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Automatic refinement for Event-B through annotated patterns

In this paper, we investigate how patterns could be used in order to generate Event-B refinements automatically through DSL(s) for temporal, timed or distribution patterns. Our ulimate goal is to generate code for a concurrent, or distributed framework, e.g., BIP.

I. INTRODUCTION

In this paper, we are interested by the construction of correct by construction distributed systems. For such a purpose, we propose DSL for expressing temporal, timed and distribution requirements over an input model. Then, from such a model Event-B machines are automatically generated. Ultimately, BIP executable models are produced in order to be deployed over a concurrent or distributed architecture. The rest of the paper is organized as follows. Section 2 and 3 give an overview of the BIP and Event-B languages. Section 4 outlines the coupling between Event-B and BIP. Section 5 illustrated the approach through a case study. We conclude by sketching future issues.

II. BIP

BIP (Behavior, Interaction, Priority) [START_REF] Sifakis | A framework for component-based construction extended abstract[END_REF] is a semantic model for the component-based construction of systems. It is implemented in a language and a toolset. The BIP language offers primitives and constructs (atomic component, interface (data and port), connector and compound component) for modeling and composing atomic components. The latter are described as state machines, extended with data and functions written in the C language. A compound component is built from subcomponents, connectors and dynamic priorities. A BIP program is described by a tree whose terminal nodes are atomic components, non-terminal nodes are compound components and the root corresponds to the application.

The BIP toolset allows to simulate the execution of a BIP program by generating C++ code executable on a dedicated platform [START_REF] Jaber | Centralized and Distributed Implementations of Correct-byconstruction Component-based Systems by using Source-to-source Transformations in BIP[END_REF]. It also allows a posteriori verification of BIP programs by using model checking techniques [START_REF] Basu | Rigorous component-based system design using the BIP framework[END_REF].

III. EVENT-B

Event-B is a formal method that allows the development of correct by construction systems and software [START_REF]Modeling in Event-B: System and Software Engineering[END_REF]. Event-B is based on the theory of abstract machines. An Event-B abstract machine is semantically a symbolic transition system where the state space is characterized by an invariant which should be preserved by each event. An Event-B development is a chain of machines linked by a refinement relation which entails a weak simulation relation. These two semantics aspects are enforced by proof obligations to be discharged.

Event-B supports natively a top-down formal development process based on a refinement mechanism with mathematical proofs. The refinement-based method in Event-B consists of developing the system incrementally starting from an abstract model which is a specification of the system. More details of the system are added gradually (step-by-step) in a concrete model which has to preserve the functionality and properties of abstract models. As the Event-B model is expressed in a formal language, it is possible to generate proof obligations ensuring the correctness of the development. Models in Event-B are described in terms of the two basic constructs: contexts and machines. The latter contains the dynamic part of a model whereas contexts contain the static part. Indeed, contexts define abstract data types through sets, constants, axioms and theorems while machines define symbolic labelled transition systems through variables (state) and events specifying their evolution while preserving invariant properties. Moreover, an Event-B machine includes a mandatory event called INITIALISATION which defines the initial state.

As a running example, we will consider the controller for pedestrian crossing and traffic lights as a case study (see section V). The context (Listing 1) describes the roles played by the actors of the system as an enumerated set. The set Role models the two roles (Vehicle and Pedestrian) and the fact that Role contains only these two elements. context r o l e s sets Role constants V e h i c l e P edestri an axioms @r p a r t i t i o n ( Role , { V e h i c l e } , { P edestri an } ) end

