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Abstract10

The transient method of the mass flow rate measurements through a microp-
orous media is developed and analyzed. This method is based on the constant
volume technique and the exponential fit of the pressure evolution in each tank
which allows calculating the permeability directly. The pressure relaxation time,
a single fitting parameter, is introduced and its behaviors are analyzed in a large
pressure range. By measuring the pressure relaxation time for one gas, the per-
meability of a microporous sample can be derived for the other gases. With the
actual experimental setup, we measured the mass flow rate through the micro-
porous media in the range 5 · 10−7 − 5 · 10−12 [kg s−1] and the permeability in
the range 10−14 − 10−11 [m2].
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1. Introduction11

The determination of the permeability of porous media like the micro and12

nanoporous membranes or ultra-tight shale-gas reservoirs is still a challenge up13

to now. The low porous membranes find a broad application in medicine [1] and14

biotechnology for separation and filtration [2]. The recent development of low15

porous ceramic media with high thermal, chemical and structural stability and16

the ability to have catalytic properties has opened up new horizons for this kind17

of membrane applications, for example, in high-temperature gas separation and18

catalytic reactions [3]. Another type of porous media, the ultra-tight shale-gas19

reservoirs of tiny pores (in nanoscale) play a significant role in securing hydro-20

carbon energy because of their potential to offset declines in conventional gas21

production [4]. In all of these type of applications, the porous media permeabil-22

ity has to be known.23

Permeability is a measure of how readily a fluid can flow through a porous24

material [5]. Gas permeability is an important parameter to understand the25

transport characteristics of a fluid through a porous medium, which can be26

obtained from the mass or volume flow rate. For the determination of low per-27

meability, either the steady-state or the transient methods can be used. The28

steady-state method needs a precise flow meter to measure very slow flow, so29

when the permeability is very low the conventional gas flowmeters may be in-30

appropriate [6]. Therefore, the transient "pulse-decay" or "draw-down" tech-31

niques, [7], [8], [9], [1], [6], are also used to determine the low permeabilities.32

By using these techniques, the permeability can be calculated directly from33

the pressure variations in time, without going first through the mass flow rate34

measurements [8], [1].35

The primary objective of the present work is to develop the transient method36

to measure the pressure evolution in time in high and low-pressure tanks gen-37

erated by the gas flow through a homogeneous porous medium. This experi-38

mental methodology, based on the constant volume technique, was initially de-39

veloped for the isothermal and non-isothermal measurements of the mass flow40

rate through the microchannels [1], [1], [1]. We provide here the physical justi-41

fications of the exponential fitting of the pressure variations with time as well42

as the physical conditions of its implementation. From the measured pressure43

variations in time, the mass flow rate through the porous medium is deduced.44

It is shown that the gas permeability can be easily obtained directly from the45

pressure variations with time without going first through the mass flow rate cal-46

culations. The main advantages of the proposed approach are: its simplicity, the47

possibility of further extraction of the Klinkenberg coefficient and average pore48

size, and, finally, its further generalization for the case of temperature gradient49

driven flows.50

The paper is organized as follows. After a brief introduction, the experimen-51

tal apparatus and methodology are presented in Section 2. Then, in Section 3,52

the relation between the pressure variations in the tanks and a porous medium53

permeability is established by introducing the pressure relaxation time, which54

properties are analyzed in detail in Section 4. The behaviors of the measured55
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mass flow rate and permeability are discussed in next two Sections. The paper56

is closed with final comments and conclusions.57

2. Experimental methodology58

2.1. Experimental apparatus59

The experimental setup is a high vacuum system capable of measuring up to60

5 decades of pressure. In the presented experiment the mean pressure is varied61

from 75 Pa up to 131 kPa. This large pressure measurement range is achieved62

by using three pairings of four capacitance diaphragm manometers (CDM) with63

full-scales: 133 kPa - 133 kPa, 133 kPa -13.3 kPa and 13.3 kPa - 1.33 kPa. Four64

high purity gas bottles with test gases, Helium, Neon, Nitrogen, Argon (Air Liq-65

uide, France) are used. The pumping is performed by a two-stage diaphragm66

vacuum pump (DVP) and a turbomolecular pump (TMP), see the schematic67

of the experimental setup in Fig. 1. Each side of the porous medium is con-68

nected to two reservoirs of volumes V1 and V2 for the high and low-pressure,69

respectively. Both tanks’ volumes, including the volumes of the valves, con-70

necting tubes and pressure sensors, are measured accurately, and these volumes71

are equal to V1 = 255.8 ± 5.5 cm3 and V2 = 238.8 ± 5.1 cm3, for the high and72

low-pressure tanks, respectively. Several leakage tests were performed for this73

setup showing the absence of the detectable increase in pressure, measured with74

the lowest F.S. pressure sensor of 1.33 kPa over a period of 30 minutes. In75

addition, for all realized measurements we did not detected any linear increase76

of the mean pressure.77

Two microporous samples, used in the experiments and mentioned in the78

following as the first and second discs, have a cylindrical shape (disc) with the79

same diameter and thickness (in main flow direction) equal to D =9.5±0.01mm80

and L = 2.3 ± 0.01mm, respectively. The structure of these microporous discs81

is the same as that used to support the active layers of micro-to-ultra filtration82

