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bLS2N, 1 rue de Noë, 44331 Nantes, France

Abstract

Experimental acoustic sensor networks are currently tested in large cities, and appear more and more as a useful tool

to enrich modeled road traffic noise maps through data assimilation techniques. One challenge is to be able to isolate

from the measured sound mixtures acoustic quantities of interest such as the sound level of road traffic. This task is

anything but trivial because of the multiple sound sources that overlap within urban sound mixtures.

In this paper, the Non-negative Matrix Factorization (NMF) framework is developed to estimate road traffic noise

levels within urban sound scenes. To evaluate the performances of the proposed approach, a synthetic corpus of sound

scenes is designed, to cover most common soundscape settings, and whom realism is validated through a perceptual test.

The simulated scenes reproduce then the sensor network outputs, in which the actual occurrence and sound level of each

source are known.

Several variants of NMF are tested. The proposed approach, named threshold initialized NMF, appears to be the

most reliable approach, allowing road traffic noise level estimation with average errors of less than 1.3 dB over the tested

corpus of sound scenes.

Keywords: Non-negative Matrix Factorization, urban sound environment, road traffic sound level estimation

1. Introduction

In response to the growing demand from urban dwellers

for a better environment, noise mapping has been recom-

mended as a tool to tackle noise pollution. The enactment

of the European Directive 2002/EC/49 makes such maps5

mandatory to cities over 100 000 inhabitants. Those maps

play an important informative role, establishing the dis-

tribution of the sound levels all over the cities as well as

the estimation of the number of city dwellers exposed to

high sound level (> 55 dB(A)) [1]. Road traffic concen-10

trates particular attention as it is the main urban source
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of noise annoyance. Road traffic noise maps are typically

built from data collection that consist of traffic data col-

lected on the main roads (flow rates, mean speeds and

heavy vehicle ratio) and urban geographic data (building15

heights and location, topology, ground surfaces . . . ). Fol-

lows sound emission and sound propagation computational

techniques, resulting in the production of the two indi-

cators equivalent A-weighted sound levels, LDEN (Day-

Evening-Night) and LN (Night) [2]. This procedure also20

enables drawing up action plans to reduce the noise expo-

sure. Despite their unanimously recognized interest, noise

maps suffer from some limitations. The computing cost re-

quired to produce noise maps at the city scale calls simpli-

fications of the numerical tools and the simulation models25

that both generate uncertainties [3, 4]. Data collection is
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Figure 1: Block diagram of the blind source separation model

itself also a vector of uncertainty. Moreover, the produced

aggregated indicators do not model the sound levels evo-

lution due to the traffic variations throughout the day.

Noise measurements are thus increasingly used in ad-30

dition to simulation to describe urban noise environments

[5–7]. Several measurement set-ups have been proposed in

the last years, including mobile measurements with high

quality microphones [8, 9], participative sensing through

dedicated smartphone applications [10, 11], or the devel-35

opment of fixed-sensor networks. In this latter case, the

sensor networks can be based either on high-quality sen-

sors as in [12, 13], or low-cost sensors as in the DYNAMAP

project [14] or the CENSE project [15]. The costs and

benefits of each protocol are discussed. Mobile and par-40

ticipatory measures increase spatial coverage at low cost,

but lack temporal representativeness. Fixed networks are

very reliable for measuring sound levels temporal varia-

tions, but allow only a small spatial coverage of the net-

work. In addition, the low-cost sensors enable a wider45

deployment, but at the cost of increased uncertainties, the

most extreme example being smartphone applications.

All these measurement protocols allow the combina-

tion of measures and predictions to improve the accuracy

of the produced noise maps. Traffic noise maps and mea-50

surements were compared on restrictive areas in [16] and

[17]. Wei et al. [18] modify the acoustical parameters of

the simulation thanks to noise measurements, while Mal-

let et al. [19] call for data assimilation techniques between

models and measurements to reduce the uncertainty of55

the produced noise maps. However, these works make the

implicit assumption that the noise measurements consist

mainly of road traffic. In the aim to improve road traffic

noise maps, the use of measurements has first to deal with

the challenge to estimate correctly the road traffic sound60

level. Even if road traffic is predominant on many urban

areas, urban sound environments are composed of many

different overlapping sound sources (passing cars, voices,

footsteps, car horn, whistling birds . . . ), what makes the

task of estimating correctly the traffic sound level within65

an urban sound mixture not trivial.

Many works have dealt with the classification [20, 21],

the detection [22, 23] or the recognition [24, 25] of urban

sound events. In these cases, a two-step scheme is followed

where audio samples are described with a set of features70

(Mel Frequency Cepstral Coefficient, MPEG-7 descriptors

. . . ) and classified with the help of a classifier (Gaussian

Mixtures Models, Artificial Neural Network . . . ) [26, 27].

The classifier is learnt from a learning database and is

next applied on a test database to validate the algorithms.75

Dedicated to the traffic, in [28], an Anomalous Event De-

tection, based on MFCC features, is proposed with the

specific aim to improve the traffic sound estimation. It is

based on the detection of unwanted sound events in order

to discard them.80

An other approach, followed in this paper, is to con-

sider the blind source separation paradigm which consists

in the extraction of a specific signal inside a set of mixed

signals, see Figure 1. From the different existing methods,

Non-negative Matrix Factorization (NMF) [29], appears85

to be a relevant method for monophonic sensor networks.

