ(y′)(t)) = y′ = Υ(Φσ(y′)(t

′)). In particular, Φσ(y′)(t) and
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Φσ(y′)(t
′) have the same set of green and red nodes and since |G(Φσ(y′)(t

′))| > 0
this shows that |G(Φσ(y′)(t))| > 0. Then, (4) shows that

Υ(Φσ(y)(t)) =

{
Ω′(Υ(Φσ(y′)(t)), ℓ(Φσ(y′)(t))) if ω(Φσ(y′)(t)) > 0,

Ψ(Υ(Φσ(y′)(t))) if ω(Φσ(y′)(t)) = 0.

Since y′ = Υ(Φσ(y′)(t)) this can be rewritten as

Υ(Φσ(y)(t)) =

{
Ω′(y′, ℓ(Φσ(y′)(t))) if ω(Φσ(y′)(t)) > 0,

Ψ(y′) if ω(Φσ(y′)(t)) = 0,

and in view of (7), the proof of y = Υ(Φσ(y)(t)) will be complete if we can show
the two following implications:

ω(Φσ(y′)(t
′)) > 0 ⇒ ω(Φσ(y′)(t)) > 0 and ℓ(Φσ(y′)(t)) = ℓ(Φσ(y′)(t

′))

and

ω(Φσ(y′)(t
′)) = 0 ⇒ ω(Φσ(y′)(t)) = 0.

To prove these two implications, we will use the identities

(8) ω(Φσ(y′)(t
′)) = η(γ(y′), t′)− η(γ(y′), y′)

and

(9) ω(Φσ(y′)(t)) = η(γ(y′), t)− η(γ(y′), y′)

that come from the fact that Υ(Φσ(y′)(t
′)) = Υ(Φσ(y′)(t)).

Direct implication: assume that ω(Φσ(y′)(t
′)) > 0. In this case, applying Φ

to Φσ(y′)(t
′) adds a green child to γ(y′) in Φσ(y)(t

′), and so η(γ(y′), y) = 1+
η(γ(y′), y′). Since y ⊂ t by assumption, this gives η(γ(y′), t) > η(γ(y′), y′)
which proves that ω(Φσ(y′)(t)) > 0 in view of (8). Moreover, the equal-
ity η(γ(y′),Υ(Φσ(y′)(t

′))) = η(γ(y′),Υ(Φσ(y′)(t))) means that γ(y′) has as
many green and red children in Φσ(y′)(t

′) than in Φσ(y′)(t). In particular,
applying Φ to these two trees adds the same node, say v, to each tree.
Then, the equality ℓ(Φσ(y′)(t)) = ℓ(Φσ(y′)(t

′)) comes from the fact that the
label on the edge between γ(y′) and v is the same in t and t′ due to the
inclusion y = Υ(Φσ(y)(t

′)) ⊂ t;
Reverse implication: assume that ω(Φσ(y′)(t

′)) = 0. In this case, apply-
ing Φ to Φσ(y′)(t

′) turns γ(y′) into a red node in Φσ(y)(t
′), i.e., γ(y′) ∈

R(y) and in particular, η(γ(y′), y) = η(γ(y′), t) by assumption on y. On
the other hand, Φ did not change the genealogical structure of y′ and so
η(γ(y′), y) = η(γ(y′), y′) which shows that η(γ(y′), y′) = η(γ(y′), t). This
implies ω(Φσ(y′)(t)) = 0 in view of (9).

This concludes the proof of the first step.

Second step. We now prove the proposition. Assume in the rest of the proof
that |G(yn)| > 0 and P (Yk = yk, 0 ≤ k ≤ n) > 0. The direct implication is rather
straightforward: if Υ(Φk(t)) = yk for every k = 0, . . . , n, then for k = n the result
of the first step implies that yn ⊂ t and η(v, yn) = η(v, t) for every v ∈ R(yn).

Let us now prove the converse implication, so assume that yn ⊂ t and η(v, yn) =
η(v, t) for every v ∈ R(yn). The goal is to prove that Υ(Φk(t)) = yk for every
k = 0, . . . , n. Since P (Yk = yk, 0 ≤ k ≤ n) > 0, there exists t′ ∈ T0 such that
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yk = Υ(Φk(t
′)) for every k = 0, . . . , n. Because Φ does not erase nodes and never

changes the color of a red node, we have yk ⊂ yk+1 and R(yk) ⊂ R(yk+1) for
any 0 ≤ k ≤ n − 1. In particular, for every 0 ≤ k ≤ n it holds that yk ⊂ t and
η(v, yk) = η(v, t) for every v ∈ R(yk). Moreover, Φ cannot create green nodes
starting from a tree with no green node, and so the condition |G(yn)| > 0 implies
that |G(yk)| > 0 for every k ≤ n. Thus |G(Φk(t

′))| > 0 and so k < κ(t), so that (6)
implies that σ(yk) = k, i.e., yk = Υ(Φσ(yk)(t

′)). Thus all the assumptions of the
first step are satisfied, and we deduce that yk = Υ(Φσ(yk)(t)) = Υ(Φk(t)) for every
k ≤ n. This finally concludes the proof of the proposition. �

4.2. Proof of Theorem 2. By regeneration of (Bn) at τ +1 and in view of (1), it
is enough to show that (Γ(Φn(T )), n ≥ 0) is the Markov chain started at δ0 with the
following transition: for any β ∈ B and any measurable function f : B → [0,∞),

E
[
f
(
Γ(Φn+1(T ))

)
| Γ(Φn(T )) = β

]
= f(δ0)1{|β|=0}+pE

[
f(β + δπ(β)+X)

]
1{|β|>0}

+ (1 − p)f(β − δπ(β))1{|β|>0}.

Since Γ only depends on the green nodes, we have Γ(Φn(T )) = Γ(Yn) and so we
only have to show that Γ(Yn) is the Markov chain with the prescribed dynamic.
This is easily verified once one realizes that the σ-algebras σ(Yk, 0 ≤ k ≤ n) and
σ(Γ(Yk), 0 ≤ k ≤ n) are the same. Indeed, the inclusion σ(Γ(Yk), 0 ≤ k ≤ n) ⊂
σ(Yk, 0 ≤ k ≤ n) is trivial. For the reverse inclusion, note that from the sequence
(Γ(Yk), 0 ≤ k ≤ n) one can recover the sequence (Yk, 0 ≤ k ≤ n). This can be
proved by induction on n. For n = 0 this is trivial, since Y0 = t0 and Γ(Y0) = δ0.
So assume it holds for n ≥ 0, and let us prove it for n + 1. So assume that
(Γ(Yk), 0 ≤ k ≤ n+ 1) is known. Then by induction hypothesis, (Yk, 0 ≤ k ≤ n) is
known. Moreover, (4) shows that there are only three possible cases:

• either Yn+1 = Yn, in which case Γ(Yn+1) = Γ(Yn);
• or Yn+1 = Ω′(Yn, λ) for some λ ∈ R: in this case, Γ(Yn+1) = Γ(Yn) + δλ;
• or Yn+1 = Ψ(Yn), in which case Γ(Yn+1) = Γ(Yn)− δλ for some λ ∈ R.

Thus by comparing Γ(Yn+1) to Γ(Yn) one can recover Yn+1 which shows that
σ(Γ(Yk), 0 ≤ k ≤ n) ⊂ σ(Yk, 0 ≤ k ≤ n). From this, one easily deduces using
the Markov property of (Yn) that (Γ(Yn)) is a Markov chain with the prescribed
dynamic. The proof of Theorem 2 is therefore complete.
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