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the classification of spaceborne urban hyperspectral data
depending on the spatial resolution
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aHaute-Garonne, Onera, Toulouse, France; bLanguedoc-Roussillon, UMR TETIS, Montpellier, France

ABSTRACT

For remote-sensing applications such as spectra classification or identification, 
atmospheric correction constitutes a very important pre-processing step, especially in 
complex urban environments where a lot of phenomenons alter the shape of the signal. 
The objective of this article is to compare the efficiency of two atmo-spheric correction 
algorithms, COCHISE (atmospheric COrrection Code for Hyperspectral Images of 
remote-sensing SEnsors) and an empirical method, on hyperspectral data and for 
classification applications. Classification is carried out on several simulated spaceborne 
data sets with different spatial resolutions (from 1.6 to 9.6 m). Four classifiers are 
considered in the study: a k-means, a Support Vector Machine (SVM), and a sun/
shadow version of each of them, which processes sunlit and shadowed pixels 
separately. Results show that the most relevant atmospheric method for classification 
depends on the spatial resolution of the processed data set. Indeed, if the empirical 
method performs better on high-resolution data sets (up to 4%), its superiority fades out 
as the spatial resolution decreases, especially with the lower spatial reso-lution where 
COCHISE can be 10% more accurate than the empiri-cal method.

1. Introduction

During the last century, urban areas grew in such a manner that more than 50% of

mankind lives now in cities (Chen et al. 2013). These areas are complex and dynamic

ecosystems consuming a huge amount of energy and materials on a daily basis. In

return, they produce an excessive volume of waste, heat, and pollutant, which repre-

sents a critical environmental issue. Consequently, numerous sustainable development

programmes in needs of an increasing mass of information have emerged. This need can

be efficiently fulfilled by the Earth observation technologies such as spatial remote

sensors, able to gather quickly and recurrently a large quantity of image data, which

are usable as part of many applications: air quality control, ground cartography, material

aging monitoring, and vegetal biodiversity characterization. Indeed, optical remote

sensing has proved to be a powerful tool in order to conduct urban studies (Briottet
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et al. 2016). Multispectral high spatial resolution sensors are very efficient for the

detection of urban objects and for the characterization of their size and shape. Agile

sensors such as Pleïades (de Lussy et al. 2004) can even acquire images in stereoscopy

and tri-stereoscopy in order to produce digital elevation models that are able to

characterize the three-dimensional structure of the ground. The high spatial resolution

of these data sets allows to perform object-based classification through segmentation

and object feature (statistical, geometric, or contextual) processing, which makes urban

mapping and planning applications (such as territorial urbanization study (Dupuy, Barbe,

and Balestrat 2012) or vegetation spread characterization (Landry and Chakraborty

2009)) easier and more accurate.

However, multispectral imagery is limited regarding spectral analysis. Its low spectral

resolution does not allow the discrimination among the large variety of urban materials.

Hyperspectral imagery, which is characterized by a very high spectral resolution and

whose spatial resolution tends to improve (Briottet et al. 2011), has proved to be a

promising tool to overcome this matter. Herold, Gardner, and Roberts (2003) showed

that hyperspectral sensors were better at characterizing soils, materials, and vegetals

than multispectral sensors. As for them, Platt and Goetz (2004) and Tan and Wang (2007)

highlight the benefits of hyperspectral data sets for the classification of urban surfaces.

Several other authors including Weng and Quattrocchi (2007) also insist on the benefit

provided by hyperspectral imagery for the characterization of impervious surfaces.

Nowadays, two new spaceborne hyperspectral mission programmes are understudied:

HYPXIM (Briottet et al. 2011) for ‘HYPer Spectral IMagerie à haute résolution et grand

champ’ and SHALOM (Dor, Kafri, and Varacalli 2014) for ‘Spaceborne Hyperspectral

Applicative Land and Ocean Mission’, with a spatial resolution of, respectively, 8 and

10 m. Thus, there is a real interest to evaluate the potential benefits of these missions for

the study of urban areas.

One of the keypoints to achieve these applications is the atmospheric correction

phase which aims to retrieve, from at sensor radiance, the reflectance associated to

the targeted surface, which is by nature independent of the irradiance conditions on

the one hand and of the environment topography on the other hand. Different

correction methods exist. ATREM (Goetz et al. 1997) for ‘Atmospheric REMoval pro-

gram’ and ACORN (Miller 2002) for ‘Atmosphere CORrection Now’ assume a flat

homogeneous ground hypothesis with a Lambertian surface. FLAASH (Cooley et al.