Listing 1. Roles context

In order to reason about our system in a simple way, we start by building an abstract model which takes account of only very few constraints. The turns machine (Listing 2) defines one state variable turn in the variables clause. This variable is typed by the invariant, labelled turn_ty, and initialized in the INITIALISATION event. The switch event allows to give an access right to each role in turn. The next value of the turn variable is obtained by applying the function defined as an enumerated set of source-target ordered pairs on the current value of turn. machine t u r n s sees r o l e s var iab l es t u r n i n v a r i a n t s @turn_ty t u r n ∈ Role events event INITIALISATION then @ t _ i n i t t u r n := V e h i c l e end event s w i t c h then @t t u r n := { V e h i c l e → P edestri an , P edestri an → V e h i c l e } ( t u r n ) end end Listing 2. The turns machine Refinement is at the core of Event-B modeling [START_REF]Modeling in Event-B: System and Software Engineering[END_REF], as its predecessor B-method [START_REF]The B-book: Assigning Programs to Meanings[END_REF]. It is a process allowing the construction of a model in a gradual way. Starting from an abstract model, each refinement step adds further details. Thus, a development is an ordered sequence of models where each element is a refinement of the previous one. A refinement step must guarantee that every behavior of the concrete model is also a behavior of the abstract model. The refinement relation between a concrete and an abstract machine ensures that executions of the concrete machine can be simulated on the abstract machine. Event-B supports also weak simulation: the concrete machine can introduce new events that refine skip. However they should not take control indefinitely. A variant must be provided to help proving this property. Finally, it is possible to express that the concrete machine does not introduce deadlocks that were not permitted by the abstract machine.

As an example, a first refinement of our initial model (Listing 2) is the concrete machine Crossing below. In this refinement, we replace the unique variable turn by two boolean variables modeling the right of each participant and we express the safety property. A gluing invariant relates the variable turn with the two new variables.

machine c r o s s i n g r e f i n e s t u r n s sees r o l e s var iab l es v e h i c l e _ p a t h p e d e s t r i a n _ p a t h i n v a r i a n t s @vp_ty v e h i c l e _ p a t h ∈ B

@pp_ty p e d e s t r i a n _ p a t h ∈ B --g l u i n g i n v a r i a n t @vp_i v e h i c l e _ p a t h = TRUE ⇒ t u r n = V e h i c l e @pp_i p e d e s t r i a n _ p a t h = TRUE ⇒ t u r n = P edestri an @safety v e h i c l e _ p a t h = p e d e s t r i a n _ p a t h events event INITIALISATION then @ v p_i ni t v e h i c l e _ p a t h := TRUE @wp_init p e d e s t r i a n _ p a t h := FALSE end event s w i t c h r e f i n e s s w i t c h then @av v e h i c l e _ p a t h := p e d e s t r i a n _ p a t h @aw p e d e s t r i a n _ p a t h := v e h i c l e _ p a t h end end 

IV. COUPLING EVENT-B AND BIP

The BIP language provides powerful capabilities for describing the architectural aspects of an application, namely components made of subcomponents connected through their ports. Event-B is used for the formal specification and decomposition of a distributed system. The correction criteria defined by Event-B ensures the preservation of safety properties in the incremental developement of the model. Event-B is enriched with decomposition patterns which permit the refinement of a unique machine by a product of sub-machines which may be further refinement and decomposed until we get executable specifications. We consider the shared event decomposition method [START_REF] Silva | Shared event composition/decomposition in Event-B[END_REF] and CSP-like composition which allows data exchange through shared event parameters. Then BIP is used for the composition of atomic components designed in Event-B. Its connectors implement Event-B shared event synchronizations and data exchange while preserving their semantics. Figure 1 summarizes the coupling of Event-B and BIP to produce secure and scalable distributed systems.

In order to assist the user in this design process, we provide a support to refine and decompose an Event-B model and lastly to generate BIP models. These steps are driven by domain specific languages which give pararameters to the transformations (events or variables to be introduced, temporal properties to be satisfied, data to be remotly accessed, subcomponent names, variable mapping, location of guard or action computation, ...). The proposed temporal or temporised patterns are in the spirit of those proposed by Dwyer et al. [START_REF] Dwyer | Patterns in property specifications for finite-state verification[END_REF].