Many applications can be found for musical [30, 31] and

speech [32, 33] contents. Dedicated to sound separation

with environmental sounds, Immani and Kasäı [34] used

NMF in a two steps sound separation with the help of time90

variant gain features. Dedicated to the traffic sound sepa-

ration, a first study [35] has been conducted, in which di-

verse NMF estimation rules are compared, namely the su-

pervised, the semi-supervised, and the threshold initialized

NMF, have been applied on a large set of simulated sound95
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scenes. This corpus mixes 6 sound categories (alert, an-

imals, climate, humans, mechanics, transportation) with

a traffic component calibrated to different sound levels,

according to the other sound classes (in the rest of the

document, these sound classes, not related to the traffic100

component, are resumed as the interfering sound class),

to obtain variable traffic predominance. The diversity of

this corpus was made to assess the performances and the

limits of each NMF formula. However, if this study re-

veals the interest of NMF for urban sound environments,105

the assessment of its performance on a corpus of realistic

sound scenes must be carried out in order to implement it

on a sensor network. Design urban sound mixtures makes

it possible to access to many acoustic properties as the on-

set and offset time and the sound level of each sound class110

and especially the traffic component. The realistic aspect

of such a corpus is essential to obtain sound scenes similar

to recordings and to validate NMF performances. How-

ever, like all simulated process, the realism of the scenes

must be perceptually verified.115

In this paper, an urban sound corpus based on an-

notated urban recordings, and whose degree of realism is

assessed through a perceptual test, is designed in order to

estimate the traffic sound level with the help of the NMF

framework. The different NMF approaches are described120

in section 2. Next, the corpus of urban sound scenes is pre-

sented in section 3, from the sound database built-up to

its validation. The experimental protocol and the results

are then presented and discussed in section 4 and 5.

2. Non-negative Matrix Factorization125

Non-negative Matrix Factorization (NMF) is a linear

approximation method proposed by Paatero and Tapper

[36] and popularized by Lee and Seung [29]. It consists in

approximating a non negative matrix V ∈ R+
F×N by the

product of two non negative matrices: W, called dictio-130

nary (or basis), and H, called the matrix activation with

dimensions F ×K and K ×N respectively,

W 

H 

a b c 

V 

Figure 2: NMF decomposition of an audio spectrogram V composed

of 3 elements (K = 3): passing car (a), car horn (b) and whistling

bird (c).

V ≈WH. (1)

The choice of the dimensions is often made such as

F ×K +K ×N < F ×N so that NMF can be a low rank

approximation. This condition however is not mandatory.135

When applying NMF to audio data, V is usually consid-

ered as the magnitude spectrogram obtained by a Short-

Time Fourier Transform, W includes audio spectra and H

is equivalent to the temporal activation of each spectrum,

see Figure 2. Because of the non-negativity constraint,140

only additive combinations between the elements of W

are considered.

The approximation of V by WH product is defined by

a cost function to minimize,

min
H≥0,W≥0

D (V‖WH) , (2)

where D(•‖•) is a divergence calculation such as:

D (V||WH) =
F∑
f=1

N∑
n=1

dβ

(
Vfn| [WH]fn

)
. (3)

dβ(x|y) is usually chosen as a β-divergence [37], a sub-145

classes belonging to the Bregman divergences [38] which

include 3 specific divergence calculations: the Euclidean

distance (eq. 4a), the Kullback-Leibler divergence (eq. 4b)

and the Itakura-Säıto divergence (eq. 4c):
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dβ(x|y) =



1
2(x− y)2, β = 2, (4a)

x log x
y
− x+ y, β = 1, (4b)

x

y
− log x

y
− 1 β = 0. (4c)

The minimization problem (2) is solved iteratively by150

updating the form of matrices W and H. Different algo-

rithms such as Alternating Least Square Method [39] or

Projected Gradient [40] have been considered. The most

commonly used algorithm is the Multiplicative Update

[41]. The latter method is chosen here, as it ensures non-155

negative results and the convergence of the results [37].

2.1. Supervised NMF

The most easiest case of NMF is the one where the

sound sources can be known a priori and W can be built

directly from audio samples. It leads to supervised NMF160

(SUP-NMF). H is then the only matrix to estimate and is

updated at every iteration (eq. 5) [37]:

H(i+1) ← H(i) ⊗

WT

[(
WH(i)

)(β−2)
⊗V

]
WT

[
WH(i)

](β−1)


γ(β)

(5)

with γ(β) = 1
2−β , for β < 1, γ(β) = 1, for β ∈ [1, 2]

and γ(β) = 1
β−1 for β > 2. Thus, the choice of the β-

divergence in the equation 4 affects how the matrix H is165

updated. The A ⊗ B and A/B operators represent the

Hadamard product and ratio.

Here, in an urban context, if the sound sources are

known, their audio samples can be obtained to learn W,

see section 4.2. As the position of each element is indexed,170

the traffic source separation from the other sound sources

is made by extracting, from the dictionary and the activa-

tion matrix, the related elements:

Ṽtraffic = [WH]traffic . (6)

2.2. Semi-supervised NMF

The main issue with the supervised approach is the175

representational limit imposed by a fixed W. To be com-

pletely successful, all the acoustical sources must be con-

sidered in the basis W which is not always possible in a

complex urban environment. To overcome this issue, semi-

supervised NMF (SEM-NMF) [42] has been proposed. It180

consists in decomposing, WF×(K+J) into two distinctive

matrices: W = [Ws Wr] where WsF×K is a fixed part of

W composed of known audio spectra and WrF×J , a mo-

bile part which is updated, see eq. 8a. Thus it is possible to

let the method define the best elements to include in Wr.185

Its dimension is set up as J << K in order to consider, as

a priority, the sound sources present in Ws. H is then also

decomposed in two matrices, H(K+J)×N =
[
Hs

Hr

]
. Eq. 1

becomes

V ≈WH = WsHs + WrHr. (7)

Hr and Hs are updated separately, see eq. 8b to eq.190

8c.

