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Bayesian Selection for the ℓ2-Potts Model

Regularization Parameter: 1-D Piecewise

Constant Signal Denoising
Jordan Frecon, Student Member, IEEE, Nelly Pustelnik, Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE,

Herwig Wendt, Member, IEEE, and Patrice Abry, Fellow, IEEE

Abstract—Piecewise constant denoising can be solved either by
deterministic optimization approaches, based on the Potts model,
or by stochastic Bayesian procedures. The former lead to low com-
putational time but require the selection of a regularization pa-
rameter, whose value significantly impacts the achieved solution,
and whose automated selection remains an involved and challeng-
ing problem. Conversely, fully Bayesian formalisms encapsulate
the regularization parameter selection into hierarchical models, at
the price of high computational costs. This contribution proposes
an operational strategy that combines hierarchical Bayesian and
Potts model formulations, with the double aim of automatically
tuning the regularization parameter and maintaining computa-
tional efficiency. The proposed procedure relies on formally con-
necting a Bayesian framework to a ℓ2 -Potts functional. Behaviors
and performance for the proposed piecewise constant denoising
and regularization parameter tuning techniques are studied qual-
itatively and assessed quantitatively, and shown to compare favor-
ably against those of a fully Bayesian hierarchical procedure, both
in accuracy and computational load.

Index Terms—Change detection algorithms, time series analysis,
Bayes methods.

I. INTRODUCTION

P
IECEWISE constant denoising. Piecewise constant de-

noising (tightly related to change-point detection) is of

considerable potential interest in numerous signal processing

applications including, e.g., econometrics and biomedical anal-

ysis (see [1], [2], for an overview and [3] for an interesting

application in biology). An archetypal and most encountered

in the literature formulation considers noisy observations as re-

sulting from the additive mixture of a piecewise constant signal

x ∈ R
N with a Gaussian noise ǫ ∈ N (0, σ2IN )

y = x + ǫ. (1)

Detecting change-points or denoising the piecewise constant

information has been addressed by several strategies, such as

Cusum procedures [1], hierarchical Bayesian inference frame-

works [4], [5], or functional optimization formulations, involv-

ing either the ℓ1-norm [6]–[10] or the ℓ0-pseudo-norm of the

first differences of the signal [11]–[14].

This latter class frames the present contribution. Formally,

it amounts to recovering the solution of a ℓ2-Potts model,

namely,

x̂λ = arg min
x∈R N

1

2
‖y − x‖2

2 + λ‖Lx‖0 , (2)

where L ∈ R
(N −1)×N models the first difference operator,

i.e., Lx = (xi+1 − xi)1≤i≤N −1 , the ℓ0-pseudo-norm counts the

non-zero elements in Lx, and λ > 0 denotes the regularization

parameter which adjusts the respective contributions of the data-

fitting and penalization terms in the objective function.

Such a formulation however suffers from a major limitation:

its actual solution depends drastically on the regularization pa-

rameter λ. The challenging question of automatically estimating

λ from data constitutes the core issue addressed in the present

contribution.

Related works. Bayesian hierarchical inference frameworks

have received considerable interests for addressing change-point

or piecewise denoising problems [4], [5]. This mostly results

from their ability to include the hyperparameters within the

Bayesian modeling and to jointly estimate them with the param-

eters of interest. In return for this intrinsic flexibility, approxi-

mating the Bayesian estimators associated with this hierarchical

model generally requires the use of Markov chain Monte Carlo

(MCMC) algorithms, which are often known as excessively de-

manding in terms of computational burden.

Remaining in the class of deterministic functional minimiza-

tion, the non-convexity of the objective function underlying (2)

has sometimes been alleviated by a convex relaxation, i.e., the

ℓ0-pseudo-norm is replaced by the ℓ1-norm

x̃τ = arg min
x∈R N

1

2
‖y − x‖2

2 + τ‖Lx‖1 . (3)

In essence, such an approach preserves the same intuition

of piecewise constant denoising, at the price of a shrinkage



effect, but with the noticeable advantage of ensuring convex-

ity of the resulting function to be minimized (see, e.g., [25]

for an intermediate solution where the penalization term is not

convex but where the global criterion stays convex). This ensures

the convergence of the minimization algorithms [15]–[18] or

straightforward computations [19], [20]. The formulation pro-

posed in (3) has received considerable interest, because, besides

the existence and performance of sound algorithmic resolution

procedures, it can offer some convenient ways to handle the

automated tuning of the regularization parameter τ > 0. For

instance, the Stein unbiased risk estimate (SURE) [21], [22]

aims at producing an unbiased estimator that minimizes the

mean squared error between x and x̃τ . While practically ef-

fective, implementing SURE requires the prior knowledge of

the variance σ2 of the residual error ǫ, often unavailable a pri-

ori (see, a contrario, [23], [24] for hyperspectral denoising or

image deconvolution involving frames where σ2 has been esti-

mated). In [25], the regularization parameter τ is selected ac-

cording to an heuristic rule, namely τ = 0.25
√

Nσ, derived

in [8].