V. CASE STUDY

A. Requirements specification

A pedestrian crossing light is a road signals system which gives priority to vehicles. Pedestrians are allowed to cross only when the signals halt vehicle traffic on the road. This system consists of a set of traffic lights for drivers, a set of light signals for pedestrians and a push button. The latter is used by pedestrians to change traffic signal to give pedestrians enough time to cross. In this paper, we show how such a system can be built incrementally in Event-B. The centralized Event-B model is decomposed into several subcomponents which are translated into BIP executable models in order to be deployed over a concurrent or distributed architecture. The following subset of requirements is taken into account:

1) The system switches between pedestrian crossing and vehicle traffic. 2) Pedestrian should ask for crossing right before being allowed to cross. 3) Demands done when pedestrian have already the crossing right are ignored. 4) Pedestrian can cross 30 time units after their first valid demand. 5) The system is made of four components: pedestrian lights, vehicle lights, sensors and the control system.

B. Models

In this section, we illustrate our proposed methodology by constructing the case study described above.

1) Event splitting: The first refinement aims at splitting the event switch depending on pedestrian_path value: when false, switch corresponds to giving crossing authorization to pedestrian; otherwise, it corresponds to end_of_authorization. Refinement is guaranteed. Absence of deadlock introduction comes from the fact that conditions are complementary.

As a result, we get the machine given in Listing 4 where the switch event as been split.

machine C r o s s i n g _ a u t h o r i z a t i o n r e f i n e s C r o s s i n g var iab l es v e h i c l e _ p a t h p e d e s t r i a n _ p a t h events event INITIALISATION extends INITIALISATION end event a u t h o r i z a t i o n r e f i n e s s w i t c h

where @gw p e d e s t r i a n _ p a t h = FALSE then @av v e h i c l e _ p a t h := FALSE @aw p e d e s t r i a n _ p a t h := TRUE end event e n d _ o f _ a u t h o r i z a t i o n r e f i n e s s w i t c h where @gw p e d e s t r i a n _ p a t h = TRUE then @av v e h i c l e _ p a t h := TRUE @aw p e d e s t r i a n _ p a t h := FALSE end end Listing 4. Introducing the authorization event 2) Introduction of the request event: This step adds a new event allowing the pedestrian to ask for the authorization. This event is supposed to be uncontrollable and thus not guarded. It should have no effect if pedestrians are already allowed to cross. It is introduced by constructing a refinement from the abstract model describe in Listing 4. We get the machine given in Listing 5 containing the request event.

machine C rossi ng_request r e f i n e s C r o s s i n g _ a u t h o r i z a t i o n var iab l es v e h i c l e _ p a t h p e d e s t r i a n _ p a t h a u t h o r i z a t i o n _ r e q

i n v a r i a n t s @req_ty a u t h o r i z a t i o n _ r e q ∈ B @auth_path p e d e s t r i a n _ p a t h=TRUE⇒ a u t h o r i z a t i o n _ r e q =FALSE events event INITIALISATION extends INITIALISATION then @auth a u t h o r i z a t i o n _ r e q := FALSE end event request / / p r e c e d e s a u t h o r i z a t i o n then @auth a u t h o r i z a t i o n _ r e q := TRUE end event a u t h o r i z a t i o n extends a u t h o r i z a t i o n where @greq a u t h o r i z a t i o n _ r e q = TRUE end event e n d _ o f _ a u t h o r i z a t i o n extends e n d _ o f _ a u t h o r i z a t i o n then @areq a u t h o r i z a t i o n _ r e q := FALSE end end Listing 5. Crossing_request machine 3) Adding Timed constraints: This step adds timing constraints between existing events. The authorization should be given 30 time units after the first occurrence of a request in each segment delimited by the end_of_authorization event. We reuse the existing status variable authorization_req and introduce a new status variable is_waiting and a clock variable (waiting) incremented by a new tick event.