Wr
(i+1) ←Wr

(i) ⊗


[(

WrHr
(i)
)(β−2)

⊗V
]

Hr
T(

WrHr(i)
)(β−1)

HrT

γ(β)

,

Hr
(i+1) ← Hr

(i) ⊗

Wr
T

[(
WrHr

(i)
)(β−2)

⊗V
]

WrT
(

WrHr(i)
)(β−1)

γ(β)

,

Hs
(i+1) ← Hs

(i) ⊗

Ws
T

[(
WsHs

(i)
)(β−2)

⊗V
]

WsT
(

WsHs(i)
)(β−1)

γ(β)

.

(8a)

(8b)

(8c)

In this study, Ws is composed of traffic audio spectra,

as it is the sound source of interest. Sources included in

Wr are other sound sources (corresponding to the interfer-195

ing class) that can be present in the urban sound scenes.

The traffic signal estimation is next defined by the fixed

part,

Ṽtraffic = [WsHs] . (9)
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The addition of Wr gives more flexibility to the method

to represent correctly the spectrogram V. The represen-200

tational capability is increased, thus the approach is more

adaptive to the different urban sound environments. Ap-

plications of SEM-NMF can be found for musical [43, 44]

and speech contents [33, 45].

2.3. Thresholded Initialized NMF205

To allow even more flexibility while still considering

prior knowledge of the source of interest, we propose a

third approach based on the unsupervised NMF frame-

work: Threshold Initialized NMF (TI-NMF). Usually, in

unsupervised NMF, the dictionary is initiated randomly210

when there is no prior knowledge on the sound sources

present. Here, as the target sound source is known and

the spectra are available, an initial dictionary, W0, is de-

signed and then updated alternatively with H,

W(i+1) ←W(i) ⊗


[(

W(i)H
)(β−2) ⊗V

]
HT[

W(i)H
](β−1) HT

γ(β)

.

(10)

With this operation, W0 is oriented to the focused215

sound source (the road traffic) but also can be adapted to

the content of the scene thanks to the updates. After N

iterations, each element k of the final dictionary, W′, is

compared with its initial value in W0, in order to identify

which element is stayed close to the traffic component. A220

cosine similarity Dθ (W0‖W′) is computed for each ele-

ment k as it is scale-invariant and bounded,

Dθ (w0‖w′) = w0.w′

‖w0‖.‖w′‖
. (11)

where w is a k element of W of F × 1 dimensions.

When Dθ (w0‖w′)=1, the element w′ is identical to w0.

If Dθ (w0‖w′)=1, both elements are fully different. The225

extraction of traffic elements in W′ is carried out by a

hard thresholding method [46]. It consists in weighting in

a binary way W′ according to Dθ (w0‖w′) and a threshold

value αk such as:

wtraffic = αkw′. (12)

with

αk =
{ 1 iff Dθ (w0‖w′) > th, (13a)

0 else. (13b)
230

To summarize, to approximate the audio spectrogram

V and estimate the traffic component, 3 methods are used

which deal differently with the a priori knowledge on the

traffic. SUP-NMF is only based on fixed traffic elements235

and is constrained to used it to obtain Ṽtraffic. SEM-

NMF completes this dictionary by the add of a mobile

dictionary to better consider the interfering sound events

and then offer more flexibility. Finally, TI-NMF consid-

ers first a dictionary composed of traffic spectra, as SUP-240

NMF, but allows an update of them. The interest of an

initiated dictionary is then to focus on the source of in-

terest during the updates. This method therefore makes

it more suitable for solving the generalization issues as it

is the entire dictionary that can be fully adapted to the245

sound scenes. The elements that deviates too much from

the originals spectra are then discarded by the threshold-

ing step.

These above described methods are applied on an eval-

uation corpus, composed of simulated sound scenes, in or-250

der to compare the estimated traffic sound levels with an

exact reference. This new sound corpus is designed by

considering realistic urban sound environments with many

kinds of mixed sound sources.

3. Design of realistic urban sound scenes255

The evaluation corpus must be both realistic and non

ambiguous in terms of traffic sound level. The former calls

for the use of real urban sound environments, and the lat-

ter imposes the use of controlled sound sources with known

5
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properties: onset and offset time location, and sound level.260

Indeed, the precise annotation of the sound level of a given

source of interest in a real recording is a very complex

problem. Two corpora are proposed to design a valid cor-

pus of evaluation. The first, called the reference corpus,

is a set of recordings of urban sound environments, from265

which, what we call, a transcription is made, i.e. which

sound source is present from this time to this time. The

second, called the elemental corpus, is a set of monophonic

recordings of isolated sound sources that represent cate-

gories of events that are present in the reference scenes.270

The elemental corpus is built with still existing sounds

and with specific recordings, see part 3.1. The evaluation

corpus is then designed by replicating the reference cor-

pus according to the transcription with the help of the

elemental corpus, see Figure 3.275

The reference corpus is composed of 76 recordings from

2 to 5 min, achieved in the 13th district of Paris (France)

at 19 different locations 1, see Figure 4, which cover var-

ious sound environments. A complete description of the

experimental protocol can be found in [47]. Two of the280

76 recordings are rejected for the analysis because the au-

dio files were corrupted, resulting in 74 valid audio files

assumed as representative of the variety of urban sound

environments. The recordings are listened and categorized

within four different sound environments, as proposed in285

[48]: park (8 audio files with a cumulative duration of

1Recordings were made as part of the Grafic project funded by

Ademe

Figure 4: Walked path with the 19 stop points [47].

16min01), quiet street (35 audio files with a cumulative

duration of 77min27), noisy street (23 audio files with a

cumulative duration of 56min10) and very noisy street (8

audio files with a cumulative duration of 21min42). Then,290

each audio file is transcripted, noticing the start, end time

and level of each sound event along with its sound class.

This annotation phase makes it possible to produce simu-

lated sound scenes with the same positions of sound events

than the recordings and therefore as close as possible to295

the real scenes.

