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STATE SPACE COLLAPSE FOR CRITICAL MULTISTAGE EPIDEMICS

FLORIAN SIMATOS

ABSTRACT. We study a multistage epidemic model which generalizes the SIR model and
where infected individuals go through K ≥ 1 stages of the epidemic before being re-
moved. An infected individual in stage k ∈ {1, . . . ,K } may infect a susceptible individual,
who directly goes to stage k of the epidemic; or it may go to the next stage k+1 of the
epidemic. For this model, we identify the critical regime in which we establish diffusion
approximations. Surprisingly, the limiting diffusion exhibits an unusual form of state
space collapse which we analyze in detail.
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1. INTRODUCTION

A multistage model. In this paper we study an epidemic model proposed by Antal and
Krapivsky [2] which generalizes the classical SIR model. Similarly as for the SIR model,
there is a closed population where each individual is either susceptible, infected or re-
moved. In addition, we assume that the disease which is spread progresses through
K ≥ 1 stages. For short, we will say that an (infected) individual is in stage k ∈ {1, . . . ,K }
if it possesses the disease in stage k. It will also be convenient to say that an individual
is in stage 0 if it is susceptible and in stage K+1 if it is removed.

Two types of transitions may occur within our model: either (1) an infected individual
in stage k ∈ {1, . . . ,K } tries to infect a susceptible individual; or (2) an infected individ-
ual in stage k ∈ {1, . . . ,K } progresses to the next stage k+1. We consider the mean-field
regime where in case (1) above, the infected individual samples an individual uniformly
at random from the whole population: if the sampled individual is susceptible, then
it becomes infected and starts the infection at the same stage than the individual who
infected him or her.

In view of its epidemiological interpretation and because it generalizes the SIR model
(which corresponds to the single-stage case K=1), it is natural to interpret this model as
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2 STATE SPACE COLLAPSE FOR CRITICAL MULTISTAGE EPIDEMICS

an epidemic model. From that viewpoint, our model differs from multistage epidemic
models previously proposed. For HIV/AIDS for instance, Hyman et al. [10] proposed a
multistage (or staged-progression) model where a newly infected individual starts the
epidemic in stage one. We believe that the techniques used in the present paper can be
adapted to study this case as well.

Besides its natural epidemiological interpretation, this model may also bear insight
into other areas of applied probability. We may for instance think of cell population
dynamic, e.g., when a cancer tumor progresses, cells accumulate mutations that are
passed on to newly infected cells. In this case the stage of an individual corresponds
to the number of mutations. Another potential application of this model is in commu-
nication networks: in this case we may think of users accumulating information and,
upon meeting with a user with no information, sharing all the information the first user
has. Such kind of epidemic spreading of information is actually at the heart of modern
peer-to-peer systems.

Scaling limits. Epidemic models can broadly be categorized into discrete and contin-
uous ones, see for instance Kendall [13]. Discrete models are individual-based models
that focus on the inherent stochasticity of the dynamic, and are often described by fi-
nite state space Markov processes. Continuous models correspond to large population
approximations: they may be either deterministic (corresponding to some notion of av-
eraging in the large population regime) or stochastic. In the first case, the continuous
model is typically described by ordinary differential equations (ODE) and in the second
case, by stochastic differential equations (SDE).

In the present paper, we bridge these two viewpoints by starting from a discrete
model which, after a suitable renormalization procedure, leads to a continuous model.
This is a classical approach which allows to understand the extent to which a continu-
ous model, usually more tractable, suitably approximates a discrete one. In addition to
giving insight into how the epidemic develops over time, such schemes are also useful
to understand the final outbreak size of the epidemic. In the SIR case for instance, this
makes it possible to express the final outbreak size, properly renormalized, as the hit-
ting time of 0 by a Brownian motion with a parabolic drift; this allows in turn for explicit
computation, see for instance Martin-Löf [18]. Note that our forthcoming Theorem 2.3
generalizes this result to the multistage case K ≥ 1.

For the SIR model it is well-known that different scaling limits may be obtained de-
pending on the discrete model’s parameters, see for instance von Bahr and Martin-
Löf [23]. In particular, the limit may be deterministic or retain some stochasticity of
the original discrete model, and the intermediate regime at which transition occurs is
usually referred to as critical regime: this is the regime in which we are interested in in
the present paper. In this regime, scaling limits of the SIR model have for instance been
obtained by Martin-Löf et al. [17, 18, 23] and by Aldous [1] in the closely related context
of the Erdös-Rényi random graph.

A popular method to establish such scaling limits relies on semi-group techniques,
see for instance Ethier and Kurtz [8]. This approach has for instance recently been fol-
lowed by Dolgoarshinnykh and Lalley [7] to study the related SIS model, who also sketch
a proof for the SIR model. However, because of the different boundary conditions be-
tween the SIS and the SIR models, the authors only mention that different analytical
results from the theory of parabolic partial differential equations are needed in the SIR
case. In the present paper we use a different and more probabilistic approach, closer
to Aldous’ approach [1], that relies on semimartingale arguments. These arguments
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rely on elementary calculations made on the infinitesimal generator of the Markov pro-
cess, and require almost no analytical results. This is the reason why we believe that
this method is robust and can be adapted to study other models such as the HIV/AIDS
model of Hyman et al. [10].

Presentation and discussion of the main results. Let us present our results in the par-
ticular case where all individual transition rates are equal to one: in general these will
be allowed to be close to one. For n ≥ 1 we consider the K+2-dimensional Markov pro-
cess an(t ) = (an,k (t ),k = 0, . . . ,K + 1) that represents a multistage epidemic process in
a population of size n. It is defined by an initial state an(0) = (an,k (0),k = 0, . . . ,K + 1)
satisfying the relation an,0(0)+ ·· ·+ an,K+1(0) = n and, for a = (a0, a1, . . . , aK+1) ∈ NK+2,
by the following transition rates:

(1.1) a −→
{

a −ek +ek+1 at rate ak , 1 ≤ k ≤ K ,

a −e0 +ek at rate ak a0/n, 1 ≤ k ≤ K ,

where e0 = (1,0, . . . ,0), e1 = (0,1,0, . . . ,0), etc. For t ≥ 0, an,k (t ) is the number of individ-
uals in stage k at time t , i.e., an,0(t ) is the number of susceptible individuals; an,k (t ) for
k = 1, . . . ,K is the number of infected individuals in stage k; and an,K+1(t ) is the number
of removed individuals. The transition rates (1.1) preserve the total population size, so
that the relation an,0(t )+·· ·+an,K+1(t ) = n is satisfied for any t ≥ 0.

These rates formalize the description of the dynamic given above: each infected indi-
vidual progresses to the next stage of the epidemic at rate one; each infected individual
makes an infection attempt at rate one, which is successful with probability propor-
tional to the number of susceptible individuals (which gives the factor a0/n).

Consider the initial condition where an,1(0) = nβ for some β ∈ (0,1) and an,k (0) = 0
for k = 2, . . . ,K +1. The asymptotic behavior of the K+1-dimensional process (an,k ,k =
1, . . . ,K +1) as n →+∞ is then governed by the precise value of β, and there are three
different regimes:

Small initial condition β< 1/(K +2): on the time scale nβ, an,k lives on the space scale
nkβ and the scaling limit is governed by the following SDE:

(1.2)

{
dA1(t ) = (2A1(t ))1/2dB(t ),

dAk (t ) = Ak−1(t )dt for k = 2, . . . ,K +1;

Intermediate initial condition β= 1/(K +2): on the time scale n1/(K+2), an,k lives on
the space scale nk/(K+2), the outbreak size is of the order of n(K+1)/(K+2) and the
scaling limit is governed by the following SDE:

(1.3)


dA1(t ) =−AK+1(t )A1(t )dt + (2A1(t ))1/2dB(t ),

dAk (t ) = (Ak−1(t )− AK+1(t )Ak (t ))dt for k = 2, . . . ,K ,

dAK+1(t ) = AK (t )dt ;

Large initial condition β> 1/(K +2): on the time scale nγ with γ = (1−β)/(K+1), an,k

lives on the space scale nβ+(k−1)γ and the scaling limit is governed by the follow-
ing ODE:

(1.4)


dA1(t ) =−AK+1(t )A1(t )dt ,

dAk (t ) = (Ak−1(t )− AK+1(t )Ak (t ))dt for k = 2, . . . ,K ,

dAK+1(t ) = AK (t )dt .
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In the above, B is a standard Brownian motion. Moreover, since the total population
size is fixed, the asymptotic behavior of an,0 is recovered from the behavior of the an,k ’s:
since n − an,0 = an,1 + ·· · + an,K+1 and since in all three regimes an,K+1 À an,k for k =
1, . . . ,K , n −an,0 obeys the same scaling and has the same limit than an,K+1.

It is also interesting to note that the intermediate regime interpolates between the
small and large ones in two ways: (1) the scaling at play there can be obtained by letting
β ↑ 1/(K+2) in the small regime or β ↓ 1/(K+2) in the large regime, and (2) the evolution
of A1 in (1.3) is a mixture of (1.2) and (1.4). However, β does not appear in the asymp-
totic dynamics (1.2)–(1.4) and so (1.3) appears somehow discontinuously.

When specializing the results of the intermediate regime to K = 1 we recover the clas-
sical result on the SIR model [23]: starting with of the order of n1/3 infected individuals,
we end up with an outbreak size of the order of n2/3. When K = 2, these results show
that starting with n1/4 individuals in the first stage, the number of individuals in the sec-
ond stage during the outbreak is of the order n1/2, while the total outbreak size is of the
order of n3/4.

Note that for the above comparison we have referred to the work by von Bahr and
Martin-Löf [23] which actually considers a discrete-time version of the SIR model, the
so-called Reed-Frost model. In this model, individuals stay infected for a deterministic
amount of time and, at the end of this period, try to infect every other individual with a
fixed probability. In the case K = 1 the two models are indeed equivalent, at least with
respect to the final outbreak size: heuristically, it does not matter when and by whom
a given individual gets infected. However, in the truly multistage case K ≥ 2 this is no
longer the case: the stage of an individual that spreads the disease matters. In that re-
spect, individuals from different stages “compete” for the pool of susceptible individuals
and it is natural to consider a continuous-time model. We suspect that, compared to the
case K = 1, this additional difficulty is causing the discrepancy discussed in Section 6.