2002) for ‘Fast Line-of-sight Atmospheric AnalySis of Hypercubes’ and COCHISE

(Miesch et al. 2005) for ‘atmospheric COrrection Code for Hyperspectral Images of

remote-sensing SEnsors’ consider as for them a heterogeneous background. The main

drawback of these four methods is that they perform atmospheric correction without

accounting for the three-dimensional structure of the ground, which may introduce

artefacts due to slopes and shadows. SIERRA (Lenot, Achard, and Poutier 2003) for

‘Spectral reflectance Image Extraction from Radiance with Relief and Atmospheric

correction’ bypasses the slope issue by using a digital elevation model (DEM) but

only ATCOR4 (Richter and Schlapfer 2002) for ‘Atmospheric and Topographic

CORrection’ and ICARE (Lacherade et al. 2008) for ‘Inversion Code for urban Areas

Reflectance Extraction’ take also shadows into account. Yet, these algorithms are very

expensive in terms of computation time, and they necessite to have access to

accurate elevation data which may be unavailable. Considering these two drawbacks,
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Chen et al. (2013) introduced a faster, classification-orientated method (spectrum

identification is not possible) that is able to compute reflectance in shadow areas

using only the at sensor radiance image and the atmospheric and viewing conditions

based on empirical assumptions.

The objective of this work is to compare the classification performances obtained

on spaceborne hyperspectral data sets simulated at different spatial resolutions and

corrected by two atmospheric compensation methods: COCHISE, a flat ground algo-

rithm, and the empirical method developed by Chen et al. (2013) which takes

shadows into account. These two atmospheric compensation methods are very

different in essence, as the first one is a physically based tool which is very similar

to ATCOR or FLAASH. The second one keeps the flat surface assumption for the

atmospheric compensation but adds some empirical hypothesis to retrieve the reflec-

tance in shadowed areas.

2. Atmospheric correction methods

The framework used for both atmospheric correction methods is described in this

section. This work only considers the reflective domain (from 0:4 to 2:5 µm).

2.1. Radiative transfer framework

The reflectance is a unitless and wavelength-dependent parameter representing the

ratio between the radiance reflected by a surface and the irradiance incident to this

surface. Assuming a Lambertian hypothesis and for given illumination conditions, the

reflectance value of a pixel ðx; yÞ can be formulated as follows:

ρ ¼
π � Rdir

Itot � τ
"
dir

(1)

with:

Rdir ¼ Rtot � Renv � Ratm (2)

Itot ¼ Idir þ Idif þ Icoup þ Irefl (3)

where Rtot is the radiance measured by the sensor, Renv is the portion of Rtot coming

from the neighbourhood of the target, and Ratm the portion scattered by the atmo-

sphere without interacting with the ground. Itot, the total irradiance incident to the

target pixel, includes four components:

● Idir: the photons hiting the target directly from the sun, without any interaction

with the atmosphere.

● Idif : the photons scattered in the atmosphere at least once before hiting the target.

● Icoup: the photons that make at least one round trip between the ground and the

atmosphere before hiting the target.

● Irefl: the photons hiting the neighbouring 3D structure at least once before hiting

the target.
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Finally, τ"dir is the direct upward transmission. Most of these terms are illustrated in

Figure 1.

In cities where the number, the size, and the density of buildings imply the omnipre-

sence of canyon-like structures, shadows constitute a major issue, especially for applica-

tions such as classification where a strong variability of spectra can lead to high confusion

rates and an overestimation of the number of classes (Lacherade et al. 2008). For example,

in an urban data set acquired over the downtown of Toulouse, France, in winter time and

early in the morning, we identified as much as 33% of shadowed pixels. In order to

highlight the interest of correcting the effects of shadow in a reflectance retrieval process,

we compared two algorithms. The first one, COCHISE, does not make any difference

between shadowed and sunlit areas while the second one, an empirical method developed

by Chen et al. (2013), processes the two kinds of area separately.

2.2. COCHISE

COCHISE considers a flat and heterogeneous ground in order to compute the reflectance

value of a pixel, which means on the one hand that the Irefl term of Equation (3) is

ignored, and on the other that Idir and Idif are considered constant for the whole scene.

This method is used as a reference to evaluate the benefit of the Chen et al. (2013)

method. Starting from Equation (2) and Miesch et al. (2005), we have:

Rdir ¼ τ
"
dir

ρ ρ

π
�
Idir þ Idif

1� ρcS
; (4)

Renv ¼ τ
"
dif

ðð

ðu;vÞ2Vðx;yÞ

ρðu; vÞ

π

Idir þ Idif

1� ρcðu; vÞS
;� Fðu; vÞ dudv;

(a) (b)

Figure 1. Radiative components in an urban canyon.
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where τ
"
dir and τ

"
dif are, respectively, the direct and diffuse components of the upwelling

transmission. Vðx; yÞ is the neighbourhood of the target pixel ðx; yÞ, S is the atmospheric

spherical albedo and:

ρc ¼

ðð

ðu;vÞ2Vðx;yÞ

ρðu; vÞGðu� x; v � yÞdu dv (6)

is a mean reflectance value associated to the Earth–atmosphere coupling effect. G and F

environment functions stand for the probability that an energy reaching the target

through this effect results from the neighbour ðu; vÞ. These functions are computed

using a Monte Carlo algorithm (Miesch et al. 2000). Atmospheric parameters involved in

Equations (2), (4), and (5), that is, Ratm, τ
"
dir, τ

"
dif , Idir, Idif and S, are computed using the

radiative transfer code MODTRAN, for ‘MODerate resolution atmospheric TRANsmission’

(Berk, Bernstein, and Robertson 1989), knowing some other parameters such as aerosol

type and abundance, molecular atmospheric profile, water vapour content, and illumi-

nation conditions.

The inversion process in order to obtain the reflectance ρðx; yÞ is based on an iterative

algorithm. At first, the reflectance associated to the environment of the target is

considered equal to the reflectance of the target:

ρð1Þ ¼
πðRtot � RatmÞ

ðτ"dir � τ
"
difÞ � ðIdir þ IdifÞ � SðRtot � RatmÞ

: (7)

The next reflectance value is then computed as follows:

ρðtþ1Þ ¼
π Rtot � Ratm � τ

"
dif I

ðtÞ
dif

� �

τ
"
dir

IdirþIdif

1�ρ
ðtÞ
c S

(8)

with

ρ
ðtÞ
c ¼

ðð

ðu;vÞ2Vðx;yÞ
ρðtÞðu; vÞ

�Gðu� x; v � yÞ dudv

I
ðtÞ
dif ¼

ðð

ðu;vÞ2Vðx;yÞ

ρðtÞ ðu;vÞ
π

ρðtÞðu;vÞ

� IdirþIdif

1�ρ
ðtÞ
c ðu;vÞS

Fðu; vÞdu dv
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Usually, two iterations of the algorithm are enough to reach convergence.

2.3. Empirical method

The proportions of each radiative terms in Equation (3) are very different depending on

whether the target is in a sunlit area or a shadowed one. Consequently, Chen et al.

(2013) proposed to use different estimation methods in order to retrieve the reflectance

in both area types. The framework of Chen’s method is presented in Figure 2. The

algorithm has been improved so that the atmospheric terms are no longer computed
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with 6S (Vermote et al. 1997) but with MODTRAN (Berk, Bernstein, and Robertson 1989),

which is more suited to the processing of hyperspectral data due to its better spectral

resolution.

2.3.1. Shadow mask generation

The first step consists in the determination of a shadow mask based on the auto-

matic shadow detection algorithm proposed by Nagao, Matsuyama, and Ikeda (1979).

This choice has been done according to the comparison of shadow detection

methods done by Adeline et al. (2013b) The purpose of this algorithm is to apply

an automatic histogram thresholding process to the following linear combination of

bands:

Rcomb ¼
2Rλr þ Rλg þ Rλb þ 2Rλnir

6
; (10)

where Rλr , Rλg , Rλb , and Rλnir are, respectively, the radiance values associated to the red,

green, blue, and near infrared channels of an image. Then, a final optional step has been

added for images where water is present. Indeed, the Nagao algorithm usually considers

water pixels as shadow pixels due to their low reflectance. To solve this problem,

another histogram thresholding process is applied on the shadow pixels detected by

the first one, this time only on the green channel, which have shown the best ability to

discriminate shadow and water. The shadow mask is a binary array M with M ¼ 0 for a

shadowed pixel and M ¼ 1 for a sunlit one. Figure 3 shows an example of shadow

extraction done for an area located in the centre of Toulouse and including several

buildings and a waterway.

2.3.2. Irradiance characterization

In sunlit areas, direct and diffuse terms account for at least 95% of the total irradiance

(Chen et al. 2013), which means that Itot can be reasonably approximated by these two

terms. In shadow areas, however, the direct irradiance is absent and the total irradiance

is mainly composed of diffuse and reflected irradiance. In this case, the diffuse term may

Figure 2. Empirical method’s framework.
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be subdued by the proximity of buildings. The coupling irradiance term is neglected in

both cases, which leads to these two approximated expressions:

I0tot � Idir þ Idif ifM ¼ 1

I0tot � αsky � Idif þ Irefl ifM ¼ 0

�

; (11)

where

Irefl ¼ κ � ðIdir þ IdifÞ � �ρ: (12)

αsky 2 ½0; 1� is a factor accounting for the fraction of sky viewed from the ground. For

example, a pixel located in a perfectly flat area will have a sky view factor equal to 1. Sky

view factors can be computed using either a DEM or fish-eye pictures (Gal et al. 2007).