ceramic membranes.83

For such ceramic microporous medium, depending on manufacturer, the84

porosity is in the range 15 − 30% with pore diameter ranging from 1 to 1085

µm. The total volume of each porous disc is 0.14 cm3, so by taking 30% of86

porosity a gas volume inside the medium is approximately 0.047 cm3, which is87

much smaller than the volume of each tank.88

The experiments are performed within a narrow temperature range, exclud-89

ing any heat source in an environment. The temperature is measured using the90

thermocouple with the accuracy of 0.6 K.91

2.2. Mass flow rate measurements92

The constant volume technique, used previously for the measurements of93

the mass flow rate through the microchannels [1], [1], [1], [1], was implemented94

here to measure the mass flow rate through different samples of a microporous95

ceramic medium. This technique allows deducing the mass flow rate from the96

pressure variation in time. The mass flow rate through a microporous medium is97
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Figure 1: Schematic of the experimental setup. A diaphragm vacuum pump (DVP) and
a turbomolecular pump (TMP) is connected to the experimental setup separated by a valve
vpump. The high pressure and low-pressure side are separated by a porous ceramic media which
is fixated with vacuum epoxy glue. Each side of the porous media has a reservoir with the high-
pressure tank volume of V1 = 255.8±5.5 cm3, low-pressure tank volume V2 = 238.8±5.1 cm3

and capacitance diaphragm manometers (CDM) measuring pressure p1 and p2. The room
temperature is measured with a thermocouple. The vacuum system is connected to a gas
delivery system with four gas bottles, Helium, Neon, Nitrogen, and Argon.

4



generated by setting an initial pressure drop between the reservoirs, see Fig. 1.98

This method requires very large tank volumes relative to the volume occupied99

by a gas inside a microporous medium: in our experimental setup this ratio is100

larger than 103. The applied method is similar to the Brace method [1] (pulse101

decay method), usually used to analyze the permeability of the porous samples.102

In addition, in this work we take into consideration the effects of rarefaction.103

Even if the permeability can be deduced directly from the pressure (or pressure104

difference) variation in time, we prefer to start by providing the expressions of105

the mass flow rate through a microporous medium and the conditions of its106

derivation. The mass flow rate could be a useful quantity to characterize a107

porous sample; it can be used to derive the characteristic pore dimensions and108

the gas-surface interaction characteristics.109

Under the quasi-steady conditions, i.e. when the flow through a porous110

medium is established, we assume that the gas temperatures in each tank, de-111

noted T1 and T2, are in thermal equilibrium with the walls of the tanks and112

that both tanks are in thermal equilibrium with the environment. Therefore,113

we assume that the ambient temperature, denoted Tambient, determines the gas114

temperatures T1 and T2 in each tank such that:115

T1 ≈ T2 ≈ Tambient = T. (1)

A possible variation in temperature of the gas leaving and entering the tanks116

could directly perturb the significance of the measurement. To make this clearer,117

let us write the ideal gas law in each tank in the following form:118

p1V1 = M1RT, p2V2 = M2RT, (2)

where R, pi, and Mi, i = 1, 2, are, respectively, the specific gas constant, the119

pressure and the mass of the gas in tank i. In the present study the maximum120

considered pressure is of the order of atmospheric pressure; therefore we do121

not consider here the real gas effects. However, the proposed approach can be122

generalized to take into account the real gas effects by using, for example, the123

van der Waals equation instead of the ideal gas law.124

Under our experimental conditions, the volume of each reservoir is constant125

during an experiment, so it is possible to differentiate each expression in Eqs.126

(2), as it has been done in Ref [1]:127

dMi =
Vi
RT dpi

(
1− dT/T

dpi/pi

)
, i = 1, 2. (3)

If the relative temperature variation in a tank is negligible in relation to the128

relative pressure variation in time, then the mass flow can be considered to be129

isothermal. Therefore, by defining a specific small time interval, dt, it is then130

possible to obtain from Eqs. (3) the isothermal mass flow rates dM1/dt and131

dM2/dt as:132

dMi

dt
=

Vi
RT

dpi
dt
, if εi =

dT/T
dpi/pi

� 1, i = 1, 2. (4)
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Following the differentiation technique, we consider here the variation of any133

thermodynamic parameter, dM and dp, sufficiently small to approximate dM/dt134

and dp/dt as the time derivative of the mass (i.e. mass flow rate Ṁ) and the time135

derivative of the pressure, respectively. If the relative temperature variation is136

small compared to the pressure variation, the values of εi are small in Eqs. (4),137

so by adjusting the sign, dMi/dt can be considered as the mass flow rate Ṁi138

through the microporous media139

Ṁ1 = −dM1

dt
= − V1

RT
dp1

dt
, Ṁ2 =

dM2

dt
=

V2

RT
dp2

dt
. (5)

In the frame of the quasi-stationary flow assumption, i.e. when the flow through140

a porous medium is established, it is clear that the mass flow rate leaving the141

first tank is necessarily equal to the mass flow rate entering the second tank and142

also to the mass flow rate at any point inside the porous medium143

Ṁ1 = Ṁ2 = Ṁ. (6)

Along with this study, we will continue to admit relation (6) at any time. How-144

ever, the assumption of the mass conservation, Eq. (6), neglects possible stor-145

age of gas in the porous medium. For the small ceramic porous sample used146

in present experiment, this hypothesis of the absence of the gas accumulation147

inside a porous medium is justified. In the same time, for the porous media such148

as the coal and shales, the compressible fluid storage needs to be accounted [5].149

