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Abstract

We consider bias-corrected estimation of the stable tail dependence function in the re-
gression context. To this aim, we first estimate the bias of a smoothed estimator of the
stable tail dependence function, and then we subtract it from the estimator. The weak
convergence, as a stochastic process, of the resulting asymptotically unbiased estimator of
the conditional stable tail dependence function, correctly normalized, is established under
mild assumptions, the covariate argument being fixed. The finite sample behaviour of our
asymptotically unbiased estimator is then illustrated on a simulation study and compared
to two alternatives, which are not bias corrected. Finally, our methodology is applied to a
dataset of air pollution measurements.
Keywords: Bias correction, conditional stable tail dependence function, stochastic conver-
gence.

1 Introduction

Most of the practical problems involving extreme events are inherently multivariate. Conse-
quently, being able to estimate the extremal dependence between random variables is useful. To
this aim, we can either use some extremal coefficients, that give a representative picture of the
full dependency structure (see, e.g., Ledford and Tawn, 1997), or functions, such as the spectral
distribution function or the stable tail dependence function, that provide a full characterization
of the extreme dependence between variables. We refer to Beirlant et al. (2004) and de Haan
and Ferreira (2006), and the references therein, for more details. In this paper, we will focus on
the stable tail dependence function, which can be defined as follows.

For any arbitrary dimension d, let pY p1q, . . . , Y pdqq be a random vector with continuous marginal
distribution functions F1, . . . , Fd. The stable tail dependence function is defined for each yi P R`,
i “ 1, . . . , d, as

lim
tÑ8

tP
´

1´ F1pY
p1qq ď t´1y1 or . . . or 1´ FdpY

pdqq ď t´1yd

¯

“ Lpy1, . . . , ydq, (1)

1



provided that this limit exists. We refer to Huang (1992), and de Haan and Ferreira (2006) for
more details.

Several estimators for L have been proposed in the literature, see, e.g., Huang (1992), Drees
and Huang (1998), Fils-Villetard et al. (2008), Bücher et al. (2014), but as usual in the ex-
treme value framework, the classical estimators are affected by bias, which often complicates
their practical application. To solve this issue, Fougères et al. (2015) and Beirlant et al. (2016)
have introduced bias-corrected estimators and they have established the main properties of their
estimators as stochastic processes.

Taking care of the bias is important, but in practical applications, we are also often faced with
the presence of covariates in addition to the random vector pY p1q, . . . , Y pdqq. It is thus important
to be able to estimate the stable tail dependence function when random covariates X are present,
i.e., to consider the regression situation with a multivariate response. In that case, we want to
describe the extremal dependence between the variables pY p1q, . . . , Y pdqq given some observed
value x for the covariate X P Rp. Thus, the notion of conditional stable tail dependence function
Lp¨|xq can be introduced and the classical framework (1) can be extended into

lim
tÑ8

tP
´

1´ F1pY
p1q|Xq ď t´1y1 or . . . or 1´ FdpY

pdq|Xq ď t´1yd|X “ x
¯

“ Lpy1, . . . , yd|xq, (2)

where Fjp¨|xq, j “ 1, . . . , d, denote the continuous conditional distribution function of Y pjq given
X “ x. To the best of our knowledge, the estimation of the conditional stable tail dependence
function has only been studied very recently by Escobar-Bach et al. (2018b), where a local
estimator was proposed and its weak convergence as a stochastic process was established. In re-
lated work, Gardes and Girard (2015) introduced an estimator for the conditional tail copula and
studied its finite dimensional convergence. However, being in the regression context, of course
does not solve the bias problem of the estimator of Lp¨|xq. Thus, combining bias-correction and
regression will be the subject of this paper. As far as we know, this topic is completely new in
the literature.

The remainder of the paper is organized as follows. In Section 2, we introduce our bias-corrected
estimator of the conditional stable tail dependence function and we establish its weak conver-
gence as a stochastic process, the covariate being fixed. Then in Section 3, we illustrate the
performance of this estimator on a small simulation study where we compare it with two al-
ternatives, that are not asymptotically unbiased. Section 4 is devoted to a data analysis of air
pollution measurements. All the proofs are postponed to Section 5.

2 Estimators and convergence results

Denote pY,Xq :“ pY p1q, . . . , Y pdq, Xq, a random vector satisfying (2), and let pY1, X1q, . . . , pYn, Xnq,
be independent copies of pY,Xq, where X has density function f . We introduce a local estimator
for L, based on an empirical version of the left-hand side of (2), for large values of t. As is usual
in the extreme value context, we consider an intermediate sequence k “ kn, i.e., k Ñ 8 as
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n Ñ 8 with k{n Ñ 0. Since the margins Fjp¨|xq appearing in (2) are unknown in practice, we
have to replace them by estimators such as the empirical kernel estimator

pFn,jpy|xq :“

řn
i“1Kcpx´Xiq1ltY pjqi ďyu
řn
i“1Kcpx´Xiq

, j “ 1, . . . , d,

where Kcp¨q :“ Kp¨{cq{cp with K a density function on Rp, and c :“ cn is a positive non-random
sequence satisfying cn Ñ 0 as n Ñ 8. Denote with y :“ py1, . . . , ydq a vector of the positive
quadrant Rd`. According to Escobar-Bach et al. (2018b)

pLkpy|xq :“

1
k

řn
i“1Kh px´Xiq 1l!