In order to get insight into the scalings at play, let us consider the continuous-time
Markov branching process aB = (aB

k ,k = 1, . . . ,K +1) with K +1 types, whose transition

rates for a ∈NK+1 are given by

(1.5) a −→
{

a −ek +ek+1 at rate ak , 1 ≤ k ≤ K ,

a +ek at rate ak , 1 ≤ k ≤ K .

These rates are obtained from (1.1) by setting a0 = n: this corresponds to an infi-
nite population limit, where an infection attempt is always successful. Then aB

1 is a
continuous-time Markov branching process (also known as Bellman–Harris branching
process), and it can be seen that if aB

1 (0) = nβ and time is sped up by nβ, then it con-
verges to an interesting object (Feller diffusion). Thus if we are to have an interesting
limit for aB

1 , the correct time scale (for all processes) needs to be nβ.
But then, the total number individuals it ever begets is of the order of

∫ ∞
0 aB

1 (t )dt
which is of the order of n2β. These individuals form the initial condition for aB

2 , which
can thus be seen as a Bellman–Harris branching process, started at n2β but for which
time is sped up by nβ. However, we know from the above discussion that in order for aB

2
to evolve on the space scale n2β, it needs to be sped up in time by n2β: thus on the time
scale nβ, aB

2 remains essentially constant. However, on this time scale it begets of the

order of
∫ nβ

0 aB
2 (t )dt ∝ n3β individuals, which form the basis for aB

3 . Iterating this argu-
ment, we see the geometric progression observed in all three regimes appearing, where
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an,k+1 is of the order of the time scale times an,k . But actually, more can be learned from
this simple approximation.

First of all, we see that the approximation of an by aB is asymptotically exact in the
small regime, in the sense that (1.2) is also the scaling limit of aB subject to the same
scaling. This approximation begins to break down in the intermediate regime, which is
therefore the regime where finite-size population effects begin to kick in. This phenom-
enon is also sometimes called the depletion of points effect: in the intermediate regime
the epidemic begins to feel the decreasing number of susceptible individuals.

Moreover, we have just argued that we are considering a time scale which is suited for
an,1 but not for an,2. More precisely, on the time scale where an,1 evolves, an,2 has not
enough time to evolve on its own and all its randomness comes from an,1. This problem
of time scales leads to a classical phenomenon in queueing theory, called state space
collapse, but which is more surprising to find in the context of epidemic.

An unusual form of state space collapse. Let K̄ = K − 1 and Tn be the first time at
which an,1 hits zero, i.e., Tn = inf{t ≥ 0 : an,1(t ) = 0}. It is then important to observe
that the K̄+2-dimensional process ān = (ān,k ,k = 0, . . . , K̄ +1) obtained by keeping track
of the individuals in stages 0,2, . . . ,K + 1 after time Tn , i.e., with ān,0(t ) = an,0(Tn + t )
and ān,k (t ) = an,k+1(Tn + t ) for k = 1, . . . , K̄ + 1, is a multistage epidemic process with
K̄ stages. However, we know that in the intermediate regime, an,2, and thus ān,1(0), is

of the order of n2/(K+2) = n2/(K̄+3). As such, this corresponds to a multistage epidemic
process with a large initial condition (with β= 2/(K̄+3) > 1/(K̄+2)), and we know from
the above discussion that its scaling limit is deterministic. In summary, once the first
stage has got extinct, the subsequent evolution of the process is deterministic, which
supports the previous claim that all the randomness lies in the first stage. This property
can actually be directly read off the SDE (1.3).

Indeed, a striking feature of this SDE is that the diffusion coefficients governing Ak

for k 6= 1 are equal to zero: in particular, only the coordinate A1 is truly random, the
other ones being obtained deterministically from it via an ODE. More precisely, let F :
R×RK → RK be the function such that, if Ā = (A2, . . . , AK+1), then (1.3) rewrites dĀ(t ) =
F (A1(t ), Ā(t ))dt : then Ā satisfies an ODE of the kind

(1.6)
dx(t )

dt
= F

(
y(t ), x(t )

)
, t ≥ 0.

It will be seen that if y : [0,∞) → [0,∞) is continuous, then this ODE has a unique
solution. This naturally defines a one-dimensional manifold M (y) ⊂ RK , namely, if xy

is the unique solution to (1.6), the space M (y) = {
xy (t ) : t ≥ 0

}
.

If A = (A1, . . . , AK+1) is the solution to (1.3), then by definition Ā is the unique solu-
tion to (1.6) with y = A1, which justifies seeing Ā as deterministically obtained from A1.
Thus we can see AK+1 as a function of A1 and the initial condition ā = Ā(0), and write
AK+1(t ) = ϕ(A1, ā; t ) for some deterministic map ϕ. With this notation, we see that A1

on its own satisfies the following SDE

(1.7) dA1(t ) = (
γ1 −ϕ(A1, ā; t )

)
A1(t )dt + (2A1(t ))1/2dB(t ).

Such an SDE is sometimes referred to as an Itô process and is, in the terminology of
Rogers and Williams [20], not of diffusion type since ϕ(A1, ā; t ) depends on A1 through
the entire path (A1(s),0 ≤ s ≤ t ) and not only through the value of A1 at time t .

In summary, we start with a sequence of K+2-dimensional stochastic processes (or
K+1-dimensional, given that the total population size is fixed), but the diffusion A =
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(A1, . . . , AK+1) appearing in the limit is truly one-dimensional: one coordinate, A1, is
random and given by (1.7), while the other coordinates A2, . . . , AK+1 are obtained deter-
ministically from it via (1.6).

Such a phenomenon of reduction of the dimension of the state space in the critical
(or near-critical) regime is well-known in queueing theory, where it is usually referred
to as state space collapse. It has first been systematically investigated in [6, 24] in the
context of multiclass queueing networks, and has since then been observed in various
settings [5, 19, 21, 22]. In all these examples and similarly as what we observe in our
model, the randomness of the limiting diffusion is contained in one coordinate (the
workload process for queueing systems), while the other coordinates are obtained de-
terministically from it. In queueing theory typically, the workload process converges to
a reflected Brownian motion W and the queue length processes Q are obtained via a
deterministic map, e.g., Q =G ◦W .

However, there are two main differences between these results from queueing the-
ory and our present form of state space collapse. First of all, in all these queueing ex-
amples, the map G is linear, i.e., we can write Qk (t ) = αkW (t ) for some deterministic
coefficients αk > 0. This makes the queue length processes Q = (Qk ) live in a determin-
istic one-dimensional manifold, namely, the space MQ = {(αk w) : w ≥ 0}. In contrast,
the coordinates A2, . . . , AK+1 live in our case in the random one-dimensional manifold
M (A1).

Moreover, the reasons leading to this state space collapse phenomenon are also dis-
tinct. As explained above, in our case this comes from a matter of time scales while in
queueing theory, this essentially comes from the law of large numbers since the work-
load is the sum of the residual service times over the number of customers.

Organization of the paper. In the next section we introduce the general model consid-
ered in the present paper, which generalizes (1.1) to the near-critical case, and state the
main results, which formalize the results described previously. In Section 3 we analyze
the limiting SDE that generalizes (1.3), where we prove existence and uniqueness of so-
lutions as well as a useful sample path property. These results rely on the analysis of the
ODE that generalizes (1.6), and the deterministic results that are needed are proved in
the Appendix A. Sections 4 and 5 are devoted to the proofs of the main results: Section 4
gives the proof for the scaling limits, i.e., the asymptotic behavior at the process level,
and Section 5 is concerned with the proof of the asymptotic behavior of the outbreak
size. Finally, we conclude the paper by discussing in Section 6 the conjecture formu-
lated in [2], and how it relates to our results.

Acknowledgements. I am extremely grateful to Remco van der Hofstad and Johan van
Leeuwaarden for introducing me to the topic of this paper and for very stimulating dis-
cussions on this particular model. I would also like to thank the two anonymous review-
ers whose comments greatly helped to improve the exposition of the paper.

2. MAIN RESULTS

2.1. Notation. Let in the sequel D be the set of real-valued, càdlàg functions. For f ∈
D and ε > 0, we define T0( f ) = inf{t ≥ 0 : f (t ) = 0}, T ↑

ε ( f ) = inf{t ≥ 0 : f (t ) ≥ ε} and
T ↓
ε ( f ) = inf{t ≥ 0 : f (t ) ≤ ε}, with the convention inf; = +∞. If t ≥ 0 and f is càdlàg

(real- or vector-valued) we consider θt the shift operator, defined by θt ( f ) = f (t + · ).
The space of càdlàg functions with values inRd is endowed with the topology of uniform
convergence on compact sets.
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In the sequel we fix some integer K ≥ 1 and we consider the map π̄ : RK+2 → RK+1

defined by π̄(a0, . . . , aK+1) = (a0, a2, . . . , aK+1) (this unusual indexing of vectors will be
convenient for our purposes).

2.2. Model and main results. We now present the full model investigated in the rest of
the paper, which generalizes (1.1) by allowing individual transition rates to be close to
one. For each n ≥ 1, let an(t ) = (an,k (t ),k = 0, . . . ,K +1) be the K+2-dimensional Markov
process corresponding to a finite population of size n, i.e., an,0(0)+·· ·+ an,K+1(0) = n,
and with non-zero transition rates given for a = (a0, a1, . . . , aK+1) ∈NK+2 by

(2.1) a −→
{

a −ek +ek+1 at rate (1+δn,k )ak , 1 ≤ k ≤ K ,

a −e0 +ek at rate (1+εn,k )ak a0/n, 1 ≤ k ≤ K ,

where δn,k ,εn,k > −1 for k = 1, . . . ,K , and we will always assume that δn,k ,εn,k → 0 as
n →+∞ for each k = 1, . . . ,K : the critical case (1.1) is recovered by setting δn,k = εn,k = 0.
Moreover, it will be convenient to define δn,0 = δn,K+1 = εn,K+1 = −1. We first state the
results concerning the intermediate regime, which constitute the main results of the
paper.

Theorem 2.1 (Intermediate initial condition). Let β= 1/(K+2) and assume that for each
k = 1, . . . ,K , there exists γk ∈R such that

(2.2) nβ
(
εn,k −δn,k

) −→
n→+∞γk .

Let An = (An,k ,k = 0, . . . ,K +1) be the K+2-dimensional process defined as follows:

(2.3) An,0(t ) = n −an,0(nβt )

n(K+1)β
and An,k (t ) = an,k (nβt )

nkβ
, k = 1, . . . ,K +1, t ≥ 0.

