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Membranaires (EPM), Européle de I’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en
Provence Cedex, France

Abstract

The transient method of the mass flow rate measurements through a microp-
orous media is developed and analyzed. This method is based on the constant
volume technique and the exponential fit of the pressure evolution in each tank
which allows calculating the permeability directly. The pressure relaxation time,
a single fitting parameter, is introduced and its behaviors are analyzed in a large
pressure range. By measuring the pressure relaxation time for one gas, the per-
meability of a microporous sample can be derived for the other gases. With the
actual experimental setup, we measured the mass flow rate through the micro-
porous media in the range 5- 1077 — 5 - 10712 [kg s7!| and the permeability in
the range 10714 — 10711 [m?|.

Preprint submitted to Elsevier March 7, 2019
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1. Introduction

The determination of the permeability of porous media like the micro and
nanoporous membranes or ultra-tight shale-gas reservoirs is still a challenge up
to now. The low porous membranes find a broad application in medicine [1] and
biotechnology for separation and filtration [2]. The recent development of low
porous ceramic media with high thermal, chemical and structural stability and
the ability to have catalytic properties has opened up new horizons for this kind
of membrane applications, for example, in high-temperature gas separation and
catalytic reactions [3]. Another type of porous media, the ultra-tight shale-gas
reservoirs of tiny pores (in nanoscale) play a significant role in securing hydro-
carbon energy because of their potential to offset declines in conventional gas
production [4]. In all of these type of applications, the porous media permeabil-
ity has to be known.

Permeability is a measure of how readily a fluid can flow through a porous
material [5]. Gas permeability is an important parameter to understand the
transport characteristics of a fluid through a porous medium, which can be
obtained from the mass or volume flow rate. For the determination of low per-
meability, either the steady-state or the transient methods can be used. The
steady-state method needs a precise flow meter to measure very slow flow, so
when the permeability is very low the conventional gas flowmeters may be in-
appropriate [6]. Therefore, the transient "pulse-decay" or "draw-down" tech-
niques, [7], [8], [9], [1], [6], are also used to determine the low permeabilities.
By using these techniques, the permeability can be calculated directly from
the pressure variations in time, without going first through the mass flow rate
measurements [§8], [1].

The primary objective of the present work is to develop the transient method
to measure the pressure evolution in time in high and low-pressure tanks gen-
erated by the gas flow through a homogeneous porous medium. This experi-
mental methodology, based on the constant volume technique, was initially de-
veloped for the isothermal and non-isothermal measurements of the mass flow
rate through the microchannels [1], [1], [1]. We provide here the physical justi-
fications of the exponential fitting of the pressure variations with time as well
as the physical conditions of its implementation. From the measured pressure
variations in time, the mass flow rate through the porous medium is deduced.
It is shown that the gas permeability can be easily obtained directly from the
pressure variations with time without going first through the mass flow rate cal-
culations. The main advantages of the proposed approach are: its simplicity, the
possibility of further extraction of the Klinkenberg coefficient and average pore
size, and, finally, its further generalization for the case of temperature gradient
driven flows.

The paper is organized as follows. After a brief introduction, the experimen-
tal apparatus and methodology are presented in Section 2. Then, in Section 3,
the relation between the pressure variations in the tanks and a porous medium
permeability is established by introducing the pressure relaxation time, which
properties are analyzed in detail in Section 4. The behaviors of the measured
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mass flow rate and permeability are discussed in next two Sections. The paper
is closed with final comments and conclusions.

2. Experimental methodology

2.1. Ezperimental apparatus

The experimental setup is a high vacuum system capable of measuring up to
5 decades of pressure. In the presented experiment the mean pressure is varied
from 75 Pa up to 131 kPa. This large pressure measurement range is achieved
by using three pairings of four capacitance diaphragm manometers (CDM) with
full-scales: 133 kPa - 133 kPa, 133 kPa -13.3 kPa and 13.3 kPa - 1.33 kPa. Four
high purity gas bottles with test gases, Helium, Neon, Nitrogen, Argon (Air Lig-
uide, France) are used. The pumping is performed by a two-stage diaphragm
vacuum pump (DVP) and a turbomolecular pump (TMP), see the schematic
of the experimental setup in Fig. 1. Each side of the porous medium is con-
nected to two reservoirs of volumes V; and Vs for the high and low-pressure,
respectively. Both tanks’ volumes, including the volumes of the valves, con-
necting tubes and pressure sensors, are measured accurately, and these volumes
are equal to V; = 255.8 5.5 cm?® and V5 = 238.8 & 5.1 cm?, for the high and
low-pressure tanks, respectively. Several leakage tests were performed for this
setup showing the absence of the detectable increase in pressure, measured with
the lowest F.S. pressure sensor of 1.33 kPa over a period of 30 minutes. In
addition, for all realized measurements we did not detected any linear increase
of the mean pressure.