1´ pFn,1pY
p1q
i |Xi qď

k
n
y1 or ... or 1´ pFn,dpY

pdq
i |Xi qď

k
n
yd

)

1
n

řn
i“1Khpx´Xiq

with h :“ hn a positive non-random sequence satisfying hn Ñ 0 as nÑ8, is an estimator of the
conditional stable tail dependence function Lpy|xq. Note that in pFn,jpy|xq and pLkpy|xq the same
kernel function K has been used, but they can of course be taken different. As in Escobar-Bach
et al. (2018b), the bandwidths for pFn,j and pLk are though different.

The aim of the paper is to propose an asymptotically unbiased estimator for Lp¨|xq. To the best
of our knowledge this topic has not been considered previously in the literature in the regression
context, on the contrary to the classical framework without covariates where we can mention
the contributions of Fougères et al. (2015) and Beirlant et al. (2016).

The main results of the paper will be derived as stochastic weak convergence results for processes
in y P rε, T sd, for any ε ą 0 and T ą ε, but with the covariate argument fixed, meaning that
we will focus our study only around one reference position x0 P IntpSXq, the interior of the
support SX of f , assumed to be non-empty. To this aim, we need to introduce some conditions
mentioned below and well-known in the extreme value framework. Let }.} be some norm on Rp,
and denote by Bxpτq the closed ball with respect to }.}, centered at x and radius τ ą 0. The
event At,y is defined for any t ě 0 and y P Rd` as

At,y :“
!

1´ F1pY
p1q |X q ď t´1y1 or . . . or 1´ FdpY

pdq |X q ď t´1yd

)

.

First order condition: The limit in (2) exists for all x P SX and y P Rd`, and the convergence
is uniform on r0, T sd ˆBx0pτq for any T ą 0 and a τ ą 0.

Second order condition: For any x P SX there exist a positive function αp¨|xq such that
αpt|xq Ñ 0 as tÑ8 and a non null function Mp¨|xq such that for all y P Rd`

lim
tÑ8

1

αpt|xq
ttP pAt,y |X “ xq ´ Lpy|xqu “Mpy|xq,

uniformly on r0, T sd ˆBx0pτq for any T ą 0 and a τ ą 0.
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Third order condition: For any x P SX there exist a positive function βp¨|xq such that
βpt|xq Ñ 0 as tÑ8 and a non null function Np¨|xq such that for all y P Rd`

lim
tÑ8

1

βpt|xq

"

tP pAt,y |X “ xq ´ Lpy|xq

αpt|xq
´Mpy|xq

*

“ Npy|xq,

uniformly on r0, T sd ˆBx0pτq for any T ą 0 and a τ ą 0, and where N is not a multiple of M .

Note that these assumptions imply that the functions αp¨|xq and βp¨|xq are both regularly vary-
ing with indices ρ and ρ1 respectively which are non positive. In the sequel we assume that both
indices are negative. Remark also that the functions Lp¨|xq, Mp¨|xq and Np¨|xq have a homogene-
ity property, that is Lpay|xq “ aLpy|xq, Mpay|xq “ a1´ρMpy|xq and Npay|xq “ a1´ρ´ρ

1

Npy|xq
for all a ą 0 and all y P Rd`.

Due to the regression context, we need some Hölder-type conditions.

Assumption pFmq. There exist MFj ą 0 and ηFj ą 0 such that |Fjpy|xq ´ Fjpy|zq| ď
MFj}x´ z}

ηFj , for all y P R, all px, zq P SX ˆ SX and j “ 1, . . . , d.

Assumption pDq. There exist Mf ą 0 and ηf ą 0 such that |fpxq ´ fpzq| ď Mf }x´ z}
ηf , for

all px, zq P SX ˆ SX .

Assumption pLq. There exist ML ą 0 and ηL ą 0 such that |Lpy|xq ´ Lpy|zq| ďML}x´ z}
ηL ,

for all px, zq P Bx0pτq ˆBx0pτq, τ ą 0, and y P r0, T sd, T ą 0.

Assumption pAq. There exist Mα ą 0 and ηα ą 0 such that |αpt|xq ´ αpt|zq| ď Mα}x´ z}
ηα ,

for all px, zq P SX ˆ SX and t ě 0.

Assumption pBq. There exist Mβ ą 0 and ηβ ą 0 such that |βpt|xq ´ βpt|zq| ď Mβ}x ´ z}ηβ ,
for all px, zq P SX ˆ SX and t ě 0.

Assumption pMq. There exist M ą 0 and ηM ą 0 such that |Mpy|xq´Mpy|zq| ďM}x´z}ηM ,
for all px, zq P Bx0pτq ˆBx0pτq, τ ą 0, and y P r0, T sd, T ą 0.

Also a condition is required on the kernel function K.

Assumption pKq. K is a bounded density function on Rp with support SK included in the unit
ball of Rp with respect to the norm }.}. Moreover, we assume that there exists δ,m ą 0 such
that B0pδq Ă SK and Kpuq ě m for all u P B0pδq, and K belongs to the linear span (the set of
finite linear combinations) of functions k ě 0 satisfying the following property: the subgraph of
k, tps, uq : kpsq ě uu, can be represented as a finite number of Boolean operations among sets of
the form tps, uq : qps, uq ě ϕpuqu, where q is a polynomial on Rp ˆ R and ϕ is an arbitrary real
function.
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The latter assumption is common, and used already in, e.g., Giné and Guillou (2002) and
Escobar-Bach et al. (2018a, 2018b), and allows to measure the discrepancy between the condi-
tional distribution function Fjp¨|xq and its empirical kernel version pFn,jp¨|xq.

2.1 Asymptotic result for pLkp¨|x0q under a third order condition

Escobar-Bach et al. (2018b) have established the weak convergence of pLkpy|x0q as a stochastic
process in y P r0, T sd and for a fixed covariate position x0 P Rp, under the second order condition.
In order to construct an asymptotically unbiased estimator for Lp¨|x0q, the third order condition
is required and thus we need to know if under this new condition, a similar convergence result
can be stated.

