
HAL Id: hal-01887899
https://hal.science/hal-01887899

Submitted on 4 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Refinement for Event-B through Annotated
Patterns

Badr Siala, Jean-Paul Bodeveix, M Filali, Tahar Bhiri

To cite this version:
Badr Siala, Jean-Paul Bodeveix, M Filali, Tahar Bhiri. Automatic Refinement for Event-B
through Annotated Patterns. 25th Euromicro International Conference on Parallel, Distributed
and network-based Processing (PDP 2017), Mar 2017, Saint Petersburg, Russia. pp.287-290,
�10.1109/PDP.2017.72�. �hal-01887899�

https://hal.science/hal-01887899
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/n° de post 19076

To cite this version: Siala, Badr and Bodeveix, Jean-Paul and
Filali, Mamoun and Bhiri, Tahar Automatic Refinement for Event-B
through Annotated Patterns. (2017) In: 25th Euromicro
International Conference on Parallel, Distributed and network-based
Processing (PDP 2017), 6 March 2017 - 8 March 2017 (Saint
Petersburg, Russian Federation).

Official URL: https://ieeexplore.ieee.org/document/7912661/

DOI : http://doi.org/10.1109/PDP.2017.72

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Automatic refinement for Event-B through

annotated patterns

Badr Siala

Université de Sfax and

IRIT UPS Université de Toulouse

France

Email: siala@irit.fr

Jean-Paul Bodeveix

IRIT UPS

Université de Toulouse

France

Email: bodeveix@irit.fr

Mamoun Filali

IRIT CNRS

Université de Toulouse

France

Email: filali@irit.fr

Mohamed Tahar Bhiri

Université de Sfax

Tunisia

Email: tahar_bhiri@yahoo.fr

Abstract—In this paper, we investigate how patterns could
be used in order to generate Event-B refinements automatically
through DSL(s) for temporal, timed or distribution patterns. Our
ulimate goal is to generate code for a concurrent, or distributed
framework, e.g., BIP.

I. INTRODUCTION

In this paper, we are interested by the construction of correct

by construction distributed systems. For such a purpose, we

propose DSL for expressing temporal, timed and distribution

requirements over an input model. Then, from such a model

Event-B machines are automatically generated. Ultimately, BIP

executable models are produced in order to be deployed over a

concurrent or distributed architecture. The rest of the paper is

organized as follows. Section 2 and 3 give an overview of the

BIP and Event-B languages. Section 4 outlines the coupling

between Event-B and BIP. Section 5 illustrated the approach

through a case study. We conclude by sketching future issues.

II. BIP

BIP (Behavior, Interaction, Priority) [1] is a semantic model

for the component-based construction of systems. It is imple-

mented in a language and a toolset. The BIP language offers

primitives and constructs (atomic component, interface (data

and port), connector and compound component) for modeling

and composing atomic components. The latter are described

as state machines, extended with data and functions written

in the C language. A compound component is built from

subcomponents, connectors and dynamic priorities. A BIP

program is described by a tree whose terminal nodes are atomic

components, non-terminal nodes are compound components

and the root corresponds to the application.

The BIP toolset allows to simulate the execution of a BIP

program by generating C++ code executable on a dedicated

platform [2]. It also allows a posteriori verification of BIP

programs by using model checking techniques [3].

III. EVENT-B

Event-B is a formal method that allows the development of

correct by construction systems and software [4]. Event-B is

based on the theory of abstract machines. An Event-B abstract

machine is semantically a symbolic transition system where

the state space is characterized by an invariant which should be

preserved by each event. An Event-B development is a chain of

machines linked by a refinement relation which entails a weak

simulation relation. These two semantics aspects are enforced

by proof obligations to be discharged.