However, the purpose of Chen’s method is to correct shadow effects without elevation

data. Therefore, they mean αsky value of 0:75 is used according to the study made by Gal

et al. (2007) which asserts that most of the sky view factors located nearby typical urban

3D structures belong to ½0:7; 0:87�.

The reflected irradiance, which depends on the 3D surface and the reflectances

located in the neighbourhood of the target, is very difficult to estimate accurately

without a DEM. This term can be neglected in sunlit areas where it represents a minor

percentage of the total irradiance but not in the shadowed regions. In this method, Irefl is

estimated as the sum of direct and diffuse irradiances weighted by a factor κ represent-

ing the effects of the 3D structure and a mean reflectance �ρ which stands for the

reflecting surface around the target. In Chen et al. (2013) method, κ is set to 0:2 for

(a) (b)

(c)

Figure 3. (a) RGB composition; (b) shadow mask (shadow pixels in black) obtained with the original
Nagao algorithm; (c) shadow mask (shadow pixels in black) obtained with the modified Nagao
algorithm.
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cluttered urban environment and 0 for open suburban areas. For �ρ, a mean of spectra

associated to several urban materials (such as concrete, tile and steel) found in spectral

libraries is used.

2.3.3. Environment radiance processing

Renv accounts for the proportion of radiance coming from the neighbourhood of the

target and scattered by the atmosphere towards the target’s associated photosensor. It

is computed iteratively as follows:

Renv;t ¼
τ
"
dif Itotρ

^

t

1� ρ
^

tS
; (13)

ρt ¼
�ðRtot � Renv;t � RatmÞ

I0totτ
"
dir

; (14)

where

ρ
^

tþ1 ¼

ðð

ðu;vÞ2Vðx;yÞ

ρtðu; vÞ dudv (15)

is the mean reflectance spectrum associated to the neighbourhood of the target for the

iteration t þ 1 and ρ
^

0 ¼ �ρ. Usually, two iterations of the process suffice to reach

convergence.

3. Classification methods

This article aims to evaluate the efficiency of the two atmospheric correction methods

previously described in the context of classification applications. In order to carry out

this comparison, we considered several classification approaches, supervised or not. The

first one is k-means++ (Arthur and Vassilvitskii 2007), an improved version of the widely

used and unsupervised k-means algorithm (MacQueen 1967), where the initial centroids

are not chosen randomly but according to the assumption that distant centroids (in the

vector space) will lead to a better identification of the classes. The second one is the

Support Vector Machine (SVM) algorithm (Boser, Guyon, and Vapnik 1992), a robust

supervised method able to perform well in harsh situations (high-dimension data and

few learning samples) and even to process non-linearly separable data using kernels to

simulate higher dimensional spaces.

However, these two approaches are not suited to data sets where shadows are

omnipresent. Indeed, such data sets often induce the presence of a shadow class

which gather a large proportion of pixels associated to a wide variety of materials.

Thus, we propose a new method implying a sequential process (cf. Figure 4) where sunlit

and shadow pixels are classified separately. Using the shadow mask described in Section

2.3, the sunlit pixels are extracted and classified either by a k means++ or an SVM

algorithm, with a number of classes L fixed by the user. Then, the centroids of each class

are preserved and used as input for the classification of shadowed pixels. In this case, a

Spectral Angle Mapper (SAM) classification has been chosen for its ability to focus on the
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shape of spectra, which remains globally similar for a pair of pixels associated to the

same material, even if one is located in a sunlit area and the other in a shadow area. For

each pixel p and each centroid μi; i 2 ½1; L�, a SAM value is processed as follows:

SAMðp; μÞ ¼ cos�1

P

B

b¼1

pðbÞμðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

B

b¼1

pðbÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

B

b¼1

μðbÞ2

s

0

B

B

B

B

@

1

C

C

C

C

A

; (16)

where B is the number of bands of the image. The class chosen for pixel p is the one

minimizing the SAM between p and its representative centroid. It should be noted that

for this method to be efficient, the same classes must be present in both sunlit and

shadow areas. Furthermore, the spectral bands used to classify shadow pixels must be

chosen carefully. Indeed, in shadow areas and for spectral bands from the near infrared

to shortwave infrared (SWIR) (above 0:8 µm), the amplitude of the signal tends towards

zero as the wavelength grows, which means that over a given threshold only noise is

measured.