Alternatively, again, the problem in (3) can be tackled within

a fully Bayesian framework, relying on the formulation of (3)

as a statistical inference problem. Indeed, in the right-hand side

of (3), the first term can be straightforwardly associated with a

negative log-likelihood function by assuming an additive white

Gaussian noise sequence ǫ, i.e., y|x is distributed according

to the Gaussian distribution N (x, σ2IN ). Further, the second

term refers to a Laplace prior distribution for the first differ-

ence Lx of the unobserved signal. Under such Bayesian mod-

eling, the corresponding maximum a posteriori (MAP) criterion

reads

maximize
x∈R N

{(
1

2πσ2

)N/2

e−
1

2 σ 2 ‖y−x‖2
2

1

Z(τ/σ2)
e−

τ
σ 2 ‖Lx‖1

}
(4)

whose resolution leads to the solution (3) and where Z(τ/σ2)
is the normalizing constant associated with the prior distribu-

tion. Following a hierarchical strategy, the hyperparameters τ
and σ2 could be included into the Bayesian model to be jointly

estimated with x. However, in the specific case of (3), the prior

distribution related to the penalization is not separable with

respect to (w.r.t.) the individual components of x: The parti-

tion function Z(τ/σ2) can hence not be expressed analytically.

Therefore, estimating τ within a hierarchical Bayesian frame-

work would require either to choose a heuristic prior for τ
as proposed in [26]–[28] or to conduct intensive approximate

Bayesian computations as in [29].

Goals, contributions and outline. Departing from the Bayesian

interpretation of (3), the present contribution chooses to stick

to the original ℓ2-Potts model (2). Capitalizing on efficient dy-

namic programming algorithms [14], [30]–[33] which allow x̂λ

to be recovered for a predefined value of λ, the main objective

of this work resides in the joint estimation of the denoised sig-

nal and the optimal hyperparameter λ, without assuming any

additional prior knowledge regarding the residual variance σ2 .

Formally, this problem can be formulated as an extended coun-

terpart of (2), i.e., a minimization procedure involving x, λ, and

σ2 as stated in what follows.

Problem I.1: Let y ∈ R
N and φ : R + × R + → R . The

problem under consideration is1

minimize
x∈R N ,λ>0,σ 2 >0

1

2σ2
‖y − x‖2

2 +
λ

σ2
‖Lx‖0 + φ(λ, σ2). (5)

The main challenge for handling Problem I.1 lies in the design

of an appropriate function φ that leads to a relevant penaliza-

tion of the overall criterion w.r.t. the set of nuisance parameters

(λ, σ2). To that end, Section II provides a natural parametriza-

tion of x and a reformulation of Problem I.1. In Section III, a

closed-form expression of φ(·, ·) (cf. (28)) and an interpreta-

tion of λ will be derived from a relevant hierarchical Bayesian

inference framework. For this particular choice of the function

φ(·, ·), Section IV proposes an efficient algorithmic strategy to

approximate a solution of the Problem I.1. In Section V, the

relevance and performance of this procedure are qualitatively

illustrated and quantitatively assessed, and shown to compare

favorably against the Markov chain Monte Carlo algorithm re-

sulting from the hierarchical Bayesian counterpart of (5), both

in terms of accuracy and in computational load.

II. PROBLEM PARAMETRIZATION

Following [4], [5], [34]–[36], piecewise constant signals

x ∈ R
N can be explicitly parametrized via change-point lo-

cations r and amplitudes of piecewise constant segments µ.

These reparametrizations are derived in Sections II-A and II-B.

They are in turn used in Section II-C to bring Problem I.1 in

a form more amenable for explicit connection to a hierarchical

Bayesian model.

A. Change-Point Location Parametrization r

To locate the time instants of the change-points in the de-

noised signal x, an indicator vector r =
(
ri

)
1≤i≤N

∈ {0, 1}N

is introduced as follows

ri =

{
1, if there is a change-point at time instant i,
0, otherwise.

(6)

By convention, ri = 1 indicates that xi is the last sample be-

longing to the current segment, and thus that xi+1 belongs to

the next segment. Moreover, stating rN = 1 ensures that the

number K of segments is equal to the number of change-points,

i.e., K =
∑N

i=1 ri .

For each segment index k ∈ {1, . . . , K}, the set Rk ⊂
{1, . . . , N} is used to denote the set of time indices associated

with the k-th segment. In particular, it is worthy to note that

Rk ∩Rk ′ = ∅ for k 6= k′ and ∪K
k=1Rk = {1, · · · , N}. Here-

after, the notation Kr will be adopted to emphasize the depen-

dence of the number K of segments on the indicator vector r,

i.e., K = ‖r‖0 .