If An(0) → a ∈ [0,∞)K+2, then the sequence of processes (An ,n ≥ 1) converges weakly as
n →+∞ to the unique solution A = (Ak ,0 ≤ k ≤ K +1) of the SDE

(2.4) A(t ) = a +
∫ t

0
b(A(u))du +

∫ t

0
σ(A(u))dB(u),

where B is a standard K+2-dimensional Brownian motion and for a = (a0, . . . , aK+1) ∈
[0,∞)K+2 we have σ(a) = diag(0,(2a1)1/2,0, . . . ,0) and

b0(a) = bK+1(a) = aK ,
b1(a) = (γ1 −a0)a1,
bk (a) = ak−1 + (γk −a0)ak , k = 2, . . . ,K .

Since all the diffusion coefficients but one are equal to 0, when convenient we will
identify the (K+2) × (K+2) matrix σ(a) and its only non-zero entry (2a1)1/2. For the
same reason, if we write B = (B0, . . . ,BK+1) then only the coordinate B1 matters and
we will identify B and B1, i.e., whenever convenient we will consider that B is a one-
dimensional standard Brownian motion; note that this is in line with the notation used
in (1.2) and (1.3). We now state some properties of solutions to (2.4).

Proposition 2.2. Consider the assumptions and notation of Theorem 2.1. Then A almost
surely satisfies the following properties:

(i) the two processes A0 and AK+1 are equal;
(ii) if K ≥ 2, then A0 is strictly increasing, and its terminal value A0(∞) is finite and

satisfies A0(∞) > γk for every k = 2, . . . ,K ;
(iii) T0(A1) <+∞;
(iv) for every k = 2, . . . ,K , Ak (t ) → 0 as t →+∞ but T0(Ak ) =+∞.
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Note that the first property of A above comes from the relation
∑K+1

k=0 an,k (t ) = n,

which translates after scaling to
∑K+1

k=1 nkβAn,k (t ) = n(K+1)βAn,0(t ). Next, we turn to
the asymptotic behavior of the outbreak size An,K+1(∞): the following result essentially
states that we can interchange the limits n →+∞ and t →+∞.

Theorem 2.3. Under the assumptions and notation of Theorem 2.1, the renormalized
outbreak size An,K+1(∞) converges weakly as n →+∞ toward AK+1(∞).

Let us conclude the presentation of results in the intermediate regime by comparing
with the SIR case K = 1. In the case K = 1 the natural notion of criticality is that every
infected individual tries to infect in average (close to) one other individual. The notion
of criticality that we consider here is at first sight different, since every infected individ-
ual tries to infect in average one other individual in each stage. If an individual starts
in stage k, it will therefore make in average K−k+1 infection attempts. But the two no-
tions actually coincide. Indeed, Theorem 2.1 shows that individuals in the last stage K
of the epidemic dominate: there are nK /(K+2) such individuals and nk/(K+2) ¿ nK /(K+2)

individuals at stage k = 1, . . . ,K −1. Thus with overwhelming probability, an individual
eventually infected has actually started the epidemic in stage K and has made in average
one infection attempt. Beware however: this does not mean that only stage K matters,
since an,K becomes of the order of nK /(K+2) thanks to the help of the individuals in the
previous stages!

Moreover, according to Proposition 2.2, the case K = 1 is the only case where AK+1(∞)
is reached in finite time. Indeed, for K = 1 the dynamic is frozen after the time T0(A1)
which is finite, while if K ≥ 2 then AK+1 remains strictly increasing at all times. As will be
discussed in Section 5 when proving Theorem 2.3, this difference creates an additional
difficulty in order to control the asymptotic behavior of the outbreak size.

We now state the result for the large regime.

Proposition 2.4 (Large initial condition). Fix some sequence n1/(K+2) ¿ αn,1 ¿ n and
for n ≥ 1 define

(2.5) τn =
(

n

αn,1

)1/(K+1)

, αn,0 = n

τn
and αn,k = τk−1

n αn,1 for k = 2, . . . ,K +1.

Assume that for each k = 1, . . . ,K , there exists γk ∈R such that

(2.6) τn
(
εn,k −δn,k

) −→
n→+∞γk .

Let An = (An,k ,k = 0, . . . ,K +1) be the K+2-dimensional renormalized process defined
as follows:

(2.7) An,0(t ) = n −an,0(τn t )

αn,0
and An,k (t ) = an,k (τn t )

αn,k
, k = 1, . . . ,K +1, t ≥ 0.

If An(0) → a ∈ [0,∞)K+2, then the sequence of processes (An ,n ≥ 1) converges weakly as
n →+∞ to the unique solution of the ODE

(2.8) A(t ) = a +
∫ t

0
b(A(u))du,

with b defined in Theorem 2.1.

Note that this result is coherent with Theorem 2.1, in the sense that the limit of
θT0(An,1) ◦ π̄ ◦An = π̄ ◦θT0(An,1) ◦An is the same whether we consider this process as the
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process π̄ ◦An shifted at time T0(An,1) and then use Theorem 2.1, or whether we con-
sider this process as a multistage epidemic process with K̄ = K −1 stages started from a
large initial condition and then use Proposition 2.4.

We complete the results of Theorem 2.1 and Proposition 2.4 by studying the case of a
small initial condition an,1(0) ¿ n1/(K+2). When an,1(0) converges to some finite num-
ber, the sequence of processes (an,k ,k = 1, . . . ,K +1) converges to the multitype branch-
ing process given by (1.5). As the next result shows, such a branching approximation
continues to be valid in the small regime.

Proposition 2.5 (Small initial condition). Fix some sequence 1 ¿ αn,1 ¿ n1/(K+2) and
assume that for each k = 1, . . . ,K , there exists γk ∈R such that

(2.9) αn,1
(
εn,k −δn,k

) −→
n→+∞γk .

Let An = (An,k ,k = 0, . . . ,K +1) for n ≥ 1 be the K+2-dimensional renormalized process
defined as follows:

(2.10) An,0(t ) = n −an,0(αn,1t )

αK+1
n,1

and An,k (t ) = an,k (αn,1t )

αk
n,1

, k = 1, . . . ,K +1, t ≥ 0.

If An(0) → a ∈ [0,∞)K+2, then the sequence of processes (An ,n ≥ 1) converges weakly as
n →+∞ to the unique solution of the SDE

(2.11) A(t ) = a +
∫ t

0
bS (A(u))du +

∫ t

0
σ(A(u))dB(u),

where σ is as in Theorem 2.1 and bS is given by
bS

0 (a) = bS
K+1(a) = aK ,

bS
1 (a) = γ1a1,

bS
k (a) = ak−1 +γk ak , k = 2, . . . ,K .

As discussed in the introduction for the strictly critical case δn,k = εn,k = 0, the limit-
ing diffusion (2.11) obtained in the small regime is the same as the limit of the branch-
ing process corresponding to the infinite population setting, i.e., where a0/n = 1 in (2.1)
(this could be proved using the techniques of the present paper). Thus an,1(0) ∝ n1/(K+2)

is the threshold at which finite-size population effects (or depletion of points effects) be-
gin to kick in: this is the threshold at which the branching approximation ceases to be
valid.

Note also that for A = (Ak ,k = 0, . . . ,K +1) satisfying (2.11), A1 is Feller diffusion with
drift γ1, i.e., is the unique solution to the SDE dA1 = γ1 A1dt + (2A1)1/2dB (see (3.2) be-
low), and then Ak for k = 2, . . . ,K +1 is given recursively by A′

k = γk Ak + Ak−1 (here and
in the sequel, prime denotes differentiation with respect to the time variable). In partic-
ular, existence and uniqueness of solutions to (2.11) follow immediately.

The next three sections are devoted to proving these results. In the next section we
prove uniqueness and existence to solutions of (2.4), and we also prove Proposition 2.2.
The scaling limits results of Theorem 2.1 and Propositions 2.4 and 2.5 are proved in
Section 4, and the proof of Theorem 2.3 on the asymptotic behavior of the outbreak size
is given in Section 5.
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3. ANALYSIS OF THE SDE (2.4)

As mentioned in the introduction, the fact that σ(a) = diag(0,(2a1)1/2,0, . . . ,0) is a
manifestation of the state space collapse property, and it makes the process π̄ ◦A de-
terministically obtained from A1 by an ODE. More precisely, we consider in the sequel
F :R×RK+1 →RK+1 the function defined by F (a1, π̄(a)) = π̄(b(a)) for a ∈RK+2 and with
b as in Theorem 2.1 (when all parameters γk = 0, this coincides with the function F
in (1.6)). With this notation, we see that if A satisfies (2.4), then π̄◦A is a solution of the
ODE

(3.1)
dx(t )

dt
= F (y(t ), x(t )), x(0) = ā,

with y = A1. The following properties of this ODE will be needed: their proof is post-
poned to the Appendix A.

Lemma 3.1. For any ā ∈ [0,∞)K+1 and any continuous function y : [0,∞) → [0,∞), the
ODE (3.1) has a unique solution defined on [0,∞).

Lemma 3.2. Fix ā = (a0, a2, . . . , aK+1) ∈ [0,∞)K+1 and y : [0,∞) → [0,∞) a continuous
function, and let x = (x0, x2, . . . , xK+1) be the unique solution to (3.1) given by Lemma 3.1.
Then the function x0 is non-decreasing and its limit x0(∞) as t → +∞ exists in [0,∞].
Moreover:

(i) if y(0) > 0 or a2 > 0, then xk (t ) > 0 for every k = 0,2, . . . ,K and t > 0;
(ii) if xk (t ) > 0 for every k = 2, . . . ,K and t > 0 and x0 is bounded, then

∫ ∞
0 y < +∞

and moreover
∫ ∞

0 xk <+∞ and x0(∞) > γk for every k = 2, . . . ,K ;
(iii) if y(t ) = 0 for all t ≥ 0 and a2 > 0, then x0 is bounded and xk (t ) → 0 as t →+∞

for every k = 2, . . . ,K .

We now turn to the study of the SDE (2.4). In the sequel we will call Feller diffusion
with drift γ ∈R the unique solution to the SDE

(3.2) Z (t ) = Z (0)+γ
∫ t

0
Z (u)du +

∫ t

0
(2Z (u))1/2dB(u).

