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Abstract— In this paper, a dynamic model of Li-ion batteries 

incorporating electrothermal and ageing aspects is proposed for 
electric vehicle applications. The main goal of the proposed 
model is to be both simple and sufficiently representative of the 
physical phenomena occurring in a battery cell. These two 
features allow for using this model as an evaluation tool of 
electric vehicle performances under different operational and 
environmental conditions. The developed model is based on an 
equivalent circuit diagram coupled with a thermal circuit and a 
semi-empirical ageing equation. Identification of parameters in 
the dynamic model is conducted by measurement tests in time-
domain, which uses a hybrid Particle Swarm–Nelder–Mead 
optimization algorithm to achieve excellent prediction over the 
whole applicable current and state of charge ranges. The 
validation results show that the proposed model is able to 
simulate the dynamic interaction between the battery ageing and 
the thermal as well as electric behavior with sufficient accuracy 
in the range tested. 
 

Index Terms— Electric vehicle, Li-Ion Batteries, dynamic 
model, ageing behavior, State of charge (SOC).  

I. INTRODUCTION 
 HE vast majority of the one billion passenger vehicles 
worldwide are powered by fuel derived from crude oil [1]. 

By 2050, this number will have increased to 2.5 billion [2], 
[3]. This upward trend represents both a challenge and an 
opportunity to capitalize on novel vehicle technologies, and in 
the process, reap substantial economic development benefits 
[1], [2]. In a world where energy derived from fossil fuels is 
the leading cause of greenhouse gas emissions which are 
responsible for the rapid changes to our atmosphere, an 
alternative source of transportation energy – electricity – is not 
only a smart investment, but as some would say, it is an 
inevitable one [1], [2]. Since few years, manufacturers in the 
transportation industry have been started an unprecedented 
technological change. The voice of progress is among others 
related to the partial or total vehicle electrification [4], [5]. 
These solutions have many advantages compared with 
vehicles running only on fuel and using internal combustion 
engine [4], [6]. The development of hybrid and electric 
vehicles in recent years has increased the use of batteries and 
converted them into one of the most critical elements in the 
automobile sector [7].  
 

The technology chosen for the new generation of hybrid and 
electric vehicles is based on the Li-ion solution [8]. This 
technology provides up to a 175% improvement in energy 
density over regular NiH2 batteries and offers others 
advantages, including high voltage, lightweight design, low 
self-discharging, and long cycle life [9], [10], [11]. 

A driving factor for Li-ion battery modeling is the demand 
from system level design and simulation in electric vehicle 
applications [12]. Recently, several battery models are being 
introduced and studied in automobile applications. They can 
be classified as electrochemical, mathematical, electrical, and 
polynomial [13], [14]. All these models have the ability to 
predict the performance of the battery, but with different 
levels of simplicity and accuracy [15]. Considerable effort has 
been put into the development of high fidelity battery models 
that accurately predict voltage given the input current [16]. 
However, the change of electric model parameters according 
to the ageing of the battery and its operation temperature 
requires a dynamic model with sufficiently fine 
representations of electrical, thermal and ageing behaviors, 
which predicts the performance of the battery at different 
operating conditions.  

The present paper proposes a dynamic model of Li-ion 
batteries that integrates on the same algorithm, the electrical, 
thermal and ageing aspects of one battery cell. This solution 
helps to analyze the performances of the electric vehicle by 
accurately simulating the electrothermal processes occurring 
in Li-ion battery. As a result, it allows us to avoid the errors 
accumulation that could lead to a drift in simulation and gives 
the performances degradation in terms of the capacity power 
fade and the internal resistance over long periods with a good 
trade-off between accuracy level and calculation time. 

The rest of this paper is organized as follows: The dynamic 
model of Li-ion battery is discussed in Section II. Section III 
presents the design of the experiment. The obtained results 
and discussion are presented in Section IV to evaluate the 
feasibility and eligibility of Li-ion battery model. Section V, 
finally concludes the paper and present future work tracks. 