B. Segment Amplitude Parametrization µ

The amplitudes of each segment of the piecewise constant sig-

nal can be encoded by introducing the vector µ = (µk )1≤k≤Kr

1Note that (5) could have been normalized differently without changing the
minimization problem. A usual formulation aims at multiplying all terms by
σ2 . For our study, formulation (5) is adopted for convenience.



such that

(∀k ∈ {1, . . . , Kr})(∀i ∈ Rk ) xi = µk . (7)

C. Reformulation of Problem I.1

In place of x, the parameter vector θ = {r,µ} will now

be used to fully specify the piecewise constant signal x. An

important issue intrinsic to the ℓ2-Potts model and thus to this

formulation stems from the fact that the unknown parameter θ

belongs to the space

S = {{0, 1}N × R
Kr : Kr = {1, . . . , N − 1}}

whose dimension is a priori unknown, as it depends on the

number Kr of change-points. Moreover, this parametrization

leads to the following lemma.

Lemma II.1: Let y ∈ R
N and φ : R + × R + → R . Prob-

lem I.1 is equivalent to

minimize
θ={r,µ}∈S
λ>0,σ 2 >0

{
1

2σ2

Kr∑

k=1

∑

i∈Rk

(yi − µk )2

+
λ

σ2
(Kr − 1) + φ(λ, σ2)

}
(8)

where (Rk )1≤k≤Kr
is related to r as indicated in Section II-A.

Indeed, the data fidelity term in the minimization Problem I.1

can be equivalently written as

‖y − x‖2 =

Kr∑

k=1

∑

i∈Rk

(yi − xi)
2 =

Kr∑

k=1

∑

i∈Rk

(yi − µk )2 . (9)

Moreover, the penalization can be rewritten as

‖Lx‖0 = ‖r‖0 − 1 = Kr − 1. (10)

Lemma II.1 implies that estimating the piecewise constant

signal x can be equivalently formulated as estimating the pa-

rameter vector θ.

III. BAYESIAN DERIVATION OF φ

Assisted by the reformulation of Problem I.1 and a hierar-

chical Bayesian framework detailed in Section III-A, a relevant

penalization function φ will be derived in Section III-B.

A. Hierarchical Bayesian Model

In [4], [5], the problem of detecting change-points in a station-

ary sequence has been addressed following a Bayesian inference

procedure which aims at deriving the posterior distribution of

the parameter vector θ from the likelihood function associated

with the observation model and the prior distributions chosen for

the unknown parameters. In what follows, a similar approach is

proposed to produce a hierarchical Bayesian model that can be

tightly related to the Problem I.1 under a joint MAP paradigm.

First, the noise samples (ǫi)1≤i≤N are assumed to be in-

dependent and identically distributed (i.i.d.) zero mean Gaus-

sian variables with common but unknown variance σ2 , i.e.,

ǫ|σ2 ∼ N
(
0, σ2IN

)
. The resulting joint likelihood function of

the observations y given the piecewise constant model {r,µ}

and the noise variance σ2 reads

f
(
y|r,µ, σ2

)
=

Kr∏

k=1

∏

i∈Rk

1√
2πσ2

exp

(
− (µk − yi)

2

2σ2

)
. (11)

Then to derive the posterior distribution, prior distributions

are elected for the parameters r and µ, assumed to be a pri-

ori independent. Following well-admitted choices such as those

in [4], [5], [34], [35], [37], the components ri of the indicator

vector r are assumed to be a priori independent and identi-

cally distributed (i.i.d.) according to a Bernoulli distribution of

hyperparameter p

f(r|p) =

N −1∏

i=1

pr i (1 − p)1−r i

= p
∑N −1

i = 1 r i (1 − p)(N −1−∑N −1
i = 1 r i )

=
( p

1 − p

)(Kr−1)

(1 − p)(N −1) . (12)

The prior independence between the indicator components ri

(i = 1, . . . , N − 1) implicitly assumes that the occurrence of a

change at a given time index does not depend on the occur-

rence of change at any other time index. Moreover, the hyper-

parameter p stands for the prior probability of occurrence of a

change, which is assumed to be independent of the location. Ob-

viously, for particular applications, alternative and more specific

choices can be adopted relying, e.g., on hard constraints [38] or

Markovian models [39], for instance to prevent solutions com-

posed of too short segments.

From a Bayesian perspective, a natural choice for f(µ|r)
consists in electing independent conjugate Gaussian prior dis-

tributions N
(
µ0 , σ

2
0

)
for the segment amplitudes µk (k =

1, . . . , Kr), i.e.,

f(µ|r) =

Kr∏

k=1

1√
2πσ2

0

e
−(µ k −µ 0 ) 2

2 σ 2
0 . (13)

Indeed, this set of conjugate priors ensures that the conditional

posterior distributions of the segment amplitudes are still Gaus-

sian distributions.