3.1. Generation of the evaluation corpus

The sound scenes are generated with the SimScene

software2, [49], a simulation software generating monau-

ral sound mixtures in wav format from an isolated sounds300

database. This software has already been used in a wide

range of experiments for sound detection algorithm assess-

ment [50, 51]. The SimScene software allows the design of

2Open-source project available at: https://bitbucket.org/

mlagrange/simscene
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Figure 5: Spectrogram of a simple scene created with the SimScene

software with one sound background (road traffic in blue) and 3

sound events (car horn in green, passing car in yellow and whistling

bird in red).

several type of sequencing, from abstract ones (time in-

dexes and amplitudes are drawn from random distribu-305

tions) to precise ones, where the time indexes and ampli-

tudes for each event are set by the user. The latter type is

considered in this study. As output, SimScene generates

an audio file of the global sound mixture as well as for each

sound class present in the scene, see Figure 5. It makes it310

possible to know their exact contributions in the scene, in

particular their sound levels.

To replicate the 74 recordings in simulated scenes, a

high quality (wav format, 44.1 kHz sampling rate, high

Signal Noise Ratio) elemental corpus has been built-up315

from audio samples found online (freesound.org) or with

the help of an already existing sound database [52]. The

elemental corpus is composed of two categories of sound:

the event category, which includes 245 brief sound samples

considered as salient, with a 1 to 20 seconds duration and320

classified among 21 sound classes (ringing bell, whistling

bird, car horn, passing car, hammer, barking dog, siren,

footstep, metallic noise, voice . . . ) and the background

(or texture) category gathering 154 long duration sounds

(≈ 1mn30), whose acoustic properties do not vary in time.325

This category includes among others whistling bird, crowd

noise, rain, children playing in schoolyard, constant traffic

noise sound classes. Each sound class is composed of mul-

Table 1: Mean Traffic Interfering Ratio and its standard deviation

for each sound environment.

mTIR (dB)

park -9.10 (± 7.35)

quiet street 0.88 (± 5.92)

noisy street 6.96 (± 5.16)

very noisy street 15.75 (± 9.78)

tiple samples (carHorn01.wav, carHorn02.wav . . . ) that

are randomly chosen by the simScene software to bring330

diversity. As the road traffic is the main component in

urban environment and is the sound source of interest,

recordings of car passages have been made on the Ifsttar’s

runway. The recordings have been made for 4 different

cars (Renault Scenic, Renault Mégane, Renault Clio and335

Dacia Sandero), at different speeds and gear ratios. Over-

all, 103 car passages have been recorded. In order to avoid

overfitting issues, the audio samples of the first two cars

(Renault Scenic and Renault Mégane) are included in the

SimScene’s elemental corpus (50 audio files in total). The340

last 53 audio samples are dedicated to the dictionary de-

sign, W as part of NMF, see section 4.2. A full description

of the recordings can be found in [53].

With this built-up corpus, the SimScene software and

the transcriptions of the recordings, 74 simulated sound345

scenes are generated, which have the same temporal struc-

ture of the reference recordings. The sound level of each

sound class is adjusted manually on each sound scene to

be faithful compared to the recorded scenes. To check this

adjustment, the mean Traffic Interfering Ratio (mTIR)350

is calculated, see Table 1. It expresses, on all the scenes

of a sound environment, the mean difference between the

equivalent traffic sound levels of each scene, Lp,traffic,

with the sound level of the interfering sound class, Lp,interfering,

which gathered all the other sound sources not related to355

the traffic, see Eq. 14. It quantifies the predominance of

the traffic component for the 4 types of sound environ-

ments,

7



mTIR =
∑M
i=1 Lp,traffic − Lp,interfering

M
. (14)

where M is the number of available scenes for each

sound environment (M = 8 for park environment, M = 35360

for quiet street environment, M = 23 for noisy street en-

vironment and M = 8 for very noisy street environment).

ThemTIR is always negative for the park as it is the sound

environment where the traffic is less present. The interfer-

ing sound class is therefore the main sound source which is365

coherent with this kind of environment. The mTIR can be

positive or negative depending on the traffic presence on

the scene in the case of the quiet street. For the 2 others

sound environments, when the traffic becomes the main

sound source, mTIR is always positive.370

3.2. Perceptual test

To evaluate the level of realism of the evaluation corpus

composed of replicated urban sound scenes, a perceptual

test is considered.

The perceptual test is conducted with a panel of 50375

listeners that are asked to assess the level of realism on a

7-point scale (1 is not realistic at all, 7 is very realistic) of a

set of replicated and recorded scenes. The total number of

sound scenes tested is set at 40. This is less than the num-

ber of scenes available to ensure that each audio sample380

is sufficiently assess. The first half includes 20 30-seconds

audio files corresponding to the real scenes, including 5

scenes that belong to the sound environment park, 6 from

quiet street, 4 from noisy street and 5 from very noisy street

chosen randomly among the recorded scenes. The second385

half is composed of the replicated scenes from the evalua-

tion corpus corresponding to the same 20 reference scenes.

In order to limit the duration of the test to preserve the

concentration of the subjects, each subject listens to only

a subset of 20 sound scenes. All the scenes are normalized390

to the same sound level, chosen at 65 dB, and the subjects

are not allowed to change the output sound level once set

at the beginning of the experiment.

The experimental design is elaborated following a par-

tially Balanced Incomplete Block Design (PBIBD) [54] the395

audio allocated to each participant and the listening order.

This process allows to each sound sample to be assessed

almost the same number of time and to avoid statistical

biais. The experimental design and the listening order per

participant are performed with the package sensoMineR400

on the R software [55].