To summarize, four different classifiers are considered in this study:

● KM: k-means++ algorithm applied on the whole image

● SS-KM: sun/shadow classification with a k-means++ to classify the sunlit pixels and

SAM to classify shadowed ones

● SVM: SVM algorithm with polynomial kernel applied on the whole image

● SS-SVM: sun/shadow classification with an SVM to classify the sunlit pixels and

SAM to classify shadowed ones

Concerning the supervised methods, two kinds of training data sets are used. The first

approach includes for each class both sunlit and shadowed pixels (GTWS: Ground Truth

With Shadows), which implies better results but does not represent a very realistic

Figure 4. Sun/shadow classification framework.
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application case. Indeed, it is rare to have access to accurate ground truth for every

image to classify. This ground truth is built either from a spectral library (where the

spectra are usually acquired under ideal illumination conditions) or manually, in which

case the user picks most of the time sunlit pixels whose associated class is obvious. This

is why we consider a second approach where only sunlit pixels are included in the

training sets (SGT: Sunlit Ground Truth), which also implies that their variability is mainly

due to the characteristics of the materials.

4. Working data and simulation

The data used in this study have been acquired on an area covering both the downtown

and the suburb of Toulouse, France (cf. Figure 5), during the Umbra airborne campaign

(Adeline et al. 2013a) which occurred on 24 October 2012. Two sensors of the Hyspex

product line have been used simultaneously in order to cover a wavelength interval

starting from 400 to 2500 nm. The first one is a VNIR-1600 sensor covering the 400�

1000 nm interval with a spectral resolution of 3:7 nm and 160 bands. The second one is

a SWIR-320m-e sensor covering the 1000� 2500 nm interval with a spectral resolution

of 6 nm and 256 bands. During this flight, both sensors were placed at an altitude of

2392 m, which implies a spatial resolution of 80 cm for the visible and near infrared

(VNIR) sensor and 160 cm for the SWIR sensor. In order to work on a single data set, the

Figure 5. RGB image of Toulouse, France, with the footprint of the hyperspectral image in yellow
and the data subset we kept for this study in red.
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IGN (French national geographic institute) undertook the coregistration between the

VNIR and SWIR data sets. To do so, the VNIR image has been downsampled in order for

its spatial resolution to be the same as in the SWIR image.

In this study, we focus on spaceborne hyperspectral data. Thus, a simulation protocol

of HYPXIM (Briottet et al. 2011) images from Hyspex data has been established. HYPXIM

is a space mission aiming to commission a satellite which would carry a high-resolution

hyperspectral sensor covering a wavelength interval starting from 400 to 2500 nm with a

spectral resolution of 10 nm (accurate enough for urban material characterization) and a

swath of 16 km. Its planned spatial resolution is 8.

The simulation protocol includes four steps (cf. Figure 6). First a top of atmosphere

(TOA) transition is simulated using MODTRAN.

4.1. TOA transition

First, the acquired radiance L is transferred to TOA level:

LTOAðλÞ ¼ kðλÞ � LðλÞ þ lðλÞ (17)

For each channel, the transmission coefficient kðλÞ and the path radiance lðλÞ (associated

to absorption and diffusion mechanisms) are solution of a linear regression over several

couples of radiances ðRi; R
TOA
i Þ computed with Comanche (Miesch et al. 2005) for various

ground reflectances ρi and a specific type of atmosphere.

Figure 6. HYPXIM data simulation process.

11



4.2. Spectral agglomeration

Then a spectral agglomeration of the Hyspex bands is processed by convolution with

the spectral responses of the spectral bands of HYPXIM, in this case a Gaussian function

centred on the HYPXIM bands and with a full width at half maximum FWHM ¼ 5 nm:

L
ð1Þ
int ðλ0Þ ¼

� LTOAðλÞe
�

ðλ�λ0Þ
2

2σ2
dλ

� e�
ðλ�λ0Þ

2

2σ2
dλ

; (18)

where L
ð1Þ
int ðλ0Þ are the integrated radiances corresponding to the HYPXIM instrument

bands and σ ¼ ðFWHMÞ
2:355

.

4.3. Spatial agglomeration

Regarding the spatial agglomeration step, both the signal/noise ratio (SNR) and the

modulation transfer function (MTF) of the simulated instrument (cf. Table 1) have been

taken into account.

The spatial agglomeration is done using a 2D gaussian filter of standard deviation:

σ ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� lnðMTFÞ
p

; (19)

where p is the spatial resolution of the agglomerated image. For practical reasons, the

new spatial resolution can only be a multiple of the original one. This latter being 1:6 m,

we can simulate the exact spatial resolution of HYPXIM (8 m). We also simulated two

other spatial resolutions: 4:8 m which represents an intermediary scale between Hyspex

and HYPXIM and 9:6 m which is approximately the spatial resolution of SHALOM (Dor,

Kafri, and Varacalli 2014). The filter characterized by σ is represented by a matrix of size:

T ¼
σ

p0π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln ðSNRÞ
p

; (20)

where p0 is the spatial resolution of the original image. The filter is applied to the image

in order to simulate p-sized pixels (with an agglomerated image p
p0

smaller than the

original one).