II. DYNAMIC MODEL OF LI-ION BATTERY 
The battery is a complex electrochemical system which is 

both nonlinear and non-stationary [17], [18]. This nonlinearity 
of the battery is due to the fact that the relationship between 
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the applied current and the output voltage cannot be expressed 
by a linear relationship. However, the battery is considered as 
a non-stationary system because the characteristics of its 
internal electrical parameters are variable during a cycle of 
charge / discharge as well as during the lifetime cycle [16], 
[17]. As a result, static and dynamic electrochemical 
phenomena act together at each electrode of the battery. For 
this reason, many researchers are working on the development 
of fine and precise descriptions of the Li-ion battery 
behaviors, which take into account three dominant variables 
voltage, temperature and ageing [19], [20], [21], [22], [23]. 

A. Proposed battery model 
In our study, the dynamic battery model must take into 

account the specificities of the Li-ion technology and electric 
vehicle application. Moreover, it must be simple enough and 
at the same time be able to accurately simulate the behavior of 
the Li-ion battery in order to integrate easily into the overall 
vehicle model. The proposed model consists of three main 
parts: 

 
• The electric model based on an equivalent circuit, 

which used to represent the link between the 
applied current, the output voltage, and the SOC 
of the battery. 

• The thermal model based on constant lumped 
elements circuit allows access to the internal 
temperature of the battery. It varies depending on 
the ambient temperature and internal power loss. 

• The ageing model based on a semi-empirical 
equation, which used to correct the values of 
internal electrical parameters, with a feedback of 
new values of the battery energy capacity (in 
ampere-hours) and the equivalent series resistance 
each cycle of charge / discharge. 
 

Fig. 1 shows the dynamic battery model, which take into 
account three aspects voltage, temperature, and ageing. 
 

The equivalent circuit used in this paper is an extension to 
the Thevenin classical model which is suitable for electric 
power applications [24]. This model offers an excellent 
representation of the static and dynamic electrochemical 
phenomena, such as the distribution of reactivity at the 
electrode, the interfacial impedance, the charge transfer, the 
diffusion and the electron and ion migration resistance, at a 
lower computational effort [17], [25]. This model consists in 
an open-circuit voltage (denoted OCV) associated with a 
nonlinear complex impedance composed of three elements. 
The 𝑉!"# changes according to SOC by the following 
nonlinear equation [15]: 

 
𝑉!"#(𝑆𝑂𝐶) = 𝑥! + 𝑥!. 𝑒(!!. !!!"# ) + 𝑥!. 𝑒(!!.!"#) +
𝑥!. 𝑒(!!. !!!"#

!) + 𝑥!. 𝑒(!!.( !"#)
!) + 𝑥!".𝑒(!!!.(!!!"#)

!) +
𝑥!". 𝑒(!!".(!"#)

!)                                                                          (1)  
 

 
Fig. 1. Dynamic battery model. 

 
Where 𝑥!…!"  are optimal parameters chosen to make the 

battery model fits the experimental data very well. The 
computing method for these parameters of battery model will 
be defined below. 

The first element of the battery impedance is a resistance 
𝑅Ω to model the global ohmic behavior of the battery including 
metallic connection between poles and electrodes, 
conductivity of metallic contacts, intercell connections, 
electrode material and the bulk electrolyte [15], [17]. This 
equivalent series resistance is related to the SOC and the 
current sign to be more accurate in capturing the transient 
behavior of the Li-ion battery [15],[26]: 

 
𝑅Ω = 𝑆𝑂𝐻! .

!!"
!"#!!!" .!"#.!"#$ (!!)

                                            (2)   

 
Where 𝐼! is the instantaneous current of battery (positive for 

discharge and negative for charge). 𝑥!"  and 𝑥!" are optimal 
parameters of equivalent series resistance RΩ . The increase of 
internal resistance during battery operation is reported as the 
indication of the resistance State Of Health (𝑆𝑂𝐻!). 