Moreover, within a hierarchical Bayesian paradigm, nuisance

parameters, such as the noise variance, and other hyperparam-

eters defining the prior distributions can be included within the

model to be estimated jointly with θ [4], [5]. In particular, to ac-

count for the absence of prior knowledge on the noise variance

σ2 , a non-informative Jeffreys prior is assigned to σ2

f
(
σ2

)
∝ 1

σ2
. (14)

Proposed in [40], the use of this improper distribution has been

widely advocated in the Bayesian literature for its invariance

under reparametrization [41, Chap. 3] (see also [35], [37]). Fi-

nally, as in [5], [35], [36], [39], a conjugate Beta distribution

B(α0 , α1) is assigned to the unknown hyperparameter p, which

is a natural choice to model a (0, 1)-constrained parameter

f(p) =
Γ (α0 + α1)

Γ (α0) Γ (α1)
pα1 −1(1 − p)α0 −1 . (15)
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Note that a wide variety of distribution shapes can be obtained

by tuning the two hyperparameters α0 and α1 , while ensuring

the parameter p belongs to the set (0, 1), as required since p
stands for a probability [41, App. A]. In particular, when the

hyperparameters are selected as α0 = α1 = 1, the prior in (15)

reduces to the uniform distribution.

B. Joint MAP Criterion

From the likelihood function (11) and prior and hyper-prior

distributions (12)–(15) introduced above, the joint posterior dis-

tribution reads

f(Θ|y) ∝ f
(
y|r,µ, σ2

)
f (µ|r) f(r|p)f(p)f

(
σ2

)
(16)

with Θ =
{
r,µ, σ2 , p

}
. Deriving the Bayesian estimators,

such as the minimum mean square error (MMSE) and MAP

estimators associated with this posterior distribution is not

straightforward, mainly due to the intrinsic combinatorial prob-

lem resulting from the dimension-varying parameter space

{0, 1}N × R
Kr . In particular, a MAP approach would consist

in maximizing the joint posterior distribution (16), which can be

reformulated as the following minimization problem by taking

the negative logarithm of (16).

Problem III.1: Let y = (yi)1≤i≤N ∈ R
N and let Φ ={

α0 , α1 , σ
2
0

}
a set of hyperparameters. We aim to

minimize
Θ={r,µ,σ 2 ,p}

1

2σ2

Kr∑

k=1

∑

i∈Rk

(yi − µk )2

+ (Kr − 1)

(
log

(
1 − p

p

)
+

1

2
log(2πσ2

0 )

)

+
N

2
log(2πσ2) − (N − 1) log(1 − p) + log σ2

− (α1 − 1) log p − (α0 − 1) log(1 − p)

+
1

2σ2
0

Kr∑

k=1

(µk − µ0)
2 +

1

2
log(2πσ2

0 ). (17)

Despite apparent differences in parametrization between

Problem I.1 and Problem III.1, we prove hereafter that both

are equivalent for specific choices of λ and φ(·, ·).
Proposition III.1: For σ2

0 large enough, Problem I.1 with

λ = σ2

(
log

(
1 − p

p

)
+

1

2
log(2πσ2

0 )

)
(18)

and

φ(λ, σ2) =
N

2
log(2πσ2) + log(σ2)

− λ

σ2
(N + α0 − 2) +

N + α0 − 1

2
log(2πσ2

0 )

+ (N + α0 + α1 − 3) log

(
1 + exp

( λ

σ2
− 1

2
log(2πσ2

0 )
))

(19)

matches Problem III.1.

The sketch of the proof consists in identifying the three terms

of the expression in (8) in the criterion (17): the data fidelity

Fig. 1. Illustration of φ(λ, σ2 ) for the hyperparameter setting α0 = α1 = 1
and 2πσ2

0 = 104 .

term (9), a term proportional to the regularization (10), and a

third term φ(λ, σ2) that is independent of the indicator vector

r. Identification is possible under the condition that the term
1

2σ 2
0

∑Kr

k=1(µk − µ0)
2 which explicitly depends on r through

Kr can be neglected. Thus, choosing σ2
0 sufficiently large

1

2σ2
0

Kr∑

k=1

(µk − µ0)
2 ≪ 1

2
log(2πσ2

0 ), (20)

permits to equate Problem I.1 and Problem III.1 with the choices

λ and φ(λ, σ2) as defined in Proposition III.1. As an illustration

of its complex shape, Fig. 1 represents φ(λ, σ2) as function of

λ and σ2 .

Remark 1: The tuning of σ2
0 requires some discussion:

r As 1
2σ 2

0

∑Kr

k=1(µk − µ0)
2 is of the order of 1

2σ 2
0
Krσ2

0 ≈
pN
2 , a sufficient condition for (20) to hold reads:

pN

2
≪ 1

2
log(2πσ2

0 ). (21)

r However a careful examination of (17) and (18) also leads

to conclude that parameter p actually controls λ provided

that log
(

1−p
p

)
is not totally neglectable when compared

to 1
2 log(2πσ2

0 ), thus implying an upper bound of the form:

1

2
log(2πσ2

0 ) ≤ log
(1 − p)

p
+ log ζ (22)

where ζ > 0 is an arbitrary constant, whose magnitude will

be precisely addressed in Section V-E.