Theorem 2.1 Assume the third order condition, px, yq Ñ Npy|xq continuous on Bx0pτq ˆ
r0, T sd, with Bx0pτq Ă SX , and that there exists b ą 0 with fpxq ě b, @x P SX Ă Rp and f
bounded. Under pFmq, pDq, pLq, pAq, pBq, pMq, pKq, and assuming that there exists an ε ą 0
such that for n sufficiently large

inf
xPSX

λptu P B0p1q : x´ cu P SXuq ą ε,

where λ denotes the Lebesgue measure, consider sequences k Ñ 8, hÑ 0 and cÑ 0 as nÑ 8

such that k{nÑ 0 with

?
khp hminpηf ,ηL,ηαq ÝÑ 0,

?
khp αpn{k|x0qh

minpηM ,ηβq ÝÑ 0,
?
khp αpn{k|x0q ÝÑ 8,

?
khp αpn{k|x0qβpn{k|x0q ÝÑ µ1px0q P R`,

and for some q ą 1 and 0 ă η ă minpηF1 , ..., ηFdq

n

c

hp

k
max

˜

c

| log c|q

ncp
, cη

¸

ÝÑ 0. (3)

Then the process

!?
khp

´

pLkpy|x0q ´ Lpy|x0q ´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0q
¯

, y P r0, T sd
)

weakly converges in Dpr0, T sdq towards a tight centered Gaussian process tBpyq, y P r0, T sdu, for
any T ą 0, with covariance structure given by

Cov
`

Bpyq, Bpy1q
˘

“
}K}22
fpx0q

`

Lpy|x0q ` Lpy
1|x0q ´ Lpy _ y

1|x0q
˘

,

where y, y1 P r0, T sd and }K}2 :“
b

ş

SK
K2puqdu.
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2.2 Smoothed estimator for Lp¨|x0q

Inspired by the homogeneity of Lp¨|x0q, consider now the rescaled statistic

pLk,apy|x0q :“
1

a
pLkpay|x0q

for a positive scale parameter a. Our uncorrected (in terms of bias) estimator for Lp¨|x0q will
be the following weighted version of the rescaled statistic, defined for any r ą 1 and ξ ą 0 as

qLkpy|x0q :“

˜
şr
1
pLξk,apy|x0qda

r ´ 1

¸1{ξ

.

The weak convergence of this new estimator as a stochastic process is established in the following
theorem.

Theorem 2.2 Under the assumptions of Theorem 2.1 together with
?
khpα2pn{k|x0q Ñ µ2px0q P

R`, for any r ą 1 and ξ ą 0, we have

?
khp

!

qLkpy|x0q ´ Lpy|x0q ´ α
´

n
k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0qcpr; ρq ´ α
´

n
k

ˇ

ˇ

ˇ
x0

¯

β
´

n
k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρ` ρ
1q

´
α2pn{k|x0q

2
M2py|x0q
Lpy|x0q

dpr, ξ; ρq
)

d
ÝÑ

1

r ´ 1

ż r

1

Bpayq

a
da,

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1 and

cpr; ρq :“
r1´ρ ´ 1

pr ´ 1qp1´ ρq
,

dpr, ξ; ρq :“ rcpr; 2ρq ´ c2pr; ρqspξ ´ 1q.

Based on this result, in order to construct an asymptotically unbiased estimator for Lp¨|x0q, we
need now to estimate ρ and αkpy|x0q :“ αpn{k|x0qMpy|x0q. This is the aim of the next section.

2.3 Estimation of ρ and αpn{k|x0qMpy|x0q

Let pξ1, ξ2, ξ3, ξ4q P R4
`, r1 ­“ r2 ą 1 and s ą 0. We propose to estimate ρ by

qρk :“ 1´
1

log s
log

¨

˚

˚

˚

˝

ˆ

şr1
1

pL
ξ1
k,apsy|x0qda

r1´1

˙1{ξ1

´

ˆ

şr2
1

pL
ξ2
k,apsy|x0qda

r2´1

˙1{ξ2

ˆ

şr1
1

pL
ξ3
k,apy|x0qda

r1´1

˙1{ξ3

´

ˆ

şr2
1

pL
ξ4
k,apy|x0qda

r2´1

˙1{ξ4

˛

‹

‹

‹

‚

. (4)

Theorem 2.3 Under the assumptions of Theorem 2.1, and additionally assuming that M never
vanishes except on the axes and that

?
khpα2pn{k|x0q Ñ µ2px0q P R`, for any pξ1, ξ2, ξ3, ξ4q P
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R4
`, r1 ­“ r2 ą 1 and s ą 0, we have

?
khpα

´n

k

ˇ

ˇ

ˇ
x0

¯

"

qρk ´ ρ`
αpn{k|x0q

2 log s

Mpy|x0q

Lpy|x0q

„

s´ρ
dpr1, ξ1; ρq ´ dpr2, ξ2; ρq

cpr1; ρq ´ cpr2; ρq
´
dpr1, ξ3; ρq ´ dpr2, ξ4; ρq

cpr1; ρq ´ cpr2; ρq



`β
´n

k

ˇ

ˇ

ˇ
x0

¯ Npy|x0q

Mpy|x0q

s´ρ
1

´ 1

log s

cpr1; ρ` ρ
1q ´ cpr2; ρ` ρ

1q

cpr1; ρq ´ cpr2; ρq

+

d
ÝÑ ´

sρ´1

log s

!

1
r1´1

şr1
1

Bpasyq
a da´ 1

r2´1

şr2
1

Bpasyq
a da

)

´ 1
log s

!