Event-B supports natively a top-down formal development

process based on a refinement mechanism with mathematical

proofs. The refinement-based method in Event-B consists of

developing the system incrementally starting from an abstract

model which is a specification of the system. More details of

the system are added gradually (step-by-step) in a concrete

model which has to preserve the functionality and properties of

abstract models. As the Event-B model is expressed in a formal

language, it is possible to generate proof obligations ensuring

the correctness of the development. Models in Event-B are

described in terms of the two basic constructs: contexts and ma-

chines. The latter contains the dynamic part of a model whereas

contexts contain the static part. Indeed, contexts define abstract

data types through sets, constants, axioms and theorems while

machines define symbolic labelled transition systems through

variables (state) and events specifying their evolution while

preserving invariant properties. Moreover, an Event-B machine

includes a mandatory event called INITIALISATION which

defines the initial state.

As a running example, we will consider the controller for

pedestrian crossing and traffic lights as a case study (see

section V). The context (Listing 1) describes the roles played

by the actors of the system as an enumerated set. The set Role

models the two roles (Vehicle and Pedestrian) and the fact that

Role contains only these two elements.

context ro l es
sets Role
constants Vehic le Pedestr ian
axioms

@r p a r t i t i o n (Role , { Vehic le } , { Pedestr ian })
end

Listing 1. Roles context

In order to reason about our system in a simple way, we start

by building an abstract model which takes account of only very

few constraints. The turns machine (Listing 2) defines one

state variable turn in the variables clause. This variable

is typed by the invariant, labelled turn_ty, and initialized in

DOI 10.1109/PDP.2017.72DOI 10.1109/PDP.2017.72

the INITIALISATION event. The switch event allows to

give an access right to each role in turn. The next value of the

turn variable is obtained by applying the function defined as

an enumerated set of source-target ordered pairs on the current

value of turn.

machine t u rns sees ro l es
variables t u rn
invar iants

@turn_ty tu rn ∈ Role
events

event INITIALISATION
then

@t_ in i t t u rn := Vehic le
end
event swi tch
then

@t tu rn := { Veh ic le 7→Pedestr ian , Pedestr ian 7→Vehic le } (t u rn)
end

end

Listing 2. The turns machine

Refinement is at the core of Event-B modeling [4], as

its predecessor B-method [5]. It is a process allowing the

construction of a model in a gradual way. Starting from an

abstract model, each refinement step adds further details. Thus,

a development is an ordered sequence of models where each

element is a refinement of the previous one. A refinement step

must guarantee that every behavior of the concrete model is

also a behavior of the abstract model. The refinement relation

between a concrete and an abstract machine ensures that

executions of the concrete machine can be simulated on the

abstract machine. Event-B supports also weak simulation: the

concrete machine can introduce new events that refine skip.

However they should not take control indefinitely. A variant

must be provided to help proving this property. Finally, it is

possible to express that the concrete machine does not introduce

deadlocks that were not permitted by the abstract machine.

As an example, a first refinement of our initial model

(Listing 2) is the concrete machine Crossing below. In

this refinement, we replace the unique variable turn by two

boolean variables modeling the right of each participant and

we express the safety property. A gluing invariant relates the

variable turn with the two new variables.

machine cross ing ref ines t u rns sees ro l es
variables veh ic le_path pedest r ian_path
invar iants

@vp_ty veh ic le_path ∈ B

@pp_ty pedest r ian_path ∈ B

−− g lu i ng i n v a r i a n t
@vp_i veh ic le_path = TRUE ⇒ t u rn = Vehic le
@pp_i pedest r ian_path = TRUE ⇒ t u rn = Pedestr ian
@safety veh ic le_path 6= pedest r ian_path

events
event INITIALISATION

then
@vp_ini t veh ic le_path := TRUE
@wp_init pedest r ian_path := FALSE

end
event swi tch ref ines swi tch

then
@av vehic le_path := pedest r ian_path
@aw pedest r ian_path := veh ic le_path

end
end

Listing 3. The crossing machine

Requirements
document

Event-B
centralized model

Event-B
Refined model

Proved refinement

Refined central
model level i

Event-B
subcomponent 1

Event-B
subcomponent n�.

decompose

BIP
atomic component 1

BIP
atomic component n�.