Two microporous samples, used in the experiments and mentioned in the
following as the first and second discs, have a cylindrical shape (disc) with the
same diameter and thickness (in main flow direction) equal to D =9.5+0.01lmm
and L = 2.3 £ 0.0lmm, respectively. The structure of these microporous discs
is the same as that used to support the active layers of micro-to-ultra filtration
ceramic membranes.

For such ceramic microporous medium, depending on manufacturer, the
porosity is in the range 15 — 30% with pore diameter ranging from 1 to 10
pm. The total volume of each porous disc is 0.14 cm?, so by taking 30% of
porosity a gas volume inside the medium is approximately 0.047 cm?, which is
much smaller than the volume of each tank.

The experiments are performed within a narrow temperature range, exclud-
ing any heat source in an environment. The temperature is measured using the
thermocouple with the accuracy of 0.6 K.

2.2. Mass flow rate measurements

The constant volume technique, used previously for the measurements of
the mass flow rate through the microchannels [1], [1], [1], [1], was implemented
here to measure the mass flow rate through different samples of a microporous
ceramic medium. This technique allows deducing the mass flow rate from the
pressure variation in time. The mass flow rate through a microporous medium is
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Figure 1: Schematic of the experimental setup. A diaphragm vacuum pump (DVP) and
a turbomolecular pump (TMP) is connected to the experimental setup separated by a valve
VUpump- The high pressure and low-pressure side are separated by a porous ceramic media which
is fixated with vacuum epoxy glue. Each side of the porous media has a reservoir with the high-
pressure tank volume of Vi = 255.8+5.5 cm?, low-pressure tank volume Vo = 238.8+5.1 cm?
and capacitance diaphragm manometers (CDM) measuring pressure p; and pz. The room
temperature is measured with a thermocouple. The vacuum system is connected to a gas
delivery system with four gas bottles, Helium, Neon, Nitrogen, and Argon.



generated by setting an initial pressure drop between the reservoirs, see Fig. 1.
This method requires very large tank volumes relative to the volume occupied
by a gas inside a microporous medium: in our experimental setup this ratio is
larger than 103. The applied method is similar to the Brace method [1] (pulse
decay method), usually used to analyze the permeability of the porous samples.
In addition, in this work we take into consideration the effects of rarefaction.
Even if the permeability can be deduced directly from the pressure (or pressure
difference) variation in time, we prefer to start by providing the expressions of
the mass flow rate through a microporous medium and the conditions of its
derivation. The mass flow rate could be a useful quantity to characterize a
porous sample; it can be used to derive the characteristic pore dimensions and
the gas-surface interaction characteristics.

Under the quasi-steady conditions, i.e. when the flow through a porous
medium is established, we assume that the gas temperatures in each tank, de-
noted 77 and T3, are in thermal equilibrium with the walls of the tanks and
that both tanks are in thermal equilibrium with the environment. Therefore,
we assume that the ambient temperature, denoted Tympient, determines the gas
temperatures 77 and 15 in each tank such that:

Tl ~ T2 ~ Tambicnt =T (1)

A possible variation in temperature of the gas leaving and entering the tanks
could directly perturb the significance of the measurement. To make this clearer,
let us write the ideal gas law in each tank in the following form:

p1Vi = MRT, p2Vo = MoRT, (2)

where R, p;, and M;, ¢ = 1,2, are, respectively, the specific gas constant, the
pressure and the mass of the gas in tank 4. In the present study the maximum
considered pressure is of the order of atmospheric pressure; therefore we do
not consider here the real gas effects. However, the proposed approach can be
generalized to take into account the real gas effects by using, for example, the
van der Waals equation instead of the ideal gas law.

Under our experimental conditions, the volume of each reservoir is constant
during an experiment, so it is possible to differentiate each expression in Egs.
(2), as it has been done in Ref [1]:

Vv dT/T .
dM; = —“dp; (1 - , =1,2.
RT P ( dpi/pi> ' ®)

If the relative temperature variation in a tank is negligible in relation to the
relative pressure variation in time, then the mass flow can be considered to be
isothermal. Therefore, by defining a specific small time interval, d¢, it is then
possible to obtain from Egs. (3) the isothermal mass flow rates dM;/dt and
dM,/dt as:

= 1 ;=
at  RT dt’ T dpi/pi

<1, i=12. (4)



Following the differentiation technique, we consider here the variation of any
thermodynamic parameter, dM and dp, sufficiently small to approximate dM /dt
and dp/dt as the time derivative of the mass (i.e. mass flow rate M) and the time
derivative of the pressure, respectively. If the relative temperature variation is
small compared to the pressure variation, the values of ¢; are small in Egs. (4),
so by adjusting the sign, dM;/dt can be considered as the mass flow rate M;
through the microporous media

dMy Vi dp . dMy Vo dps

& T RT 4 2= "% TRT At (5)

In the frame of the quasi-stationary flow assumption, i.e. when the flow through
a porous medium is established, it is clear that the mass flow rate leaving the
first tank is necessarily equal to the mass flow rate entering the second tank and
also to the mass flow rate at any point inside the porous medium

M, =

Ny = My = M. (6)

Along with this study, we will continue to admit relation (6) at any time. How-
ever, the assumption of the mass conservation, Eq. (6), neglects possible stor-
age of gas in the porous medium. For the small ceramic porous sample used
in present experiment, this hypothesis of the absence of the gas accumulation
inside a porous medium is justified. In the same time, for the porous media such
as the coal and shales, the compressible fluid storage needs to be accounted [5].
The experimental verification of mass conservation for the porous samples used
in present experiments is discussed in Section 5.2.