It is well-known that there is a unique strong solution to (3.2). If Z is this solution,
then it does not explode in finite time, P(T0(Z ) < +∞) > 0 and P(T0(Z ) < +∞) = 1 if
γ≤ 0. Moreover, since A1 satisfies

A1(t ) = A1(0)+
∫ t

0
b1(A(u))du +

∫ t

0
(2A1(u))1/2dB(u)

with b1(a) = (γ1−a0)a1 ≤ γ1a1, Theorem V.43.1 in Rogers and Williams [20] implies that
A1(t ) ≤ Z (t ) for all t ≥ 0 almost surely, where Z is Feller diffusion with drift γ1 started
at Z (0) ≥ A1(0). This comparison argument will be used several times. The proof of the
following result uses standard arguments, and we only sketch the proof.

Lemma 3.3. Uniqueness in law holds for the SDE (2.4).

Proof. The problem to invoke classical results is that some of the coefficients bk grow
quadratically. However, standard localization and change of drift arguments (to go back
to the case of Feller diffusion, since σ(a) = diag(0,(2a1)1/2,0, . . . ,0)) show that for each
N ≥ 1, the law of a solution A to (2.4) stopped at inf{t ≥ 0 : ‖A(t )‖ ≥ N } is uniquely deter-
mined (say, with ‖a‖ = a0 +·· ·+aK+1). By successively patching up these solutions, we
obtain uniqueness to (2.4) until the time of explosion, and so it only remains to show
that solutions to (2.4) do not explode. But A1 cannot explode since it is dominated
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by Feller diffusion, and since π̄ ◦A satisfies (3.1), no other coordinate can explode by
Lemma 3.1. �

Lemma 3.4. If A satisfies (2.4), then T0(A1) is almost surely finite.

Before proving this result, we first explain briefly how it yields Proposition 2.2 in com-
bination with Lemma 3.2.

Proof of Proposition 2.2. The fact that T0(A1) is almost surely finite is precisely the con-
tent of Lemma 3.4. Then by shifting A at time T0(A1), we see that θT0(A1) ◦A satisfies the
ODE (3.1) with y = 0, and so the results of Lemma 3.2 are precisely those that we need
to prove for Proposition 2.2. �

Proof of Lemma 3.4. To prove P(T0(A1) <+∞) = 1, it is enough to prove that

(3.3) P
(
T0(A1) <+∞,T ↑

γ1
(A0) <+∞

)
=P

(
T ↑
γ1

(A0) <+∞
)

and

(3.4) P
(
T0(A1) =+∞,T ↑

γ1
(A0) =+∞

)
= 0

which we do now.

In the event {T ↑
γ1

(A0) <+∞}, we have dA↑(t ) = b(A↑(t ))dt +σ(A↑(t ))dB↑(t ), where A↑

and B↑ are the processes A and B shifted at time T ↑
γ1

(A0), so that, since T ↑
γ1

(A0) is a stop-

ping time, B↑ is a Brownian motion according to the strong Markov property. Moreover,
we have by definition b1(A↑(t )) = (γ1 − A↑

0(t ))A↑
1(t ) ≤ 0 and so A↑

1 is dominated by Feller
diffusion without drift (see, e.g., Theorem V.43.1 in Rogers and Williams [20]), which al-
most surely hits 0 in finite time. This proves (3.3).

We now prove (3.4). Assume that T ↑
γ1

(A0) = +∞: then A0 is bounded (by γ1, and in
particular γ1 > 0) and according to (i)+(ii) of Lemma 3.2, we obtain that

∫ ∞
0 A1 is finite.

In particular L = 0, where we define L = liminft→∞ A1(t ), and so

P
(
T0(A1) =+∞,T ↑

γ1
(A0) =+∞

)
≤P (T0(A1) =+∞,L = 0) .

Thus to prove (3.4), we only have to show that P(T0(A1) = +∞,L = 0) = 0. Let ϑi be
defined recursively by ϑ0 = 0 and ϑi+1 = inf{t ≥ 1+ϑi : A1(t ) ≤ 1}. Then in {L = 0}, ϑi is
almost surely finite for every i ≥ 0 and so we can define Zi as the solution to the SDE
dZi = γ1Zi dt + (2Zi )1/2dBi with initial condition Zi (0) = 1, where Bi is the process B
shifted at time ϑi . Note that conditionally on {ϑi < +∞}, Zi is a Feller diffusion with
drift γ1 > 0 started at 1, and that the strong Markov property and the comparison theo-
rem V.43.1 in Rogers and Williams [20] show that A1(t +ϑi ) ≤ Zi (t ) for t ≥ 0 and i ≥ 1. In
particular,

P (T0(A1) =+∞,L = 0) ≤P (∀i ≥ 1 :ϑi <+∞ and T0(Zi ) =+∞)

and so we only have to show that this last probability is equal to 0. For I ≥ 1 and in the
event {ϑI <+∞}, the strong Markov property at time ϑI gives

P
(
ϑI <+∞ and T0(Zi ) =+∞ for i = 1, . . . , I

)
=P(

T0(Z1) =+∞)
P
(
ϑI <+∞ and T0(Zi ) =+∞ for i = 1, . . . , I −1

)
≤P(

T0(Z1) =+∞)
P
(
ϑI−1 <+∞ and T0(Zi ) =+∞ for i = 1, . . . , I −1

)
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and so we obtain by induction

P
(
ϑI <+∞ and T0(Zi ) =+∞ for i = 1, . . . , I

)≤ [
P
(
T0(Z1) =+∞)]I .

Since P
(
T0(Z1) =+∞)< 1, letting I →+∞ achieves the proof of (3.4). �

4. SCALING LIMITS

We now prove the convergence results of Theorem 2.1 and Propositions 2.4 and 2.5.
The proofs of these three results can be cast into the same framework by defining An as
in (2.7) with:

Intermediate initial condition (Theorem 2.1): αn,1 = n1/(K+2), τn =αn,1,αn,0 =αn,K+1

and αn,k =αk
n,1 for k = 2, . . . ,K +1;

Large initial condition (Proposition 2.4): n1/(K+2) ¿αn,1 ¿ n and τn and αn,k for k =
2, . . . ,K +1 are as in (2.5);

Small initial condition (Proposition 2.5): 1 ¿αn,1 ¿ n1/(K+2), τn =αn,1, αn,0 =αn,K+1

and αn,k =αk
n,1 for k = 2, . . . ,K +1;

and by assuming, with this notation, that τn(εn,k −δn,k ) → γk , which is consistent with
the assumptions (2.2), (2.6) and (2.9).

In order to prove Theorem 2.1 and Propositions 2.4 and 2.5 with this notation, we
have to prove that the sequence (An ,n ≥ 1) converges weakly toward: the solution of (2.4)
in the intermediate regime; the solution of (2.8) in the large regime; and the solution
of (2.11) in the small regime. In the sequel we will use the fact that in all three regimes,
the algebraic relations αn,0 =αn,K+1 and αn,k = τnαn,k−1 for k = 2, . . . ,K +1 hold.

The proof relies on the standard machinery: we first prove tightness and then iden-
tify accumulation points. Both steps rely on semimartingale arguments based on the
explicit form of the generator of An . Indeed, An is by definition a Markov process with
generatorΩn given, for any function f :RK+2 →R and any a ∈RK+2, by

(4.1) Ωn( f )(a) = τn

K∑
k=1

[
f

(
a − ek

αn,k
+ ek+1

αn,k+1

)
− f (a)

]
(1+δn,k )αn,k ak

+τn
(
1−αn,0a0/n

) K∑
k=1

[
f

(
a + e0

αn,0
+ ek

αn,k

)
− f (a)

]
(1+εn,k )αn,k ak

(note that an,0/n = 1−αn,0 An,0/n, which gives the factor 1−αn,0a0/n in the above ex-
pression). Since An lives on a finite state space, for any function f the process

M f
n (t ) = f (An(t ))− f (An(0))−V f

n (t ) with V f
n (t ) =

∫ t

0
Ωn( f )(An(u))du

is a martingale whose quadratic variation process 〈M f
n 〉 is equal to

〈M f
n 〉(t ) =

∫ t

0
Θn( f )(An(u))du with Θn( f ) =Ωn( f 2)−2 f Ωn( f ),

see for instance Lemma VII.3.68 in Jacod and Shiryaev [11]. Recall that δn,0 = δn,K+1 =
εn,K+1 =−1, and let in the rest of this section πk for k = 0, . . . ,K +1 be the projection on
the kth coordinate, i.e., πk (a) = ak for any a = (a0, . . . , aK+1) ∈RK+2.

Lemma 4.1. For each n ≥ 1 and t ≥ 0,

(4.2) V π0
n (t ) = τn

αn,0

K∑
k=1

(1+εn,k )αn,k

∫ t

0
(1−αn,0 An,0(u)/n)An,k (u)du,
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(4.3) V πk
n (t ) =

∫ t

0

[
(1+δn,k−1)An,k−1(u)+τn(εn,k −δn,k )An,k (u)

−τnαn,0

n
(1+εn,k )An,0(u)An,k (u)

]
du

for k = 1, . . . ,K +1 and

(4.4) 〈Mπk
n 〉(t ) = 1

αn,k
V πk

n (t )+2
τn

αn,k
(1+δn,k )

∫ t

0
An,k (u)du

for k = 0, . . . ,K +1.

Proof. Recall that V πk
n (t ) = ∫ t

0 Ωn(πk )(An(u))du and that 〈Mπk
n 〉(t ) = ∫ t

0 Θn(πk )(An(u))du,
so that we only have to compute Ωn(πk ) and Θn(πk ) for k = 0, . . . ,K + 1. By writing
Ωn( f 2)(a)−2 f (a)Ωn( f )(a) in the form∑

j
(x2

j − y2)β j −2y
∑

j
(x j − y)β j =

∑
j

(
(x2

j − y2)−2y(x j − y)
)
β j =

∑
j

(x j − y)2β j

for some x j , β j and y , we see thatΘn( f ) can alternatively be written as follows:

(4.5) Θn( f )(a) = τn

K∑
k=1

[
f

(
a − ek

αn,k
+ ek+1

αn,k+1

)
− f (a)

]2

(1+δn,k )αn,k ak

+τn
(
1−αn,0a0/n

) K∑
k=1

[
f

(
a + e0

αn,0
+ ek

αn,k

)
− f (a)

]2

(1+εn,k )αn,k ak .