BIP application :
Compound Component

BIP Traduction BIP Traduction

Composition activity using
architectural aspects of BIP

Verification

Verification

Verification

Proved refinement

Fig. 1. Joint development Event-B/BIP of secure and scalable distributed
systems

IV. COUPLING EVENT-B AND BIP

The BIP language provides powerful capabilities for de-

scribing the architectural aspects of an application, namely

components made of subcomponents connected through their

ports. Event-B is used for the formal specification and decom-

position of a distributed system. The correction criteria defined

by Event-B ensures the preservation of safety properties in the

incremental developement of the model. Event-B is enriched

with decomposition patterns which permit the refinement of

a unique machine by a product of sub-machines which may

be further refinement and decomposed until we get executable

specifications. We consider the shared event decomposition

method [6] and CSP-like composition which allows data ex-

change through shared event parameters. Then BIP is used for

the composition of atomic components designed in Event-B. Its

connectors implement Event-B shared event synchronizations

and data exchange while preserving their semantics. Figure 1

summarizes the coupling of Event-B and BIP to produce secure

and scalable distributed systems.

In order to assist the user in this design process, we provide

a support to refine and decompose an Event-B model and lastly

to generate BIP models. These steps are driven by domain spe-

cific languages which give pararameters to the transformations

(events or variables to be introduced, temporal properties to be

satisfied, data to be remotly accessed, subcomponent names,

variable mapping, location of guard or action computation, ...).

The proposed temporal or temporised patterns are in the spirit

of those proposed by Dwyer et al. [7].

V. CASE STUDY

A. Requirements specification

A pedestrian crossing light is a road signals system which

gives priority to vehicles. Pedestrians are allowed to cross only

when the signals halt vehicle traffic on the road. This system

consists of a set of traffic lights for drivers, a set of light

signals for pedestrians and a push button. The latter is used by

pedestrians to change traffic signal to give pedestrians enough

time to cross. In this paper, we show how such a system can be

built incrementally in Event-B. The centralized Event-B model

is decomposed into several subcomponents which are translated

into BIP executable models in order to be deployed over a

concurrent or distributed architecture. The following subset of

requirements is taken into account:

1) The system switches between pedestrian crossing and

vehicle traffic.

2) Pedestrian should ask for crossing right before being

allowed to cross.

3) Demands done when pedestrian have already the crossing

right are ignored.

4) Pedestrian can cross 30 time units after their first valid

demand.

5) The system is made of four components: pedestrian

lights, vehicle lights, sensors and the control system.

B. Models

In this section, we illustrate our proposed methodology by

constructing the case study described above.

1) Event splitting: The first refinement aims at splitting

the event switch depending on pedestrian_path value: when

false, switch corresponds to giving crossing authorization to

pedestrian; otherwise, it corresponds to end_of_authorization.

Refinement is guaranteed. Absence of deadlock introduction

comes from the fact that conditions are complementary.

As a result, we get the machine given in Listing 4 where the

switch event as been split.

machine Cross i ng_au tho r i za t ion ref ines Crossing
variables veh ic le_path pedest r ian_path
events

event INITIALISATION extends INITIALISATION end
event a u t h o r i z a t i o n ref ines swi tch

where
@gw pedest r ian_path = FALSE

then
@av vehic le_path := FALSE
@aw pedest r ian_path := TRUE

end
event end_of_autho r iza t ion ref ines swi tch

where
@gw pedest r ian_path = TRUE

then
@av vehic le_path := TRUE
@aw pedest r ian_path := FALSE

end
end

Listing 4. Introducing the authorization event

2) Introduction of the request event: This step adds a new

event allowing the pedestrian to ask for the authorization. This

event is supposed to be uncontrollable and thus not guarded.

It should have no effect if pedestrians are already allowed to

cross. It is introduced by constructing a refinement from the

abstract model describe in Listing 4. We get the machine given

in Listing 5 containing the request event.