Sometimes it is convenient to express the mass flow rate in function of the
pressure difference between two tanks. From the mass conservation law, the
mass of a gas leaving the first tank is necessarily equal to the mass of a gas
entering the second tank, so Eq. (6) is valid. From Egs. (5) and (6) we can
obviously deduce:

Vo d(Ap(1)) Viva

Nty = — Yo d(ar(t) _
(*) RT a0 Vi+ Vs

(7)

From the previous reasoning, it is clear that the mass flow rate can be
calculated using expressions (5) and (7), when the pressure variation in each
tank or the pressure difference between them in time is known. During the
experiments, the pressure variations in time in each tank are measured and
then fitted by using the exponential fitting function.

2.8. Ezponential pressure fitting

The experimental procedure starts by setting the initial pressure difference
Apg between the tanks at time ¢ as:

Apg = p1(to) — p2(to) = po1 — Poz, (8)

where pp; and pge are the initial pressures in the high and low-pressure tanks,
respectively. This first step is done by opening the valve vpymp, see Fig. 1,
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for a short time, and then closing it. Further, we have a closed system with a
pressure difference. Afterward, the gas begins to flow through a microporous
medium from the high-pressure tank to the low-pressure tank up to the same
final equilibrium pressure, pg, is reached in both tanks, see Fig. 2. The time-
dependent pressure difference between the tanks is noted as:

Ap(t) = p1(t) — p2(t). (9)

One example of the pressure evolution in each tank as well as of the pressure
difference between two tanks is shown in Fig. 3.

Usually, when using the "pressure pulse technique", [1], the small pressure
"pulses" (pressure differences between the tanks) are applied to the system, i.e.
Apy K pm, where p,,, = 0.5(p1+p2) is the mean pressure between two tanks. We
will discuss below that finally we do not really need to respect this restrictive
condition and the an arbitrary pressure difference between the tanks can be
used in the system if both tanks volumes are equal. However, the restriction for
p1/p2 ratio exists when the tanks volumes are different, see Section 3.1.

The authors of Ref. [1] proposed to use a linear fit of the natural logarithm
of an exponential function for the pressure variation in time, while we suggest
to use directly the exponential pressure fit to describe the pressure difference
decay in time in the following form:

Ap(t) = Apo exp (—(t —t0)/7), (10)

where 7 is the pressure relaxation time, which is constant during an experiment.
The same exponential representation of the pressure evolution in time in the
first p;(¢) and second po(t) tanks is written in the form [1]:

p1(t) = pr + (po1 — pr) exp (—=(t — to)/71),

p2(t) = pr + (po2 — pr) exp (—(t — to)/72), (1)

here 71, 75 are the gas pressure relaxation times in the reservoir 1 and 2, respec-
tively, pr is the final pressure. The pressure variations with time p;(t) in each
tank 1 and 2 can be thus associated with an exponential decay. In practice the
pressure relaxation times 7; are obtained from the fit of the measured pressure
evolution in each tank, see Fig. 3. The properties of the pressure relaxation
time are discussed in Section 4.

By using Eq. (7) we can now express the mass flow rate using the exponential
representation of the pressure difference in time, Eq. (10), and then its analytical
derivative, so the mass flow rate expression becomes

Vo d(Ap(t)) _ Vo Apo ( t— to)
—exp | - .

M = =
(®) RT  dt RT T

(12)

From Egs. (5) we can also express the mass flow rate using the exponential
representations of the pressure variation in time in each tank, Eqgs. (11), and
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then their analytical derivatives, so the mass flow rate expressions become:

(1) = Wiy (1) = s SO = AP =Pt o (_<t—to>>

. h (13)

Equations (12) and (13) provide the time-dependent expressions for the mass
flow rate. Therefore, with one experiment we can calculate the mass flow rate
for various different pressure ratios between the reservoirs, see Section 4 for
more details. The conditions related to the implementation of this technique,
as the choice of the tank volume size, possible pressure ratio and the impact of
the thermal effects are discussed in Section 3.1.