For k = 0,

Ωn(π0)(a) = τn

αn,0
(1−αn,0a0/n)

K∑
k=1

(1+εn,k )αn,k ak and Θn(π0)(a) = 1

αn,0
Ωn(π0)(a)

which proves the result for k = 0. For k = K +1,

Ωn(πK+1)(a) = τn

αn,K+1
(1+δn,K )αn,K aK = (1+δn,K )aK

using αn,K+1 = τnαn,K to get the last equality, and Θn(πK+1) =Ωn(πK+1)/αn,K+1, which
proves the result for k = K +1. Consider now k = 1, . . . ,K :

Ωn(πk )(a) = τn

(
− 1

αn,k
(1+δn,k )αn,k ak +

1

αn,k
(1+δn,k−1)αn,k−1ak−1

)
+ τn

αn,k
(1−αn,0a0/n)(1+εn,k )αn,k ak

= (1+δn,k−1)ak−1 +τn(εn,k −δn,k )ak −
τnαn,0

n
(1+εn,k )a0ak ,

using δn,0 = −1 for k = 1, and αn,k−1τn = αn,k for k ≥ 2. This proves the result for V πk
n ,

while writing

Θn(πk )(a) = τn

(
1

α2
n,k

(1+δn,k )αn,k ak +
1

α2
n,k

(1+δn,k−1)αn,k−1ak−1

)

+ τn

α2
n,k

(1−αn,0a0/n)(1+εn,k )αn,k ak

= 1

αn,k
Ωn(πk )(a)+2

τn

αn,k
(1+δn,k )ak

proves the result for Mπk
n , which concludes the proof. �
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4.1. Tightness. We now prove that the sequence (An ,n ≥ 1) is tight. Since An makes
jumps of vanishing size (at most 1/αn,1), in order to show that (An ,n ≥ 1) is tight it is
sufficient to show that for every T ≥ 0,

(4.6) lim
η→0

limsup
n→+∞

∆n(η) = 0 where ∆n(η) = sup
Υ

sup
0≤t≤η

E

(
K+1∑
k=0

∣∣An,k (Υ+ t )− An,k (Υ)
∣∣)

and where the first supremum in the definition of ∆n(η) is taken over all the random
variables Υ ≤ T that are stopping times relatively to the filtration generated by An (see
Corollary on page 179 in Billingsley [4]). Fix in the rest of the proof some T ≥ 0. Because
of the strong Markov property and the fact that we consider stopping times Υ ≤ T , we
have

(4.7) ∆n(η) ≤ sup
0≤t≤η

E

[
sup

0≤y≤T
Φt

n(An(y))

]
where

(4.8) Φt
n(a) =

K+1∑
k=0

Ea
(∣∣An,k (t )− An,k (0)

∣∣)
and the subscript refers to the initial state of the process An (when there is no subscript,
this refers to an initial condition as in the statement of the theorem or the proposi-
tions). By definition we have Ea(|An,k (t )−An,k (0)|) = Ea(|Mπk

n (t )+V πk
n (t )|), and so com-

bining the triangular inequality with Cauchy-Schwarz inequality and summing over
k = 0, . . . ,K +1 leads to

(4.9) Φt
n(a) ≤

K+1∑
k=0

√
Ea

(〈Mπk
n 〉(t )

)+K+1∑
k=0

Ea
(∣∣V πk

n (t )
∣∣) .

In order to do control the first moment of 〈Mπk
n 〉(t ) and of V πk

n (t ), we introduce the
functions ψ = π0 + ·· · +πK , i.e., ψ(a) = a0 + ·· · + aK for a = (a0, . . . , aK+1) ∈ RK+2, and
Ψ=ψ+ψ2. Since αn,1 →+∞ as n →+∞, αn,k+1 = τnαn,k for k = 1, . . . ,K and τn →+∞,
we will assume for convenience that 1 ≤αn,1 ≤ ·· · ≤αn,K+1. Moreover, it can be checked
that the constant

C0 = sup
n≥1,1≤k≤K

(
τn |εn,k −δn,k |,1+|δn,k |,1+|εn,k |,

τnαn,0

n
,

2τn

αn,k
,
τnαn,k

αn,0

)
is finite. From these various definitions and (4.2)–(4.4), and also recalling that δn,0 =
δn,K+1 = εn,K+1 =−1, it follows that

(4.10) max
(∣∣V πk

n (t )
∣∣ , 〈Mπk

n 〉(t )
)≤ 2C 2

0

∫ t

0
Ψ(An(u))du, k = 0, . . . ,K +1, t ≥ 0.

Combined with (4.9) this leads to

Φt
n(a) ≤C1

√∫ t

0
Ea [Ψ(An(u))]du +C1

∫ t

0
Ea [Ψ(An(u))]du

with C1 = 2C 2
0 (K +2). For t ≤ η≤ 1 we obtain

(4.11) Φt
n(a) ≤C1η

1/2
(

sup
0≤u≤1

√
Ea [Ψ(An(u))]+ sup

0≤u≤1
Ea [Ψ(An(u))]

)
.
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Lemma 4.2. There exists a finite constant C2 such that for every initial state a,

(4.12) sup
0≤u≤1

Ea

[
ψi (An(u))

]
≤C2

i∑
j=0

ψ j (a), i = 1,2.

In particular,

(4.13) sup
n≥1

E

[
sup

0≤y≤T
Ψ(An(y))

]
<+∞.

Let us quickly finish the proof of the tightness of (An) based on this lemma: first,
plugging in (4.12) into (4.11), we obtain the existence of a finite constant C3 such that

Φt
n(a) ≤C3η

1/2
(√
Ψ(a)+Ψ(a)

)
, 0 ≤ t ≤ η≤ 1,

and so in view of (4.7), we see that for every η≤ 1,

∆n(η) ≤C3η
1/2E

[
sup

0≤y≤T

(√
Ψ(An(y))+Ψ(An(y))

)]
.

Thus, (4.13) implies the existence of a finite constant C4 such that ∆n(η) ≤ C4η
1/2

which achieves to prove that (An) is tight. It remains to prove Lemma 4.2.

Proof of Lemma 4.2. Let us first prove (4.12). Defining ηn,k = 1/αn,k −1{k 6=K }/αn,k+1 ≥ 0
and writing

ψi (a)−ψi
(

a − ek

αn,k
+ ek+1

αn,k+1

)
= (

ψ(a)
)i − (

ψ(a)−ηn,k
)i = i

∫ ψ(a)

ψ(a)−ηn,k

xi−1dx,

we get

ψi (a)−ψi
(

a − ek

αn,k
+ ek+1

αn,k+1

)
≥ iηn,k

(
ψ(a)−ηn,k

)i−1 .

Defining µn,k = 1/αn,0 +1/αn,k similarly leads to

ψi
(

a + e0

αn,0
+ ek

αn,k

)
−ψi (a) ≤ iµn,k

(
ψ(a)+µn,k

)i−1 .

Plugging these inequalities in the definition (4.1) ofΩn , we obtain

Ωn(ψi )(a) ≤ iτn(1−αn,0a0/n)
K∑

k=1
µn,k

(
ψ(a)+µn,k

)i−1 (1+εn,k )αn,k ak

− iτn

K∑
k=1

ηn,k
(
ψ(a)−ηn,k

)i−1 (1+δn,k )αn,k ak .

Using 1−αn,0a0/n ≤ 1, expanding the terms raised to the power i−1 and changing
the order of summation, we end up with

Ωn(ψi )(a) ≤ i
i−1∑
j=0

(
i −1

j

)(
ψ(a)

)i−1− j

×
{
τn

K∑
k=1

µ
j+1
n,k (1+εn,k )αn,k ak − (−1) jτn

K∑
k=1

η
j+1
n,k (1+δn,k )αn,k ak

}
.
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Plugging in the definitions of ηn,k and µn,k , we see that for j = 0 the term between
brackets in the previous display is given by

τn

K∑
k=1

(1+εn,k )(1+αn,k /αn,0)ak −τn

K∑
k=1

(1+δn,k )(1−1{k 6=K }αn,k /αn,k+1)αn,k ak

= τn

K∑
k=1

(εn,k −δn,k )ak +
K∑

k=1

τnαn,k

αn,0
(1+εn,k )ak +

K−1∑
k=1

(1+δn,k )ak ≤ 3C 2
0ψ(a).

For j ≥ 1, we obtain similarly, using also µn,k ≤ 2/αn,k ≤ 2 and ηn,k ≤ 1/αn,k ≤ 1, that
the term between brackets is upper bounded by

τn

K∑
k=1

4

α2
n,k

(1+εn,k )αn,k ak +τn

K∑
k=1

1

α2
n,k

(1+δn,k )αn,k ak ≤ 3C 2
0ψ(a).

We thus obtain, for some finite constant C (i ) and every a,

(4.14) Ωn(ψi )(a) ≤C (i )
i∑

j=1

(
ψ(a)

) j .

In particular,

Ea

(
ψi (An(t ))

)
=ψi (An(0))+

∫ t

0
Ea

(
Ωn(ψi )(An(u))

)
du

≤C (i )
∫ t

0
Ea

(
i−1∑
j=0

ψ j (An(u))

)
du +C (i )

∫ t

0
Ea

(
ψi (An(u))

)
du

assuming without loss of generality that C (i ) ≥ 1 for the last inequality. Thus Gronwall’s
lemma implies

Ea

(
ψi (An(t ))

)
≤C (i )

∫ t

0

i−1∑
j=0

Ea

(
ψ j (An(u))

)
du ×eC (i )t .

Then (4.12) follows from this inequality by induction on i . We now derive (4.13):
sinceΨ=ψ+ψ2 it is enough to prove (4.13) with ψ2 in place ofΨ. First of all, note that
the previous reasoning shows the existence of a finite constant C ′

2 such that

(4.15) sup
0≤u≤T

E
[
ψi (An(u))

]
≤C ′

2

i∑
j=0

ψ j (An(0)), i = 1,2,3,4.

By definition, ψ2 ◦An =ψ2(An(0))+Vn +Mn , defining Vn = V ψ2

n and Mn = Mψ2

n , and
so

E

[
sup

0≤y≤T
ψ2(An(y))

]
≤ψ2(An(0))+E

[
sup

0≤y≤T
Vn(y)

]
+E

[
sup

0≤y≤T
Mn(y)

]
.