The test was available online from February 8th, 2017

and the needed number of participant (50) has been reached

12 days later. During the test, the participants had the405

possibility to listen to each scene as many times as wanted

before assessing, without being able to change their judg-

ment afterwards. The participants could also leave a com-

ment on each audio to explain the rating 3. Based on the

information provided, the panel of 50 listeners was made of410

31 males and 18 females (one not documented) with an av-

erage age of 36 (± 12) years old. 62% of the participants

declared having no experience in the listening of urban

sound mixtures. The results show that the average score

(with its standard deviation) of all the replicated scenes415

(mreplicated = 5.1 (± 1.6)) is close to the recorded ones

(mrecorded = 4.9 (± 1.6)). To determine whether a repli-

cated scene is perceived in a similar way to that recorded,

a Student’s t-test is performed, for each scene, between

the scores from the recorded sample and those from the420

replicated sample with the H0 hypothesis which considers

the similarity between the distribution of the rates for the

recorded and the replicated scenes of each participant with

a p-value threshold of 5%. The 20 performed t-tests show

that the differences in the assessment of the replicated and425

the recorded scene, according to their degree or realism, is

not significant (p-value> 5%).

More details on the results can be found in [53]. As the

perceived realism of the replicated and the recorded scenes

3The interface of the experiment is available http://

soundthings.org/research/xpRealism
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are not significantly different, we consider that these sound430

mixtures are relevant to assess the performances of NMF

according to the traffic sound level estimate.

4. Methods for the performance evaluation

The experiment aims at evaluating in a meaningful

manner the performance of the NMF approach. To do so,435

the 74 replicated sound scenes, organized on 4 different

types of sound environments are iteratively fed to the es-

timator which output an estimate of the equivalent sound

level of the traffic within each scene L̃p,traffic (dB). This

result is then compared to the reference sound level value440

given by the simulation process, Lp,traffic, see Figure 6.

4.1. Reference estimator

A reference estimator is necessary to be able to com-

pare the performances of the different NMF-methods. As

the road traffic is mainly composed of a low frequency con-445

tent, a frequency low-pass filter (LP filter) is considered as

baseline. The estimation of the traffic sound level with this

reference estimator is simply the sound level after low-pass

filtering,

Ṽtraffic = Vfc . (15)

Different cut-off frequencies have been chosen such as450

fc ∈ {500, 1k, 2k, 5k, 10k, 20k} Hz. The experimental

factors related to this estimator are summarized in Table

2.

The second estimator is based on the three NMF for-

mula presented in part 2 (see Figure 8). Multiple experi-455

mental factors are involved in this second estimator where

each of them having different modalities.

4.2. Dictionary building for NMF-methods

The dictionary is designed from a sound database spe-

cially dedicated to this task. To prevent any overfitting460

issues, it contains the 53 audio files of the 2 cars not in-

cluded in the creation of the evaluation corpus, see part

3.1.

First the spectrogram of each audio file is computed

(w = 212 sample points with 50 % overlap). The spectro-465

gram is then cut in multiple temporal frames of wt ∈ {0.5,

1} second duration. In each frame, the root mean square

on each frequency bin is calculated to obtained a spectrum

of F ×1 dimension. This method allows the description of

the audio sample with a finer spectra and then having the470

different characteristic pitches of the traffic spectra. An

illustrative example on a 3 seconds sample is displayed in

Figure 7. From the 53 audio files, we obtain respectively

2218 elements for wt = 0.5 second and 1109 elements for

wt = 1 second.475

A K-means clustering algorithm is applied to those el-

ements to reduce these dimensions to K ∈ {25, 50, 100,

200} in order to avoid redundant information and decrease

the computation time. The resulting K cluster centroids

are taken as the elements of W. Each basis of W is then480

normalized as ‖w‖ = 1 where ‖•‖ is the `1 norm. Table 2

summarizes the different modalities of the two experimen-

tal factors (K and wt).

4.3. NMF experimental factors

NMF is performed for 3 β-divergences: β = 2 (Eu-485

clidean distance), β = 1 (Kullback-Leibler divergence) and

β = 0 (Itakura-Säıto divergence). The spectrogram V

and the dictionary W are expressed in a logarithmic scale

through a third octave band representation that reduces

the high frequency predominance where the traffic compo-490

nent is absent. In addition, as the number of frequency

bins is reduced (F = 29), the computation time is reduced

too. 400 iterations are performed to get a stabilized re-

sults. For SEM-NMF, the number of elements in Wr is

set to J = 2. For hard thresholding, the threshold value,495

th is set between 0.30 and 0.60 with a 0.01 increment.

Each unique association of modalities between each ex-

9
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⁓
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Performance 
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Lp, trafic

Sound 
mixture

evaluation 
corpus

Figure 6: Bloc diagram of the different stages for the estimation of the traffic sound level.

Figure 7: Dictionary building on a 3 second example of a passing car with wt = 1 second, in dashed line a temporal frame of 1 s. In this

case, the dictionary W is made of 3 spectra, each representative of a texture frame of wt duration.

NMF

sound 
database 

W

[WH]trafficV

Figure 8: Bloc diagram of the NMF estimator.

perimental factor forms an experimental setting. For the

filter estimator, 24 settings are computed (4 × 6). For

SUP and SEM-NMF, 192 settings are computed (4 × 2 ×500

2 × 4 × 3). Finally, for TI-NMF, the number of settings is

much higher (2976) due to the higher cardinality of the set

of threshold values (4 × 1 × 2 × 4 × 3 × 31). The experi-

mental factors and their different modalities are displayed

in Table 2.505

The approximated traffic spectrograms Ṽtraffic are

obtained after 400 iterations. The estimated traffic sound

level in dB, L̃p,traffic, is then computed,

L̃p,traffic = 20 log
(
prms
p0

)
, (16)

where p0 is the reference sound pressure, p0 = 2×10−5

Pa. For each setting, M traffic sound levels, correspond-510

ing to the M scenes of each sound environment, are then

calculated.