1
r1´1

şr1
1

Bpayq
a da´ 1

r2´1

şr2
1

Bpayq
a da

)

Mpy|x0q rcpr1; ρq ´ cpr2; ρqs
,

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Let pξ5, ξ6q P R2
` and r3 ­“ r4 ą 1. To estimate αkpy|x0q, we propose

qαkpy|x0q :“

ˆ

şr3
1

pL
ξ5
k,apy|x0qda

r3´1

˙1{ξ5

´

ˆ

şr4
1

pL
ξ6
k,apy|x0qda

r4´1

˙1{ξ6

cpr3; qρkq ´ cpr4; qρkq
. (5)

In the sequel, we denote by c1pr; ρq the derivative of cpr; ρq with respect to ρ.

Theorem 2.4 Under the assumptions of Theorem 2.3, we have

?
khpα

´n

k

ˇ

ˇ

ˇ
x0

¯

"

qαkpy|x0q

αpn{k|x0qMpy|x0q
´ 1´ α

´n

k

ˇ

ˇ

ˇ
x0

¯Mpy|x0q

Lpy|x0q

1

2rcpr3; ρq ´ cpr4; ρqs

ˆ

ˆ

dpr3, ξ5; ρq ´ dpr4, ξ6; ρq `
c1pr3; ρq ´ c

1pr4; ρq

cpr1; ρq ´ cpr2; ρq

„

s´ρ

log s
pdpr1, ξ1; ρq ´ dpr2, ξ2; ρqq

´
1

log s
pdpr1, ξ3; ρq ´ dpr2, ξ4; ρqq

˙

´β
´n

k

ˇ

ˇ

ˇ
x0

¯ Npy|x0q

Mpy|x0q

1

cpr3; ρq ´ cpr4; ρq

ˆ

˜

cpr3; ρ` ρ
1q ´ cpr4; ρ` ρ

1q `
rc1pr3; ρq ´ c

1pr4; ρqsrcpr1; ρ` ρ
1q ´ cpr2; ρ` ρ

1qs

cpr1; ρq ´ cpr2; ρq

sρ
1

´ 1

log s

¸+

d
ÝÑ

1

cpr3; ρq ´ cpr4; ρq

1

Mpy|x0q

"

1

r3 ´ 1

ż r3

1

Bpayq

a
da´

1

r4 ´ 1

ż r4

1

Bpayq

a
da

´
c1pr4; ρq ´ c

1pr3; ρq

cpr1; ρq ´ cpr2; ρq

„

sρ´1

log s

ˆ

1

r1 ´ 1

ż r1

1

Bpasyq

a
da´

1

r2 ´ 1

ż r2

1

Bpasyq

a
da

˙

´
1

log s

ˆ

1

r1 ´ 1

ż r1

1

Bpayq

a
da´

1

r2 ´ 1

ż r2

1

Bpayq

a
da

˙*

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.
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2.4 Bias correction of qLkpy|x0q

Now we have all the ingredients to construct an asymptotically unbiased estimator for Lp¨|x0q
by removing from qLkpy|x0q the bias term where αpn{k|x0qMpy|x0q together with the second
order rate parameter ρ have been estimated externally, using the same intermediate sequence
k “ kn, which is such that k “ opkq. This idea has been originally proposed by Gomes and
co-authors (see, e.g., Gomes et al., 2008, Caeiro et al., 2009) in the univariate framework and
has the advantage that the variance of the bias-corrected estimator and the uncorrected one is
the same. Thus, we propose the following bias-corrected estimator for Lp¨|x0q

Lk,kpy|x0q :“ qLkpy|x0q ´ qαkpy|x0qcpr; qρkq

ˆ

k

k

˙

qρk

. (6)

Theorem 2.5 Assume the third order condition, M never vanishes except on the axes, px, yq Ñ
Npy|xq continuous on Bx0pτq ˆ r0, T s

d, with Bx0pτq Ă SX , and that there exists b ą 0 with
fpxq ě b, @x P SX Ă Rp and f bounded. Under pFmq, pDq, pLq, pAq, pBq, pMq, pKq, and
assuming that there exists an ε ą 0 such that for n sufficiently large

inf
xPSX

λptu P B0p1q : x´ cu P SXuq ą ε,

consider sequences k Ñ 8, h Ñ 0, c Ñ 0 as n Ñ 8 and k such that k “ opkq, k{n Ñ 0, and
with

a

khp hminpηf ,ηL,ηαq ÝÑ 0,
a

khp αpn{k|x0qh
minpηM ,ηβq ÝÑ 0,

?
khp αpn{k|x0q ÝÑ 8,

a

khp αpn{k|x0qβpn{k|x0q ÝÑ µ1px0q P R`
a

khpα2pn{k|x0q ÝÑ µ2px0q P R`

and for some q ą 1 and 0 ă η ă minpηF1 , ..., ηFdq

n

c

hp

k
max

˜

c

| log c|q

ncp
, cη

¸

ÝÑ 0.

Then we have

?
khp

!