The experimental verification of mass conservation for the porous samples used150

in present experiments is discussed in Section 5.2.151

Sometimes it is convenient to express the mass flow rate in function of the152

pressure difference between two tanks. From the mass conservation law, the153

mass of a gas leaving the first tank is necessarily equal to the mass of a gas154

entering the second tank, so Eq. (6) is valid. From Eqs. (5) and (6) we can155

obviously deduce:156

Ṁ(t) = − V0

RT
d(∆p(t))

dt
, V0 =

V1V2

V1 + V2
. (7)

From the previous reasoning, it is clear that the mass flow rate can be157

calculated using expressions (5) and (7), when the pressure variation in each158

tank or the pressure difference between them in time is known. During the159

experiments, the pressure variations in time in each tank are measured and160

then fitted by using the exponential fitting function.161

2.3. Exponential pressure fitting162

The experimental procedure starts by setting the initial pressure difference163

∆p0 between the tanks at time t0 as:164

∆p0 = p1(t0)− p2(t0) = p01 − p02, (8)

where p01 and p02 are the initial pressures in the high and low-pressure tanks,165

respectively. This first step is done by opening the valve vpump, see Fig. 1,166
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for a short time, and then closing it. Further, we have a closed system with a167

pressure difference. Afterward, the gas begins to flow through a microporous168

medium from the high-pressure tank to the low-pressure tank up to the same169

final equilibrium pressure, pf, is reached in both tanks, see Fig. 2. The time-170

dependent pressure difference between the tanks is noted as:171

∆p(t) = p1(t)− p2(t). (9)

One example of the pressure evolution in each tank as well as of the pressure172

difference between two tanks is shown in Fig. 3.173

Usually, when using the "pressure pulse technique", [1], the small pressure174

"pulses" (pressure differences between the tanks) are applied to the system, i.e.175

∆p0 � pm, where pm = 0.5(p1+p2) is the mean pressure between two tanks. We176

will discuss below that finally we do not really need to respect this restrictive177

condition and the an arbitrary pressure difference between the tanks can be178

used in the system if both tanks volumes are equal. However, the restriction for179

p1/p2 ratio exists when the tanks volumes are different, see Section 3.1.180

The authors of Ref. [1] proposed to use a linear fit of the natural logarithm181

of an exponential function for the pressure variation in time, while we suggest182

to use directly the exponential pressure fit to describe the pressure difference183

decay in time in the following form:184

∆p(t) = ∆p0 exp (−(t− t0)/τ), (10)

where τ is the pressure relaxation time, which is constant during an experiment.185

The same exponential representation of the pressure evolution in time in the186

first p1(t) and second p2(t) tanks is written in the form [1]:187

p1(t) = pf + (p01 − pf) exp (−(t− t0)/τ1) ,

p2(t) = pf + (p02 − pf) exp (−(t− t0)/τ2) ,
(11)

here τ1, τ2 are the gas pressure relaxation times in the reservoir 1 and 2, respec-188

tively, pf is the final pressure. The pressure variations with time pi(t) in each189

tank 1 and 2 can be thus associated with an exponential decay. In practice the190

pressure relaxation times τi are obtained from the fit of the measured pressure191

evolution in each tank, see Fig. 3. The properties of the pressure relaxation192

time are discussed in Section 4.193

By using Eq. (7) we can now express the mass flow rate using the exponential194

representation of the pressure difference in time, Eq. (10), and then its analytical195

derivative, so the mass flow rate expression becomes196

Ṁ(t) = − V0

RT
d(∆p(t))

dt
=

V0

RT
∆p0

τ
exp

(
− t− t0

τ

)
. (12)

From Eqs. (5) we can also express the mass flow rate using the exponential197

representations of the pressure variation in time in each tank, Eqs. (11), and198
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then their analytical derivatives, so the mass flow rate expressions become:199

Ṁ(t) = Ṁ1(t) = − V1

RT
d(p1(t))

dt
=

V1

RT
p01 − pf

τ1
exp

(
− (t− t0)

τ1

)
,

Ṁ(t) = Ṁ2(t) =
V2

RT
d(p2(t))

dt
=

V2

RT
pf − p02

τ2
exp

(
− (t− t0)

τ2

)
.

(13)

Equations (12) and (13) provide the time-dependent expressions for the mass200

flow rate. Therefore, with one experiment we can calculate the mass flow rate201

for various different pressure ratios between the reservoirs, see Section 4 for202

more details. The conditions related to the implementation of this technique,203

as the choice of the tank volume size, possible pressure ratio and the impact of204

the thermal effects are discussed in Section 3.1.205

3. Relation with Darcy law and the permeability206

The Darcy law [1] allows us to relate the instantaneous discharge (or vol-207

umetric) flow rate through a porous medium, Q, to the pressure drop over a208

given distance L, which is the thickness of a porous sample:209

Q =
KS

µ

(p1 − p2)

L
, (14)

where S is the surface of the porous sample, µ is the fluid viscosity, K is the210

permeability. Initially, the Darcy law was derived for an incompressible fluid211

with constant viscosity and the permeability K refers to the hydrodynamic212

(intrinsic permeability). In this article we use the Darcy law for the gases, i.e.,213

a compressible fluid and we do not make any preliminary assumption of the214

rarefaction level of a gas.215

The viscosity coefficient for a gas depends on gas temperature and gas nature216

and it is calculated as [1]:217

µ = µref

(
T

Tref

)ω
, (15)

where ω is the gas viscosity index, µref is the gas viscosity at temperature218

Tref = 273.15 K [1]. The reference values of the viscosity, µref, for each gas used219

here as well as the viscosity index ω, are given in Table 1.