The first term of the above upper bound is bounded (in n) since the sequence An(0)
converges by assumption. For the second term, we write

Vn(y) =
∫ y

0
Ωn(ψ2)(An(u))du ≤C (2)

∫ y

0
Ψ(An(u))du

where the inequality comes from (4.14). Thus

E

[
sup

0≤y≤T
Vn(y)

]
≤C (2)

∫ T

0
E
[
Ψ(An(u))

]
du ≤C (2)T sup

0≤u≤T
E
[
Ψ(An(u))

]
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which is finite by (4.15). We now control the last martingale term. For any real-valued
random variable X we have E(X ) ≤ 1+E(X 2) and so Doob’s inequality gives

E

(
sup

0≤t≤T
Mn(t )

)
≤ 1+4E [〈Mn(T )〉] = 1+4

∫ T

0
E
[
Θn(ψ2)(An(u))

]
du.

DefiningΘ′
n as in (4.5) but with the term −αn,0a0/n taken equal to 0, we have

Θn(ψ2)(a) ≤Θ′
n(ψ2)(a) =Ω′

n(ψ4)(a)−2ψ2(a)Ω′
n(ψ2)(a)

definingΩ′
n similarly asΩn in (4.1) but with the term −αn,0a0/n taken equal to 0. Since

the first step in the derivation of (4.14) was to use 1−αn,0a0/n ≤ 1, the reasoning leading
to (4.14) also leads to an upper bound on |Ω′

n(ψ2)| of the same kind, i.e., it leads to the
existence of a finite constant C ′(i ) such that |Ω′

n(ψi )(a)| ≤C ′(i )
∑i

j=1ψ
j (a). This finally

proves thatΘn(ψ2)(a) ≤C ′∑4
j=1ψ

j (a) for some finite constant C ′, and in particular

E

(
sup

0≤t≤T
Mn(t )

)
≤ 1+4C ′T

4∑
j=1

sup
0≤u≤T

E
[
ψ j (An(u))

]
.

Since the supremum over n ≥ 1 of the right-hand side is finite by (4.15), the proof is
complete. �

4.2. Characterization of accumulation points. Let A = (Ak ,k = 0, . . . ,K +1) be any ac-
cumulation point of (An) and assume without loss of generality that An ⇒ A, i.e., An

converges weakly to A. Remember that we have to prove that A satisfies (2.4) in the in-
termediate regime, (2.8) in the large regime and (2.11) in the small regime. We treat the
three regimes separately.

In each regime, if f ∈ D we denote by
∫

f the function (
∫ t

0 f (u)du, t ≥ 0), and we
will use the following result in conjunction with the continuous mapping theorem. If
( fn), (gn) are two sequences of functions with fn → f and gn → g for some continu-
ous functions f and g (where → denotes uniform convergence on compact sets), then
fn gn → f g and

∫
fn → ∫

f .
In particular, since in all three regimes it holds that τnαn,k /αn,0 = αn,k+1/αn,K+1 →

1{k=K } and αn,0/n → 0, we have from (4.2) that V π0
n ⇒ ∫

AK . Since αn,0 → +∞ and
δn,0 =−1 we have 〈Mπ0

n 〉⇒ 0 by (4.4), which implies by Doob’s inequality that Mπ0
n ⇒ 0.

Similarly, recalling that δn,K+1 = εn,K+1 =−1 we have V πK+1
n ⇒ ∫

AK and MπK+1
n ⇒ 0.

4.2.1. Large initial condition. In this regime, we have τnαn,0 = n. Since moreover δn,0 =
δn,K+1 = εn,K+1 =−1, we obtain from (4.3) that V π1

n ⇒ ∫
(γ1−A0)A1 and V πk

n ⇒ ∫
(Ak−1+

(γk − A0)Ak ) for k = 2, . . . ,K . In other words, V πk
n ⇒ ∫

bk ◦A for k = 0, . . . ,K +1.
Moreover, since αn,k → 0 and τn/αn,k → 0 for k = 1, . . . ,K , we obtain from (4.4) that

〈Mπk
n 〉⇒ 0 for any k = 0, . . . ,K +1. By Doob’s inequality, this implies Mπk

n ⇒ 0 and since
An,k = An,k (0)+Mπk

n +V πk
n we finally get An,k ⇒ ak + ∫

bk ◦A. Since all the above con-
vergences hold jointly as a consequence of the continuous mapping theorem, we get on
the one hand that An ⇒ a+∫

b◦A, while on the other hand, since An ⇒ A by assumption,
we get A = a + ∫

b ◦A. Thus A solves (2.8) as desired, and since uniqueness of solutions
to this ODE is guaranteed by Lemma 3.1, this uniquely characterizes A.

4.2.2. Intermediate initial condition. We still have τnαn,0 = n, so that as in the large
regime we have V πk

n ⇒ ∫
bk ◦A. Moreover, in this regime we have τn/αn,k → 0 for k =

2, . . . ,K which implies as in the previous regime Mπk
n ⇒ 0 for k = 0,2, . . . ,K +1.

The difference with the large regime is that since τn =αn,1, we have 〈Mπ1
n 〉⇒ 2

∫
A1.

Note that 2
∫

A1 = 〈M〉 where M(t ) = ∫ t
0 (2A1(u))1/2dB(u). Moreover, since Mπk

n ⇒ 0 for
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k 6= 1 while 〈Mπ1
n 〉 ⇒ 〈M〉, we get that the quadratic co-variation processes 〈Mπk

n , Mπ`
n 〉

vanish for any k 6= ` by polarization. Since all these convergences hold jointly, Theorem
IX.2.4 in Jacod and Shiryaev [11] shows that A is the semimartingale with characteristics
(b ◦A, M) in the sense that A = a + ∫

b ◦A+M , i.e., A solves (2.4) (and thus is uniquely
determined by Lemma 3.3).

4.2.3. Small initial condition. It follows similarly as in the two previous regimes, not-
ing that in this regime we have τnαn,0/n → 0 (which leads to the drift term bS instead
of b) and τn/αn,k → 1{k=1} (which leads to the non-vanishing diffusion term as in the
intermediate regime).

5. ASYMPTOTIC BEHAVIOR OF THE OUTBREAK SIZE

This section is devoted to proving Theorem 2.3. For f ∈ D we define the operator
T̄0( f ) = sup{t ≥ 0 : f (t ) > 0}; recall also the various operators defined in Section 2.1.
Then we have An,0(∞) = An,0(T̄0(An,K )) and, in order to compute T̄0(An,K ), we will use
the relation T̄0(An,2) = T0(An,1)+T0 ◦θT0(An,1)(An,2) which, iterated, leads to

T̄0(An,K ) =
K−1∑
k=1

T0 ◦θT0(An,k−1) ◦ · · · ◦θT0(An,1)(An,k ).

There are two difficulties to solve in order to prove Theorem 2.3: the first one is that
hitting times are in general not continuous functional, i.e., we may have fn → f but
T0( fn) 6→ T0( f ). The second difficulty is that, as Proposition 2.1 shows, T̄0(AK ) =+∞ for
K ≥ 2 while the convergence An ⇒ A holds uniformly on compact sets (see the discus-
sion following Theorem 2.3). We address these two difficulties in two steps.

5.1. First step. The goal of this first step is to prove that (An ,T0(An,1)) ⇒ (A,T0(A1)).
Assume first that for every δ> 0,

(5.1) limsup
n→+∞

P
(
T0(An,1)−T ↓

ε (An,1) ≥ δ
)
−→
ε→0

0.

We now argue that this implies (An ,T0(An,1)) ⇒ (A,T0(A1)). First of all, note that
if T0(An,1) ⇒ T0(A1) then the joint convergence automatically holds, see for instance
Corollary 2.2 in Lambert et al. [15].

To see that (5.1) implies T0(An,1) ⇒ T0(A1), let us say that A1 goes across ε if for ev-

ery η > 0 we have inf0≤t≤η A1(T ↓
ε (A1) + t ) < ε, and define the random set G through

G = {ε> 0 : A1 goes across ε}. Then it is known (and actually easy to show) that if T ↓
ε (A1)

is almost surely finite and P(ε ∈G ) = 1, then T ↓
ε (An,1) ⇒ T ↓

ε (A1), see for instance Propo-
sition VI.2.11 in Jacod and Shiryaev [11] or Lemma 3.1 in Lambert and Simatos [14].
Note that in our case, T ↓

ε (A1) is finite by Proposition 2.2.
On the other hand, the complement G c of G is precisely the set of discontinuities of

the process (T ↓
ε (A1),ε> 0). Since (T ↓

ε (A),ε> 0) is càglàd, as the left-continuous inverse
of the process (inf[0,t ] A1, t ≥ 0), the set {ε > 0 : P(ε ∈ G c ) > 0} (sometimes called set
of fixed times of discontinuities) is at most countable, see for instance Billingsley [4,
Section 13]. Gathering these two observations, we see that T ↓

ε (An,1) ⇒ T ↓
ε (A1) for all

ε> 0 outside a countable set. Then, writing

P
(
T0(An,1) ≥ x

)=P(
T0(An,1) ≥ x,T0(An,1)−T ↓

ε (An,1) ≥ δ
)

+P
(
T0(An,1) ≥ x,T0(An,1)−T ↓

ε (An,1) < δ
)

,
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using (5.1) and playing with quantifiers gives the convergence of T0(An,1) toward T0(A1).
Indeed, we can for instance write

P
(
T0(An,1) ≥ x

)≤P(
T0(An,1)−T ↓

ε (An,1) ≥ δ
)
+P

(
T ↓
ε (An,1) ≥ x −δ

)
,

then choose ε such that T ↓
ε (An,1) → T ↓

ε (A1) to get by the portmanteau theorem, for any
δ> 0,

limsup
n→+∞

P
(
T0(An,1) ≥ x

)≤ limsup
n→+∞

P
(
T0(An,1)−T ↓

ε (An,1) ≥ δ
)
+P

(
T ↓
ε (A1) ≥ x −δ

)
.

Since T ↓
ε (A1) → T0(A1) as ε → 0, we get by letting first ε → 0 and then δ → 0, and

using (5.1),

limsup
n→+∞

P
(
T0(An,1) ≥ x

)≤P (T0(A1) ≥ x) .

Since x was arbitrary, this shows that T0(An,1) ⇒ T0(A1) by the portmanteau theo-
rem. In conclusion, (5.1) indeed implies T0(An,1) ⇒ T0(A1).