The tuning of log(2πσ2
0 ), of paramount practical impor-

tance, is hence not intricate and will be further discussed

Section V-E from numerical experimentations.

IV. ALGORITHMIC SOLUTION

Thanks to Proposition III.1, a function φ has been derived

which allows the choice of the regularization parameter λ to be

penalized in Problem I.1. In this section, an algorithmic solution

is proposed to estimate (x̂, λ̂, σ̂2), a solution of Problem I.1.

An alternate minimization over x, λ and σ2 would not be

efficient due to the non-convexity of the underlying criterion.

To partly alleviate this problem, we propose to estimate λ on

a grid Λ. Therefore, a candidate solution can be obtained by

solving (∀λ ∈ Λ)

(x̂λ, σ̂
2
λ) ∈ Argmin

x∈R N ,σ 2 >0

F (x, λ, σ2)



with

F (x, λ, σ2) =
1

2σ2
‖y − x‖2

2 +
λ

σ2
‖Lx‖0 + φ(λ, σ2). (23)

The minimization over x does not depend on σ2 , thus

x̂λ = arg min
x∈R N

1

2
‖y − x‖2

2 + λ‖Lx‖0 , (24)

and we set

σ̂2
λ =

‖y − x̂λ‖2

N − 1
. (25)

We finally select the triplet (x̂λ̂, λ̂, σ̂2
λ̂
) such that

λ̂ = arg min
λ∈Λ

F (x̂λ, λ, σ̂2
λ). (26)

Note that the provided estimation amounts to using the solution

of (2) for different λ ∈ Λ to probe the space (x, σ2) ∈ R
N ×

R + . Therefore, the iterations of the proposed full algorithmic

scheme (reported in Algorithm 1) are very succinct and the

overall algorithm complexity mainly depends on the ability to

solve (2) efficiently for any λ ∈ Λ. In this work, we propose to

resort to a dynamic programming algorithm developed in [14],

[31] that allows (24) to be solved exactly. We use its Pottslab2

implementation [32] augmented by a pruning strategy [42].

V. AUTOMATED SELECTION OF λ: ILLUSTRATION AND

PERFORMANCE

A. Performance Evaluation and Hyperparameter Settings

1) Synthetic Data: The performance of the proposed auto-

mated selection of λ are illustrated and assessed using Monte

Carlo numerical simulation based on synthetic data y = x + ǫ,

where the noise ǫ consists of i.i.d. samples drawn from ǫ ∼
N (0, σ2IN ), and the signal x is piecewise constant, with

i.i.d. change-points, occurring with probability p, and i.i.d. am-

plitudes drawn from a uniform distribution (on the interval

[xmin , xmax ]).
2) Performance Quantification: Performance are quantified

by the relative mean square error (MSE) and the Jaccard error.

While the former evaluates performance in the overall (shape

and amplitude) estimation x̂ of x such that

MSE(x, x̂) =
‖x − x̂‖
‖x‖ ,

the latter focuses on the accuracy of change-point location es-

timation r. The Jaccard error between the true change-point

vector r and its estimate r̂ (both in {0, 1}N ), is defined as [43],

[44]

J(r, r̂) = 1 −
∑N

i=1 min(ri , r̂i)∑
1≤i≤N

r i >0,r̂ i >0

r i + r̂ i

2 +
∑

1≤i≤N
r̂ i =0

ri +
∑

1≤i≤N
r i =0

r̂i

.

(27)

J(r, r̂) ranges from 0 when r = r̂, to 1, when r ∩ r̂ = ∅. The

Jaccard error is a demanding measure: when one half of non-

zero values of two given binary sequences coincides while the

other half does not, then J(r, r̂) = 2/3.

2https://github.com/mstorath/Pottslab

Algorithm 1: Bayesian Driven Resolution of the ℓ2-Potts

Model.

Input: Observed signal y ∈ R
N .

The predefined set of regularization parameters Λ.

Hyperparameters Φ =
{
α0 , α1 , σ

2
0

}
.

Iterations:

1: for λ ∈ Λ do

2: Compute x̂λ = arg minx∈R N
1
2 ‖y − x‖2

2 + λ‖Lx‖0 .

3: Compute σ̂2
λ = ‖y − x̂λ‖2/(N − 1).

4: end for

Output: Solution (x̂λ̂, λ̂, σ̂2
λ̂
) with

λ̂ = arg minλ∈Λ F (x̂λ, λ, σ̂2
λ)

In the present study, to account for the fact that a solution

with a change point position mismatch by a few time indices

remains useful and of practical interest, the Jaccard error is

computed between smoothed versions r ∗ G and r̂ ∗ G of the

true and estimated sequences r and r̂. The convolution kernel

G is chosen here as a Gaussian filter (with a stansdard deviation

of 0.5) truncated to a 5-sample support.