Table 1: Parameters of the gases used in present experiments

Gas µref × 10−5 [Pa.s] ω R [J/kgK] Molar massM [g.mol−1]
He 1.865 0.66 2077.1 4.003
Ne 2.976 0.66 412.02 20.18
N2 1.656 0.74 296.80 28.00
Ar 2.117 0.81 208.13 39.95

220

For the liquid flows the volumetric flow rate is constant along a porous221

sample. For the gases only the mass flow rate is conserved along the porous222
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sample. To express the permeability for a gas we can rewrite Eq. (14) in223

following form by replacing the pressure difference through a sample by the224

pressure gradient [5]:225

Q = −KS
µ

dp

dx
. (16)

By using the relation between the volumetric and mass flow rate226

Q =
Ṁ

ρ
= Ṁ

RT
p
, (17)

then by integrating along the porous sample and by using the mass conservation227

property, we obtain the expression, analogous to Eq. (14), which relates the228

mass flow rate and the permeability229

Ṁ =
KS

µ

∆p

L

pm
RT . (18)

Then, using Eqs. (5) and admitting the mass conservation again, Eq. (6), and230

using Darcy law in form (18), we can relate the pressure variation in each tank231

to the gas permeability:232

V1
dp1

dt
= −pm

K

µ

S

L
(p1 − p2), V2

dp2

dt
= pm

K

µ

S

L
(p1 − p2). (19)

To obtain previous relations we replaced the local pressure in Eq. (17) by the233

mean pressure, which does not vary during an experiment. This mean pressure234

is constant during an experimental run, when the tanks volumes are equal,235

V1 = V2, and it varies only slightly when these volumes are slightly different, see236

Section 3.1, where the conditions of the mean pressure constancy are provided.237

From Eqs. (19) we obtain the differential equation for the pressure difference238

∆p(t) between the tanks:239

d(∆p(t))

∆p(t)
= −dt

τ
, (20)

where240

τ =
1

pm

µ

K

LV0

S
. (21)

This differential equation, subjected by the initial condition, ∆p(t = t0) = ∆p0,241

is easily solved and the variation in time of the pressure difference between the242

tanks is obtained in the form of Eq. (10).243

From previous discussion it is clear that we do not use here any assumption244

about the smallness of the pressure "pulses" compared to the mean pressure in245

the tanks. Therefore, this technique can be implemented for any pressure dif-246

ference between the tanks under the condition of equality of the tanks volumes.247

When the tanks volumes are different some restrictions have to be respected in248

order to keep the mean pressure close to a constant value during an experiment249

duration, see Section 3.1. In addition, to integrate the differential equation250

(20) the relaxation time τ has to be time independent. By analyzing Eq. (21)251

9



one can see that only mean pressure can be time-dependent. The experimental252

conditions of the mean pressure constancy in time are discussed in Section 3.1.253

The permeability depends on time only through the mean pressure, so the mean254

pressure constancy in time ensures that τ is constant in time and so justifies255

the integration of Eq. (20) and consequently the use of its solution, Eq. (10),256

for the experimental data (pressure) treatment. Therefore, the permeability K257

of a porous sample can be derived directly from the pressure measurements.258

The experimental curve of pressure variation in time can be fitted by expo-259

nential expression, Eq. (10), with τ as a fitting parameter. Then, the perme-260

ability can be found from the analytical expression for the pressure relaxation261

time τ , Eq. (21), as:262

K =
1

pm

µ

τ

LV0

S
. (22)

Other expression for the permeability can be obtained from (18):263

K =
Ṁ

p2
1 − p2

2

2µRTL
S

=
Ṁ

∆ppm

µRTL
S

. (23)

Both expressions, Eqs. (22) and (23), can be used to derive the permeability264

from the measurements.265

3.1. Conditions of constancy of mean pressure266

In this section we establish the conditions of the constancy of mean pressure267

during the measurement procedure, which leads to the pressure relaxation time268

constancy and justifies the use of expression (22) for the permeability calcula-269

tions. In addition, as it has been pointed out in Ref. [8], in general case, the270

constancy of the mean pressure is an important point, especially for high pres-271

sure experiments, where the viscosity and compressibility factor may change as272

a function of pressure. In presented here experiments the implemented pres-273

sure and temperature conditions allow to us to stay under the ideal gas flow274

assumptions and the viscosity does not change with pressure. However, it is275

still important to have a constant mean pressure as for low permeable porous276

media the permeability can be a function of mean pressure due to rarefaction277

effects.278

A pressure difference between the tanks is fixed initially, at t0, equal to279

∆p0, Eq. (8), then the gas flows through the porous medium up to the final280

stage, when a pressure equality in both tanks is reached, see Fig. 2. A relation281

between the pressure variation in each tank, i.e. from the initial pressure in282

each tank, pi(t0), i = 1, 2, to the final equilibrium pressure pf, reached in the283

system, can be calculated a priori as it is closely related to the tanks volumes284

ratio. From the ideal gas law and admitting again the mass conservation along285

the microporous medium at any time, we can write the following relation for286

two tanks if they are maintained at the same temperature287

dp1V1 = −dp2V2. (24)
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The previous relation is then integrated in time from an initial (at time t0) state288

of a gas in each tank, pi(t0), to its final state, pf. It is worth to underline that in289

Eq. (24) the expressions are exact (perfect) differential, and so their integration290

does not depend on the form (linear or exponential) of the pressure variation in291

time. Therefore, we obtain292

pf − p2(t0)

p1(t0)− pf
=
V1

V2
. (25)

