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Experimental acoustic sensor networks are currently tested in large cities, and appear more and more as a useful tool to enrich modeled road traffic noise maps through data assimilation techniques. One challenge is to be able to isolate from the measured sound mixtures acoustic quantities of interest such as the sound level of road traffic. This task is anything but trivial because of the multiple sound sources that overlap within urban sound mixtures.

In this paper, the Non-negative Matrix Factorization (NMF) framework is developed to estimate road traffic noise levels within urban sound scenes. To evaluate the performances of the proposed approach, a synthetic corpus of sound scenes is designed, to cover most common soundscape settings, and whom realism is validated through a perceptual test.

The simulated scenes reproduce then the sensor network outputs, in which the actual occurrence and sound level of each source are known.

Several variants of NMF are tested. The proposed approach, named threshold initialized NMF, appears to be the most reliable approach, allowing road traffic noise level estimation with average errors of less than 1.3 dB over the tested corpus of sound scenes.

Introduction

In response to the growing demand from urban dwellers for a better environment, noise mapping has been recommended as a tool to tackle noise pollution. The enactment of the European Directive 2002/EC/49 makes such maps mandatory to cities over 100 000 inhabitants. Those maps play an important informative role, establishing the distribution of the sound levels all over the cities as well as the estimation of the number of city dwellers exposed to high sound level (> 55 dB(A)) [START_REF] Nugent | Noise in europe 2014[END_REF]. Road traffic concen- Noise measurements are thus increasingly used in ad-30 dition to simulation to describe urban noise environments [START_REF] Gozalo | Study on the relation between urban planning and noise level[END_REF][START_REF] Zannin | Characterization of environmental noise based on noise measurements, noise mapping and interviews: A case study at a university 720 campus in brazil[END_REF][START_REF] Can | Exploring the use of mobile sensors for noise and black carbon measurements in an urban environment[END_REF]. Several measurement set-ups have been proposed in the last years, including mobile measurements with high quality microphones [START_REF] Manvell | Sadmam-combining measurements and calculations to map noise in madrid[END_REF][START_REF] Can | Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches[END_REF], participative sensing through dedicated smartphone applications [START_REF] Picaut | Noise mapping based on 735 participative measurements with a smartphone[END_REF][START_REF] Ventura | Evaluation and cali-740 bration of mobile phones for noise monitoring application[END_REF], or the development of fixed-sensor networks. In this latter case, the sensor networks can be based either on high-quality sensors as in [START_REF] Mietlicki | An innovative approach for long-term environmental noise measurement: Rumeur network[END_REF][START_REF] Maijala | Environmental noise monitoring using source classification in sensors[END_REF], or low-cost sensors as in the DYNAMAP project [START_REF] Sevillano | DYNAMAPdevelopment of low cost sensors networks for real time noise mapping[END_REF] or the CENSE project [START_REF] Picaut | Characterization of urban 755 sound environments using a comprehensive approach combining open data, measurements, and modeling[END_REF]. The costs and benefits of each protocol are discussed. Mobile and par-40 ticipatory measures increase spatial coverage at low cost, but lack temporal representativeness. Fixed networks are very reliable for measuring sound levels temporal variations, but allow only a small spatial coverage of the network. In addition, the low-cost sensors enable a wider deployment, but at the cost of increased uncertainties, the most extreme example being smartphone applications.