Lk,kpy|x0q ´ Lpy|x0q ´ α
´

n
k

ˇ

ˇ

ˇ
x0

¯

β
´

n
k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρ` ρ
1q ´

α2pn{k|x0q
2

M2py|x0q
Lpy|x0q

dpr, ξ; ρq
)

d
ÝÑ

1

r ´ 1

ż r

1

Bpayq

a
da

in Dprε, T sdq, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Note that this bias-corrected estimator Lk,kp¨|x0q has the same asymptotic variance as the un-

corrected estimator qLkp¨|x0q (see Theorem 2.2).
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3 Simulation study

Our aim in this section is to illustrate the bias-correcting effect in the estimation of Lp¨|x0q. We
focus on dimensions d “ 2 and p “ 1. We consider the two models studied in Escobar-Bach et al.
(2018b), which both satisfy our third order condition, together with Assumptions pDq, pLq, pAq,
pBq, pMq and pFmq. In particular, these models are the following:

• Model 1: The bivariate Student distribution with density function

fpY p1q,Y p2qqpy1, y2q “

?
1´ θ2

2π

ˆ

1`
y21 ´ 2θy1y2 ` y

2
2

ν

˙´ ν`2
2

, py1, y2q P R2,

where θ is the Pearson correlation coefficient. The stable tail dependence function can be
described as

Lpy1, y2|θq “ y1Fν`1

˜

py1{y2q
1{ν ´ θ

?
1´ θ2

?
ν ` 1

¸

` y2Fν`1

˜

py2{y1q
1{ν ´ θ

?
1´ θ2

?
ν ` 1

¸

,

where Fν`1 is the distribution function of the univariate Student distribution with pν` 1q
degrees of freedom. Also

Mpy1, y2|θq “ C1

«

y
2{ν`1
1 Fν`3

˜

py1{y2q
1{ν ´ θ

?
1´ θ2

?
ν ` 3

¸

` y
2{ν`1
2 Fν`3

˜

py2{y1q
1{ν ´ θ

?
1´ θ2

?
ν ` 3

¸ff

,

Npy1, y2|θq “ C2

«

y
4{ν`1
1 Fν`5

˜

py1{y2q
1{ν ´ θ

?
1´ θ2

?
ν ` 5

¸

` y
4{ν`1
2 Fν`5

˜

py2{y1q
1{ν ´ θ

?
1´ θ2

?
ν ` 5

¸ff

,

C1 :“ ´
ν2{ν`1π1{νpν ` 1q

2pν ` 2q

˜

Γ
`

ν
2

˘

Γ
`

ν`1
2

˘

¸2{ν

,

C2 :“
ν4{ν`1π2{νpν ` 1qpν ` 3q

8pν ` 4q

˜

Γ
`

ν
2

˘

Γ
`

ν`1
2

˘

¸4{ν

,

αpt|θq “ t´2{ν ,

βpt|θq “ t´2{ν .

We set θ “ X, where X is uniformly distributed on r0, 1s. In the simulations, we use
ν “ 4, which corresponds to ρ “ ρ1 “ ´1{2;

• Model 2: a particular case of the Archimax bivariate copulas introduced in Capéraà et al.
(2000) and also mentioned in Fougères et al. (2015), namely:

Cpy1, y2|xq “
 

1` Lpy´11 ´ 1, y´12 ´ 1|xq
(´1

,

where we use for L the asymmetric logistic stable tail dependence function defined by

Lpy1, y2|xq “ p1´ t1qy1 ` p1´ t2qy2 `
”

pt1y1q
θx ` pt2y2q

θx
ı1{θx

,

9



where 0 ď t1, t2 ď 1, and θx :“ minp1{x, 100q, with the covariate X uniformly distributed
on r0, 1s. The marginal distributions are taken to be unit Fréchet. For this model

Mpy1, y2|xq “ y21B1Lpy1, y2|xq ` y
2
2B2Lpy1, y2|xq ´ L

2py1, y2|xq,

Npy1, y2|xq “ B1Lpy1, y2|xqpy
3
1 ´ 2Lpy1, y2|xqy

2
1q ` B2Lpy1, y2|xqpy

3
2 ´ 2Lpy1, y2|xqy

2
2q

`
1

2
B11Lpy1, y2|xqy

4
1 `

1

2
B22Lpy1, y2|xqy

4
2 ` B12Lpy1, y2|xqy

2
1y

2
2 ` L

3py1, y2|xq,

αpt|xq “ t´1,

βpt|xq “ t´1.

Hence ρ “ ρ1 “ ´1. In the simulations, different values for the pair pt1, t2q have been
tried but the results seem to be not too much influenced by them, thus we exhibit only
the results in case pt1, t2q “ p0.4, 0.6q which corresponds to an asymmetric tail dependence
function.

For each model, we simulate 500 samples of size 1000, and we compare three estimators of
Lp¨|x0q: the two uncorrected estimators, pLkp¨|x0q and its smoothed version qLkp¨|x0q, and our
bias-corrected estimator Lk,kp¨|x0q, for three positions x0 “ 0.3, 0.5 and 0.7. Concerning the
kernel, we always use the bi-quadratic function

Kpuq :“
15

16
p1´ u2q21ltuPr´1,1su.

Each estimator requires the selection of some tuning parameters. This will be done as follows.

For the uncorrected estimator pLkp¨|x0q of Escobar-Bach et al. (2018b), we follow their ap-
proach, i.e., we use their cross-validation criterion for both bandwidth parameters c1 and c2,
corresponding to the marginals approximation, and for the sequence h, we use

h “
minpc1, c2q

| logpminpc1, c2qq|1.1
k

n
,

coming from condition (3), as described in their paper.

For the uncorrected smoothed estimator qLkp¨|x0q, the pair pr, ξq is selected in a data-driven way
using the homogeneity of the function Lpy|x0q, namely, for all y and k

pr˚, ξ˚q :“ argmin
pr,ξqPRˆE

ÿ

tPT

´

qLkpty|x0q ´ tqLkpy|x0q
¯2
,

where R :“ t1.1, 1.2, . . . , 2u, E :“ t1, 2, 3u and T :“ t1{3, 2{3, 1, 4{3, 5{3u. The grids of values
are selected after an extensive simulation study.