3. Relation with Darcy law and the permeability

The Darcy law [1] allows us to relate the instantaneous discharge (or vol-
umetric) flow rate through a porous medium, @, to the pressure drop over a
given distance L, which is the thickness of a porous sample:

g= K5 (14)
I L

where S is the surface of the porous sample, p is the fluid viscosity, K is the
permeability. Initially, the Darcy law was derived for an incompressible fluid
with constant viscosity and the permeability K refers to the hydrodynamic
(intrinsic permeability). In this article we use the Darcy law for the gases, i.e.,
a compressible fluid and we do not make any preliminary assumption of the
rarefaction level of a gas.

The viscosity coeflicient for a gas depends on gas temperature and gas nature

and it is calculated as [1]:
T w
= Hre 5 1
H= et (Tref) (15)

where w is the gas viscosity index, p.ef is the gas viscosity at temperature
Tyt = 273.15 K [1]. The reference values of the viscosity, p.f, for each gas used
here as well as the viscosity index w, are given in Table 1.

Table 1: Parameters of the gases used in present experiments

Gas | firer x 107° [Pa.s] | w | R[J/kgK] | Molar mass M [g.mol 1]
He 1.865 0.66 2077.1 4.003
Ne 2.976 0.66 412.02 20.18
Ny 1.656 0.74 296.80 28.00
Ar 2.117 0.81 208.13 39.95

For the liquid flows the volumetric flow rate is constant along a porous
sample. For the gases only the mass flow rate is conserved along the porous
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sample. To express the permeability for a gas we can rewrite Eq. (14) in
following form by replacing the pressure difference through a sample by the
pressure gradient [5]:
KSdp
— 16
Q o da (16)
By using the relation between the volumetric and mass flow rate
M .
Q=—=M—, (17)
p p
then by integrating along the porous sample and by using the mass conservation
property, we obtain the expression, analogous to Eq. (14), which relates the
mass flow rate and the permeability

M=———. 18

w L RT (18)

Then, using Egs. (5) and admitting the mass conservation again, Eq. (6), and

using Darcy law in form (18), we can relate the pressure variation in each tank
to the gas permeability:

dpr KS dps KS

= P (1=p2), Ve =pm—(pr—p2). (19
ldt p 'uL(pl P2) 2dt p ML(pl P2) ( )

To obtain previous relations we replaced the local pressure in Eq. (17) by the
mean pressure, which does not vary during an experiment. This mean pressure
is constant during an experimental run, when the tanks volumes are equal,
V1 = V4, and it varies only slightly when these volumes are slightly different, see
Section 3.1, where the conditions of the mean pressure constancy are provided.
From Egs. (19) we obtain the differential equation for the pressure difference

Ap(t) between the tanks:
d(Ap(t)) dt

— 2
Ap(t) T’ (20)
where . v
o 0
= ———, 21
! pm K S 2

This differential equation, subjected by the initial condition, Ap(t = to) = Apy,
is easily solved and the variation in time of the pressure difference between the
tanks is obtained in the form of Eq. (10).

From previous discussion it is clear that we do not use here any assumption
about the smallness of the pressure "pulses" compared to the mean pressure in
the tanks. Therefore, this technique can be implemented for any pressure dif-
ference between the tanks under the condition of equality of the tanks volumes.
When the tanks volumes are different some restrictions have to be respected in
order to keep the mean pressure close to a constant value during an experiment
duration, see Section 3.1. In addition, to integrate the differential equation
(20) the relaxation time 7 has to be time independent. By analyzing Eq. (21)
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one can see that only mean pressure can be time-dependent. The experimental
conditions of the mean pressure constancy in time are discussed in Section 3.1.
The permeability depends on time only through the mean pressure, so the mean
pressure constancy in time ensures that 7 is constant in time and so justifies
the integration of Eq. (20) and consequently the use of its solution, Eq. (10),
for the experimental data (pressure) treatment. Therefore, the permeability K
of a porous sample can be derived directly from the pressure measurements.

The experimental curve of pressure variation in time can be fitted by expo-
nential expression, Eq. (10), with 7 as a fitting parameter. Then, the perme-
ability can be found from the analytical expression for the pressure relaxation
time 7, Eq. (21), as:

L pLVo

Other expression for the permeability can be obtained from (18):

M 2uRTL M uRTL

K = _
pi—p3 S App,, S

(23)

Both expressions, Egs. (22) and (23), can be used to derive the permeability
from the measurements.

8.1. Conditions of constancy of mean pressure

In this section we establish the conditions of the constancy of mean pressure
during the measurement procedure, which leads to the pressure relaxation time
constancy and justifies the use of expression (22) for the permeability calcula-
tions. In addition, as it has been pointed out in Ref. [8], in general case, the
constancy of the mean pressure is an important point, especially for high pres-
sure experiments, where the viscosity and compressibility factor may change as
a function of pressure. In presented here experiments the implemented pres-
sure and temperature conditions allow to us to stay under the ideal gas flow
assumptions and the viscosity does not change with pressure. However, it is
still important to have a constant mean pressure as for low permeable porous
media the permeability can be a function of mean pressure due to rarefaction
effects.