The proof of (5.1) relies on a simple coupling between An,1 and a continuous-time
branching process (more precisely, a Bellman-Harris branching process). Looking at
the transition rates of the process an,1 in (2.1), we see that An,1 decreases by 1/αn,1 at
rate (1+δn,1)An,1α

2
n,1 and increases by 1/αn,1 at rate

(1+εn,1)An,1(1− An,0/αn,1)α2
n,1 ≤ (1+εn,1)An,1α

2
n,1.

In particular, shifting the origin of time at T ↓
ε (An,1) and using the strong Markov prop-

erty, one sees that An,1 can be coupled with a Markov process Zn,1 in such a way that

Zn,1(0) = αn,1bε/αn,1c, An,1(T ↓
ε (A1)+ t ) ≤ Zn,1(t ) for t ≥ 0, and Zn,1 decreases by 1/αn,1

at rate (1+δn,1)Zn,1α
2
n,1 and increases by 1/αn,1 at rate (1+εn,1)Zn,1α

2
n,1 (note that the

law of Zn,1 depends on ε, but we omit this dependency in order to ease the notation).
More concretely, this coupling can for instance be realized by adding a “ghost” indi-
vidual in the population each time an individual in stage one makes an unsuccessful
infection attempt (alternatively, we could also invoke the comparison result of Rogers
and Williams [20, Theorem V.43.1]). Using the strong Markov property at time T ↓

ε (An,1)
and this coupling, we get

P
(
T0(An,1)−T ↓

ε (An,1) ≥ δ
)
≤P(

T0(Zn,1) ≥ δ)
.

It is well-known that Zn,1 ⇒ Z1, where Z1 is Feller diffusion with drift γ1 started at
ε (see for instance Ethier and Kurtz [8, Chapter 9]). Moreover, standard arguments can
be used to show that T0(Zn,1) ⇒ T0(Z1), for instance by using the fact that Zn,1 and Z1

are time-change of Lévy processes killed at 0, say Yn and Y , so that T0(Zn,1) = ∫ ∞
0 Yn ⇒∫ ∞

0 Y = T0(Z1) (this time-change transformation is usually called Lamperti transforma-
tion, see for instance Lamperti [16]). Thus we have (making clear the role of the initial
condition)

limsup
n→+∞

P
(
T0(An,1)−T ↓

ε (An,1) ≥ δ
)
≤P (T0(Z1) ≥ δ | Z1(0) = ε) .

Since T0(Z1) ⇒ 0 as Z1(0) → 0, we have finally proved (5.1), which concludes the first
step.
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5.2. Second step. The first step shows, by using the strong Markov property at time
T0(An,1), that we only need to prove Theorem 2.3 when An,1(0) = 0. In this case, Theo-
rem 2.1 shows that An ⇒ A, where A is a solution to the ODE (3.1) with y = 0.

With this initial condition, we have An,1(t ) = 0 for all t ≥ 0, and π̄ ◦An is a Markov
process: actually, it is a multistage epidemic process with K−1 stages. The problem
to iterate the arguments of the first step is that Proposition 2.2 shows that, although
T ↓
ε (A2) <+∞ for every ε> 0, we have T0(A2) =+∞. To get round this problem, we will

use a time-change argument. Such an idea is classical in the SIR case K = 1, see for in-
stance von Bahr and Martin-Löf [23].

Let us set up a similar coupling as in the first step. The process An,2 decreases by
1/α2

n,1 at rate (1+δn,2)α3
n,1 An,2 and increases by 1/α2

n,1 at rate

(1+εn,2)α3
n,1 An,2(1− An,0/αn,1) ≤ (1+εn,2)α3

n,1 An,2(1− An,0(0)/αn,1),

where the inequality follows from the monotonicity of An,0. Thus similarly as in the
first step, we can couple An,2 with a continuous-time Markovian branching process Zn,2

such that Zn,2(0) = An,2(0), An,2(t ) ≤ Zn,2(t ) for t ≥ 0, and Zn,2 decreases by 1/α2
n,1 at rate

(1+δn,2)α3
n,1Zn,2 and increases by 1/α2

n,1 at rate (1+εn,2)α3
n,1Zn,2(1− An,0(0)/αn,1). In

particular, Zn,2 ⇒ z2 with z2(t ) = z2(0)exp(−(A0(0)−γ2)t ).
Since by Proposition 2.2, A0 is strictly increasing with A0(∞) > γ2, we can assume

without loss of generality by shifting the processes at time T ↑
γ2

(An,0)+1 that A0(0) > γ2,
so that each z2 vanishes exponentially fast. The problem, as mentioned earlier, is that
T0(z2) =+∞: we now introduce the time-change argument.

Let Cn,2 be the right-continuous inverse of t 7→ ∫ t
0 Zn,2 and c2 be the right-continuous

inverse of t 7→ ∫ t
0 z2, in the sense that

∫ Cn,2(t )
0 Zn,2 = t for t < ∫ ∞

0 Zn,2 and
∫ c2(t )

0 z2 = t for
t < ∫ ∞

0 z2. Since
∫ ∞

0 z2 <+∞, c2 blows up at time
∫ ∞

0 z2. Moreover, such random time-
change transformations induce continuous mappings, so that An ◦Cn,2 ⇒ A ◦ c2 and
Zn,2 ◦Cn,2 ⇒ z2 ◦ c2, see for instance Helland [9].

Time-changing Zn,2 with Cn,2 actually corresponds to the Lamperti transformation
mentioned above: Zn,2◦Cn,2 is a continuous-time random walk (killed at 0), z2◦c2 starts
at A2(0) and decays linearly at rate A0(0)−γ2, i.e., z2(c2(t )) = A2(0)− (A0(0)−γ2)t for
t ≤ ∫ ∞

0 z2, and T0(Zn,2 ◦Cn,2) ⇒ T0(z2 ◦ c2). In particular, since

P
(
T0(An,2 ◦Cn,2)−T ↓

ε (An,2 ◦Cn,2) ≥ δ
)
≤P(

T0(Zn,2 ◦Cn,2) ≥ δ | Zn,2(0) = ε)
we obtain

limsup
n→+∞

P
(
T0(An,2 ◦Cn,2)−T ↓

ε (An,2 ◦Cn,2) ≥ δ
)
−→
ε→0

0

and the arguments of the first step imply that(
An ◦Cn,2,T0(An,2 ◦Cn,2)

)⇒ (A◦ c2,T0(A2 ◦ c2)) .

In particular, the strong Markov property at time T0(An,2 ◦Cn,2) shows that

(An ◦Cn,2)
(
T0(An,2 ◦Cn,2)

)= An(T0(An,2)) ⇒ (x ◦ c2) (T0(A2 ◦ c2)) = x(∞) = 0.

By using the strong Markov property at time T0(An,2) and iterating this argument, we
finally end up with the desired result that An,0(∞) ⇒ A0(∞), which concludes the proof
of Theorem 2.3.
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6. AN INTRIGUING CONJECTURE

We conclude this paper by discussing a conjecture formulated in [2] which initially
motivated the present work.

Conjecture (Antal and Krapivsky [2]). Assume that εn,k = δn,k = 0 and let Nn,k be the
number of individuals ever being of type k = 1, . . . ,K over the course of the epidemic,
starting from the initial condition an,1(0) = 1 and an,k (0) = 0 for k = 2, . . . ,K + 1. Then
E(Nn,k ) grows as n →+∞ like nkλK , where

λK = 2K −1

(K +1)2K −1
.

Note that, with our notation, Nn,K = an,K+1(∞), since any individual ever removed
must have been in stage K of the epidemic at some point (and vice-versa). On the other
hand, Theorem 2.3 shows that starting with of the order of n1/(K+2) individuals in stage
one (instead of just one as in the above conjecture), an,K+1(∞) is, in distribution, of the
order of n(K+1)/(K+2). When K = 1, there is a well-known argument that links these two
objects: the connection goes through a random partitioning of {1, . . . ,n}.

Consider indeed the following model, where n individuals are assigned a unique la-
bel from the set {1, . . . ,n} and which results in a random partition Π1, . . . ,ΠS of the set
{1, . . . ,n}. Imagine that Π1, . . . ,Πs have been generated and that the set Fs = {1, . . . ,n} \
(Π1∪·· ·∪Πs ) is not empty: then the iteration proceeds as follows. Choose an individual
v uniformly at random from Fs , and run the epidemic with the following initial condi-
tion: at time 0 the individuals in Fs \{v} are susceptible and the individuals inΠ1∪·· ·∪Πs

are removed, so that only v is infected (and, in the case K ≥ 2, is in the first stage of the
epidemic). Eventually, this epidemic will die out and we define Πs+1 as the set of indi-
viduals infected over the course of this epidemic.

This connection between random partition and epidemic processes is well-known,
see for instance Barbour and Mollison [3]. In the case K=1 this links clusters of the
Erdös-Rényi random graph to the SIR process. This construction leads to several inter-
esting by-products, one of them being that it makes it possible to compute the mean
size of a typical cluster in terms of the mean size of the largest ones. More precisely,
choose an individual v uniformly at random in {1, . . . ,n} and let Π∗ be the cluster to
which it belongs. Let moreover (Π(i ), i ≥ 1) be the clusters ordered in decreasing size,
i.e., {Π(i )} = {Πi } and |Π(1)| ≥ |Π(2)| ≥ · · · with |E | the size of a set E ⊂N. Then the proba-
bility that v belongs toΠ(i ) is exactly |Π(i )|/n, in which caseΠ∗ =Π(i ) and so

E(|Π∗|) = ∑
i≥1

E

( |Π(i )|
n

|Π(i )|
)

.

Assuming that the largest term in this sum dominates, we get the approximation

(6.1) E
(|Π∗|)≈ 1

n
E
(|Π2

(1)|
)

.

When K = 1, |Π∗| is, by exchangeability, equal in distribution to Nn,1 and so E(|Π∗|) =
E(Nn,1). Moreover, |Π(1)| is of the same order than an outbreak size started from an inter-
mediate initial condition. Roughly speaking, this comes from the fact that the interme-
diate regime is precisely the one where the finite-size population effects begin to kick
in. In particular, |Π(1)| is of the order of n(K+1)/(K+2) = n2/3. Gathering these two obser-
vations, we end up thanks to (6.1) with the relation E(Nn,1) ≈ n4/3−1 = n1/3, when K = 1.
This answer coincides with Antal and Krapivsky’s conjecture and the above reasoning
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through random partitioning can be made rigorous, see, e.g., Janson and Luczak [12].

