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Introduction

Most of the practical problems involving extreme events are inherently multivariate. Consequently, being able to estimate the extremal dependence between random variables is useful. To this aim, we can either use some extremal coefficients, that give a representative picture of the full dependency structure (see, e.g., [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF], or functions, such as the spectral distribution function or the stable tail dependence function, that provide a full characterization of the extreme dependence between variables. We refer to [START_REF] Beirlant | Statistics of Extremes -Theory and Applications[END_REF] and de [START_REF] De Haan | Extreme value theory -An introduction[END_REF], and the references therein, for more details. In this paper, we will focus on the stable tail dependence function, which can be defined as follows.

For any arbitrary dimension d, let pY p1q , . . . , Y pdq q be a random vector with continuous marginal distribution functions F 1 , . . . , F d . The stable tail dependence function is defined for each y i P R `, i " 1, . . . , d, as lim tÑ8 tP ´1 ´F1 pY p1q q ď t ´1y 1 or . . . or 1 ´Fd pY pdq q ď t ´1y d ¯" Lpy 1 , . . . , y d q,

(1) provided that this limit exists. We refer to [START_REF] Huang | Statistics of bivariate extremes[END_REF], and de [START_REF] De Haan | Extreme value theory -An introduction[END_REF] for more details.

Several estimators for L have been proposed in the literature, see, e.g., [START_REF] Huang | Statistics of bivariate extremes[END_REF], [START_REF] Drees | Best attainable rates of convergence for estimators of the stable tail dependence function[END_REF], [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF], [START_REF] Bücher | When uniform weak convergence fails: empirical processes for dependence functions and residuals via epi-and hypographs[END_REF], but as usual in the extreme value framework, the classical estimators are affected by bias, which often complicates their practical application. To solve this issue, [START_REF] Fougères | Bias correction in multivariate extremes[END_REF] and [START_REF] Beirlant | Bias-corrected estimation of stable tail dependence function[END_REF] have introduced bias-corrected estimators and they have established the main properties of their estimators as stochastic processes.

Taking care of the bias is important, but in practical applications, we are also often faced with the presence of covariates in addition to the random vector pY p1q , . . . , Y pdq q. It is thus important to be able to estimate the stable tail dependence function when random covariates X are present, i.e., to consider the regression situation with a multivariate response. In that case, we want to describe the extremal dependence between the variables pY p1q , . . . , Y pdq q given some observed value x for the covariate X P R p . Thus, the notion of conditional stable tail dependence function Lp¨|xq can be introduced and the classical framework (1) can be extended into lim tÑ8 tP ´1 ´F1 pY p1q |Xq ď t ´1y 1 or . . . or 1 ´Fd pY pdq |Xq ď t ´1y d |X " x ¯" Lpy 1 , . . . , y d |xq,

where F j p¨|xq, j " 1, . . . , d, denote the continuous conditional distribution function of Y pjq given X " x. To the best of our knowledge, the estimation of the conditional stable tail dependence function has only been studied very recently by Escobar-Bach et al. (2018b), where a local estimator was proposed and its weak convergence as a stochastic process was established. In related work, [START_REF] Gardes | Nonparametric estimation of the conditional tail copula[END_REF] introduced an estimator for the conditional tail copula and studied its finite dimensional convergence. However, being in the regression context, of course does not solve the bias problem of the estimator of Lp¨|xq. Thus, combining bias-correction and regression will be the subject of this paper. As far as we know, this topic is completely new in the literature.

The remainder of the paper is organized as follows. In Section 2, we introduce our bias-corrected estimator of the conditional stable tail dependence function and we establish its weak convergence as a stochastic process, the covariate being fixed. Then in Section 3, we illustrate the performance of this estimator on a small simulation study where we compare it with two alternatives, that are not asymptotically unbiased. Section 4 is devoted to a data analysis of air pollution measurements. All the proofs are postponed to Section 5.

Estimators and convergence results

Denote pY, Xq :" pY p1q , . . . , Y pdq , Xq, a random vector satisfying (2), and let pY 1 , X 1 q, . . . , pY n , X n q, be independent copies of pY, Xq, where X has density function f . We introduce a local estimator for L, based on an empirical version of the left-hand side of (2), for large values of t. As is usual in the extreme value context, we consider an intermediate sequence k " k n , i.e., k Ñ 8 as n Ñ 8 with k{n Ñ 0. Since the margins F j p¨|xq appearing in (2) are unknown in practice, we have to replace them by estimators such as the empirical kernel estimator p F n,j py|xq :"

ř n i"1 K c px ´Xi q1l tY pjq i ďyu ř n i"1 K c px ´Xi q , j " 1, . . . , d,
where K c p¨q :" Kp¨{cq{c p with K a density function on R p , and c :" c n is a positive non-random sequence satisfying c n Ñ 0 as n Ñ 8. Denote with y :" py 1 , . . . , y d q a vector of the positive quadrant

R d `. According to Escobar-Bach et al. (2018b) p L k py|xq :" 1 k ř n i"1 K h px ´Xi q 1l ! 1´p F n,1 pY p1q i |X i qď k n y 1 or ... or 1´p F n,d pY pdq i |X i qď k n y d ) 1 n ř n i"1 K h px ´Xi q
with h :" h n a positive non-random sequence satisfying h n Ñ 0 as n Ñ 8, is an estimator of the conditional stable tail dependence function Lpy|xq. Note that in p F n,j py|xq and p L k py|xq the same kernel function K has been used, but they can of course be taken different. As in Escobar-Bach et al. (2018b), the bandwidths for p F n,j and p L k are though different.