A pressure difference between the tanks is fixed initially, at ty, equal to
Apo, Eq. (8), then the gas flows through the porous medium up to the final
stage, when a pressure equality in both tanks is reached, see Fig. 2. A relation
between the pressure variation in each tank, i.e. from the initial pressure in
each tank, p;(to), ¢ = 1,2, to the final equilibrium pressure p¢, reached in the
system, can be calculated a priori as it is closely related to the tanks volumes
ratio. From the ideal gas law and admitting again the mass conservation along
the microporous medium at any time, we can write the following relation for
two tanks if they are maintained at the same temperature

dpi1Vi = —dpaVa. (24)

10
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The previous relation is then integrated in time from an initial (at time ¢) state
of a gas in each tank, p;(to), to its final state, pe. It is worth to underline that in
Eq. (24) the expressions are exact (perfect) differential, and so their integration
does not depend on the form (linear or exponential) of the pressure variation in
time. Therefore, we obtain

pr—p2(to) V1

pito) —pr Vy' (25)

Without the loss of generality we can assume here that in the beginning of each
experiment we have p; > py. It is clear from Eq. (25) that by adjusting the
tanks volumes ratio we could control the pressure variation between initial and
final stages. From Eq. (25) we obtain the estimation of the maximal variation
of the mean pressure p,, with time, from its initial value py, (to) to its final value
Pm(tr) = pg:

pr_ pito)Vi + pa(to)Va (26)

Pm (tO) (Vl + ‘/2)pm(t0) .

It is clear from Eq. (26) that when the tanks volumes are equal, the mean
pressure py,(t) does not vary in time, i.e., between its initial value, py,(to), and
its final value, ps, SO pm(tg) = pr. When the volumes are different we can
estimate the maximal amplitude of mean pressure variation between its initial
state pm (to) and its final state p¢, using Eq. (26) and the ratio of tanks volumes.
To do this expression (26) can be rewritten as:

e 2014 kvky)
pmlto)  (T4+kv)(1+ky) (27)

We introduced here the tanks volumes ratio ky = V1 /V5 and the initial pressure
ratio k, = p1(to)/p2(to). By using Eq. (27), we can calculate the variation of
the mean pressure during an experiment, i.e. the ratio between its final and
initial values pg/pm(to).

In our experimental conditions two tanks volumes are related as ky =
V1/Va = 1.071, so from Eq. (27) we can find that for the initial pressure ratio
between the tanks, k,, equal to 1.5, 2 and 3, the ratio pr/pm(to) is equal 1.0069,
1.0114 and 1.0171, respectively. Therefore, the initial pressure ratio equal to
2 leads to approximately 1% of deviation of the mean pressure from its initial
value. Under our experimental conditions the experimentally evaluated value of
pt/Pm(to) was found lower than 1%.

4. Pressure relaxation time

By fitting the measured time variation of the pressure difference between
two tanks using exponential law, Eq. (10), we obtain a function Ap(t) that
describes the relaxation process with the help of a single fitting parameter 7,
that is the characteristic time of the experiment or pressure relaxation time.
Similar expressions for the pressure variation in each tank, Eqs. (11), involve

11



the relaxation parameters 7, and 75, which can also be obtained by the fitting
of the pressure variation in one (high or low-pressure) tank. From different
expressions of the mass flow rates, Eqs. (12) and (13), and using the mass
conservation property in form (24), we can find that the ratios between the
characteristic times are finally independent from the tanks volumes and are
equal to one:
n_n_72_ (28)
Ty T T
This analytical finding, Eq. (28), was confirmed experimentally. As it can be
seen from Table 2 for the most cases the difference between three relaxation
times, 71, 7> and 7, is small, of the order of 1%.

Finally, to obtain the mass flow rate through the microporous medium and
its permeability, see Section 6, we can use either the exponential fit of the
pressure difference between the tanks (in the case of the use of the differential
pressure sensors), or just pressure evolution in a tank.

Table 2: Relaxation times 71, 72 and 7, in seconds (s) for the second disc, measured in the high
and low-pressure tanks and by using the pressure difference between two tanks, respectively.
For each of four gases the relaxation time is provided for two pressure differences between
the tanks. The mean pressure of each experiment is given in fifth column. The last column
provides the conduction time 7., Eq.(29).