Performance are averaged over 50 realizations, except for

comparisons with the MCMC-approximated Bayesian estima-

tors (see Section V-D) where only 20 realizations are used be-

cause of MCMC procedure’s high computational cost.

3) Hyperparameter Setting: The prior probability p for

change-point is chosen as a uniform distribution over (0, 1),
obtained with hyperparameters set to α0 = α1 = 1. Indeed, for

such a choice, the Beta distribution in (15) reduces to a uniform

distribution, hence leading to a non-informative prior for the

change-point probability. This hyperparameter setting leads to

the following expression for the penalization function

φ(λ, σ2) = log(σ2) +
N

2
log(2πσ2) + log(2πσ2

0 )
)

+ (N − 1)

(
log

(
1 + exp

( λ

σ2
− 1

2
log(2πσ2

0 )
))

− λ

σ2

)
.

(28)

Amplitudes µ for x are parametrized with σ2
0 , which according

to Proposition III.1 should be chosen large enough. For the time

being, we set 2πσ2
0 = 104 , and further discuss the impact of this

choice in Section V-E.

4) Discretization of Λ: For practical purposes, we make use

of a discretized subset Λ for λ (500 values equally spaced, in

a log10-scale, between 10−5 and 105). Note that in the tool-

box associated with this work, an option is called λ−shooting

allowing to select the grid Λ according to the strategy introduced

in [31].

B. Illustration of the Principle of the Automated Tuning of λ

Fig. 2 illustrates the principle of the automated selection of λ,

under various scenarios, with different values for p and different

amplitude-to-noise-ratios3 (ANR) where ANR= xm a x −xm in

3σ .

3This measure allows amplitudes between successive segments to be com-
pared w.r.t. to noise power. Since segment amplitudes are drawn uniformly
between xmin and xmax the average difference between successive segments

is
xm a x −xm in

3 .



Fig. 2. Illustration of the automated tuning of λ: Top: Data y to which are superimposed true signal x and oracle signals x̂λM S E
(blue) and x̂λJ a c

(green)

obtained for λM SE and λJac minimizing the MSE and the Jaccard error, together with estimated x̂
λ̂

(red) obtained from automated selection of λ. Second and third

lines: relative MSE and Jaccard error as functions of λ. Vertical lines locate λM SE and λJac . Bottom line: Criterion F (cf. (23)) as a function of λ. Automatically

selected λ̂ is indicated by vertical red lines and is satisfactorily located in between the vertical lines indicating λM SE and λJac . (left) p = 0.01 and ANR = 1,
(middle) p = 0.01 and ANR = 2, (right) p = 0.15 and ANR = 2. For all configurations, xmax − xmin = 1.

For all scenarios, Fig. 2 shows that the automatically selected

λ̂, obtained as the minimum of the devised criterion F (cf. (23),

vertical red line in bottom row), satisfactorily falls within the

ranges of λ achieving the MSE minimum (denoted ΛMSE and

marked with vertical lines in the second row) or the minimum

of Jaccard error (denoted ΛJac and marked with vertical lines in

the third row): λ̂ ∈ ΛMSE ∩ ΛJac . In addition, on the first row

of Fig. 2, the corresponding solution x̂λ̂ (red) visually appears

as a satisfactory estimator of x (black), similar to the “oracle”

solutions x̂λM S E
(blue) and x̂λJ a c

(green) that rely on a perfect

knowledge of the noise-free signal x. Solution x̂λ̂ indeed sys-

tematically benefits from lower relative MSE and Jaccard error

than x̂λ for any other λ. While, by construction, x̂λM S E
and

x̂λJ a c
are identical for all λ within ΛMSE or ΛJac , the automated

selection procedure for λ yields interestingly a single global

minimizer.

When ANR decreases, a closer inspection of Fig. 2 (left

column) further shows that the supports of oracle λ, ΛMSE

and ΛJac are drastically shrinking, yet the automated selec-

tion of λ remains satisfactory even in these more difficult

contexts. The same holds when p increases (see Fig. 2, right

column).

C. Estimation Performance Quantification

To assess and quantify estimation performance of λ̂ as func-

tions of data parameters σ2 , xmax − xmin , and p, we have per-

formed Monte Carlo simulations under various settings.

First, Fig. 3 reports estimation performance for λ̂ as a function

of the ANR. It shows that the estimated value λ̂ (red), averaged

over Monte Carlo simulations, satisfactorily remains within the

range of MSE/Jaccard error oracle values for λ (dashed white

lines) and tightly follows the average oracle values (solid white

line). This holds for different xmax − xmin . As p grows (cf.

Fig. 3 from top to bottom), the oracle regions in dashed white

shrink, thus indicating that the selection of λ becomes more

intricate when more segments are to be detected. The proposed

automated selection for λ still performs well in these more

difficult situations. In addition, it can also be observed that λ̂
depends, as expected, on σ (or equivalently on xmax − xmin )

cf. Fig. 3, from left to right.