The aim of the paper is to propose an asymptotically unbiased estimator for Lp¨|xq. To the best of our knowledge this topic has not been considered previously in the literature in the regression context, on the contrary to the classical framework without covariates where we can mention the contributions of [START_REF] Fougères | Bias correction in multivariate extremes[END_REF] and [START_REF] Beirlant | Bias-corrected estimation of stable tail dependence function[END_REF].

The main results of the paper will be derived as stochastic weak convergence results for processes in y P rε, T s d , for any ε ą 0 and T ą ε, but with the covariate argument fixed, meaning that we will focus our study only around one reference position x 0 P IntpS X q, the interior of the support S X of f , assumed to be non-empty. To this aim, we need to introduce some conditions mentioned below and well-known in the extreme value framework. Let }.} be some norm on R p , and denote by B x pτ q the closed ball with respect to }.}, centered at x and radius τ ą 0. The event A t,y is defined for any t ě 0 and y P R d `as

A t,y :" ! 1 ´F1 pY p1q |X q ď t ´1y 1 or . . . or 1 ´Fd pY pdq |X q ď t ´1y d

) .

First order condition: The limit in (2) exists for all x P S X and y P R d `, and the convergence is uniform on r0, T s d ˆBx 0 pτ q for any T ą 0 and a τ ą 0.

Second order condition: For any x P S X there exist a positive function αp¨|xq such that αpt|xq Ñ 0 as t Ñ 8 and a non null function M p¨|xq such that for all y P R d lim tÑ8 1 αpt|xq ttP pA t,y |X " x q ´Lpy|xqu " M py|xq, uniformly on r0, T s d ˆBx 0 pτ q for any T ą 0 and a τ ą 0.

Third order condition: For any x P S X there exist a positive function βp¨|xq such that βpt|xq Ñ 0 as t Ñ 8 and a non null function N p¨|xq such that for all y P R d lim tÑ8

1 βpt|xq " tP pA t,y |X " x q ´Lpy|xq αpt|xq ´M py|xq

The latter assumption is common, and used already in, e.g., [START_REF] Giné | Rates of strong uniform consistency for multivariate kernel density estimators[END_REF] and Escobar-Bach et al. (2018a, 2018b), and allows to measure the discrepancy between the conditional distribution function F j p¨|xq and its empirical kernel version p F n,j p¨|xq.

2.1 Asymptotic result for p L k p¨|x 0 q under a third order condition Escobar-Bach et al. (2018b) have established the weak convergence of p L k py|x 0 q as a stochastic process in y P r0, T s d and for a fixed covariate position x 0 P R p , under the second order condition. In order to construct an asymptotically unbiased estimator for Lp¨|x 0 q, the third order condition is required and thus we need to know if under this new condition, a similar convergence result can be stated.

Theorem 2.1 Assume the third order condition, px, yq Ñ N py|xq continuous on B x 0 pτ q r0, T s d , with B x 0 pτ q Ă S X , and that there exists b ą 0 with f pxq ě b, @x P S X Ă R p and f bounded. Under pF m q, pDq, pLq, pAq, pBq, pMq, pKq, and assuming that there exists an ε ą 0 such that for n sufficiently large inf xPS X λptu P B 0 p1q : x ´cu P S X uq ą ε, where λ denotes the Lebesgue measure, consider sequences k Ñ 8, h Ñ 0 and c Ñ 0 as n Ñ 8 such that k{n Ñ 0 with ? kh p h minpη f ,η L ,ηαq ÝÑ 0, ? kh p αpn{k|x 0 q h minpη M ,η β q ÝÑ 0, ? kh p αpn{k|x 0 q ÝÑ 8, ?

kh p αpn{k|x 0 q βpn{k|x 0 q ÝÑ µ 1 px 0 q P R `, and for some q ą 1 and 0 ă η ă minpη F 1 , ..., η

F d q n c h p k max ˜c | log c| q nc p , c η ¸ÝÑ 0. ( 3 
)
Then the process

! ? kh p ´p L k py|x 0 q ´Lpy|x 0 q ´α ´n k ˇˇx 0 ¯M py|x 0 q ´α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯N py|x 0 q ¯, y P r0, T s d )
weakly converges in Dpr0, T s d q towards a tight centered Gaussian process tBpyq, y P r0, T s d u, for any T ą 0, with covariance structure given by Cov `Bpyq, Bpy 1 q ˘" }K} 2 2 f px 0 q `Lpy|x 0 q `Lpy 1 |x 0 q ´Lpy _ y 1 |x 0 q ˘, where y, y 1 P r0, T s d and }K} 2 :" b ş S K K 2 puqdu.