This model includes also two pairs of capacitance and 
resistance 𝑅!""𝐶!"" and 𝑅!"#𝐶!"#, which makes the model more 
accurate in capturing the transient behavior (charge transfer 
and diffusion phenomenon) of the Li-battery [15], [27]. The 
voltage corresponds to two pairs 𝑅!""𝐶!"" and 𝑅!"#𝐶!!" circuits 
is given by [15], [17]: 

 
𝑉!" = 𝑉!"" + 𝑉!"#                                          

𝑉!"" 𝑠 = 𝐼! 𝑠 .𝑅!"" =
!

!!!!!""!!""
. !.!!""

!

𝑉!"# 𝑠 = 𝐼! 𝑠 .𝑅!"# =
!

!!!!!"#!!"#
.
!.!!"#
!

𝐼! + 𝐼! = 𝐼! + 𝐼! = 𝐼                                     

                          (3)    

 
Where the time constants for 𝑅!""𝐶!"" and 𝑅!"#𝐶!"# circuits 

are 𝜏!"" = 𝑅!""𝐶!"" and 𝜏!"# = 𝑅!"#𝐶!"#  respectively. 
 
The Coulomb counting (ampere-hour counting) method is 

widely used in battery management systems of electric 



 

vehicles [21]. It is easy to use and fast in computation, which 
the time integral of the battery current is considered as a direct 
SOC indication as follows [15], [23]: 

 
𝑆𝑂𝐶 = 100. (𝑆𝑂𝐶!"# −

!
!"#!.!!

𝜂  𝐼  𝑑𝑡  )                            (4) 
 

Where 𝑆𝑂𝐶!"# is the initial value of the SOC, 𝐶! represents 
the nominal capacity of the battery (in ampere-hours), 𝜂 is the 
Coulombic efficiency (𝜂 ≃ 1 for Li-ion batteries). 𝑆𝑂𝐻! 
represents the ratio of the amount of charge that can be drawn 
from a new battery to the used battery [23]. 

The capacity and resistance state of health’s 
(𝑆𝑂𝐻!  & 𝑆𝑂𝐻!  ) are estimated by battery ageing model [20] : 
 

𝑆𝑂𝐻!  = 𝐶!"# . [1 + 𝑐!_! . 𝑡 (𝑐!_!
!!!!
∆! . 𝑐!_!

!!!!
∆!   ]  

𝑆𝑂𝐻!  = 𝑅Ω_!"# . [1 + 𝑐!_! . 𝑡 (𝑐!_!
!!!!
∆! . 𝑐!_!

!!!!
∆!   ]  

                   (5) 

 
Where 𝑅Ω_!"# ,𝐶!"# are the initial values of the equivalent 

series resistance RΩ  and the battery energy capacity, 
respectively. The parameters V and T are the average voltage 
and temperature of the battery cell, respectively. The related 
reference parameters 𝑇!, 𝑉!, ∆𝑇 and ∆𝑉 can be chosen 
according to battery technology and test conditions. In 
addition, 𝑐!  , 𝑐! and 𝑐! are acceleration factors describing the 
rate of ageing at reference conditions of the time, temperature 
and voltage [20]. 

It is necessary to estimate the internal temperature of the Li-
ion battery, its voltage, and its current characteristics to know 
the evolution of the battery energy capacity (in ampere-hours) 
and the equivalent series resistance RΩ . This is justified by the 
fact that the battery lifetime depends strongly on temperature 
and voltage, the ageing model receives temperature and 
voltage calculated by the electrothermal model in each time 
step [20]. 

The thermal model using constant lumped elements circuit 
will be utilized to estimate the internal temperature of one 
battery cell. Based on the temperature estimation, the heat 
distribution of the battery can be updated in each time step. 
The heat generated by a battery cell is the combination of the 
heat generation due to the electrochemical reactions and drop 
power losses of the equivalent series resistance within the cell 
as a function of the electric current and SOC. In our model, a 
thermal equivalent circuit based on one thermal resistance and 
one heat capacitance delivers the heat power. The latter can be 
defined according to the energy conservation law [28] : 

 
𝑅!! =

!
!!!"#
!"