For the bias-corrected estimator Lk,kp¨|x0q, also a data-driven method has been used for all

the parameters involved. More precisely, Lk,kp¨|x0q defined in (6) is based on the uncorrected

smoothed estimator qLkp¨|x0q computed with pr˚, ξ˚q from which we remove the bias, based on

10



estimates qαkp¨|x0q and qρk, derived according to the following algorithm:
Step 1. Let y˚ “ p0.5, 0.5q, s “ 0.4 and k “ t0.99nu as suggested by Fougères et al. (2015);
Step 2. Note that qρk is an estimate of ρ, and as such is independent of y. Define R :“ tpr1, r2q P
R2 : r1 ‰ r2u, Ξ :“ tpξ1, ξ2, ξ3, ξ4q P E

4 : ξ1 “ ξ3, ξ2 “ ξ4u and denote qρkpy
˚, r1, r2, ξ1, ξ2, ξ3, ξ4q :“

qρk as in (4) for all pr1, r2q P R, pξ1, ξ2, ξ3, ξ4q P Ξ and y “ y˚. Then, find pr˚1 , r
˚
2 , ξ

˚
1 , ξ

˚
2 q the

values of pqr1, qr2, qξ1, qξ2q P Rˆ E2 minimizing the criterion

ÿ

pr1,r2,ξ1,ξ2qPRˆE2

´

qρk

´

y˚, qr1, qr2, qξ1, qξ2, qξ1, qξ2

¯

´ qρk py
˚, r1, r2, ξ1, ξ2, ξ1, ξ2q

¯2
.

The estimate qρk in (6) is finally computed as qρkpy
˚, r˚1 , r

˚
2 , ξ

˚
1 , ξ

˚
2 , ξ

˚
1 , ξ

˚
2 q;

Step 3. Let qαkp¨, r3, r4, ξ5, ξ6|x0q :“ qαkp¨|x0q as defined in (5). We use the homogeneity of
Mp¨|x0q in order to select the parameters pr3, r4, ξ5, ξ6q. More precisely, qαkp¨|x0q in (6) is com-
puted as qαkp¨, r

˚
3 , r

˚
4 , ξ

˚
5 , ξ

˚
5 |x0q where

pr˚3 , r
˚
4 , ξ

˚
5 q :“ argmin

pr3,r4,ξ5qPRˆE

ÿ

tPT

´

qαkpty
˚, r3, r4, ξ5, ξ5|x0q ´ t

1´qρk
qαkpy

˚, r3, r4, ξ5, ξ5|x0q
¯2
.

In the latter, qρk is the value obtained in Step 2.

In Figure 1, we show the sample mean (left) and the empirical mean squared error (MSE, right)
of pLkpy|x0q (dotted line), qLkpy|x0q (dashed line) and Lk,kpy|x0q (full line) as a function of k
in case of Model 1 with x0 “ 0.3 and four possible values of y, corresponding to the different
rows: from the top to the bottom, y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q and p0.8, 0.2q, respectively.
The horizontal line on the left panel represents the true value of Lpy|x0q. Figures 2 and 3 are
constructed similarly, but for x0 “ 0.5 and 0.7, respectively, whereas Figures 4 to 6 concern
Model 2 and the same values of x0 and y. Based on these simulations, we can draw the following
conclusions:

• Our estimator Lk,kpy|x0q clearly outperforms the two alternatives. In terms of bias, the
sample means show very stable paths as a function of k, close to the true value. In terms of
MSE, it is still competitive, almost always better than pLkpy|x0q and qLkpy|x0q, or otherwise
at least similar, and again very stable as a function of k. Those are very nice features since
in our case, the selection of k is not very crucial, while it is for pLk and qLk.

• For Model 2, the estimation is more difficult for y far away from the diagonal, whereas for
Model 1, it does not depend on y. Also, the performance of our bias-corrected estimator
Lk,kpy|x0q does not seem to depend on the position in the covariate space.

4 Application to air pollution data

In this section, we illustrate the practical applicability of our bias-corrected estimator on a
dataset of air pollution measurements. We consider the data collected by the United States Envi-
ronmental Protection Agency (EPA), publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata
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Figure 1: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: pLkpy|0.3q
(dotted line), qLkpy|0.3q (dashed line), Lk,kpy|0.3q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.3q.
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Figure 2: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.5q: pLkpy|0.5q
(dotted line), qLkpy|0.5q (dashed line), Lk,kpy|0.5q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.5q.
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Figure 3: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.7q: pLkpy|0.7q
(dotted line), qLkpy|0.7q (dashed line), Lk,kpy|0.7q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.7q.
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Figure 4: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: pLkpy|0.3q
(dotted line), qLkpy|0.3q (dashed line), Lk,kpy|0.3q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.3q.
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Figure 5: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.5q: pLkpy|0.5q
(dotted line), qLkpy|0.5q (dashed line), Lk,kpy|0.5q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.5q.
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Figure 6: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.7q: pLkpy|0.7q
(dotted line), qLkpy|0.7q (dashed line), Lk,kpy|0.7q (full line) as a function of k for different values
of y corresponding to each row: y “ p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line
on the left panel corresponds to the true value of Lpy|0.7q.
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{download files.html. The dataset contains daily measurements of, among others, maximum
temperature, ground-level ozone, carbon monoxide and particulate matter concentrations, for
the period 1999 to 2013, and this for stations spread over the U.S. Monitoring levels of these
pollutants is of crucial importance, as extreme temperature and high levels of pollutants like
ground-level ozone and particulate matter pose a major threat to human health. We estimate
the stable tail dependence function for the variables temperature and ozone concentration, con-
ditional on time and location, where the latter is expressed by latitude and longitude. In the
estimation, the covariates are standardised to the interval r0, 1s, and the tuning parameters are
selected with the algorithm described in Section 3. In order to keep the computational time
requirements under control, the tuning parameters selected at steps 1. to 3. of the algorithm are
computed with a random sampling of size r0.1ns where n “ 127328 refers to the initial sample
size. As kernel function K˚, we use the following generalisation of the bi-quadratic kernel K :

K˚px1, x2, x3q :“
3
ź

i“1

Kpxiq,

where x1, x2, x3, refer to the covariates time, latitude and longitude, respectively, in standard-
ised form. Note that K˚ has as support the unit ball with respect to the max-norm on R3.