Smoothed estimator for Lp¨|x 0 q

Inspired by the homogeneity of Lp¨|x 0 q, consider now the rescaled statistic p L k,a py|x 0 q :" 1 a p L k pay|x 0 q for a positive scale parameter a. Our uncorrected (in terms of bias) estimator for Lp¨|x 0 q will be the following weighted version of the rescaled statistic, defined for any r ą 1 and ξ ą 0 as

q L k py|x 0 q :" ˜şr 1 p L ξ k,a py|x 0 qda r ´1 ¸1{ξ .
The weak convergence of this new estimator as a stochastic process is established in the following theorem.

Theorem 2.2 Under the assumptions of Theorem 2.1 together with ? kh p α 2 pn{k|x 0 q Ñ µ 2 px 0 q P R `, for any r ą 1 and ξ ą 0, we have

? kh p ! q L k py|x 0 q ´Lpy|x 0 q ´α ´n k ˇˇx 0 ¯M py|x 0 qcpr; ρq ´α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯N py|x 0 qcpr; ρ `ρ1 q ´α2 pn{k|x 0 q 2 M 2 py|x 0 q
Lpy|x 0 q dpr, ξ; ρq

) d ÝÑ 1 r ´1 ż r 1 Bpayq a da,
in Dprε, T s d q, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1 and cpr; ρq :" r 1´ρ ´1 pr ´1qp1 ´ρq , dpr, ξ; ρq :" rcpr; 2ρq ´c2 pr; ρqspξ ´1q.

Based on this result, in order to construct an asymptotically unbiased estimator for Lp¨|x 0 q, we need now to estimate ρ and α k py|x 0 q :" αpn{k|x 0 qM py|x 0 q. This is the aim of the next section.

2.3 Estimation of ρ and αpn{k|x 0 qM py|x 0 q

Let pξ 1 , ξ 2 , ξ 3 , ξ 4 q P R 4 `, r 1 " r 2 ą 1 and s ą 0. We propose to estimate ρ by

q ρ k :" 1 ´1 log s log ¨ˆş r 1 1 p L ξ 1 k,a psy|x 0 qda r 1 ´1 ˙1{ξ 1 ´ˆş r 2 1 p L ξ 2 k,a psy|x 0 qda r 2 ´1 ˙1{ξ 2 ˆşr 1 1 p L ξ 3 k,a py|x 0 qda r 1 ´1 ˙1{ξ 3 ´ˆş r 2 1 p L ξ 4 k,a py|x 0 qda r 2 ´1 ˙1{ξ 4 ‹ ‹ ‹ ' . ( 4 
)
Theorem 2.3 Under the assumptions of Theorem 2.1, and additionally assuming that M never vanishes except on the axes and that ? kh p α 2 pn{k|x 0 q Ñ µ 2 px 0 q P R `, for any pξ 1 , ξ 2 , ξ 3 , ξ 4 q P R 4 `, r 1 " r 2 ą 1 and s ą 0, we have

? kh p α ´n k ˇˇx 0 ¯"q ρ k ´ρ `αpn{k|x 0 q 2 log s M py|x 0 q Lpy|x 0 q
" s ´ρ dpr 1 , ξ 1 ; ρq ´dpr 2 , ξ 2 ; ρq cpr 1 ; ρq ´cpr 2 ; ρq ´dpr 1 , ξ 3 ; ρq ´dpr 2 , ξ 4 ; ρq cpr 1 ; ρq ´cpr 2 ; ρq  `β ´n k ˇˇx 0 ¯N py|x 0 q M py|x 0 q s ´ρ1 ´1 log s cpr 1 ; ρ `ρ1 q ´cpr 2 ; ρ `ρ1 q cpr 1 ; ρq ´cpr 2 ; ρq

+ d ÝÑ ´sρ´1 log s ! 1 r 1 ´1 ş r 1 1 Bpasyq a da ´1 r 2 ´1 ş r 2 1 Bpasyq a da ) ´1 log s ! 1 r 1 ´1 ş r 1 1 Bpayq a da ´1 r 2 ´1 ş r 2 1 Bpayq a da
) M py|x 0 q rcpr 1 ; ρq ´cpr 2 ; ρqs ,

in Dprε, T s d q, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Let pξ 5 , ξ 6 q P R 2 `and r 3 " r 4 ą 1. To estimate α k py|x 0 q, we propose q α k py|x 0 q :"

ˆşr 3 1 p L ξ 5 k,a py|x 0 qda r 3 ´1 ˙1{ξ 5 ´ˆş r 4 1 p L ξ 6 k,a py|x 0 qda r 4 ´1 ˙1{ξ 6
cpr 3 ; q ρ k q ´cpr 4 ; q ρ k q .

(5)

In the sequel, we denote by c 1 pr; ρq the derivative of cpr; ρq with respect to ρ.