4.4. Noise addition

Finally, the simulated sensor noise is added. Its standard deviation is processed as

follows:

σnoise ¼ aþ b�

ffiffiffiffiffiffiffi

L
ð2Þ
int

q

; (21)

Table 1. Modulation transfer function (MTF) of the HYPXIM instrument
depending on the wavelength.

λ (nm) 400 1000 2500

MTF 0:185 0:285 0:23

The MTF values of each band are processed using a linear interpolation.
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where a and b are wavelength-dependent coefficients specific to the simulated instru-

ment and L
ð2Þ
int is the radiance agglomerated spectrally and spatially.

Let also remark that if every spectral bands are kept for the atmospheric correction

step, the noisy ones or those corresponding to the water vapour absorption bands are

put aside for the classification step (for HYPXIM: ½1� 4�, ½45� 53�, ½63� 70�, ½84� 101�,

½125� 149� and ½181� 192�).

5. Results

The evaluation of the quality of the results produced by the two atmospheric correction

algorithms described in this study has been conducted through a sensitivity study

involving several parameters: spatial resolution, classification approach and, in the

supervised case, training set composition. Four spatial resolutions are compared: 1:6,

4:8, 8, and 9:6 m. As for the classification approaches and the training set compositions,

they are detailed in Section 3. Regarding the k-means++ classifier, the algorithm is

launched 10 times on each data set (each time with a different random initialization),

and the final accuracy ratio is a mean of these 10 results. Regarding the SVM classifier,

the algorithm is launched 10 times on each data set too. Each time, a new training set is

selected randomly from the whole ground truth and the final accuracy ratio is the mean

of these 10 results.

5.1. Ground truth description

In order to measure the accuracy of the classifiers’ results, a ground truth has been built

manually from the data set with the most accurate spatial resolution (cf. Figure 7). Five

common urban classes are considered: asphalt, gravel, tile, vegetation, and water. The

training sets used for the supervised classifiers are composed of 2% of the samples

included in the ground truth. The classifiers’ efficiency is evaluated by measuring the

Figure 7. (a) RGB composition of the working image and (b) corresponding manually built ground
truth.
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average and overall accuracies of the results over the rest of the samples. The overall

accuracy (OA) represents the general proportion of well-classified pixels, whereas the

average accuracy (AA) represents the proportion of well-classified pixels by class, which

is more pertinent when the classes do not have the same number of elements.

The ground truths associated to the three other spatial resolutions are processed

by undersampling the manually built one. Each low-resolution sample is labelled

according to a majority voting rule applied to a set of high-resolution samples,

knowing that the dominant class is validated if and only if it labels at least 50% of

this set (see Figure 8(a)). This approach is likely the most representative of a situation

where an operator has only access to low spatial resolution data and must therefore

built a ground truth from it.

5.2. Unsupervised case

Regarding the unsupervised results (cf. Table 2), several comments can be drawn. First,

the atmospheric correction method leading to the best classification rate depends on

the spatial resolution. With the highest spatial resolution, the empirical method is

slightly more efficient. In Figure 9, we focused on four specific areas of the working

data (1.6 m) where large shadows are present. We can see that the empirical method

allows to classify more accurately the shadowed pixels (especially for water and vegeta-

tion pixels, strong confusions between asphalt and gravel still remain) than the COCHISE

method at least for classic k-means and SVM classifiers. However, for the three other

spatial resolutions, COCHISE outperforms the empirical method, especially when a

classic k-means is used. This inversion regarding the performances can be explained

by a higher degree of mixity between sunlit and shadowed pixels when the spatial

resolution is low. Indeed, the empirical method assumes that pixels are either totally

shadowed or totally illuminated. Therefore the pixels located in mixed areas, between

light and shadow, are not properly considered and their correction will be either over- or

underestimated. The larger the pixel, the higher the proportion of mixed pixels (relative

to the total number of pixels) will be, as shown in Figure 10. Table 3 shows that when

the classification is performed only upon sunlit areas, the results obtained on the data

set corrected with the empirical method are less accurate than those obtained on the

data set corrected with COCHISE, which means that the empirical method’s model used

to process the reflectance in sunlit areas is not as relevant as the one used by COCHISE.

When the spatial resolution is high enough, the good classification rates obtained by the

empirical method in shadowed areas allow it to slightly surpass COCHISE. However, as

the resolution decreases, this benefit becomes less and less preponderant.

Regarding the sun/shadow classification approach (SS-KM), Table 2 shows that the

separated processing of shadowed and sunlit pixels induces a significant improvement

of the classification accuracy, especially when the resolution is low. Indeed, a sequential

process allows to avoid the creation of a class gathering all the shadowed pixels, which

is a recurrent issue for the unsupervised algorithms. Globally, the classification accuracy

rate tends to decrease with the spatial resolution, which is not surprising considering

that lower resolutions imply bigger pixels and a higher number of mixed spectra, which

also implies a higher difficulty to label the pixels.