It is tempting to also use this reasoning for K ≥ 2, and this initially motivated us to
identify the intermediate regime and the scalings at play there. However, this reasoning
would lead to the estimate

E(Nn,K ) ≈ 1

n
n2(K+1)/(K+2) = nK /(K+2)

which is different (for K ≥ 2) from the nKλK predicted by Antal and Krapivsky [2]. We
find this discrepancy, and the related fact that the above reasoning through random
partitioning seems to fail, very intriguing. We believe that the temporal aspects intrinsic
to this multistage epidemic (see the discussion of the main results in the introduction)
play a major role in this discrepancy, although it is challenging to obtain rigorous results
in that direction.

APPENDIX A. PROOF OF LEMMAS 3.1 AND 3.2

Let x be any solution to (3.1) defined on the interval J = [0, t∗) for some t∗ ∈ (0,∞]. It
will be convenient to define x1 = y and to index the RK+1-valued function x by the set
{0,2, . . . ,K +1}, i.e., to write x = (x0, x2, . . . , xK+1). Let also in the sequel

Ik (t ) =
∫ t

0

(
x0(u)−γk

)
du, t ∈ J ,k = 1, . . . ,K .

Then (e Ik xk )′e−Ik = (x0 −γk )xk + x ′
k is equal to xk−1 for k = 2, . . . ,K by (3.1). Thus for

these k we have (e Ik xk )′e−Ik = xk−1, which can be rewritten as

(A.1) xk (t ) =
(

xk (0)+
∫ t

0
xk−1(u)e Ik (u)du

)
e−Ik (t ), k = 2, . . . ,K , t ∈ J .

A.1. Proof of Lemma 3.1. Note first that the representation (A.1) implies that x(t ) ∈
[0,∞)K+1 for every t ∈ J . Indeed, since x1(t ) = y(t ) ≥ 0, this implies that x2(t ) ≥ 0 and
by induction on k, this implies that xk (t ) ≥ 0 for every k = 2, . . . ,K and t ∈ J . Since
finally x0(0), xK+1(0) ∈ [0,∞) and x ′

0 = x ′
K+1 = xK which has just been showed to stay

non-negative, we obtain that x0 and xK+1 also stay non-negative.
Let us now prove Lemma 3.1, i.e., existence and uniqueness of solutions to (3.1).

Since F is locally Lipschitz, the Picard-Lindelhöf theorem implies local existence and
uniqueness to (3.1). To show this globally, we only have to show that local solutions do
not explode. Since x ′

2 = y + (γ2 − x0)x2 and x2, x0 ≥ 0, we obtain x ′
2 ≤ y +γ+2 x2 where

γ+ = max(0,γ) for any γ ∈ R. Gronwall’s lemma thus shows that x2 does not explode.
Similarly, for k = 3, . . . ,K we have x ′

k ≤ xk−1 +γ+k xk and so xk also does not explode.
Finally, since x ′

0 = x ′
K+1 = xK , solutions stay locally bounded which proves the global

existence and uniqueness on [0,∞).

A.2. Proof of Lemma 3.2. We prove each property separately. As mentioned earlier, in
the rest of the proof we define x1 = y .

Proof of (i). Assume that y(0) > 0 or a2 > 0: then it is clear from (A.1) that x2(t ) > 0 for all
t > 0. By induction, we see that xk (t ) > 0 for all k = 2, . . . ,K and t > 0.

Proof of (ii). Assume that xk (t ) > 0 for k = 2, . . . ,K and t > 0, and that x0 is bounded: we
prove by backwards induction on k that

∫ ∞
0 xk is finite for k = 1, . . . ,K and that x0(∞) >

γk for k = 2, . . . ,K . For k = K , the fact that
∫ ∞

0 xK is finite comes from the fact that x0 is
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bounded and non-decreasing, and so its derivative xK is integrable on [0,∞). Consider
now any 2 ≤ k ≤ K and assume that

∫ ∞
0 xk is finite: we prove that

∫ ∞
0 xk−1 is finite and

that x0(∞) > γk .
Since

∫ ∞
0 xk is finite, there must exist a sequence tn → +∞ such that xk (tn) → 0.

Moreover, we have by definition x ′
k = xk−1+(γk−x0)xk and so integrating between times

0 and tn we obtain∫ tn

0
xk−1 = xk (tn)−xk (0)+

∫ tn

0
(x0(u)−γk )xk (u)du ≤ xk (tn)+ (x0(∞)−γk )

∫ tn

0
xk .

Letting n →+∞, we obtain the inequality
∫ ∞

0 xk−1 ≤ (x0(∞)−γk )
∫ ∞

0 xk which shows,
by induction, that

∫ ∞
0 xk−1 is finite and also that x0(∞) > γk (since

∫ ∞
0 xk−1 > 0).

Proof of (iii). Assume that y(t ) = 0 for all t ≥ 0 and that a2 > 0: in particular, according
to (i), we see that xk (t ) > 0 for every t > 0 and k = 0,2, . . . ,K , a fact that will repeatedly be
used in the sequel. We begin by proving the following formula:

(A.2) xk (t ) =
(

k−2∑
i=0

xk−i (0)φk,i (t )

)
×exp

(
−

∫ t

0
(x0(u)−γk )du

)
, k = 2, . . . ,K , t ≥ 0,

where the functions φk,i for k = 2, . . . ,K and i = 0, . . . ,k − 2 are defined recursively by
φk,0(t ) = 1 and for i = 1, . . . ,k −2,

(A.3) φk,i (t ) =
∫ t

0
φk−1,i−1(u)eηk udu, with ηk = γk−1 −γk (k = 3, . . . ,K ).

We prove (A.2) by induction on k. For k = 2, we have by (A.1), and since x1 = 0,
x2(t ) = x2(0)e−I2(t ) which is precisely (A.2). Assume now that (A.2) holds for k ≥ 2 and
let us prove it for k +1: plugging in (A.2) into (A.1), we obtain

xk+1(t ) =
(

xk+1(0)+
∫ t

0

(
k−2∑
i=0

xk−i (0)φk,i (u)

)
e−Ik (u) ×e Ik+1(u)du

)
e−Ik+1(t ).

Using Ik+1(u)− Ik (u) = (γk −γk+1)u = ηk+1u, exchanging the integral and the sum
and changing variables in the sum, we obtain

xk+1(t ) =
(

xk+1(0)+
k−1∑
i=1

xk+1−i (0)
∫ t

0
φk,i−1(u)eηk+1udu

)
e−Ik+1(t )

from which we get (A.2) by (A.3). We now prove that x0(∞) is finite by contradiction,
so assume that x0(∞) = +∞. Starting from the definition (A.3) of the φk,i ’s, we get by
induction thatφk,i (t ) ≤ e iη∗t with η∗ = 1+max3≤ j≤K |η j |. In particular, we get from (A.2)
for k = K that

xK (t ) ≤
(

k−2∑
i=0

xk−i (0)

)
eKη∗t ×exp

(
−

∫ t

0
(x0(u)−γK )du

)
.

Since x0(t )−γK > Kη∗ for t large enough (since we are assuming x0(∞) = +∞), the
last display implies that xK converges to 0 exponentially fast, and in particular

∫ ∞
0 xK <

+∞. Since x ′
0 = xK , x0(∞) is finite, which yields the contradiction. Thus x0(∞) must be

finite and so the conclusions of (ii) apply, in particular x0(∞) > γk for every 2 ≤ k ≤ K .
We now complete the proof and show that xk (t ) → 0 for every k = 2, . . . ,K : in view

of (A.2) we only have to show that

(A.4) lim
t→+∞

(
φk,i (t )e−

∫ t
0 (x0−γk )

)
= 0
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for every i = 0, . . . ,K −2 and every k = i +2, . . . ,K . We prove this by induction on i : for
i = 0 this comes immediately from the facts that φk,0(t ) = 1 and x0(∞) > γk . So assume
that (A.4) holds for some i = 0, . . . ,K −2 and every k = i +2, . . . ,K : we show that it also
holds for i +1 and k = i +3, . . . ,K . By definition (A.3) we have

φk,i+1(t )e−
∫ t

0 (x0−γk ) =
(∫ t

0
φk−1,i (u)eηk udu

)
e−

∫ t
0 (x0−γk ).

Let ε> 0 and, by induction hypothesis, t∗ such that φk−1,i (t ) ≤ εe
∫ t

0 (x0−γk−1) for every
t ≥ t∗. Then for such t ,

φk,i+1(t )e−
∫ t

0 (x0−γk ) ≤
(∫ t∗

0
φk−1,i (u)eηk udu

)
e−

∫ t
0 (x0−γk )

+ε
(∫ t

0
e

∫ u
0 (x0−γk−1)eηk udu

)
e−

∫ t
0 (x0−γk ).

Since the first term of the above upper bound vanishes as t →+∞ and we can rewrite
the second term as(∫ t

0
e

∫ u
0 (x0−γk−1)eηk udu

)
e−

∫ t
0 (x0−γk ) =

(∫ t

0
e

∫ u
0 (x0−γk )du

)
e−

∫ t
0 (x0−γk ) =

∫ t

0
e−

∫ t
u (x0−γk )du,

we obtain

limsup
t→+∞

(
φk,i+1(t )e−

∫ t
0 (x0−γk )

)
≤ εsup

t≥0

(∫ t

0
e−

∫ t
u (x0−γk )du

)
.

Thus to achieve the proof we only have to show that this last supremum is finite. Let
κ> 0 and s∗ <+∞ be such that x0(t )−γk ≥ κ for t ≥ s∗ and k = 2, . . . ,K . Then for t ≥ s∗∫ t

s∗
e−

∫ t
u (x0−γk )du ≤

∫ t

s∗
e−κ(t−u)du ≤

∫ ∞

0
e−κudu

and
∫ s∗

0 e−
∫ t

u (x0−γk )du ≤ ∫ s∗
0 e−

∫ s∗
u (x0−γk )du so that writing∫ t

0
e−

∫ t
u (x0−γk )du =

∫ s∗

0
e−

∫ t
u (x0−γk )du +

∫ t

s∗
e−

∫ t
u (x0−γk )du

achieves the proof.
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