4.4. Metrics

The traffic sound levels, L̃p,traffic, are compared to

the exact values, Lp,traffic, through the Mean Absolute515

Error (MAE) [56]. The MAE consists in the average

across of the absolute difference between the exact and

the estimated sound levels,

MAEj =
[∑M

i=1 |Lip,traffic − L̃ip,traffic|
M

]
j

, (17)

for each setting j. But it is also possible to average this

metric according to the 4 different sound environments,520

through the mean MAE error mMAE, to estimate the

10



Table 2: Experimental factors and their modalities for the NMF estimator.

experimental

factors
modalities

number of

modalities

sound

environment

park

’P’

quiet street

’Q’

noisy street

’N’

very noisy street

’vN’
4

method LP Filter SUP NMF SEM NMF TI NMF 4

fc (kHz) 0.5 1 2 5 10 20 6

wt (s) 0.5 1 2

K 25 50 100 200 4

β 0 1 2 3

hard threshold th from 0.30 to 0.60 with a 0.01 step 31

optimal setting that offers the lowest error for all the sound

environments:

mMAE =
∑4
i=1 MAEi

4 , (18)

where the other experimental factors (estimator, fc, K,

wt, β, threshold value th) are fixed.525

5. Results and discussion

Table 3 summarizes the lowest mMAE errors accord-

ing to the estimator (LP filter, NMF) and β with the best

setting of the experimental factors.

The LP filter with fc = 20 kHz cut-off frequency is530

equivalent to consider the sound level of the entire scene

without specific distinction between the sound sources.

The error is then important with a high standard devi-

ation (mMAE = 3.76 (± 4.35) dB). The lowest error for

a LP filter is obtained with fc = 500 Hz (mMAE = 2.14535

(± 1.83) dB).

When considering all the sound scenes, SUP-NMF does

not succeed to achieve a lower error than the 500 Hz LP

filter for all the β values. By adding the mobile part Wr in

the dictionary, SEM-NMF with β = 0 and β = 1 allows a540

lower error than 500 Hz LP filter with a reduced standard

deviation especially for β = 1 (mMAE = 1.94 (± 0.38)

dB).

TI-NMF is the approach with the lowest global error (<

1.50 dB). The best result is obtained for TI-NMF (MAE545

= 1.24 (± 1.24) dB) with β = 2, K = 200, wt = 0.5 s

and as threshold value th = 0.32. This combination of

settings offers the most efficient method adapted to the

different sound environments. Furthermore, on the dictio-

nary creation, only SEM-NMF proposes the same dictio-550

nary design for all the best methods according to β. In

the opposite, SUP and TI-NMF propose different associ-

ations between K and wt. One can notice that, through

the 3 methods, it is mainly a high number of elements in

K (100, 200) that is preferred. With more elements, it555

makes it possible to resolve easily the generalization issue.

From these global results, the MAE errors are com-

pared to the LP filter and each method for the 4 types of

sound environments, see Figure 9.

Aside SEM-NMF, all the methods show the same error560

evolution: a decrease of the error with the increase of the

traffic predominance. On contrary, SEM-NMF shows an

almost constant error for all 4 sound environments. The

LP filter error is mainly important for environments where

the traffic is less present. As this approach considers the565
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Table 3: Best mMAE errors according to the experimental factor β and the traffic sound level assessment method (in bold letter, the lowest

error).

method fc (kHz) β K wt (s) th mMAE (dB)

filter 20 - - - - 3.76 (± 4.35)

filter 0.5 - - - - 2.14 (± 1.83)

SUP-NMF - 0 200 0.5 - 4.06 (± 4.69)

SUP-NMF - 1 200 0.5 - 2.79 (± 3.38)

SUP-NMF - 2 25 1 - 2.32 (± 2.80)

SEM-NMF - 0 200 1 - 2.05 (± 0.70)

SEM-NMF - 1 200 1 - 1.94 (± 0.38)

SEM-NMF - 2 200 1 - 2.39 (± 1.23)

TI-NMF - 0 25 1 0.39 1.42 (± 0.89)

TI-NMF - 1 100 1 0.35 1.38 (± 0.88)

TI-NMF - 2 200 0.5 0.32 1.24 (± 1.24)

Figure 9: MAE errors with the standard deviations according to

each sound environment for the best combination of the LP filter (fc

= 500 Hz), SUP-NMF (β = 2, K = 25, wt = 1 second), SEM-NMF

(β = 1, K = 200, wt = 1 second) and TI-NMF (β = 2, K = 200,

wt = 0.5 second, th = 0.32).

remaining energy as the traffic component, no distinction

is made between the different sound sources not related to

the traffic component. The interfering sound class is then

wrongly considered as traffic component. On the opposite,

for noisy and very noisy environments, the performances of570

the LP filter are good (MAE < 1 dB). The errors are here

due to a high deletion of the traffic energy by the filter

while it becomes the main sound source. Consequently,

the 500 Hz LP filter estimator provides a low MAE er-

ror through the sound environments thank to a balance575

between the remaining and discarded energy.

Despite a fixed dictionary composed of traffic spectra,

SUP-NMF fails to identify correctly the traffic component

particularly for park (MAE = 6.42 dB) environments.

With this method, as NMF minimizes the cost function,580

eq. 2, the dictionary’s elements are used to model the

other sound sources which can not allow a rightful ap-

proximation of the traffic component. On the opposite,

for noisy and very noisy environments, SUP-NMF identi-

fies correctly the traffic components (MAE < 0.6 dB) as585

it is the main source. In the case of SEM-NMF, adding

the mobile dictionary, Wr, makes it possible to include

the other sound sources not present in the dictionary. If

this behavior is advantageous for the park environment

(MAE = 2.10 dB) where lot of different kind of sources590

are present, it is less advantageous for the rest of the envi-

ronments where the traffic becomes predominant resulting
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(a) Evolution of the cost function. (b) Evolution of the MAE errors.