We report here only the results at two different time points, January 15, 2007 and June 15,
2007, and for two locations, Fresno and Los Angeles (both in California). In Figure 7, we show
the estimates mediantrLkpt, 1 ´ t|xq, k “ n{4, ¨ ¨ ¨ , n{2u, with a range of k´values based on 25
equally spaced integers, where rLk is either Lk,k (full line), pLk (dotted line) or qLk (dashed line),
for the cities Fresno (top row) and Los Angeles (bottom row) on January 15, 2007 (first column)
and June 15, 2007 (second column). For both stations, the bias-corrected estimate for the stable
tail dependence function indicates a stronger extreme dependence between temperature and
ozone concentration in winter than in summer. In winter the extreme dependence in Fresno is
stronger than in Los Angeles. The results obtained with the uncorrected estimators pLk and qLk
are typically similar to each other, and correspond more or less with the analysis reported in
Escobar-Bach et al. (2018b). The estimate Lk,k differs considerably from pLk and qLk for Fresno,
winter and Los Angeles, summer. Note that in these cases, the bias-corrected estimate tends
to be higher than the uncorrected estimates, indicating a weaker extremal dependence. This
was also observed in the simulation experiment, where the bias-corrected estimator tends to be
larger (and closer to the true value) than the uncorrected estimators. The observed discrepancy
indicates that estimation of tail dependence between temperature and ozone concentration can
suffer from bias, and therefore it is recommended to use the bias-corrected estimator in order to
get a better estimate of the stable tail dependence function.
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Figure 7: Air pollution data : Estimates of mediantrLkpt, 1´ t|xq, k “ n{4, ¨ ¨ ¨n{2u, with a range
of k´values based on 25 equally spaced integers, for Fresno (top) and Los Angeles (bottom) on
January 15, 2007 (first column) and June 15, 2007 (second column).
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5 Proofs

5.1 Proof of Theorem 2.1

We follow the lines of proof of Theorems 2.1 and 2.3 in Escobar-Bach et al. (2018b). The only
difference lies in the fact that, under the third order condition, we have

n

k
P
`

An{k,y|X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

“ α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

Mpy|x0 ´ huq ` α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

Npy|x0 ´ huq

`α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k
|x0 ´ hu

¯

$

’

’

’

’

’

&

’

’

’

’

’

%

n

k
P
`

An{k,y |X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

αpn{k|x0 ´ huq
´Mpy|x0 ´ huq

β pn{k|x0 ´ huq
´Npy|x0 ´ huq

,

/

/

/

/

/

.

/

/

/

/

/

-

,

where

sup
yPr0,T sd

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

k
P
`

An{k,y |X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

αpn{k|x0 ´ huq
´Mpy|x0 ´ huq

β pn{k|x0 ´ huq
´Npy|x0 ´ huq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
yPr0,T sd,xPBx0 pτq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n

k
P
`

An{k,y |X “ x
˘

´ Lpy|xq

αpn{k|xq
´Mpy|xq

β pn{k|xq
´Npy|xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

since for n large enough x0 ´ hu P Bx0pτq. This leads to

n

k
P
`

An{k,y|X “ x0 ´ hu
˘

´ Lpy|x0 ´ huq

“ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0 ´ huq ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

rNpy|x0 ´ huq ` op1qs

`

”

α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

´ α
´n

k

ˇ

ˇ

ˇ
x0

¯ı

Mpy|x0 ´ huq

`

”

α
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

β
´n

k

ˇ

ˇ

ˇ
x0 ´ hu

¯

´ α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯ı

rNpy|x0 ´ huq ` op1qs

“ α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0q

`O
´

α
´n

k

ˇ

ˇ

ˇ
x0

¯

hηM^ηβ
¯

`O phηαq ` o
´

α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯¯

,

where the error terms are all independent from y.
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5.2 Proof of Theorem 2.2

Using Theorem 2.1, the homogeneity properties of the functions Lp¨|x0q, Mp¨|x0q, Np¨|x0q, and
the Skorohod representation (but keeping the same notation), we have

pLk,apy|x0q
d
“ Lpy|x0q ` α

´n

k

ˇ

ˇ

ˇ
x0

¯

a´ρMpy|x0q ` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

a´ρ´ρ
1

Npy|x0q

`
1

?
khp

Bpayq

a
`

1

a
o

ˆ

1
?
khp

˙

,

where the o´term is almost surely and uniform in a and y. This implies that for any r ą 1
and ξ ą 0, under the assumptions of Theorem 2.2, we have by straightforward application of
Taylor’s theorem that

şr
1
pLξk,apy|x0qda

r ´ 1
d
“ Lξpy|x0q ` α

´n

k

ˇ

ˇ

ˇ
x0

¯

ξLξ´1py|x0qMpy|x0qcpr; ρq

` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

ξLξ´1py|x0qNpy|x0qcpr; ρ` ρ
1q

` α2
´n

k

ˇ

ˇ

ˇ
x0

¯ ξpξ ´ 1q

2
Lξ´2py|x0qM

2py|x0qcpr; 2ρq

`
1

?
khp

ξ

r ´ 1
Lξ´1py|x0q

ż r

1

Bpayq

a
da` o

ˆ

1
?
khp

˙

.