𝑇!"#$%&!!"#"$ − 𝑇!"#                                     (6)    

 
Where  

!!!"#
!"

 is the heat generation rate (power losses).The 
environment around the battery is assumed to have an infinite 
heat capacitance and the ambient temperature 𝑇!"#  can be 
considered constant.  

The thermal resistance 𝑅!! , models the heat transfer inside 
the battery cell and the heat transfer through convection 
between the cell and the surrounding environment (adiabatic 

fence). This resistance can be defined as a nonlinear function 
changes according to the battery SOC: 

 
𝑅!! = 𝑎! + 𝑎!. 𝑠𝑜𝑐!                                                                  (7)    
 
Where 𝑎! and 𝑎! are optimal parameters chosen to make 

the thermal model fits the experimental data very well. 
If the thermal resistance 𝑅!! of the battery cell is known, 

the heat capacity (thermal capacitance) 𝐶!! can be expressed 
as follow: 

 
𝜏 = 𝑅!!𝐶!!                                                                                   (8) 
 

With 𝜏 is the thermal time constant. 
 

B. Parameters identification of dynamic Li-ion battery 
model 
The identification of battery model parameters based on 

equivalent circuits can be done either by specific tests, or by 
electrochemical impedance spectroscopy (frequency 
characterization), or by temporal identification using 
chronopotentiometry [29]. Nevertheless, the temporal 
characterization method using current profiles close to the 
actual use of the battery is widely employed in electric power 
applications [30]. In this paper, the temporal identification 
method based on a hybrid Particle Swarm–Nelder–Mead 
(PSO–NM) optimization algorithm is used to identify the 
parameters of the Li-ion battery model. This improved method 
of the characterization is based on the use of equivalent 
current profiles applied to the traction battery in real 
applications. This solution  enables us to evaluate directly the 
impedance of the battery in real time and at several working 
points, without performing additional tests [15]. The common 
objective function used in electric, thermal, and ageing 
characterization of the Li-ion battery is given by: 
 

𝑚𝑖𝑛! 𝐹 𝑋
𝑋!"# ≤ 𝑋 ≤ 𝑋!"#                       

𝐹 𝑋 = (𝑀!"#/!" −𝑀!"#/!")! +!
!!! 𝑀!"#/!" −𝑀!"#/!"

!
!!!  

(9)   

                                                                                                 
Where X = 𝑥!, 𝑥!… . . 𝑥!  is an optimization parameter 

vector. X!"#, X!"# are parameter bounds of research 
space. 𝑀!"#/!" can also take the simulation value of the battery 
voltage, temperature, equivalent series resistance, or energy 
capacity. However, 𝑀!"#/!" can be the measurement value of 
the battery voltage, temperature, equivalent series resistance, 
or energy capacity. 

This optimization criterion (objective function) is based on 
the minimization of both Squares Error Sum (SSE) and 
Absolute Error Value (AEV) between the experimental data 
and the model-based simulation result. The used algorithm of 
optimization is made-up of a modified particle swarm 
optimization algorithm (PSO), aimed to identify the most 
promising areas, and a Nelder–Mead simplex algorithm (NM) 
for performing a local search within these areas [8], [15], [31].  

This ability to search the overall optimal solution and to 
avoid getting locked in local optima allows us to reach the 



 

identification goal, which makes the dynamic Li-ion battery 
model fits the experimental data very well. 

III. DESIGN OF EXPERIMENT 
To identify and validate the dynamic battery model and 

verify its performances in an electric vehicle application, a test 
system has been designed. The battery used in this test was a 
40Ah prismatic Li-ion pouch cell with NMC cathode material 
and graphitic anode, which is commercialized by Dow Kokam 
manufacture under the references HED-SLPB90216216 [32]. 
The nominal, maximum, and cutoff voltages of the battery 
under study are 3.7, 4.2, and 2.7 V, respectively.  