Second, Fig. 4 focuses on the behavior of the estimated λ̂ as a

function of σ, for different values of ANR. Again, it shows sat-

isfactory performance of λ̂ compared to the oracle λ. Incidently,

it also very satisfactorily reproduces the linear dependence of

λ with σ2 , which can be predicted from a mere dimensional

analysis of the ℓ2-Potts model yielding:

λ ∼ σ2

2p
. (29)

D. Comparison With State-of-the-Art Estimators

The proposed method has been compared to classical

Bayesian estimators associated with the hierarchical Bayesian

model derived in Section III-A for which an MCMC procedure

has been derived (cf. Appendix A). The number of Monte Carlo



Fig. 3. Estimation performance: RMSE and Jaccard error as functions of λ and ANR. The background displays the relative MSE (left) or Jaccard error (right)

w.r.t. λ and ANR. We superimpose in red the estimate λ̂ (average over 50 realizations), as a function of the ANR, which is shown to satisfactorily remain within
the range of oracles λ, delimited by dashed white lines and to closely follow oracle Monte Carlo average indicated by solid white lines (left: relative MSE, right:
Jaccard error). From top to bottom: p = 0.005, 0.010 and 0.015. From left to right: xmax − xmin = 0.1, 1, and 10.

Fig. 4. Estimation performance: RMSE and Jaccard error as functions of λ and σ. The background displays the relative MSE (left) or Jaccard error (right) w.r.t.

λ and σ. We superimpose in red the estimate λ̂ (average over 50 realizations), as a function of log10 σ, which is shown to satisfactorily remain within the range
of oracles λ, delimited by dashed white lines and to closely follow oracle Monte Carlo average indicated by solid white lines (left: relative MSE, right: Jaccard

error). For each configuration p = 0.01 and from left to right: ANR = 1, 2 and 4. This illustrates that λ̂ leads to solutions with same performance as oracle λ and

highlights that λ̂ varies linearly with σ2 , as expected.

iterations is fixed to TMC = 103 and the amplitude hyperprior

parameters are chosen as the mean of y for µ0 and σ2
0 = v̂ar(y),

where v̂ar(·) stands for the empirical variance.

In Fig. 5, estimation performance for the proposed procedure

(solid red) are compared against MAP and MMSE hierarchi-

cal Bayesian estimators, as functions of ANR. Overall, x̂λ̂ is

equivalent to x̂MAP and x̂MMSE in terms of MSE (first col-

umn) and Jaccard error (second column), while benefiting of

significantly lower computational costs. Interestingly, when p
increases (large number of change-points), the larger the gain

in using the proposed procedure. This is also the case when the

sample size N increases: For N = 104 , the MCMC approach

takes more than an hour while the method we propose here

provides a relevant solution in a few minutes.

We further compared the performance of the proposed strat-

egy with several classical parameter choice based on infor-

mation criteria such as AIC, SIC, AICC and SICC (see [45]

for details about these criteria). Fig. 5 (solid blue) only re-

ports the SICC-based solutions, which performed best among

those four criteria. The proposed solution always perform bet-

ter. Further criteria can be encountered in [46]–[48]. Finally,

we follow the regularization parameter choice provided in [25]

consisting in the heuristic rule τ = 0.25
√

Nσ derived in [8]

for the ℓ1-penalized formulation. Invoking dimensionality argu-

ments, this choice as been adapted to λ = 0.25
√

Nσ2 for the

ℓ0-penalized formulation addressed in this work. One should

note that this parameter selection method relies on the perfect

knowledge of the noise variance σ2 , which is not the case in

the considered study framework. To provide fair comparisons,

the performance of this heuristic rule has been evaluated using

an estimate of this variance, derived from the classical median

estimator [49] which is particularly suitable for piecewise con-

stant signals. Again, the proposed method always lead to better

solutions.

E. Selection of Hyperparameter σ2
0

We finally investigate the impact of the choice of the hyper-

parameter σ2
0 on the achieved solution, according to the discus-

sion in Remark 1. Fig. 6 displays λ̂ (red circle) as a function

of σ2
0 , for different values of xmax − xmin . It shows that using

log 2πσ2
0 ∈ [0, 5] systematically leads to satisfactory estimates

that minimize the relative MSE (left) or Jaccard error (right).

This clearly indicates that σ2
0 does not depend on data dynamics

(xmax − xmin ), which is what is expected from a hyperparame-

ter. Finally, to explore the potential dependencies on p or ANR,



Fig. 5. Comparison with state-of-the-art methods. For each configuration ANR = 2, xmax − xmin = 1 and from top to bottom: p = 0.005, 0.010 and 0.015.
From left to right: relative MSE, Jaccard error, execution time and example of solutions. The proposed estimator (red) yields estimation performance comparable
to Bayesian estimators (green) while benefiting from significantly lower computational costs. Moreover, it improves significantly the performance compared to

SICC estimator (blue) for a similar computation cost. The results obtained with λ = 0.25
√

Nσ̂2 is displayed in light blue.