14



Figure 8. Classification results obtained considering two atmospheric correction method (CM:
COCHISE Method, EM: Empirical Method) and three classification algorithms (KM: k-means, SVM:
Support Vector Machine, SS-SVM: Sun-Shadow Support Vector Machine) on four areas of interest,
spatial resolution set to 1:6 m.
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5.3. Supervised case

The results obtained with a supervised classification algorithm are systematically better

(cf. Table 4), especially when the learning step is done using only sunlit pixels (SGT

columns in the table). The empirical method leads to better classification results for the

finest spatial resolution again, but this time for the classical SVM algorithm only. When

sunlit and shadowed pixels are processed sequentially, the flat ground hypothesis which

limits the COCHISE method is counterbalanced (even for the SS-KM algorithm, the

results obtained with COCHISE and the empirical method are close). Similarly, the sun/

shadow version of SVM (SS-SVM) always leads to more accurate results. When sunlit

pixels as well as shadowed pixels are included in the training step (GTWS columns in the

(a) Undersampled ground truth method

(b) Oversampled classification map method

Figure 9. The two accuracy processing methods. In (a) the high-resolution ground truth is under-
sampled in order to fit to the low-resolution classification map, whereas in (b) it is the low-resolution
classification map that is oversampled in order to fit to the high-resolution ground truth.

Table 2. Accuracies, average (AA) and overall (OA), obtained with the unsupervised
classifiers.

EM CM

KM SS-KM KM SS-KM

1.6 m AA 82:8 84:1 79:1 83:2
OA 85:6 88:1 81:3 87:9

4.8 m AA 74:1 76:1 77:2 87:1
OA 76:5 79 80:5 90:6

8 m AA 61:4 78 78:9 85:8
OA 65:8 83:4 85:2 88:1

9.6 m AA 61:4 75:6 75:5 77:3
OA 63:9 79:2 78:6 81:3

EM stands for Empirical method and CM for COCHISE method.
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Table 3. Classification results obtained on the high-resolution data set
with only sunlit pixels.

KM SVM

EM AA 78:2 93:6
OA 81:9 95:3

CM AA 83:2 96:1
OA 86:6 97:3

Table 4. Accuracies, average (AA) and overall (OA), obtained with the supervised
classifiers.

EM CM

SVM SS-SVM SVM SS-SVM

1.6 m SGT AA 85:7 86:7 82:3 89:9
OA 89:3 92:4 87:1 93:4

GTWS AA 86:8 85:2 92:2 90:7
OA 89:8 89:2 95:5 94:3

4.8 m SGT AA 86:2 86:5 88:6 93:6
OA 90:1 91 91:7 96:2

GTWS AA 94:3 88:4 96:1 93:8
OA 96 91:7 97:5 95:9

8 m SGT AA 81:9 85:8 83:6 89:1
OA 85:4 89:2 87:8 92:2

GTWS AA 86:2 83 89:3 88:3
OA 89 87:5 92:8 92:5

9.6 m SGT AA 69:7 73:6 78:2 80:6
OA 75:5 77:2 82:5 83:9

GTWS AA 83:9 82:9 90:1 90:3
OA 87:4 86:9 93 93:6

SGT stands for sunlit ground truth, GTWS for ground truth with shadows.

Figure 10. Mixity percentage ratio of the working data depending on the undersampling factor.
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table) however, the classic SVM is more efficient. It can be explained by the robustness

of this algorithm when it is used with adequate training sets, sufficiently representative

of the intrinsic variability (in this study, the luminosity rate) of the classes existing in the

image. Yet, let remark that when the user does not have access to any ground truth and

must therefore create it manually, it can be difficult to define the class of shadowed

pixels. In these conditions, using an algorithm efficient with only sunlit samples can be

helpful.

5.4. Mixity and quality assessment

For supervised and unsupervised algorithms, the accuracy of the results globally

decreases with the spatial resolution. However, some discrepancies appear for the

intermediary spatial resolutions, especially with the SVM classification method. These

discrepancies may be a consequence of the ground truth used to process the

accuracy of these results. Indeed, in order to make a relevant comparison of data

sets associated to several spatial resolutions, the growing mixity factor (i.e. Figure 10)

should be taken into account. Thus, instead of undersampling the 1:6 m original

ground truth, which is equivalent to measure the classification accuracy over highly

mixed samples, we propose a second accuracy processing method. This latter con-

sists in oversampling the classification maps in order to use the original ground truth

on them (i.e. Figure 8(b)). Such a process allows us to weight the classification score

associated to a low resolution pixel with its corresponding level of mixity. The effect

is shown in Tables 5 and 6. Because of the mixity, the classification accuracies are

globally much lower than those obtained through the first accuracy processing

method. The discrepancies have also almost totally disappeared, meaning that for

data sets associated to varying spatial resolutions, if we consider in each case the

same classes of pure spectra, the classification accuracy strictly scales down with the

spatial resolution, mainly because of the strong mixity induced by the low resolution.