[ T1[s] [ Tols] [ T[s] [ Pm [10° Pa] [ Te[s] ‘

HELIUM 54.11 53.94 54.03 1.13 0.96
66.94 66.87 66.90 0.79 0.68

153.83 | 155.60 | 154.72 | 0.04 0.03

NEON 92.38 92.48 92.43 1.16 3.11
119.98 | 118.59 | 119.28 | 0.79 2.13

333.25 | 331.46 | 332.34 | 0.03 0.08

NITROGEN | 62.30 61.75 62.03 1.12 7.45
92.98 92.04 92.50 0.70 4.64

371.56 | 369.32 | 370.44 | 0.03 0.23

ARGON 79.27 78.61 78.94 1.11 8.11
112.34 | 111.33 | 111.83 | 0.74 5.41

444.07 | 444.22 | 444.15 | 0.04 0.26

4.1. Gas conduction time

Now we can compare the gas conduction time 7. to the gas relaxation time 7
to have an additional estimation of the importance of the thermal effects. If the
tank represents an infinite heat sink at constant temperature to the gas, then,
the time it takes for the gas to reach equilibrium with the tank can be modeled.
In Ref. [1] the transient heat conduction equation was solved analytically and
the solution was presented as the infinite series of the Bessel functions. When
keeping only the first leading term of the series the characteristic conduction

time can be estimated as: )
pRTESP’r
= Pllres™ T 29
T 2.441 (29)

12
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where p is the gas density, R,..s is the characteristic reservoir dimension, Pr is
the Prandtl number. The reservoir characteristic dimension (its radius) is equal
to 19.6mm, the Prandtl number is equal to 2/3 and 0.71, for the monoatomic
and polyatomic gases, respectively. The gas conduction time, Eq. (29), is pro-
portional to the gas density and so to the gas pressure under our experimental
conditions. It depends also on the gas nature through the gas viscosity. The
value of the gas conduction time for some experimental conditions are provided
in Table 2, last column. For all considered cases the pressure relaxation time 7
is much longer than the gas conduction time 7.. Therefore, we have a new ex-
perimental confirmation that the gas temperature remains close to the constant
temperature during the measurements.

4.2. Properties of the pressure relaxation time

As the mass flow rate through a porous medium, Eqs. (12) and (13), and its
permeability, Eq. (22), depend on the pressure relaxation time it is interesting
to study its properties.

Figure 4 shows the pressure relaxation time, expressed in seconds, as a func-
tion of the inverse molecular mean free path, £~!. The equivalent molecular
mean free path is defined as following [2]:

(= ? (30)

where v is the most probable molecular speed
vg = V2RT. (31)

It is clear from Eq. (30) that the inverse equivalent mean free path is a function
of the mean pressure. By analyzing Fig. 4 and Table 2 we can conclude that the
pressure relaxation time is proportional to the molar mass. That is, the short-
est relaxation time is obtained for Helium, which has smaller molar mass, the
longest relaxation time is found for Argon, which has greatest molar mass, see
Table 1. All gases have similar behaviors as a function of the inverse molecular
mean free path, which is a function of mean pressure. For the low mean pressure
(large mean free path) the relaxation time is quasi-constant, then it decreases
linearly with pressure increasing (the mean free path decreasing). This behavior
is related to the number of collisions (molecule-molecule and molecule-wall col-
lisions): when the intermolecular collisions are numerous (small mean free path)
the relaxation time is short. With increasing of the molecular mean free path
(decreasing of pressure) the number of intermolecular collision decreases which
leads to the increase of the relaxation time, because the gas reaches its equilib-
rium state through the intermolecular collisions. When the molecular mean free
path becomes large enough the number of the intermolecular collisions becomes
negligible in comparison to the number of collisions with the wall (Knudsen
diffusion regime) and the relaxation time becomes constant, see Fig. 4(b). In
this case, the pressure relaxation time is determined only by the morphological

13



parameters of a porous medium, i.e., mean pore size, porosity, tortuosity and
particularities of gas-surface interaction.

It is worth to underline that the pressure relaxation time measured for two
discs is different even if the same gas is considered. This fact lets us conclude
that the internal structure of the microporous discs could be different. We
comment on this observation in Section 6.3.

The pressure relaxation time can be normalized by the characteristic time
of the flow, which is defined as follows:

te= (32)

L
Vo '
This characteristic time depends on the gas nature through the most probable
gas velocity vy, Eq. (31). The relaxation time, normalized by the characteristic
time, is shown in Fig. 5, as previously in function of the inverse molecular mean
free path. It is interesting to note that now all gases follow the same curve,
so all gases have the same pressure relaxation time for the same value of the
inverse molecular mean free path. Similar behavior of the relaxation time of the
thermal creep flow was observed in Refs. [1], [1], [2], where the gas flow driven
by only a temperature gradient through the microchannels of the circular and
rectangular cross-sections was studied.

By taking into account the definition of the characteristic time, Eq. (32),
we can rewrite expression of the permeability, Eq. (22), in the following form
by using the equivalent molecular mean free path, Eq. (30),

Vo te
K= g Té. (33)
When the pressure relaxation time is used, the previous expression of the per-
meability allows calculating the permeability of a porous sample for different
gases. This is because the normalized relaxation time is the same for all the
considered here gases for a given value of molecular mean free path.