Theorem 2.2 follows then from another application of Taylor’s theorem.

5.3 Proof of Theorem 2.3

According to Theorem 2.2, using the homogeneity properties of the functions Lp¨|x0q,Mp¨|x0q,
Np¨|x0q, and the Skorohod representation, we have

˜
şr
1
pLξk,apsy|x0qda

r ´ 1

¸1{ξ

d
“ sLpy|x0q ` α

´n

k

ˇ

ˇ

ˇ
x0

¯

s1´ρMpy|x0qcpr; ρq

`α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

s1´ρ´ρ
1

Npy|x0qcpr; ρ` ρ
1q

`α2
´n

k

ˇ

ˇ

ˇ
x0

¯ s1´2ρ

2

M2py|x0q

Lpy|x0q
dpr, ξ; ρq

`
1

?
khp

1

r ´ 1

ż r

1

Bpasyq

a
da` o

ˆ

1
?
khp

˙

.

Several Taylor series expansions allow us to achieve the proof of Theorem 2.3.

5.4 Proof of Theorem 2.4

Consider the decomposition
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qαkpy|x0q “

ˆ

şr3
1

pL
ξ5
k,apy|x0qda

r3´1

˙1{ξ5

´

ˆ

şr4
1

pL
ξ6
k,apy|x0qda

r4´1

˙1{ξ6

cpr3; ρq ´ cpr4; ρq

"

1`
rcpr3; ρq ´ cpr3; qρkqs ´ rcpr4; ρq ´ cpr4; qρkqs

cpr3; qρkq ´ cpr4; qρkq

*

“: T1 t1` T2u .

From Theorem 2.2

T1
αpn{k|x0qMpy|x0q

d
“ 1` β

´n

k

ˇ

ˇ

ˇ
x0

¯ Npy|x0q

Mpy|x0q

cpr3; ρ` ρ
1q ´ cpr4; ρ` ρ

1q

cpr3; ρq ´ cpr4; ρq

` α
´n

k

ˇ

ˇ

ˇ
x0

¯Mpy|x0q

Lpy|x0q

dpr3, ξ5; ρq ´ dpr4, ξ6; ρq

2rcpr3; ρq ´ cpr4; ρqs

`
1

?
khpαpn{k|x0qMpy|x0q

1
r3´1

şr3
1

Bpayq
a da´ 1

r4´1

şr4
1

Bpayq
a da

cpr3; ρq ´ cpr4; ρq

` o

ˆ

1
?
khpαpn{k|x0q

˙

and by a Taylor series expansion

T2
d
“
rc1pr4; ρq ´ c

1pr3; ρqspqρk ´ ρq

cpr3; ρq ´ cpr4; ρq
p1` op1qq.

Combining these results leads to Theorem 2.4.

5.5 Proof of Theorem 2.5

From Theorem 2.2, we have

Lk,kpy|x0q
d
“ Lpy|x0q `

˜

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρk
¸

cpr; ρq

´qαkpy|x0q

ˆ

k

k

˙

qρk
`

cpr; qρkq ´ cpr; ρq
˘

` α
´n

k

ˇ

ˇ

ˇ
x0

¯

β
´n

k

ˇ

ˇ

ˇ
x0

¯

Npy|x0qcpr; ρ` ρ
1q

`
α2pn{k|x0q

2

M2py|x0q

Lpy|x0q
dpr, ξ; ρq `

1
?
khp

1

r ´ 1

ż r

1

Bpayq

a
da` o

ˆ

1
?
khp

˙

.

Now remark that, by the mean value theorem, for rρk an intermediate value between qρk and ρ

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρk

“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙ρ
+

´ qαkpy|x0q

ˆ

k

k

˙

rρk

log
k

k

`

qρk ´ ρ
˘

.
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Using Theorems 2.3 and 2.4, we can thus deduce that

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρk

d
“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

´ α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙ˆ

k

k

˙ρ
+

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

rρk

log
k

k

`

qρk ´ ρ
˘

` o

ˆ

1
?
khp

˙

d
“

#

α
´n

k

ˇ

ˇ

ˇ
x0

¯

´ α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙ˆ

k

k

˙ρ
+

Mpy|x0q ` o

ˆ

1
?
khp

˙

.

Recall that αp.|x0q is regularly varying with index ρ ă 0, which means that αpy|x0q “ yρ`αpy|x0q
where `αp¨|x0q is a slowly varying function at infinity. Following the lines of proof of Theorem
2 in Beirlant et al. (2016), this implies that

α
´n

k

ˇ

ˇ

ˇ
x0

¯

Mpy|x0q ´ qαkpy|x0q

ˆ

k

k

˙

qρk
d
“

ˆ

k

k

˙ρ

α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

β

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

$

&

%

`αpn{k|x0q

`αpn{k|x0q
´ 1

βpn{k|x0q

,

.

-

Mpy|x0q ` o

ˆ

1
?
khp

˙

“ O

˜

ˆ

k

k

˙ρ

α

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

β

ˆ

n

k

ˇ

ˇ

ˇ
x0

˙

¸

` o

ˆ

1
?
khp

˙

“ o

ˆ

1
?
khp

˙

.

Consequently, since we have also by Theorem 2.3

qαkpy|x0q

ˆ

k

k

˙

qρk
`

cpr; qρkq ´ cpr; ρq
˘

“ O

˜

ˆ

k

k

˙

qρk 1
?
khp

¸

“ o

ˆ

1
?
khp

˙

,

and thus Theorem 2.5 follows.
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