Figure 10: Normalized reconstruction error of the global sound mixtures a and the traffic component b for each sound environment.

in the highest errors. Indeed, this degree of freedom gen-

erates higher error as Wr is not constrained and is free to

include traffic component in it, penalizing the traffic sound595

level estimation.

Finally, TI-NMF presents the most performing results,

except in the park environment (MAE = 2.95 dB). In this

sound environment, with the threshold value th = 0.32,

the traffic dictionary is composed, on average, of 136 el-600

ements. By increasing this value, it would be possible to

put aside the spectra furthest away of the traffic elements

and then decrease the error. For the rest of the sound en-

vironments, TI-NMF has the lowest errors. For very noisy

environment the error is even very low (MAE = 0.28 dB).605

With on average 198 elements in Wtraffic, almost all the

elements present in W′ can be considered as traffic ele-

ments. Considering a unique dictionary fitted to the sound

scene under evaluation thus makes TI-NMF very effective

when traffic is predominant, while the thresholding step610

makes it possible to discard the elements of the dictionary

that deviate too much when the traffic is less present.

To better understand the behavior of TI-NMF, the evo-

lution of the normalized cost function (D(V‖WH)/(F ×

N) as the duration of each audio sample is different) and615

the error MAE as the function of the number of iterations

are displayed for each sound environment in Figure 10. For

each sound environment, the cost function is very low after

400 iterations, meaning that WH approximates correctly

V. However, even if the convergence is not reached (Fig-620

ure 10a), the traffic error reconstruction is constant after

the 200th iteration (Figure 10b), which means that the

updates of W and H are mostly dedicated to the interfer-

ing sound sources. Also, even if the cost function is higher

for the very noisy street than the park, the traffic sound625

level estimation is better in the very noisy street sound

environment due to the higher presence of this component

in it.

Finally, the influence of the number of elements K in

W and the size of the temporal frame wt on the mMAE630

error made with TI-NMF, with the other experimental fac-

tors keep constant, are summarized in Figure 11. Natu-

rally, the traffic error reconstruction decreases, with the

increase of the number of basis in W, as it allows more

basis to describe the traffic sound source. If this improve-635

ment is major between 25 and 100 elements, its influence

decreases between 100 and 200 elements suggesting that

the increase of the size of K will not improve significantly

the quality of the estimation. The temporal frame wt is a

less influential parameter for TI-NMF. As the matrices are640

updates at each iteration, it makes sense that the varia-

tions in the spectra shape in W0, due to this experimental
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(a) Influence of the experimental factor K (TI-NMF, wt =

0.5 s, β = 2, th = 0.32, 400 iterations).

(b) Influence of the experimental factor wt (TI-NMF, K

= 200 s, β = 2, th = 0.32, 400 iterations).

Figure 11: Influence of the number of elements K (a) and the temporal frame wt (b) on the mMAE error with the best TI-NMF obtained

in Table 3.

factor, will disappear after a set of iterations.

6. Conclusion

The non-negative matrix factorization framework has645

been considered as a source separation tool to estimate the

traffic sound level from a corpus of urban sound scenes ar-

tificially built. Those scenes are designed to be as similar

as possible to the outputs of a deployed sensor networks

with the advantages of the simulation process (sound level650

and position of each source controlled and known). The

realism of the scenes has been verified thanks to a percep-

tual test.

The results confirm the potential of the NMF method

on such application scenario as it takes into account the655

overlap between the multiple sound sources present in cities

and is suited to monophonic sensor networks. Different

NMF algorithmic schemes have been studied through the

supervised and semi-supervised approach. On all the sound

environments, these common approaches reveal to be not660

sufficiently efficient: supervised NMF approach, with its

fixed dictionary, does not succeed to estimate correctly

the traffic sound level especially when this sound source is

quiet, while semi-supervised approach with the presence

of a mobile part in the dictionary is the best estimator for665

park environments but fails on heavily traffic scenes.

The proposed approach, named Thresholded Initialized

NMF, achieved the lowest error in the evaluation corpus.

Consequently, in the case where the location or the type

of sound environments the sensors are monitoring cannot670

be identified (for instance within a mobile measurement

framework), TI-NMF appears to be the most appropri-

ate method. If the sound environment can be identified

through a prior analysis, or based on positioning data

[57, 58], it should be possible to adapt the estimation pro-675

cedure by selecting the most efficient approach in order to

further reduce the error in the estimated road traffic sound

levels.

Further analyses are required to extend the proposed

method to other sound sources, such as birds or voices680

sounds, which can conveniently be done by replacing or

adding elements in the dictionary. This utilization would

be useful in the context of muti-source noise mapping that

is gaining interest [59, 60]. Finally, the parameters selected

in this study are valid for this evaluation corpus. Further685

analyses on various corpus of sound scenes are needed to

evaluate the robustness of the method and select the most
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relevant approaches for specific sound environments (pre-

dominance of water or industrial sounds, rural environ-

ments. . . ).690

For reproducibility purposes, the evaluation corpus,

the experimental protocol and the programs developed un-

der the Matlab software are available online 4 as the sound

dataset 5.
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[28] J. C. Socoró, F. Aĺıas, R. M. Alsina-Pagès, An Anomalous Noise

Events Detector for Dynamic Road Traffic Noise Mapping in

Real-Life Urban and Suburban Environments, Sensors 17 (10)

(2017) 2323.

[29] D. D. Lee, H. S. Seung, Learning the parts of objects by non-810

negative matrix factorization, Nature 401 (6755) (1999) 788–

791.

[30] P. Smaragdis, J. Brown, Non-negative matrix factorization for

polyphonic music transcription, in: Applications of Signal Pro-

cessing to Audio and Acoustics, 2003 IEEE Workshop on., 2003,815

pp. 177–180.