Without the loss of generality we can assume here that in the beginning of each293

experiment we have p1 > p2. It is clear from Eq. (25) that by adjusting the294

tanks volumes ratio we could control the pressure variation between initial and295

final stages. From Eq. (25) we obtain the estimation of the maximal variation296

of the mean pressure pm with time, from its initial value pm(t0) to its final value297

pm(tf) = pf:298

pf

pm(t0)
=
p1(t0)V1 + p2(t0)V2

(V1 + V2)pm(t0)
. (26)

It is clear from Eq. (26) that when the tanks volumes are equal, the mean299

pressure pm(t) does not vary in time, i.e., between its initial value, pm(t0), and300

its final value, pf, so pm(t0) = pf. When the volumes are different we can301

estimate the maximal amplitude of mean pressure variation between its initial302

state pm(t0) and its final state pf, using Eq. (26) and the ratio of tanks volumes.303

To do this expression (26) can be rewritten as:304

pf

pm(t0)
=

2(1 + kV kp)

(1 + kV )(1 + kp)
. (27)

We introduced here the tanks volumes ratio kV = V1/V2 and the initial pressure305

ratio kp = p1(t0)/p2(t0). By using Eq. (27), we can calculate the variation of306

the mean pressure during an experiment, i.e. the ratio between its final and307

initial values pf/pm(t0).308

In our experimental conditions two tanks volumes are related as kV =309

V1/V2 = 1.071, so from Eq. (27) we can find that for the initial pressure ratio310

between the tanks, kp, equal to 1.5, 2 and 3, the ratio pf/pm(t0) is equal 1.0069,311

1.0114 and 1.0171, respectively. Therefore, the initial pressure ratio equal to312

2 leads to approximately 1% of deviation of the mean pressure from its initial313

value. Under our experimental conditions the experimentally evaluated value of314

pf/pm(t0) was found lower than 1%.315

4. Pressure relaxation time316

By fitting the measured time variation of the pressure difference between317

two tanks using exponential law, Eq. (10), we obtain a function ∆p(t) that318

describes the relaxation process with the help of a single fitting parameter τ ,319

that is the characteristic time of the experiment or pressure relaxation time.320

Similar expressions for the pressure variation in each tank, Eqs. (11), involve321

11



the relaxation parameters τ1 and τ2, which can also be obtained by the fitting322

of the pressure variation in one (high or low-pressure) tank. From different323

expressions of the mass flow rates, Eqs. (12) and (13), and using the mass324

conservation property in form (24), we can find that the ratios between the325

characteristic times are finally independent from the tanks volumes and are326

equal to one:327
τ1
τ2

=
τ1
τ

=
τ2
τ

= 1. (28)

This analytical finding, Eq. (28), was confirmed experimentally. As it can be328

seen from Table 2 for the most cases the difference between three relaxation329

times, τ1, τ2 and τ , is small, of the order of 1%.330

Finally, to obtain the mass flow rate through the microporous medium and331

its permeability, see Section 6, we can use either the exponential fit of the332

pressure difference between the tanks (in the case of the use of the differential333

pressure sensors), or just pressure evolution in a tank.

Table 2: Relaxation times τ1, τ2 and τ , in seconds (s) for the second disc, measured in the high
and low-pressure tanks and by using the pressure difference between two tanks, respectively.
For each of four gases the relaxation time is provided for two pressure differences between
the tanks. The mean pressure of each experiment is given in fifth column. The last column
provides the conduction time τc, Eq.(29).

τ1[s] τ2[s] τ [s] pm [105 Pa] τc[s]
HELIUM 54.11 53.94 54.03 1.13 0.96

66.94 66.87 66.90 0.79 0.68
153.83 155.60 154.72 0.04 0.03

NEON 92.38 92.48 92.43 1.16 3.11
119.98 118.59 119.28 0.79 2.13
333.25 331.46 332.34 0.03 0.08

NITROGEN 62.30 61.75 62.03 1.12 7.45
92.98 92.04 92.50 0.70 4.64
371.56 369.32 370.44 0.03 0.23

ARGON 79.27 78.61 78.94 1.11 8.11
112.34 111.33 111.83 0.74 5.41
444.07 444.22 444.15 0.04 0.26

334

4.1. Gas conduction time335

Now we can compare the gas conduction time τc to the gas relaxation time τ336

to have an additional estimation of the importance of the thermal effects. If the337

tank represents an infinite heat sink at constant temperature to the gas, then,338

the time it takes for the gas to reach equilibrium with the tank can be modeled.339

In Ref. [1] the transient heat conduction equation was solved analytically and340

the solution was presented as the infinite series of the Bessel functions. When341

keeping only the first leading term of the series the characteristic conduction342

time can be estimated as:343

τc =
ρR2

resPr

2.4µ
, (29)
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where ρ is the gas density, Rres is the characteristic reservoir dimension, Pr is344

the Prandtl number. The reservoir characteristic dimension (its radius) is equal345

to 19.6mm, the Prandtl number is equal to 2/3 and 0.71, for the monoatomic346

and polyatomic gases, respectively. The gas conduction time, Eq. (29), is pro-347

portional to the gas density and so to the gas pressure under our experimental348

conditions. It depends also on the gas nature through the gas viscosity. The349

value of the gas conduction time for some experimental conditions are provided350

in Table 2, last column. For all considered cases the pressure relaxation time τ351

is much longer than the gas conduction time τc. Therefore, we have a new ex-352

perimental confirmation that the gas temperature remains close to the constant353

temperature during the measurements.354

4.2. Properties of the pressure relaxation time355

As the mass flow rate through a porous medium, Eqs. (12) and (13), and its356

permeability, Eq. (22), depend on the pressure relaxation time it is interesting357

to study its properties.358

Figure 4 shows the pressure relaxation time, expressed in seconds, as a func-359

tion of the inverse molecular mean free path, `−1. The equivalent molecular360

mean free path is defined as following [2]:361

` =
µv0

pm
, (30)

where v0 is the most probable molecular speed362

v0 =
√

2RT . (31)