Theorem 2.4 Under the assumptions of Theorem 2.3, we have ¯N py|x 0 q M py|x 0 q 1 cpr 3 ; ρq ´cpr 4 ; ρq ˆ˜cpr 3 ; ρ `ρ1 q ´cpr 4 ; ρ `ρ1 q `rc 1 pr 3 ; ρq ´c1 pr 4 ; ρqsrcpr 1 ; ρ `ρ1 q ´cpr 2 ; ρ `ρ1 qs cpr 1 ; ρq ´cpr 2 ; ρq

? kh p α ´n k ˇˇx 0 ¯" q α k py|x 0 q αpn{k|x 0 qM py|x 0 q ´1 ´α ´n k ˇˇx 0 ¯M py|x 0 q Lpy|x 0 q 1 2rcpr 3 ;
s ρ 1 ´1 log s ¸+ d ÝÑ 1 cpr 3 ; ρq ´cpr 4 ; ρq 1 M py|x 0 q " 1 r 3 ´1 ż r 3 1 Bpayq a da ´1 r 4 ´1 ż r 4 1 Bpayq a da
´c1 pr 4 ; ρq ´c1 pr 3 ; ρq cpr 1 ; ρq ´cpr 2 ; ρq

" s ρ´1 log s ˆ1 r 1 ´1 ż r 1 1 Bpasyq a da ´1 r 2 ´1 ż r 2 1 Bpasyq a da 1 log s ˆ1 r 1 ´1 ż r 1 1 Bpayq a da ´1 r 2 ´1 ż r 2 1 Bpayq a da ˙*
in Dprε, T s d q, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Bias correction of q

L k py|x 0 q

Now we have all the ingredients to construct an asymptotically unbiased estimator for Lp¨|x 0 q by removing from q L k py|x 0 q the bias term where αpn{k|x 0 qM py|x 0 q together with the second order rate parameter ρ have been estimated externally, using the same intermediate sequence k " k n , which is such that k " opkq. This idea has been originally proposed by Gomes and co-authors (see, e.g., [START_REF] Gomes | Tail index estimation for heavy-tailed models: accommodation of bias in weighted log-excesses[END_REF][START_REF] Caeiro | Reduced-bias tail index estimators under a third order framework[END_REF] in the univariate framework and has the advantage that the variance of the bias-corrected estimator and the uncorrected one is the same. Thus, we propose the following bias-corrected estimator for Lp¨|x 0 q L k,k py|x 0 q :" q L k py|x 0 q ´q α k py|x 0 qcpr; q

ρ k q ˆk k ˙q ρ k . ( 6 
)
Theorem 2.5 Assume the third order condition, M never vanishes except on the axes, px, yq Ñ N py|xq continuous on B x 0 pτ q ˆr0, T s d , with B x 0 pτ q Ă S X , and that there exists b ą 0 with f pxq ě b, @x P S X Ă R p and f bounded. Under pF m q, pDq, pLq, pAq, pBq, pMq, pKq, and assuming that there exists an ε ą 0 such that for n sufficiently large inf xPS X λptu P B 0 p1q : x ´cu P S X uq ą ε, consider sequences k Ñ 8, h Ñ 0, c Ñ 0 as n Ñ 8 and k such that k " opkq, k{n Ñ 0, and with a kh p h minpη f ,η L ,ηαq ÝÑ 0, a kh p αpn{k|x 0 q h minpη M ,η β q ÝÑ 0, ? kh p αpn{k|x 0 q ÝÑ 8, a kh p αpn{k|x 0 q βpn{k|x 0 q ÝÑ µ 1 px 0 q P R àkh p α 2 pn{k|x 0 q ÝÑ µ 2 px 0 q P R ànd for some q ą 1 and 0 ă η ă minpη F 1 , ..., η

F d q n c h p k max ˜c | log c| q nc p , c η ¸ÝÑ 0.
Then we have

? kh p ! L k,k py|x 0 q ´Lpy|x 0 q ´α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯N py|x 0 qcpr; ρ `ρ1 q ´α2 pn{k|x 0 q 2 M 2 py|x 0 q
Lpy|x 0 q dpr, ξ; ρq

) d ÝÑ 1 r ´1 ż r 1 Bpayq a da
in Dprε, T s d q, for every ε ą 0 and T ą ε, where B is defined in Theorem 2.1.

Note that this bias-corrected estimator L k,k p¨|x 0 q has the same asymptotic variance as the uncorrected estimator q L k p¨|x 0 q (see Theorem 2.2).

Simulation study

Our aim in this section is to illustrate the bias-correcting effect in the estimation of Lp¨|x 0 q. We focus on dimensions d " 2 and p " 1. We consider the two models studied in Escobar-Bach et al.