[31] E. Benetos, M. Kotti, C. Kotropoulos, Musical instrument clas-

sification using non-negative matrix factorization algorithms

and subset feature selection, in: Acoustics, Speech and Signal

Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE Inter-820

national Conference on, Vol. 5, IEEE, 2006, pp. V–V.

[32] K. W. Wilson, B. Raj, P. Smaragdis, A. Divakaran, Speech

denoising using nonnegative matrix factorization with priors,

in: 2008 IEEE International Conference on Acoustics, Speech

and Signal Processing, 2008, pp. 4029–4032.825

[33] G. J. Mysore, P. Smaragdis, A non-negative approach to semi-

supervised separation of speech from noise with the use of tem-

poral dynamics, in: Acoustics, Speech and Signal Processing

(ICASSP), 2011 IEEE International Conference on, IEEE, 2011,

pp. 17–20.830

[34] I. Satoshi, K. Hiroyuki, NMF-based environmental sound source

separation using time-variant gain features, Computers & Math-

ematics with Applications 64 (5) (2012) 1333–1342.

[35] J.-R. Gloaguen, M. Lagrange, A. Can, J.-F. Petiot, Estimation

of road traffic sound levels in urban areas based on non-negative835

matrix factorization techniques, in revision (2018).

[36] P. Paatero, U. Tapper, Positive matrix factorization: A non-

negative factor model with optimal utilization of error estimates

of data values, Environmetrics 5 (2) (1994) 111–126.

[37] C. Févotte, J. Idier, Algorithms for nonnegative matrix fac-840

torization with the β-divergence, Neural Computation 23 (9)

(2011) 2421–2456.

[38] R. Hennequin, B. David, R. Badeau, Beta-Divergence as a Sub-

class of Bregman Divergence, IEEE Signal Processing Letters

18 (2) (2011) 83–86.845

[39] A. Cichocki, R. Zdunek, Regularized Alternating Least Squares

Algorithms for Non-negative Matrix/Tensor Factorization, in:

Advances in Neural Networks – ISNN 2007, Lecture Notes in

Computer Science, Springer, Berlin, Heidelberg, 2007, pp. 793–

802.850

[40] C. J. Lin, Projected Gradient Methods for Nonnegative Matrix

Factorization, Neural Computation 19 (10) (2007) 2756–2779.

[41] D. Lee, H. Seung, Algorithms for Non-negative Matrix Factor-

ization, in: In NIPS, MIT Press, 2000, pp. 556–562.

[42] H. Lee, J. Yoo, S. Choi, Semi-Supervised Nonnegative Matrix855

Factorization, IEEE Signal Processing Letters 17 (1) (2010) 4–7.

[43] F. Weninger, J. Feliu, B. Schuller, Supervised and semi-

supervised suppression of background music in monaural speech

recordings, in: Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference on, IEEE, 2012,860

pp. 61–64.

[44] D. Kitamura, H. Saruwatari, K. Yagi, K. Shikano, Y. Taka-

hashi, K. Kondo, Music Signal Separation Based on Super-

vised Nonnegative Matrix Factorization with Orthogonality and

Maximum-Divergence Penalties, IEICE Transactions on Funda-865

16



mentals of Electronics, Communications and Computer Sciences

E97.A (5) (2014) 1113–1118.

[45] C. Joder, F. Weninger, F. Eyben, D. Virette, B. Schuller, Real-

time speech separation by semi-supervised nonnegative matrix

factorization, Latent Variable Analysis and Signal Separation870

(2012) 322–329.

[46] D. L. Donoho, I. M. Johnstone, Threshold selection for wavelet

shrinkage of noisy data, in: Engineering in Medicine and Bi-

ology Society. Engineering Advances: New Opportunities for

Biomedical Engineers. Proceedings of the 16th Annual Interna-875

tional Conference of the IEEE, Vol. 1, IEEE, 1994, pp. A24–

A25.

[47] P. Aumond, A. Can, B. De Coensel, et al., Modeling soundscape

pleasantness using perceptual assessments and acoustic mea-

surements along paths in urban context, Acta Acustica united880

with Acustica 103 (3) (2017) 430–443.

[48] A. Can, B. Gauvreau, Describing and classifying urban sound

environments with a relevant set of physical indicators, The

Journal of the Acoustical Society of America 137 (1) (2015)

208–218.885

[49] M. Rossignol, G. Lafay, M. Lagrange, N. Misdariis, SimScene:

a web-based acoustic scenes simulator, in: 1st Web Audio Con-

ference (WAC), 2015.

[50] G. Lafay, M. Rossignol, N. Misdariis, et al., A New Experimen-

tal Approach for Urban Soundscape Characterization Based on890

Sound Manipulation : A Pilot Study, in: International Sympo-

sium on Musical Acoustics, Le Mans, France, 2014, pp. 593–599.

[51] E. Benetos, G. Lafay, M. Lagrange, M. D. Plumbley, Detection

of overlapping acoustic events using a temporally-constrained

probabilistic model, in: Acoustics, Speech and Signal Processing895

(ICASSP), 2016 IEEE International Conference on, IEEE, 2016,

pp. 6450–6454.

[52] J. Salamon, C. Jacoby, J. P. Bello, A dataset and taxonomy

for urban sound research, in: Proceedings of the 22nd ACM

international conference on Multimedia, ACM, 2014, pp. 1041–900

1044.

[53] J.-R. Gloaguen, A. Can, M. Lagrange, J.-F. Petiot, Creation of

a corpus of realistic urban sound scenes with controlled acoustic

properties, in: Acoustics ’17 Boston, Vol. 141 of The Journal of

the Acoustical Society of America, Acoustical Society of Amer-905

ica and the European Acoustics Association, Boston, United

States, 2017, pp. 4044–4044.

[54] J. John, T. J. Mitchell, Optimal incomplete block designs, Jour-

nal of the Royal Statistical Society. Series B (Methodological)

(1977) 39–43.910
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