It is clear from Eq. (30) that the inverse equivalent mean free path is a function363

of the mean pressure. By analyzing Fig. 4 and Table 2 we can conclude that the364

pressure relaxation time is proportional to the molar mass. That is, the short-365

est relaxation time is obtained for Helium, which has smaller molar mass, the366

longest relaxation time is found for Argon, which has greatest molar mass, see367

Table 1. All gases have similar behaviors as a function of the inverse molecular368

mean free path, which is a function of mean pressure. For the low mean pressure369

(large mean free path) the relaxation time is quasi-constant, then it decreases370

linearly with pressure increasing (the mean free path decreasing). This behavior371

is related to the number of collisions (molecule-molecule and molecule-wall col-372

lisions): when the intermolecular collisions are numerous (small mean free path)373

the relaxation time is short. With increasing of the molecular mean free path374

(decreasing of pressure) the number of intermolecular collision decreases which375

leads to the increase of the relaxation time, because the gas reaches its equilib-376

rium state through the intermolecular collisions. When the molecular mean free377

path becomes large enough the number of the intermolecular collisions becomes378

negligible in comparison to the number of collisions with the wall (Knudsen379

diffusion regime) and the relaxation time becomes constant, see Fig. 4(b). In380

this case, the pressure relaxation time is determined only by the morphological381
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parameters of a porous medium, i.e., mean pore size, porosity, tortuosity and382

particularities of gas-surface interaction.383

It is worth to underline that the pressure relaxation time measured for two384

discs is different even if the same gas is considered. This fact lets us conclude385

that the internal structure of the microporous discs could be different. We386

comment on this observation in Section 6.3.387

The pressure relaxation time can be normalized by the characteristic time388

of the flow, which is defined as follows:389

tc =
L

v0
. (32)

This characteristic time depends on the gas nature through the most probable390

gas velocity v0, Eq. (31). The relaxation time, normalized by the characteristic391

time, is shown in Fig. 5, as previously in function of the inverse molecular mean392

free path. It is interesting to note that now all gases follow the same curve,393

so all gases have the same pressure relaxation time for the same value of the394

inverse molecular mean free path. Similar behavior of the relaxation time of the395

thermal creep flow was observed in Refs. [1], [1], [2], where the gas flow driven396

by only a temperature gradient through the microchannels of the circular and397

rectangular cross-sections was studied.398

By taking into account the definition of the characteristic time, Eq. (32),399

we can rewrite expression of the permeability, Eq. (22), in the following form400

by using the equivalent molecular mean free path, Eq. (30),401

K =
V0

S

tc
τ
`. (33)

When the pressure relaxation time is used, the previous expression of the per-402

meability allows calculating the permeability of a porous sample for different403

gases. This is because the normalized relaxation time is the same for all the404

considered here gases for a given value of molecular mean free path.405

Another formula for the permeability can be derived by introducing gas406

relaxation time [2], tf , which is inversely proportional to the collision frequency407

of the gas molecules, and it can be calculated as408

tf =
µ

pm
=

`

v0
, (34)

so the expression of permeability becomes409

K =
V0L

S

tf
τ
. (35)

Previous expression shows that the gas permeability depends on sample di-410

mensions, S and L, and on the tanks volume, V0, used in experiments. The411

increasing (or decreasing) in this volume leads to the corresponding change in412

the pressure relaxation time, so that the ratio V0/τ remains the same. There-413

fore, besides the geometrical characteristics, the permeability depends on the414

ratio between two characteristic times: gas and pressure relaxation times.415
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5. Mass flow rate416

The mass flow rate was calculated from the pressure measurements in each417

tank by using the techniques, explained in Section 2.3. Three noble gases and418

one diatomic gas were used: Helium, Argon, Neon and Nitrogen.419

5.1. Measurement uncertainty of the mass flow rate420

The classical uncertainty calculation technique is used to estimate the mea-421

surement uncertainty of the mass flow rate, when it is calculated from the pres-422

sure or pressure difference exponential evolution, Eqs. (12) or (13). To ensure423

the upper limit of uncertainty, we use the maximum uncertainty on the mass424

flow rate measurements in the case of the pressure difference fit, Eq. (12), which425

reads:426

δṀ

Ṁ
=
δV0

V0
+
δ ˙(∆p)

∆̇p
+
δT

T
+ ε0, where

δ ˙(∆p)

∆̇p
=
δτ

τ
+
δp1

p1
+
δp2

p2
. (36)

In previous expression the uncertainty on the pressure difference in time involves427

the uncertainty on the fitting parameter τ and the uncertainty on the pressure428

sensors, provided by the manufacturer. The uncertainty on τ was obtained from429

the difference in magnitude of a 95% confidence interval for τ to represent the430

experimental data. The parameter ε0 in Eq. (36) represents the uncertainty431

coming from the non-isothermal effects [1] and it is equal to the maximum value432

in time of the ratio (dT/T )/(dp/p). To evaluate the value of ε0 the standard433

deviation and the mean temperature is used for dT/T term calculations, while434

the pressure difference and mean pressure are used to evaluate the pressure435

differential and pressure, respectively. The maximal relative uncertainties of436

each term in Eq. (36), obtained for two microporous discs, are summarized in437

Table 3. The uncertainty of the mass flow rate lies in the range 3.6− 5.1%.438

δV0

V0

δ∆̇p

∆̇p
δT
T ε0

δṀ
Ṁ

Uncertainty 3.0% < 1.9 % < 0.2 % < 1.2 % 3.6% -5.1 %

Table 3: Measurement uncertainties of the mass flow rate, when the pressure difference be-
tween the tanks is used for the calculation. The maximal values obtained for two discs are
given.