Another formula for the permeability can be derived by introducing gas
relaxation time [2], ¢7, which is inversely proportional to the collision frequency
of the gas molecules, and it can be calculated as

tp= 1= 34
I o T w (34)

so the expression of permeability becomes

=g (35)
Previous expression shows that the gas permeability depends on sample di-
mensions, S and L, and on the tanks volume, V), used in experiments. The
increasing (or decreasing) in this volume leads to the corresponding change in
the pressure relaxation time, so that the ratio Vj/7 remains the same. There-
fore, besides the geometrical characteristics, the permeability depends on the
ratio between two characteristic times: gas and pressure relaxation times.
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5. Mass flow rate

The mass flow rate was calculated from the pressure measurements in each
tank by using the techniques, explained in Section 2.3. Three noble gases and
one diatomic gas were used: Helium, Argon, Neon and Nitrogen.

5.1. Measurement uncertainty of the mass flow rate

The classical uncertainty calculation technique is used to estimate the mea-
surement uncertainty of the mass flow rate, when it is calculated from the pres-
sure or pressure difference exponential evolution, Eqs. (12) or (13). To ensure
the upper limit of uncertainty, we use the maximum uncertainty on the mass
flow rate measurements in the case of the pressure difference fit, Eq. (12), which
reads:

SM  0Vy | 6(Ap) 6T 5(Ap) ot Opy N op2

= + ——— 4+ — + €9, where — = — + —. (36
M Vo Ap T 0 Ap T D D2 (36)

In previous expression the uncertainty on the pressure difference in time involves
the uncertainty on the fitting parameter 7 and the uncertainty on the pressure
sensors, provided by the manufacturer. The uncertainty on 7 was obtained from
the difference in magnitude of a 95% confidence interval for 7 to represent the
experimental data. The parameter €y in Eq. (36) represents the uncertainty
coming from the non-isothermal effects [1] and it is equal to the maximum value
in time of the ratio (d7/T)/(dp/p). To evaluate the value of gy the standard
deviation and the mean temperature is used for dT'/T term calculations, while
the pressure difference and mean pressure are used to evaluate the pressure
differential and pressure, respectively. The maximal relative uncertainties of
each term in Eq. (36), obtained for two microporous discs, are summarized in
Table 3. The uncertainty of the mass flow rate lies in the range 3.6 — 5.1%.

[ (&% 17 T« [

| Uncertainty | 3.0% | <1.9% [ <02 % [ <12% | 3.6% -5.1 % |

Table 3: Measurement uncertainties of the mass flow rate, when the pressure difference be-
tween the tanks is used for the calculation. The maximal values obtained for two discs are
given.

5.2. Results on the mass flow rate

Typical pressure variations over time in both reservoirs are shown in Fig. 3.
The exponential shape decay of the pressure in each tank and the pressure differ-
ence between two tanks are clearly visible on this figure. The exponential fit of
the pressure (and pressure difference) variation curves during the total measure-
ments duration with the pressure relaxation time as a single fitting parameter
allow for very smooth reproduction of the experimental pressure recording.

15



459

460

In the current experimental setup the measured mass flow rate through the
microporous media lies in the range 5-10~7 —5-107!2? [kg s71|. This range can
be extended by modifying the experimental setup configuration.

The typical mass flow rate variations in time, calculated from the pressure
variation in inlet tank, — My, in outlet tank, MQ, are shown in Fig. 6. It is clear
that all three curves practically coincide, which confirms the mass conservation
property within instrumental uncertainty.

6. Permeability data

6.1. Measurement uncertainty on the permeability

The uncertainty of the permeability measurements, when using Eq. (22), is
calculated by the classical way similar to the calculation of the uncertainty on
the mass flow rate, where the maximum uncertainty is used:

0K oV 6L  6S  dp  Opm | OT

il i Et —. 37

K~ W LT85 Wi 37)
The relative measurement uncertainty on the permeability is presented in Table
4, where only the maximum values (of two porous discs) for each term of Eq.
(37) are given, so the permeability uncertainty lies in the range 5.0 — 6.4%.

’ ‘M ‘LL ‘@ ‘w ‘6pm ‘6; ‘<LK
Vo L S P T K

[ Uncertainty | 3.0% [ 0.5% [ 0.1% [ 1.0% [ <0.6 % | <14 % [ 5.0% -6.4 % |

Table 4: Measurement uncertainties of the microporous media permeability. The maximum
of uncertainty of two discs is provided.

6.2. Permeability results

The microporous media permeability, calculated using Eq. (22) from the
measured mean pressure and pressure relaxation time, is shown in Fig. 7 as
a function of inverse gas mean pressure. The results, obtained for two micro-
porous discs and different gases, are presented and plotted in the log-log axis.
Theoretically, for the large values of mean pressure, the permeability has to be
constant, and the same for all gases tested for each disc. This part of the per-
meability curve corresponds to the classical Darcy law (intrinsic permeability),
K, where a porous medium permeability does not depend on the nature of a
fluid flowing inside. However, as it is clear from Fig. 7, only for the first disc
with Helium this regime is reached in the present measurements, see "plateau"
in Fig. 7(a). Larger mean pressure values, above atmospheric pressure, need to
be applied to reach this regime for other gases and the second disc.