(2018b), which both satisfy our third order condition, together with Assumptions pDq, pLq, pAq, pBq, pMq and pF m q. In particular, these models are the following:

• Model 1: The bivariate Student distribution with density function

f pY p1q ,Y p2q q py 1 , y 2 q " ? 1 ´θ2 2π ˆ1 `y2 1 ´2θy 1 y 2 `y2 2 ν ˙´ν`2 2 , py 1 , y 2 q P R 2 ,
where θ is the Pearson correlation coefficient. The stable tail dependence function can be described as

Lpy 1 , y 2 |θq " y 1 F ν`1 ˜py 1 {y 2 q 1{ν ´θ ? 1 ´θ2 ? ν `1¸`y 2 F ν`1 ˜py 2 {y 1 q 1{ν ´θ ? 1 ´θ2 ? ν `1¸,
where F ν`1 is the distribution function of the univariate Student distribution with pν `1q degrees of freedom. Also

M py 1 , y 2 |θq " C 1 « y 2{ν`1 1 F ν`3 ˜py 1 {y 2 q 1{ν ´θ ? 1 ´θ2 ? ν `3¸`y 2{ν`1 2 F ν`3 ˜py 2 {y 1 q 1{ν ´θ ? 1 ´θ2 ? ν `3¸ff , N py 1 , y 2 |θq " C 2 « y 4{ν`1 1 F ν`5 ˜py 1 {y 2 q 1{ν ´θ ? 1 ´θ2 ? ν `5¸`y 4{ν`1 2 F ν`5 ˜py 2 {y 1 q 1{ν ´θ ? 1 ´θ2 ? ν `5¸ff , C 1 :" ´ν2{ν`1 π 1{ν pν `1q 2pν `2q ˜Γ `ν 2 Γ `ν`1 2 ˘¸2{ν , C 2 :" ν 4{ν`1 π 2{ν pν `1qpν `3q 8pν `4q ˜Γ `ν 2 Γ `ν`1 2 ˘¸4{ν , αpt|θq " t ´2{ν , βpt|θq " t ´2{ν .
We set θ " X, where X is uniformly distributed on r0, 1s. In the simulations, we use ν " 4, which corresponds to ρ " ρ 1 " ´1{2;

• Model 2: a particular case of the Archimax bivariate copulas introduced in Capéraà et al.

(2000) and also mentioned in [START_REF] Fougères | Bias correction in multivariate extremes[END_REF], namely:

Cpy 1 , y 2 |xq " 1 `Lpy ´1 1 ´1, y ´1 2 ´1|xq ( ´1 ,
where we use for L the asymmetric logistic stable tail dependence function defined by Lpy 1 , y 2 |xq " p1 ´t1 qy 1 `p1 ´t2 qy 2 `"pt 1 y 1 q θx `pt 2 y 2 q θx ı 1{θx , where 0 ď t 1 , t 2 ď 1, and θ x :" minp1{x, 100q, with the covariate X uniformly distributed on r0, 1s. The marginal distributions are taken to be unit Fréchet. For this model Hence ρ " ρ 1 " ´1. In the simulations, different values for the pair pt 1 , t 2 q have been tried but the results seem to be not too much influenced by them, thus we exhibit only the results in case pt 1 , t 2 q " p0.4, 0.6q which corresponds to an asymmetric tail dependence function.

M
For each model, we simulate 500 samples of size 1000, and we compare three estimators of Lp¨|x 0 q: the two uncorrected estimators, p L k p¨|x 0 q and its smoothed version q L k p¨|x 0 q, and our bias-corrected estimator L k,k p¨|x 0 q, for three positions x 0 " 0.3, 0.5 and 0.7. Concerning the kernel, we always use the bi-quadratic function Kpuq :" 15 16 p1 ´u2 q 2 1l tuPr´1,1su .

Each estimator requires the selection of some tuning parameters. This will be done as follows.

For the uncorrected estimator p L k p¨|x 0 q of Escobar-Bach et al. (2018b), we follow their approach, i.e., we use their cross-validation criterion for both bandwidth parameters c 1 and c 2 , corresponding to the marginals approximation, and for the sequence h, we use

h " minpc 1 , c 2 q | logpminpc 1 , c 2 qq| 1.1 k n ,
coming from condition (3), as described in their paper.

For the uncorrected smoothed estimator q L k p¨|x 0 q, the pair pr, ξq is selected in a data-driven way using the homogeneity of the function Lpy|x 0 q, namely, for all y and k pr ˚, ξ ˚q :" argmin pr,ξqPRˆE ÿ tPT ´q L k pty|x 0 q ´tq L k py|x 0 q ¯2 , where R :" t1.1, 1.2, . . . , 2u, E :" t1, 2, 3u and T :" t1{3, 2{3, 1, 4{3, 5{3u. The grids of values are selected after an extensive simulation study.

For the bias-corrected estimator L k,k p¨|x 0 q, also a data-driven method has been used for all the parameters involved. More precisely, L k,k p¨|x 0 q defined in ( 6) is based on the uncorrected smoothed estimator q L k p¨|x 0 q computed with pr ˚, ξ ˚q from which we remove the bias, based on estimates q α k p¨|x 0 q and q ρ k , derived according to the following algorithm:

Step 1. Let y ˚" p0.5, 0.5q, s " 0.4 and k " t0.99nu as suggested by [START_REF] Fougères | Bias correction in multivariate extremes[END_REF];