machine Crossing_request ref ines Cross i ng_au tho r i za t i on
variables veh ic le_path pedest r ian_path au tho r i za t i on_ req

invar iants
@req_ty au tho r i za t i on_ req ∈ B

@auth_path pedest r ian_path=TRUE⇒ au tho r i za t i on_ req =FALSE
events

event INITIALISATION extends INITIALISATION
then

@auth au tho r i za t i on_ req := FALSE
end

event request / / p r e c e d e s a u t h o r i z a t i o n

then
@auth au tho r i za t i on_ req := TRUE

end
event a u t h o r i z a t i o n extends a u t h o r i z a t i o n

where
@greq au tho r i za t i on_ req = TRUE

end
event end_of_autho r iza t i on extends end_of_autho r iza t ion

then
@areq au tho r i za t i on_ req := FALSE

end
end

Listing 5. Crossing_request machine

3) Adding Timed constraints: This step adds timing con-

straints between existing events. The authorization should be

given 30 time units after the first occurrence of a request in each

segment delimited by the end_of_authorization event.

We reuse the existing status variable authorization_req

and introduce a new status variable is_waiting and a clock

variable (waiting) incremented by a new tick event.

The refinement of the previously obtained machine generates

a refinement with the two newly introduced variables and the

new event tick managing the discrete advance of time. The

control variable authorization_req is reused. Existing

events are extended so that the refinement property is satisfied

by construction.

machine Crossing_t imed ref ines Crossing_request sees cTiming
variables veh ic le_path pedest r ian_path au tho r i za t i on_ req

i s _ w a i t i n g wa i t i ng
invar iants

@w wai t i ng ∈ N

@iw i s _ w a i t i n g ∈ B

@i i s _ w a i t i n g = TRUE ⇒ wa i t i ng ≤ WaitingTime
events

event INITIALISATION extends INITIALISATION
then

@w wai t i ng := 0
@iw i s _ w a i t i n g := FALSE

end
event request extends request

then
@w wai t i ng := {TRUE7→wai t ing ,FALSE 7→ 0} (i s _ w a i t i n g)
@iw i s _ w a i t i n g := {FALSE 7→TRUE,TRUE7→ i s _ w a i t i n g }

(au tho r i za t i on_ req)
end

event a u t h o r i z a t i o n extends a u t h o r i z a t i o n
when

@c i s _ w a i t i n g = TRUE ⇒ wa i t i ng = Wait ingTime
then

@iw i s _ w a i t i n g := FALSE
end

event end_of_autho r iza t i on extends end_of_autho r iza t ion
when

@iw i s _ w a i t i n g = FALSE
end

event t i c k
when

@bc i s _ w a i t i n g = TRUE ⇒ wa i t i ng < WaitingTime
then

@w wai t i ng := wa i t i ng + 1
end

end

Listing 6. Crossing_timed machine

4) Decomposition: This step builds a distributed model from

a centralized one. Four subcomponents are introduced: con-

troller, vehicle lights VLights, pedestrian lights PLights

and sensors. Then, variables are mapped to components. These

declarations are specified as follows:

shared event decomposition Crossing_split

refines Crossing_timed

components

Controller VLights PLights Sensors

mappings

variables is_waiting authorization_req

7→ Sensors;

variable waiting 7→ Controller;

variable vehicle_path 7→ VLights;

variable pedestrian_path 7→ PLights

end

From this specification, a refined machine is generated [8].

It introduces new variables containing copies of the original

ones and events to refresh them. Parameters are also added to

existing events when the synchronous access to distant vari-

ables is possible. As an example, Listing 7 shows the refined

request event with one parameter, local_is_waiting,

of which value is given by the guard.

event request ref ines request
any l o c a l _ i s _ w a i t i n g
where

/ / a c c e s s t o r emote v a r i a b l e s us ed i n a c t i o n s

@iwa l o c a l _ i s _ w a i t i n g = i s _ w a i t i n g / / on S e n s o r s

then
@auth au tho r i za t i on_ req := TRUE / / on S e n s o r s

@w wai t i ng := {TRUE7→wai t ing ,FALSE 7→ 0} (l o c a l _ i s _ w a i t i n g)
/ / on C o n t r o l l e r

@iw i s _ w a i t i n g := {FALSE 7→TRUE,TRUE7→ i s _ w a i t i n g }
(au tho r i za t i on_ req) / / on S e n s o r s

end

Listing 7. The request event

Then, the obtained refined machine is projected on the com-

ponents, as mentioned by the comments associated to guards

and actions. Here, the value of the event parameter is provided

by the Sensors component. The action updating waiting

is performed by the request event of the Controller

component. It uses the value of the is_waiting variable

provided by the Sensors component through its synchronized

request event.