A. Simplification of the real current profile  
An urban electric vehicle (Bolloré Bluecar) has been chosen 

for this study. The characteristics of selected vehicle  are 
described in detail in  [33], [34]. 

In order to simplify the real current profile requested by the 
electric vehicle, we have developed in our laboratory a 
heuristic method based on constraints classification in 
intensity levels. It aims to reduce the cycling time while 
preserving the most important characteristics for test profiles 
such that the maximum value of the current and the amount of 
exchange charges. 

Before applying this constraints classification, the common 
ARTEMIS driving cycle is chosen for testing the urban 
electric vehicle powered by the Li-ion battery [35]. This cycle 
consists of both urban and road driving parts with an average 
speed of about 7,5km/h and 110,7 km/h, respectively. The 
combination of urban and road cycles can simulate a rolling 
distance of 22km over a period of about 34 minutes [34], [35]. 
In order to achieve a total driving range of close to 154km, the 
ARTEMIS driving cycle has been repeated 7 times with a 
roadway slope of 2.5%. Based on these specifications and the 
developed simulator of electric urban vehicle, the real current 
profile of the Li-ion battery can be carried out. 

To explain the heuristic method based on constraints 
classification, we use the simplified profile of Fig. 2.  

 

 
Fig. 2. Simplified constraints  (power, energy) applied to battery cells. (A) 
Real current. (B) Current after simplification and classification.  

 
In the first step, the current profile is divided into (N) levels, 

which the value of each level (I!) is described by: 

I! =
!!"#.!
!

                                                                                   (10) 

Where n is the index of the level, n = {1. ... N}. In this 
example N = 3. Imax is the maximum value of charging or 
discharging currents. 

Thereafter, all the current values are grouped into N classes 
and each class contains P! elements (elements are the 
instantaneous values of current). 

 

I!! I!"
I!" ⋮

… I!!!
⋮ ⋮

⋮ ⋮
I!" I!"

I!" I!!!
… I!!!

                                                        (11) 

 
For each individual i belongs to the class n, it is necessary 

that the current intensity I (n. i) satisfies the following 
condition: 
 
I!!! < 𝐼 n. i ≤ I!                                                                   (12) 
 

To finish, all the constraints generated by the current values 
I(n. Pn) of the level n is represented by the maximum value of 
current In during time T (n), as shown in Fig. 3 .This is 
calculated so as to keep the quantity of exchanged charge (Q 
(n)) ,which can be described as:        

Q(n) = I n. i .!!
!!!  ∆T                                                           (13) 

 
Where  ∆T the duration between two successive values of 

current. It, therefore, calculates the time T(n) of a current level 
as follows: 
 
T(n) = I n. i!!

!!! . ∆!
!!

                                                              (14)    
                          

 
Fig. 3. Real and laboratory current profiles. 
 

More details regarding the heuristic method of constraints 
classification are available in our previously work [36]. 
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B. Laboratory test bench 
The test system includes a laboratory test bench based on a 

dynamic charge / discharge power supply associated with a 
controlled climatic chamber. The latter is able to control the 
temperature within ± 0.02 °C in the range from 0°C to100 °C. 

The presented test bench has been developed in our 
laboratory for power cycling ageing, electric, and thermal 
characterization of energy storage components, such as 
batteries and supercapacitors. This bench is able to emulate 
the charge / discharge cycles under conditions similar to those 
used in real applications (electric or hybrid vehicle, energy 
storage, power filtering, uninterruptable power supplies... 
etc.). The developed test bench can track the behavior of a 
system under electrical constraints 24h / 24h.  Fig. 3 shows the 
diagram of the test bench, the power cycling is performed by 
controlling energy transit between the tested cells and buffer 
storage system. The latter is designed to store the energy of 
the tested cells during the discharge of these cells and restore 
this energy during the charging of these tested cells. For this, 
the capacitance of the buffer is 7 times higher than that of the 
tested cells. The energy dissipated during the cycling is 
compensated by a 10 kW power supply. In addition, a 
programmable resistive load of 9.6 kW is used to dissipate the 
excess power when required discharge of the tested cells.  