Step 2. Note that q ρ k is an estimate of ρ, and as such is independent of y. Define R :" tpr 1 , r 2 q P R 2 : r 1 ‰ r 2 u, Ξ :" tpξ 1 , ξ 2 , ξ 3 , ξ 4 q P E 4 : ξ 1 " ξ 3 , ξ 2 " ξ 4 u and denote q ρ k py ˚, r 1 , r 2 , ξ 1 , ξ 2 , ξ 3 , ξ 4 q :" q ρ k as in (4) for all pr 1 , r 2 q P R, pξ 1 , ξ 2 , ξ 3 , ξ 4 q P Ξ and y " y ˚. Then, find pr 1 , r 2 , ξ 1 , ξ 2 q the values of pq r 1 , q r 2 , q ξ 1 , q ξ 2 q P R ˆE2 minimizing the criterion

ÿ pr 1 ,r 2 ,ξ 1 ,ξ 2 qPRˆE 2 ´q ρ k ´y˚, q r 1 , q r 2 , q ξ 1 , q ξ 2 , q ξ 1 , q ξ 2 ¯´q ρ k py ˚, r 1 , r 2 , ξ 1 , ξ 2 , ξ 1 , ξ 2 q ¯2 .
The estimate q ρ k in ( 6) is finally computed as q ρ k py ˚, r 1 , r 2 , ξ 1 , ξ 2 , ξ 1 , ξ 2 q; Step 3. Let q α k p¨, r 3 , r 4 , ξ 5 , ξ 6 |x 0 q :" q α k p¨|x 0 q as defined in (5). We use the homogeneity of M p¨|x 0 q in order to select the parameters pr 3 , r 4 , ξ 5 , ξ 6 q. More precisely, q α k p¨|x 0 q in (6) is computed as q α k p¨, r 3 , r 4 , ξ 5 , ξ 5 |x 0 q where pr 3 , r 4 , ξ 5 q :" argmin pr 3 ,r 4 ,ξ 5 qPRˆE ÿ tPT ´q α k pty ˚, r 3 , r 4 , ξ 5 , ξ 5 |x 0 q ´t1´q ρ k q α k py ˚, r 3 , r 4 , ξ 5 , ξ 5 |x 0 q ¯2 .

In the latter, q ρ k is the value obtained in Step 2.

In Figure 1, we show the sample mean (left) and the empirical mean squared error (MSE, right) of p L k py|x 0 q (dotted line), q L k py|x 0 q (dashed line) and L k,k py|x 0 q (full line) as a function of k in case of Model 1 with x 0 " 0.3 and four possible values of y, corresponding to the different rows: from the top to the bottom, y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q and p0.8, 0.2q, respectively. The horizontal line on the left panel represents the true value of Lpy|x 0 q. Figures 2 and 3 are constructed similarly, but for x 0 " 0.5 and 0.7, respectively, whereas Figures 4 to 6 concern Model 2 and the same values of x 0 and y. Based on these simulations, we can draw the following conclusions:

• Our estimator L k,k py|x 0 q clearly outperforms the two alternatives. In terms of bias, the sample means show very stable paths as a function of k, close to the true value. In terms of MSE, it is still competitive, almost always better than p L k py|x 0 q and q L k py|x 0 q, or otherwise at least similar, and again very stable as a function of k. Those are very nice features since in our case, the selection of k is not very crucial, while it is for p L k and q L k .

• For Model 2, the estimation is more difficult for y far away from the diagonal, whereas for Model 1, it does not depend on y. Also, the performance of our bias-corrected estimator L k,k py|x 0 q does not seem to depend on the position in the covariate space.

Application to air pollution data

In this section, we illustrate the practical applicability of our bias-corrected estimator on a dataset of air pollution measurements. We consider the data collected by the United States Environmental Protection Agency (EPA), publicly available at https:{{aqsdr1.epa.gov{aqsweb{aqstmp{airdata L k py|0.3q (dashed line), L k,k py|0.3q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.3q. L k py|0.5q (dashed line), L k,k py|0.5q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.5q. L k py|0.7q (dashed line), L k,k py|0.7q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.7q. L k py|0.3q (dashed line), L k,k py|0.3q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.3q. L k py|0.5q (dashed line), L k,k py|0.5q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.5q. L k py|0.7q (dashed line), L k,k py|0.7q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.7q.

{download files.html. The dataset contains daily measurements of, among others, maximum temperature, ground-level ozone, carbon monoxide and particulate matter concentrations, for the period 1999 to 2013, and this for stations spread over the U.S. Monitoring levels of these pollutants is of crucial importance, as extreme temperature and high levels of pollutants like ground-level ozone and particulate matter pose a major threat to human health. We estimate the stable tail dependence function for the variables temperature and ozone concentration, conditional on time and location, where the latter is expressed by latitude and longitude. In the estimation, the covariates are standardised to the interval r0, 1s, and the tuning parameters are selected with the algorithm described in Section 3. In order to keep the computational time requirements under control, the tuning parameters selected at steps 1. to 3. of the algorithm are computed with a random sampling of size r0.1ns where n " 127328 refers to the initial sample size. As kernel function K ˚, we use the following generalisation of the bi-quadratic kernel K :

K ˚px 1 , x 2 , x 3 q :" 3 ź i"1 Kpx i q,
where x 1 , x 2 , x 3 , refer to the covariates time, latitude and longitude, respectively, in standardised form. Note that K ˚has as support the unit ball with respect to the max-norm on R 3 .