The refinement of the previously obtained machine generates a refinement with the two newly introduced variables and the new event tick managing the discrete advance of time. The control variable authorization_req is reused. Existing events are extended so that the refinement property is satisfied by construction. machine C rossi ng_ti med r e f i n e s C rossi ng_request sees cTiming var iab l es v e h i c l e _ p a t h p e d e s t r i a n _ p a t h a u t h o r i z a t i o n _ r e q i s _ w a i t i n g w a i t i n g i n v a r i a n t s @w w a i t i n g ∈ N @iw i s _ w a i t i n g ∈ B @i i s _ w a i t i n g = TRUE ⇒ w a i t i n g ≤ WaitingTime events event INITIALISATION extends INITIALISATION then @w w a i t i n g := 0 @iw i s _ w a i t i n g := FALSE end event request extends request then @w w a i t i n g := {TRUE → w a i t i n g , FALSE → 0 } ( i s _ w a i t i n g ) @iw i s _ w a i t i n g := { FALSE →TRUE, TRUE → i s _ w a i t i n g } ( a u t h o r i z a t i o n _ r e q ) end event a u t h o r i z a t i o n extends a u t h o r i z a t i o n when @c i s _ w a i t i n g = TRUE ⇒ w a i t i n g = WaitingTime then @iw i s _ w a i t i n g := FALSE end event e n d _ o f _ a u t h o r i z a t i o n extends e n d _ o f _ a u t h o r i z a t i o n when @iw i s _ w a i t i n g = FALSE end event t i c k when @bc i s _ w a i t i n g = TRUE ⇒ w a i t i n g < WaitingTime then @w w a i t i n g := w a i t i n g + 1 end end Listing 6. Crossing_timed machine 4) Decomposition: This step builds a distributed model from a centralized one. Four subcomponents are introduced: controller, vehicle lights VLights, pedestrian lights PLights and sensors. Then, variables are mapped to components. These declarations are specified as follows: From this specification, a refined machine is generated [START_REF] Siala | An Event-B development process for the distributed BIP framework[END_REF]. It introduces new variables containing copies of the original ones and events to refresh them. Parameters are also added to existing events when the synchronous access to distant variables is possible. As an example, Listing 7 shows the refined request event with one parameter, local_is_waiting, of which value is given by the guard. event request r e f i n e s request any l o c a l _ i s _ w a i t i n g where / / a c c e s s t o r e m o t e v a r i a b l e s u s e d i n a c t i o n s @iwa l o c a l _ i s _ w a i t i n g = i s _ w a i t i n g / / on S e n s o r s then @auth a u t h o i z a t i o n _ r e q := TRUE / / on S e n s o r s @w w a i t i n g := {TRUE → w a i t i n g , FALSE → 0 } ( l o c a l _ i s _ w a i t i n g ) / / on C o n t r o l l e r @iw i s _ w a i t i n g := { FALSE →TRUE, TRUE → i s _ w a i t i n g } ( a u t h o r i z a t i o n _ r e q ) / / on S e n s o r s end Listing 7. The request event Then, the obtained refined machine is projected on the components, as mentioned by the comments associated to guards and actions. Here, the value of the event parameter is provided by the Sensors component. The action updating waiting is performed by the request event of the Controller component. It uses the value of the is_waiting variable provided by the Sensors component through its synchronized request event.

5) Generation of BIP models: We generate for each Event-B subcomponent an atomic BIP component [START_REF] Siala | An Event-B development process for the distributed BIP framework[END_REF]. Four atomic components are produced by our BIP code generator: ty_Controller, ty_VLights, ty_PLights and ty_Sensors. For example, Listing 8 presents the atomic component ty_VLight which contains three state variables and two exported ports accessible to connectors. The composition of BIP components intended to obtain from a set of components (atomic or compound) a compound component that models the application. To achieve this, we define connectors (stateless entities) that enable interactions among a set of components via their interface ports. Listing 9 provides the compound component traffic_light which contains an instantiation of two atomic component (ty_Controller and ty_VLight) and two connectors that interconnect the two instances. 

VI. CONCLUSION

In this paper, we have presented an ongoing work which aims at promoting formal methods for the development of distributed systems. We use a refinement-based methodology. Thanks to DSL(s), we generate either Event-B machines which can be refined further or ultimately BIP code. As future work, we envision the (meta) verification of the overall process in order to ensure the correctness by construction of the generated machines.
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