To obtain a charge / discharge profile for the battery, a 
reversible four-leg power converter (60V / 600A) is used to 
guarantee the transit of energy between the tested cells and 
buffer storage system. A FPGA compact RIO NIcRIO-
9012/9014 real-time embedded module ensures the system 
control, test bench supervision, and transferring measured data 
to a PC.  Therefore, the control loops are programmed in 
LabVIEW FPGA and the data acquisition is carried out at a 
sampling frequency of 1 kHz. The tested cells are placed in a 
climatic chamber in order to ensure their thermal homogeneity 
at the set temperature about of 25°C. 

 

IV. EXPERIMENTAL RESULTS 
Firstly, the test protocol focuses on parameters 

identification of ageing model for Li-ion battery cell. This test 
is based on the evaluation of the cycling impact on the battery 
lifetime by using two main phases:  

 
• Cycling phase using the laboratory current profile 

gained from an electric vehicle application. 
• Characterization phase during which measures the 

cycling impact on the evolution of the internal 
resistance and the energy capacity. 

For electric power applications, the Li-ion battery is 
considered at the end-of-life when its performance is not 
guaranteed. This is defined in this case about to 20% loss of 
the energy capacity compared to its initial value [25], [37] . In 
this context, the laboratory current profile with a charge phase 
of constant-current / constant-voltage is applied consistently 
until the energy capacity of the Li-ion battery reaches 80% 
(end-of-life). The characterization protocol has been 
investigated under different operating conditions of the SOC 
and current values.  

The temperature of the climatic chamber is adjusted in order 
to keep the external ambient temperature of about 25℃ during 
characterization tests. 

Fig. 5 (a) shows the laboratory current profile used for the 
characterization and ageing cycling tests of the Li-ion battery 
cell. As we can see from this figure, the ARTEMIS driving 
cycle (urban and road parts) is repeated seven times to achieve 
a vehicle range of 154 km, and a constant-current/constant-
voltage (CC/CV) charge protocol is used after each vehicle 
mission to charge the tested battery. Fig. 5 (b) illustrates the 
battery SOC evolution during one mission for the first and last 
use of the Li-ion battery. It can be seen in this figure, the 
difference on the battery SOC with a 20% of capacity loss 
between both cases for the same current profile.  

Fig. 5 (c) shows the comparison of the modeling and 
experimental capacity fade of the Li-ion battery cell for a 

Fig. 4. Laboratory test bench. 



 

given current profile. It can be very clearly seen that the 
ageing behavior of the Li-ion battery can be simulated thanks 
to the proposed model with low values of relative error (less 
than 2%, as shown in Fig. 5 (d)). Fig. 5 (e) illustrates a good 
matching between measured and simulated responses of the 
battery internal resistance. It can also be seen that the 
resistance increases up to 125% of its initial value and the end 
of resistive lifetime is reached after about 3600 cycles with an 
acceptable relative error less than 4% (see Fig. 5 (f)). 

Fig. 6 (b) shows a comparison between the measured 
temperature of the Li-ion battery cell placed in the climatic 
chamber  (25°C) and the simulation of the thermal model for 
the same current profile (see Fig. 6  (a)). It can be seen that the 
reversible behavior of the battery heat transfer at the scale of a 
discharge/charge cycle is respected by the proposed model, 
with an acceptable relative error less than 4% (see Fig. 6  (c)). 
 Moreover, these results confirm the dynamic behavior of the 
developed thermal model and the ability to take into account 
of different thermal phenomena inside the battery cell.  

Fig. 7 (b) illustrates the experimental response of the battery 
voltage at the beginning of the battery use, and at the end-of-
lifetime (- 20% Cn) with the same current profile (see Fig. 7 
(a)). It is obvious that the voltage of the battery in the case the 
end-of-lifetime decreases rapidly unlike the response of the 
battery at the mint condition. The difference between the two 
voltage responses becomes important for small values of the 
battery SOC, as shown in Fig. 7 (c). 