We report here only the results at two different time points, January 15, 2007 and June 15, 2007, and for two locations, Fresno and Los Angeles (both in California). In Figure 7, we show the estimates mediant r L k pt, 1 ´t|xq, k " n{4, ¨¨¨, n{2u, with a range of k´values based on 25 equally spaced integers, where r L k is either L k,k (full line), p L k (dotted line) or q L k (dashed line), for the cities Fresno (top row) and Los Angeles (bottom row) on January 15, 2007 (first column) and June 15, 2007 (second column). For both stations, the bias-corrected estimate for the stable tail dependence function indicates a stronger extreme dependence between temperature and ozone concentration in winter than in summer. In winter the extreme dependence in Fresno is stronger than in Los Angeles. The results obtained with the uncorrected estimators p L k and q L k are typically similar to each other, and correspond more or less with the analysis reported in Escobar-Bach et al. (2018b). The estimate L k,k differs considerably from p L k and q L k for Fresno, winter and Los Angeles, summer. Note that in these cases, the bias-corrected estimate tends to be higher than the uncorrected estimates, indicating a weaker extremal dependence. This was also observed in the simulation experiment, where the bias-corrected estimator tends to be larger (and closer to the true value) than the uncorrected estimators. The observed discrepancy indicates that estimation of tail dependence between temperature and ozone concentration can suffer from bias, and therefore it is recommended to use the bias-corrected estimator in order to get a better estimate of the stable tail dependence function. since for n large enough x 0 ´hu P B x 0 pτ q. This leads to

n k P `An{k,y |X " x 0 ´hu ˘´Lpy|x 0 ´huq " α ´n k ˇˇx 0 ¯M py|x 0 ´huq `α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯rN py|x 0 ´huq `op1qs `"α ´n k ˇˇx 0 ´hu ¯´α ´n k ˇˇx 0 ¯ı M py|x 0 ´huq `"α ´n k ˇˇx 0 ´hu ¯β ´n k ˇˇx 0 ´hu ¯´α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯ı rN py|x 0 ´huq `op1qs " α ´n k ˇˇx 0 ¯M py|x 0 q `α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯N py|x 0 q `O ´α ´n k ˇˇx 0 ¯hη M ^ηβ ¯`O ph ηα q `o ´α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯¯,
where the error terms are all independent from y.

Proof of Theorem 2.2

Using Theorem 2.1, the homogeneity properties of the functions Lp¨|x 0 q, M p¨|x 0 q, N p¨|x 0 q, and the Skorohod representation (but keeping the same notation), we have

p L k,a py|x 0 q d " Lpy|x 0 q `α ´n k ˇˇx 0 ¯a´ρ M py|x 0 q `α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯a´ρ´ρ 1 N py|x 0 q `1 ? kh p Bpayq a `1 a o ˆ1 ? kh p ˙,
where the o´term is almost surely and uniform in a and y. This implies that for any r ą 1 and ξ ą 0, under the assumptions of Theorem 2.2, we have by straightforward application of Taylor's theorem that

ş r 1 p L ξ k,a py|x 0 qda r ´1 d " L ξ py|x 0 q `α ´n k ˇˇx 0 ¯ξL ξ´1 py|x 0 qM py|x 0 qcpr; ρq `α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯ξL ξ´1 py|x 0 qN py|x 0 qcpr; ρ `ρ1 q `α2 ´n k ˇˇx 0 ¯ξpξ ´1q 2 L ξ´2 py|x 0 qM 2 py|x 0 qcpr; 2ρq `1 ? kh p ξ r ´1 L ξ´1 py|x 0 q ż r 1 Bpayq a da `o ˆ1 ? kh p ˙.
Theorem 2.2 follows then from another application of Taylor's theorem.

Proof of Theorem 2.3

According to Theorem 2.2, using the homogeneity properties of the functions Lp¨|x 0 q, M p¨|x 0 q, N p¨|x 0 q, and the Skorohod representation, we have ˜şr 1 p L ξ k,a psy|x 0 qda r ´1 ¸1{ξ d " s Lpy|x 0 q `α ´n k ˇˇx 0 ¯s1´ρ M py|x 0 qcpr; ρq `α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯s1´ρ´ρ 1 N py|x 0 qcpr; ρ `ρ1 q `α2 ´n k ˇˇx 0 ¯s1´2ρ 2 M 2 py|x 0 q Lpy|x 0 q dpr, ξ; ρq

`1 ? kh p 1 r ´1 ż r 1 Bpasyq a da `o ˆ1 ? kh p ˙.
Several Taylor series expansions allow us to achieve the proof of Theorem 2.3.

Proof of Theorem 2.4

Consider the decomposition q α k py|x 0 q " ˆşr 3 1 p L ξ 5 k,a py|x 0 qda r 3 ´1 ˙1{ξ 5 ´ˆş r 4 1 p L ξ 6 k,a py|x 0 qda r 4 ´1 ˙1{ξ 6 cpr 3 ; ρq ´cpr 4 ; ρq " 1 `rcpr 3 ; ρq ´cpr 3 ; q ρ k qs ´rcpr 4 ; ρq ´cpr 4 ; q ρ k qs cpr 3 ; q ρ k q ´cpr 4 ; q ρ k q * ": T 1 t1 `T2 u .