When the mean pressure decreases the permeability increases, and it be-
comes larger than the intrinsic permeability, the phenomenon of the apparent
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permeability appears, so-called Klinkenberg effect [2]. In this case, the perme-
ability is usually expressed as

K=Ky <1+pi), (38)

where b is a correction factor. As it is clear from Fig. 7 the apparent perme-
ability becomes gas dependent: for a fixed mean pressure, the permeability is
higher for lighter gases. However, if the same curves are plotted as a function of
the mean free path, ¢, see Fig. 8, the data for different gases are located on the
same curve. A similar property was also observed for the pressure relaxation
time 7, see Section 4.2 and Fig. 5 This finding leads to an interesting property:
when the characteristic time is determined for a microporous medium for one
gas, then the permeability can be calculated using Eq. (33) for other gases.

If we compare expression derived in the present paper to calculate the per-
meability, Eq. (22), with the classical expression of apparent permeability, Eq.
(38), we find that Eq. (22) has the same asymptotic properties as Eq. (38),
which can be confirmed by analyzing the measured data. When the mean pres-
sure tends to infinity, then the product 7p,,, tends to a constant value, see Fig.
9 and we find the constant intrinsic permeability. For the small values of the
mean pressure p,, the pressure relaxation time keeps its constant value, see Fig.
4, therefore the apparent permeability tends to infinity.

Recently several papers were published, where the dependence of the cor-
rection factor b in Eq. (38) from the pressure is discussed [2], [2]. Usually the
permeability is plotted as a function of inverse pressure in the linear-linear coor-
dinate system. If we plot the experimental permeability curves, shown on Fig. 7,
but using the linear-linear instead of logarithmic-logarithmic scale for both axis
we can observe the typical behavior of the permeability: it seems to be increase
linearly as the mean pressure decreases demonstrating the well-known Klinken-
berg effect [2], [1]. From this evident linear dependence of the permeability on
the mean pressure (K = A+ B/p,,) we could conclude that the correction factor
B is pressure independent and can be used for large pressure variation range.
However, the linear-linear representation can mask some behavior, because it is
difficult to present correctly the different order of magnitude of the parameter
variation in linear scale. If we try to fit the whole permeability experimental
curve with the same expression, K = A+ B/p,,, we cannot find the same pair of
A and B coefficients for the whole curve, see Fig. 11b). The relative deviation
between the measured and fitted experimental points, (K*** — K/) /K7 for
helium curve is shown of Fig. 12. It is clear that this curve fit very well the
low pressure range and the large deviation exists in the high pressure (Darcy
regime). This result demonstrates that the permeability points cannot be fitted
with unique b coefficient in the large pressure range when using the Klinkenberg
expression. Of course, the more detailed study of this property is needed to find
the numerical values of the correction factor b.
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6.3. Difference between two discs

Two porous discs considered in the present study were fabricated to have the
same expected properties, i.e. the smallest average pore size of the order of 3
m. However, the measured permeability has very different values for two discs,
especially for the low pressure. Therefore we assume that two discs have different
internal structure. The tomographic analysis confirms this experimental finding:
the averaged pore size was much larger for the first disc compared to the second
one. Therefore, this technique can be used for the non-destructive analysis of
the permeability of the microporous media. In addition this technique can be
implemented to derive the characteristic pore size of a microporous sample.

7. Conclusion

The experimental procedure for the measurements of mass flow rate and
permeability through the microporous media is proposed and analyzed. In the
frame of this procedure the pressure evolution in each tank (or the evolution of
the pressure difference between two tanks) is successfully fitted with an expo-
nential function using one fitting parameter: the pressure relaxation time. The
simple expressions for the mass flow rate and the permeability, derived from
the exponential fitting of the pressure relaxation in each tank, are proposed. It
was found that besides of the sample dimensions the gas permeability can be
characterized by the ratio between gas relaxation time (inverse of gas collision
frequency) and the pressure relaxation time. With the present experimental
setup we measured the mass flow rate in the range 51077 — 510712 |kg/s]
and the permeability in the range 10~!* — 10~!! [m?|. However, we are not
restricted to these ranges of parameters with the present experimental setup
(volume configuration and sample size). We estimate that we could measure
at least 50 times lower mass flow rate and permeability. To go further in low
permeability measurements the experimental setup has to be modified. The
proposed approach is the first very promising stage to evolve towards measure-
ments of even lower permeabilities and also the characteristic dimension (pore
size) of membranes used for microfiltration (> 100 nm) and ultrafiltration (> 10
nm).
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blue lines represent the exponential pressure fits, which correspond to Egs. (11) and (10).
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