 
Fig. 5. (a) Laboratory current profile. (b) Battery SOC of first and last cycles. 
(c) Experimental and modeling responses of Li-ion battery capacity fade. (d) 
Relative error of capacity fade. (e) Experimental and modeling responses of 
Li-ion battery resistance increase. (f) Relative error of resistance increase. 
 

 
Fig. 6. (a) Laboratory current profile. (b) Experimental and modeling 
responses of Li-ion battery heat generation. (c) Relative error of battery heat 
generation. 
 

In order to validate the parameters identification method 
under different operating conditions, we carried out a cycling 
test at the mint condition of the Li-ion battery cell. Fig. 8 (b) 
shows the evolution of the battery SOC for the same current 
profile (see Fig. 8 (a)). It can also be seen that the SOC varies 
between 20% and 100%. As we can see from the Fig. 8 (c), 
the composition result illustrates that the battery behavior can 
be reproduced with a good agreement between the voltage 
response obtained using the dynamic battery model and the 
real voltage response of the battery cell. The relative error, as 
shown in Fig. 8 (d), is between -1 and 1%, which confirms the 
best performance of the proposed model. 

 
Fig. 7.  (a) Laboratory current profile. (b) Battery voltage responses of first 
and last cycles. (c) Voltage difference between two responses. 
 



 

 
Fig. 8. (a) Laboratory current profile. (b) Battery SOC of the first cycle. (c) 
Experimental and modeling responses of battery voltage at the beginning of 
battery use. (c) Relative error of battery voltage. 
 

The second cycling test has been performed at the battery 
end-of-lifetime (after 3600 cycles) to show the validation of 
the dynamic battery model under different operational 
conditions. The parameter values of the proposed model have 
been adapted taking into account the ageing parameters of 
(𝐶!"#  = 80%, 𝑅Ω  = 125%). 

Fig. 9 (b) illustrates the battery SOC evolution with the 
same current profile (see Fig. 9 (a)). It can be very clearly seen 
that the SOC varies between a low value near zero and 100%. 
The voltage responses of the Li-ion battery and the dynamic 
battery model are compared in Fig. 9 (c). It can be observed 
that there is no global divergence between both responses. 
This result confirms the best performance of the proposed 
model in view of its correspondence with the experimental 
response. 

 
Fig. 9. (a) Laboratory current profile. (b) Battery SOC of the last cycle. (c) 
Experimental and modeling responses of battery voltage at the end-of-life (-
20%Cn). (d) Relative error of battery voltage. 

 

The precision of the proposed model is evaluated by the 
relative error between the modeling and the measured 
voltages. The maximum of this error, as shown in Fig. 9 (d), 
stays below 1% during the test. 

V. CONCLUSION 
This paper has illustrated how a dynamic model was used to 

accurately simulate the behavior of Li-ion batteries in electric 
vehicle applications. The proposed model integrates on a 
single algorithm, the electrical, thermal and ageing aspects 
occurring in a Li-ion battery cell. This approach of modeling 
allows us to reproduce the system behavior over long periods 
with a representation sufficiently fine. The dynamic battery 
model can be used to predict the capacity fade and internal 
resistance increases with a good trade-off between accuracy 
level and calculation time. The performance of this model has 
been investigated using a commercially available 40 Ah Li-ion 
battery cell under a given charge/discharge profile gained 
from an urban electric vehicle using the ARTEMIS driving 
cycle and CC/CV charge protocol. The obtained results show 
that the dynamic battery model can simulate the electrical, 
thermal and ageing features with an acceptable relative error 
less than 1%, 4%, and 2%, respectively. The proposed 
modeling approach can further be used for other types of 
batteries and applications with appropriate parameters. 

A detailed investigation of the thermal modeling of Li-ion 
batteries is in progress. Improving the dynamic model 
performance by including electric parameters change 
according to the temperature is a prospect. 
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