However, if we consider the results obtained using data sets corrected by COCHISE

and then classified by the sun/shadow versions of k-means and SVM, we observe that

the classification accuracy remains high until 8 m (the planned spatial resolution of

HYPXIM) before falling at 9:6 m (approximately the planned spatial resolution of

SHALOM).

Table 5. Accuracies, average (AA) and overall (OA), obtained with the unsupervised
classifiers using the second accuracy processing method.

EM CM

KM SS-KM KM SS-KM

1.6 m AA 82:8 84:1 79:1 83:2
OA 85:6 88:1 81:3 87:9

4.8 m AA 65:5 74:1 77:8 83:2
OA 70:3 78:4 80:2 86:8

8 m AA 65:3 73:3 78:1 80
OA 69:4 78:1 82 83:9

9.6 m AA 58:9 72:6 70:3 73:1
OA 64 76:3 75:1 77:7
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6. Conclusion

In this article, we compared the efficiency of two atmospheric correction algorithms, the

COCHISE method and a classification-orientated empirical method, for the classification

of urban hyperspectral data. This comparison have been conducted using a Hyspex data

set acquired over Toulouse, France, in 2012 on four hyperspectral data sets simulated at

various spatial resolutions, with the objective to evaluate the impact of spatial resolution

on classification results. Four classifiers have been considered in the study: a k-means, an

SVM and a sun/shadow classification algorithm using either a k-means or an SVM as a

first step. In the end, the empirical atmospheric correction method, which takes shadows

into account, appears more accurate than COCHISE, the flat ground method, on high

spatial resolution data. However, as the spatial resolution decreases, the mixity between

sunlit and shadowed pixels become more and more troublesome and finally, the benefit

of considering shadows areas is no longer significant enough to compensate the lack of

precision characterizing the empirical method’s model in the sunlit areas. For these

cases, the simultaneous use of both COCHISE correction method and sun/shadow

classification approaches seems like a relevant alternative in order to process urban

data. In this work, we did not include the Enmap spatial resolution (30 m) to the

comparison because it is not adapted to an urban context (Heldens et al. 2011). On

cities such as Toulouse, the choice of the spatial resolution seems critical. Indeed it

appears that the classification performances obtained with a ground sample distance

equal to 8 m (the planned spatial resolution of HYPXIM) are significantly better than

those obtained with a ground sample distance equal to 10 m (the planned spatial

resolution of SHALOM).

Future work will consider the addition of the ICARE icare_XC (Ceamanos et al. 2016)

atmospheric correction algorithm to the comparison process. Such a method, which

uses a digital elevation model as an a priori, may perform even better than the empirical

method on high spatial resolution data sets due to the consideration of 3D data on the

surface. Furthermore, it would be interesting to compare these algorithms on several

Table 6. Accuracies, average (AA) and overall (OA), obtained with the supervised
classifiers using the second accuracy processing method.

EM CM

SVM SS-SVM SVM SS-SVM

1.6 m SGT AA 85:7 86:7 82:3 89:9
OA 89:3 92:4 87:1 93:4

GTWS AA 86:8 85:2 92:2 90:7
OA 89:8 89:2 95:5 94:3

4.8 m SGT AA 74:2 78 77:1 84:7
OA 78:4 82:3 80:8 87:5

GTWS AA 83:2 79:6 88:2 84:2
OA 86:9 83:3 91:4 87:4

8 m SGT AA 74:2 76:2 75:3 81:2
OA 78:8 79:9 78:5 84:7

GTWS AA 75:1 74:7 79:3 80
OA 79:3 79:5 83:6 84:7

9.6 m SGT AA 58:4 67:8 68:2 70:3
OA 65:2 71:9 72:5 74:7

GTWS AA 69 68:4 75:4 75:4
OA 74:2 74 89:7 89:2
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other data sets simulated from missions such as Pleiades, WorldView 3, and Sentinel-2.

At last, the fusion of panchromatic high-resolution data with hyperspectral data such as

HYPXIM or SHALOM is also a promising way. Indeed, the recent work of Loncan et al.

(2015) allowed to compare several panchromatic/hyperspectral fusion methods on

urban data and select the most efficient one in order to generate a hypercube with a

ground sample distance equal to 2 m. Even if these methods are limited when too many

mixed pixels are present in the scene, it would be interesting to evaluate the impact of

such fusion methods on the classification performances.
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