439

5.2. Results on the mass flow rate440

Typical pressure variations over time in both reservoirs are shown in Fig. 3.441

The exponential shape decay of the pressure in each tank and the pressure differ-442

ence between two tanks are clearly visible on this figure. The exponential fit of443

the pressure (and pressure difference) variation curves during the total measure-444

ments duration with the pressure relaxation time as a single fitting parameter445

allow for very smooth reproduction of the experimental pressure recording.446
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In the current experimental setup the measured mass flow rate through the447

microporous media lies in the range 5 · 10−7− 5 · 10−12 [kg s−1]. This range can448

be extended by modifying the experimental setup configuration.449

The typical mass flow rate variations in time, calculated from the pressure450

variation in inlet tank, −Ṁ1, in outlet tank, Ṁ2, are shown in Fig. 6. It is clear451

that all three curves practically coincide, which confirms the mass conservation452

property within instrumental uncertainty.453

6. Permeability data454

6.1. Measurement uncertainty on the permeability455

The uncertainty of the permeability measurements, when using Eq. (22), is456

calculated by the classical way similar to the calculation of the uncertainty on457

the mass flow rate, where the maximum uncertainty is used:458

δK

K
=
δV0

V0
+
δL

L
+
δS

S
+
δµ

µ
+
δpm

pm
+
δτ

τ
. (37)

The relative measurement uncertainty on the permeability is presented in Table459

4, where only the maximum values (of two porous discs) for each term of Eq.460

(37) are given, so the permeability uncertainty lies in the range 5.0− 6.4%.461

δV0

V0

δL
L

δS
S

δµ
µ

δpm
pm

δτ
τ

δK
K

Uncertainty 3.0% 0.5% 0.1% 1.0% < 0.6 % < 1.4 % 5.0% -6.4 %

Table 4: Measurement uncertainties of the microporous media permeability. The maximum
of uncertainty of two discs is provided.

462

6.2. Permeability results463

The microporous media permeability, calculated using Eq. (22) from the464

measured mean pressure and pressure relaxation time, is shown in Fig. 7 as465

a function of inverse gas mean pressure. The results, obtained for two micro-466

porous discs and different gases, are presented and plotted in the log-log axis.467

Theoretically, for the large values of mean pressure, the permeability has to be468

constant, and the same for all gases tested for each disc. This part of the per-469

meability curve corresponds to the classical Darcy law (intrinsic permeability),470

K∞, where a porous medium permeability does not depend on the nature of a471

fluid flowing inside. However, as it is clear from Fig. 7, only for the first disc472

with Helium this regime is reached in the present measurements, see "plateau"473

in Fig. 7(a). Larger mean pressure values, above atmospheric pressure, need to474

be applied to reach this regime for other gases and the second disc.475

When the mean pressure decreases the permeability increases, and it be-476

comes larger than the intrinsic permeability, the phenomenon of the apparent477
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permeability appears, so-called Klinkenberg effect [2]. In this case, the perme-478

ability is usually expressed as479

K = K∞

(
1 +

b

pm

)
, (38)

where b is a correction factor. As it is clear from Fig. 7 the apparent perme-480

ability becomes gas dependent: for a fixed mean pressure, the permeability is481

higher for lighter gases. However, if the same curves are plotted as a function of482

the mean free path, `, see Fig. 8, the data for different gases are located on the483

same curve. A similar property was also observed for the pressure relaxation484

time τ , see Section 4.2 and Fig. 5 This finding leads to an interesting property:485

when the characteristic time is determined for a microporous medium for one486

gas, then the permeability can be calculated using Eq. (33) for other gases.487

If we compare expression derived in the present paper to calculate the per-488

meability, Eq. (22), with the classical expression of apparent permeability, Eq.489

(38), we find that Eq. (22) has the same asymptotic properties as Eq. (38),490

which can be confirmed by analyzing the measured data. When the mean pres-491

sure tends to infinity, then the product τpm, tends to a constant value, see Fig.492

9 and we find the constant intrinsic permeability. For the small values of the493

mean pressure pm the pressure relaxation time keeps its constant value, see Fig.494