5) Generation of BIP models: We generate for each Event-B

subcomponent an atomic BIP component [8]. Four atomic com-

ponents are produced by our BIP code generator: ty_Controller,

ty_VLights, ty_PLights and ty_Sensors. For example, Listing 8

presents the atomic component ty_VLight which contains three

state variables and two exported ports accessible to connectors.

atom type ty_VLights ()
/∗ s ta te va r i ab l es ∗ /
data bool veh ic le_path
/∗ temporary va r i ab l es updated by connectors ∗ /
data bool wa i t i ng
data bool i s _ w a i t i n g
/∗ por t s ∗ /
expor t po r t ty_empty_port a u t h o r i z a t i o n ()
expor t po r t ty_empty_port end_of_autho r i za t ion ()
place P0
/∗ i n i t i a l ∗ /
i n i t i a l to P0
do { veh ic le_path = t rue ; }
/∗ t r a n s i t i o n s ∗ /
on a u t h o r i z a t i o n from P0 to P0

do { . . . }
on end_of_author iza t ion from P0 to P0
do { . . . }

end

Listing 8. Atomic component ty_VLight

The composition of BIP components intended to obtain from

a set of components (atomic or compound) a compound com-

ponent that models the application. To achieve this, we define

connectors (stateless entities) that enable interactions among a

set of components via their interface ports. Listing 9 provides

the compound component traffic_light which contains

an instantiation of two atomic component (ty_Controller

and ty_VLight) and two connectors that interconnect the two

instances.

compound type t r a f f i c _ l i g h t ()
component t y _ C o n t r o l l e r C o n t r o l l e r ()
component ty_VLights VLights ()
. . .

connector ty_request request (C o n t r o l l e r . request ,
Sensors . request)

connector t y _ a u t h o r i z a t i o n a u t h o r i z a t i o n (
C o n t r o l l e r . au tho r i za t i on ,
VLights . au tho r i za t i on , PLights . au tho r i za t i on ,
Sensors . a u t h o r i z a t i o n)

. . .
end

Listing 9. Compound component traffic_light

VI. CONCLUSION

In this paper, we have presented an ongoing work which

aims at promoting formal methods for the development of

distributed systems. We use a refinement-based methodology.

Thanks to DSL(s), we generate either Event-B machines which

can be refined further or ultimately BIP code. As future work,

we envision the (meta) verification of the overall process in

order to ensure the correctness by construction of the generated

machines.

REFERENCES

[1] J. Sifakis, “A framework for component-based construction extended
abstract.” in SEFM, B. K. Aichernig and B. Beckert, Eds. IEEE Computer
Society, 2005, pp. 293–300.

[2] M. Jaber, “Centralized and Distributed Implementations of Correct-by-
construction Component-based Systems by using Source-to-source Trans-
formations in BIP,” Thesis, Université Joseph-Fourier, Oct. 2010.

[3] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,
and J. Sifakis, “Rigorous component-based system design using the BIP
framework,” IEEE Software, vol. 28, no. 3, pp. 41–48, 2011.

[4] J.-R. Abrial, Modeling in Event-B: System and Software Engineering,
1st ed. New York, NY, USA: Cambridge University Press, 2010.

[5] ——, The B-book: Assigning Programs to Meanings. New York, NY,
USA: Cambridge University Press, 1996.

[6] R. Silva and M. Butler, “Shared event composition/decomposition in
Event-B,” in FMCO Formal Methods for Components and Objects,
November 2010, event Dates: 29 November - 1 December 2010.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the ICSE’ 99,
Los Angeles, CA, USA, May 16-22,, 1999, pp. 411–420.

[8] B. Siala, M. T. Bhiri, J. Bodeveix, and M. Filali, “An Event-B devel-
opment process for the distributed BIP framework,” in Formal Methods

and Software Engineering - 18th International Conference on Formal
Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016,

Proceedings, 2016, pp. 313–328.