Fig. 6. Estimation performance: RMSE and Jaccard error as functions of λ and σ2
0 . The background displays the relative MSE (left) or Jaccard error (right) w.r.t.

λ and σ2
0 . We superimpose in red the estimate λ̂, which a priori explicitly depends on the choice of the hyperprior σ2

0 , is averaged over 50 realizations and displayed

in red as a function of 2πσ2
0 . From left to right: xmax − xmin = 0.1, 1 and 10. For each configuration p = 0.01, ANR = 1. Choosing log 2πσ2

0 ∈ [0, 5]
systematically leads to satisfactory estimates minimizing the relative MSE (left) or Jaccard error (right).

we set xmax − xmin = 1. Fig. 7 shows that selecting any value

of σ0 such that log 2πσ2
0 ∈ [0, 5] leads to satisfactory estimates

minimizing the relative MSE (left) or Jaccard error (right), irre-

spectively of the actual values of p or of the ANR.

VI. CONCLUSIONS AND PERSPECTIVES

This contribution studied a change-point detection strat-

egy based on the ℓ2-Potts model, whose performance de-

pend crucially on the selection of a regularization parameter.

Using an equivalence between a variational formulation and a

hierarchical Bayesian formulation of the change-point detection

problem, the present contribution proposed and assessed an ef-

ficient automated selection of this regularization parameter. It

shows that estimation performance of the proposed procedure

(evaluated in terms of global MSE and Jaccard error) match

satisfactorily those achieved with oracle solutions. Moreover,

when compared to fully Bayesian strategies, the proposed pro-

cedure achieved equivalent performance at significantly lower

computational costs. One of the advantages of the proposed

approach is that it can be easily adapted to different additive

noise degradations. For instance, for the ℓ1-Potts setup, that is

the Laplacian noise assumption, the likelihood (11) should be

replaced by a Laplacian distribution with scale parameter σ and

the step (25) should be replaced by σ̂λ = ‖y − x̂λ‖/N to be

consistent. One difficulty that can be encountered for this kind

of degradation is that we do not know the conjugate prior for the

Laplace distribution. We have recently studied a related issue in

a conference paper [50]. Future work could also aim to extend

the present framework to Poisson noise.



Fig. 7. Estimation performance: RMSE and Jaccard error as functions of λ and σ2
0 . The background displays the relative MSE (left) or Jaccard error (right)

w.r.t. λ and σ2
0 . We superimpose in red the estimate λ̂, which a priori explicitly depends on the choice of the hyperprior σ2

0 , is averaged over 50 realizations

and displayed in red as a function of 2πσ2
0 . Choosing log 2πσ2

0 ∈ [0, 5] leads to satisfactory estimation performance independently of p and the ANR. For each
configuration xmax − xmin = 1. From top to bottom: p = 0.005, 0.010 and 0.015. From left to right: ANR = 1, 2 and 4.

Algorithm 2: Piecewise Constant Bayesian Denoising.

Input: Observed signal y ∈ R
N .

Hyperparameters Φ =
{
α0 , α1 , µ0 , σ

2
0

}
.

Iterations:

1: for t = 1, . . . , TMC do

2: for i = 1, . . . , N − 1 do

3: Draw r
[t]
i ∼ f

(
ri |y, r\i , p, σ2 , µ0 , σ

2
0

)

4: end for

5: for k = 1, . . . ,
∑N

i=1 r
[t]
i do

6: Draw µ
[t]
k ∼ f

(
µk |y, r, σ2 , µ0 , σ

2
0

)

7: end for

8: Draw σ2[t] ∼ f σ2 |y, r,µ
)

9: Draw p[t] ∼ f (p|r, α0 , α1)
10: end for

Output: ϑ =
{
r[t],µ[t], σ2[t], p[t]

}TM C

t=1
, x̂MAP and x̂MMSE .

APPENDIX A

BAYESIAN ESTIMATORS

The maximum a posteriori (MAP) or minimum mean squared

error (MMSE) estimators associated with the joint posterior

f(Θ|y) in (16) can be approximated by using MCMC proce-

dures that essentially rely on a partially collapsed Gibbs sampler

[51] similar to the algorithm derived in [5]. It consists in iter-

atively drawing samples (denoted ·[t]) according to conditional

posterior distributions that are associated with the joint pos-

terior (16). The resulting procedure, detailed in Algorithm 2,

provides a set of samples ϑ =
{
r[t],µ[t], σ2[t], p[t]

}TM C

t=1
that

are asymptotically distributed according to (16). These samples

can be used to approximate the MAP and MMSE estimators of

the parameters of interest [52]. The corresponding solutions are

referred to as x̂MAP and x̂MMSE in Section V-D.
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