From Theorem 2.2

T 1 αpn{k|x 0 qM py|x 0 q d " 1

`β ´n k ˇˇx 0 ¯N py|x 0 q M py|x 0 q cpr 3 ; ρ `ρ1 q ´cpr 4 ; ρ `ρ1 q cpr 3 ; ρq ´cpr 4 ; ρq `α ´n k ˇˇx 0 ¯M py|x 0 q Lpy|x 0 q dpr 3 , ξ 5 ; ρq ´dpr 4 , ξ 6 ; ρq 2rcpr 3 ; ρq ´cpr 4 ; ρqs `1 ? kh p αpn{k|x 0 qM py|x 0 q Combining these results leads to Theorem 2.4.

Proof of Theorem 2.5

From Theorem 2.2, we have L k,k py|x 0 q d " Lpy|x 0 q `˜α ´n k ˇˇx 0 ¯M py|x 0 q ´q α k py|x 0 q ˆk k ˙q ρ k ¸cpr; ρq ´q α k py|x 0 q ˆk k ˙q ρ k `cpr; q ρ k q ´cpr; ρq ˘`α ´n k ˇˇx 0 ¯β ´n k ˇˇx 0 ¯N py|x 0 qcpr; ρ `ρ1 q `α2 pn{k|x 0 q 2 M 2 py|x 0 q Lpy|x 0 q dpr, ξ; ρq `1 ?

kh p 1 r ´1 ż r 1 Bpayq a da `o ˆ1 ? kh p ˙.
Now remark that, by the mean value theorem, for r ρ k an intermediate value between q ρ k and ρ α ´n k ˇˇx 0 ¯M py|x 0 q ´q α k py|x 0 q ˆk k ˙q ρ k " # α ´n k ˇˇx 0 ¯M py|x 0 q ´q α k py|x 0 q ˆk k ˙ρ+ ´q α k py|x 0 q ˆk k ˙r ρ k log k k `q ρ k ´ρ˘.

Using Theorems 2.3 and 2.4, we can thus deduce that α ´n k ˇˇx 0 ¯M py|x 0 q ´q α k py|x 0 q ˆk k ˙q Recall that αp.|x 0 q is regularly varying with index ρ ă 0, which means that αpy|x 0 q " y ρ α py|x 0 q where α p¨|x 0 q is a slowly varying function at infinity. Following the lines of proof of Theorem 2 in [START_REF] Beirlant | Bias-corrected estimation of stable tail dependence function[END_REF] 

˙.

Consequently, since we have also by Theorem 2.3 q α k py|x 0 q ˆk k ˙q ρ k `cpr; q ρ k q ´cpr; ρq ˘" O 

Figure 1 :

 1 Figure 1: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: p L k py|0.3q (dotted line), qL k py|0.3q (dashed line), L k,k py|0.3q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.3q.

Figure 2 :

 2 Figure 2: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.5q: p L k py|0.5q (dotted line), qL k py|0.5q (dashed line), L k,k py|0.5q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.5q.

Figure 3 :

 3 Figure 3: Model 1: Mean (left) and MSE (right) of three estimators of Lpy|0.7q: p L k py|0.7q (dotted line), qL k py|0.7q (dashed line), L k,k py|0.7q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.7q.

Figure 4 :

 4 Figure 4: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.3q: p L k py|0.3q (dotted line), qL k py|0.3q (dashed line), L k,k py|0.3q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.3q.

Figure 5 :

 5 Figure 5: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.5q: p L k py|0.5q (dotted line), qL k py|0.5q (dashed line), L k,k py|0.5q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.5q.

Figure 6 :

 6 Figure 6: Model 2: Mean (left) and MSE (right) of three estimators of Lpy|0.7q: p L k py|0.7q (dotted line), qL k py|0.7q (dashed line), L k,k py|0.7q (full line) as a function of k for different values of y corresponding to each row: y " p0.2, 0.8q, p0.4, 0.6q, p0.6, 0.4q, p0.8, 0.2q. The horizontal line on the left panel corresponds to the true value of Lpy|0.7q.

Figure 7 :

 7 Figure 7: Air pollution data : Estimates of mediant r L k pt, 1 ´t|xq, k " n{4, ¨¨¨n{2u, with a range of k´values based on 25 equally spaced integers, for Fresno (top) and Los Angeles (bottom) on January 15, 2007 (first column) and June 15, 2007 (second column).

  3 ; ρq ´cpr 4 ; ρq `o ˆ1 ? kh p αpn{k|x 0 q ȧnd 4 ; ρq ´c1 pr 3 ; ρqspq ρ k ´ρq cpr 3 ; ρq ´cpr 4 ; ρq p1 `op1qq.
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Proofs

Proof of Theorem 2.1

We follow the lines of proof of Theorems 2.1 and 2.3 in Escobar-Bach et al. (2018b). The only difference lies in the fact that, under the third order condition, we have