4, therefore the apparent permeability tends to infinity.495

Recently several papers were published, where the dependence of the cor-496

rection factor b in Eq. (38) from the pressure is discussed [2], [2]. Usually the497

permeability is plotted as a function of inverse pressure in the linear-linear coor-498

dinate system. If we plot the experimental permeability curves, shown on Fig. 7,499

but using the linear-linear instead of logarithmic-logarithmic scale for both axis500

we can observe the typical behavior of the permeability: it seems to be increase501

linearly as the mean pressure decreases demonstrating the well-known Klinken-502

berg effect [2], [1]. From this evident linear dependence of the permeability on503

the mean pressure (K = A+B/pm) we could conclude that the correction factor504

B is pressure independent and can be used for large pressure variation range.505

However, the linear-linear representation can mask some behavior, because it is506

difficult to present correctly the different order of magnitude of the parameter507

variation in linear scale. If we try to fit the whole permeability experimental508

curve with the same expression, K = A+B/pm, we cannot find the same pair of509

A and B coefficients for the whole curve, see Fig. 11b). The relative deviation510

between the measured and fitted experimental points, (Kexp −Kfit)/Kfit, for511

helium curve is shown of Fig. 12. It is clear that this curve fit very well the512

low pressure range and the large deviation exists in the high pressure (Darcy513

regime). This result demonstrates that the permeability points cannot be fitted514

with unique b coefficient in the large pressure range when using the Klinkenberg515

expression. Of course, the more detailed study of this property is needed to find516

the numerical values of the correction factor b.517
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6.3. Difference between two discs518

Two porous discs considered in the present study were fabricated to have the519

same expected properties, i.e. the smallest average pore size of the order of 3 µ520

m. However, the measured permeability has very different values for two discs,521

especially for the low pressure. Therefore we assume that two discs have different522

internal structure. The tomographic analysis confirms this experimental finding:523

the averaged pore size was much larger for the first disc compared to the second524

one. Therefore, this technique can be used for the non-destructive analysis of525

the permeability of the microporous media. In addition this technique can be526

implemented to derive the characteristic pore size of a microporous sample.527

7. Conclusion528

The experimental procedure for the measurements of mass flow rate and529

permeability through the microporous media is proposed and analyzed. In the530

frame of this procedure the pressure evolution in each tank (or the evolution of531

the pressure difference between two tanks) is successfully fitted with an expo-532

nential function using one fitting parameter: the pressure relaxation time. The533

simple expressions for the mass flow rate and the permeability, derived from534

the exponential fitting of the pressure relaxation in each tank, are proposed. It535

was found that besides of the sample dimensions the gas permeability can be536

characterized by the ratio between gas relaxation time (inverse of gas collision537

frequency) and the pressure relaxation time. With the present experimental538

setup we measured the mass flow rate in the range 5 · 10−7 − 5 · 10−12 [kg/s]539

and the permeability in the range 10−14 − 10−11 [m2]. However, we are not540

restricted to these ranges of parameters with the present experimental setup541

(volume configuration and sample size). We estimate that we could measure542

at least 50 times lower mass flow rate and permeability. To go further in low543

permeability measurements the experimental setup has to be modified. The544

proposed approach is the first very promising stage to evolve towards measure-545

ments of even lower permeabilities and also the characteristic dimension (pore546

size) of membranes used for microfiltration (> 100 nm) and ultrafiltration (> 10547

nm).548
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Figure 2: Schematic representation of upstream, p1, and downstream, p2, pressure response
as a function of time. Where pm denotes mean pressure and pf the final mean pressure.
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Figure 3: Color on-line: pressure evolution as a function of time. Red squares � is upstream
tank pressure, p1, green pentagons D is the downstream tank pressure, p2, magenta line — is
the mean pressure, blue triangles 4 is the pressure difference between tanks. Red, green and
blue lines represent the exponential pressure fits, which correspond to Eqs. (11) and (10).
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Figure 4: Color on-line: variation of the relaxation time as a function of inverse molecular
mean free path, `−1, for different gases and two porous media: (a) first disc, (b) second disc.
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Figure 5: Color on-line: variation of the relaxation time, normalized by the characteristic
time, Eq. (32), as a function of inverse molecular mean free path, `−1, for different gases and
two porous media: (a) first disc, (b) second disc.
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ṁ2

(c)

Figure 6: Color on-line: three examples of the mass flow rate variation, calculated from the
pressure variation in the first tank, Ṁ1, in the second tank, Ṁ2. a) Helium at pm = 1.13×105

Pa, first row in Table 2, b) Argon at pm = 0.74 × 105 Pa , row 11 in Table 2 c) Neon at
pm = 0.03× 105 Pa , row 6 in Table 2.
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Figure 7: Color on-line: variation of the permeability of micro porous media, as a function of
inverse mean pressure for four gases and two porous media: (a) first disc, (b) second disc.
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Figure 8: Color on-line: variation of the permeability of micro porous media, as a function of
mean free path for four gases and two porous media: (a) first disc, (b) second disc.
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Figure 9: Color on-line: variation of the quantity τpm as a function of mean pressure for two
porous media: (a) first disc, (b) second disc.
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Figure 10: Color on-line: Permeability of micro porous media, Eq. (22), as a function of
inverse mean pressure for four gases and two porous media: (a) first disc, (b) second disc.

29



K
[1
×
10

−
1
2
m

2
]

p−1
m [1× 10−2 Pa−1]

ARGON

NEON

HELIUM

fit HELIUM

fit NEON

fit ARGON

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1 1.2 1.4

(a)

K
[m

2
]

p−1
m [Pa−1]

ARGON

NEON

HELIUM

fit HELIUM

fit NEON

fit ARGON

10−14

10−13

10−12

10−5 10−4 10−3 10−2

(b)

Figure 11: Color on-line: (a) measured permeability for three gases (symbols) for the first
disc with the linear fit of the experimental data (solid lines); (b) the same data as on (a) but
plotted in log-log coordinates.
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Figure 12: Color on-line: the relative error for the permeability: (Kexp −Kfit)/Kfit × 100%
for the measurements of Helium for the first disc, Kexp is the measured value, Kfit is the
fitted value. The same experimental points and linear fit are also presented on Fig. 11.
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