All these measurement protocols allow the combination of measures and predictions to improve the accuracy of the produced noise maps. Traffic noise maps and mea-50 surements were compared on restrictive areas in [START_REF] Lefebvre | Traffic flow estimation using acoustic signal[END_REF] and [START_REF] Mioduszewski | Noise map validation by continuous noise monitoring[END_REF]. Wei et al. [START_REF] Wei | Dy-765 namic noise mapping: A map-based interpolation between noise measurements with high temporal resolution[END_REF] modify the acoustical parameters of the simulation thanks to noise measurements, while Mallet et al. [START_REF] Ventura | Estimation of urban bys[END_REF] call for data assimilation techniques between models and measurements to reduce the uncertainty of 55 the produced noise maps. However, these works make the implicit assumption that the noise measurements consist mainly of road traffic. In the aim to improve road traffic noise maps, the use of measurements has first to deal with the challenge to estimate correctly the road traffic sound the detection [START_REF] Luitel | Sound event detection in urban soundscape using two-level classification[END_REF][START_REF] Mesaros | Sound event 785 detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations[END_REF] or the recognition [START_REF] Defreville | Automatic Recog-790 nition of Urban Sound Sources[END_REF][START_REF] Parascandolo | Recurrent neural networks for polyphonic sound event detection in real life 795 recordings[END_REF] of urban sound events. In these cases, a two-step scheme is followed where audio samples are described with a set of features 70 (Mel Frequency Cepstral Coefficient, MPEG-7 descriptors . . . ) and classified with the help of a classifier (Gaussian Mixtures Models, Artificial Neural Network . . . ) [START_REF] Chu | Environmental sound recognition using mp-based features[END_REF][START_REF] Cowling | Comparison of techniques for environmental sound recognition[END_REF].

The classifier is learnt from a learning database and is next applied on a test database to validate the algorithms.
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Dedicated to the traffic, in [START_REF] Socoró | An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments[END_REF], an Anomalous Event Detection, based on MFCC features, is proposed with the specific aim to improve the traffic sound estimation. It is based on the detection of unwanted sound events in order to discard them.
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An other approach, followed in this paper, is to consider the blind source separation paradigm which consists in the extraction of a specific signal inside a set of mixed signals, see Figure 1. From the different existing methods, Non-negative Matrix Factorization (NMF) [START_REF] Lee | Learning the parts of objects by non-810 negative matrix factorization[END_REF], appears 85 to be a relevant method for monophonic sensor networks.

Many applications can be found for musical [START_REF] Smaragdis | Non-negative matrix factorization for polyphonic music transcription[END_REF][START_REF] Benetos | Musical instrument clas-sification using non-negative matrix factorization algorithms and subset feature selection[END_REF] and speech [START_REF] Wilson | Speech denoising using nonnegative matrix factorization with priors[END_REF][START_REF] Mysore | A non-negative approach to semisupervised separation of speech from noise with the use of temporal dynamics[END_REF] contents. Dedicated to sound separation with environmental sounds, Immani and Kasaï [START_REF] Satoshi | NMF-based environmental sound source separation using time-variant gain features[END_REF] used NMF in a two steps sound separation with the help of time 90 variant gain features. Dedicated to the traffic sound separation, a first study [START_REF] Gloaguen | Estimation of road traffic sound levels in urban areas based on non-negative 835 matrix factorization techniques[END_REF] has been conducted, in which diverse NMF estimation rules are compared, namely the supervised, the semi-supervised, and the threshold initialized NMF, have been applied on a large set of simulated sound 95 scenes. This corpus mixes 6 sound categories (alert, animals, climate, humans, mechanics, transportation) with a traffic component calibrated to different sound levels, according to the other sound classes (in the rest of the document, these sound classes, not related to the traffic component, are resumed as the interfering sound class), to obtain variable traffic predominance. The diversity of this corpus was made to assess the performances and the limits of each NMF formula. However, if this study reveals the interest of NMF for urban sound environments, the assessment of its performance on a corpus of realistic sound scenes must be carried out in order to implement it on a sensor network. Design urban sound mixtures makes it possible to access to many acoustic properties as the onset and offset time and the sound level of each sound class and especially the traffic component. The realistic aspect of such a corpus is essential to obtain sound scenes similar to recordings and to validate NMF performances. However, like all simulated process, the realism of the scenes must be perceptually verified.

In this paper, an urban sound corpus based on annotated urban recordings, and whose degree of realism is assessed through a perceptual test, is designed in order to estimate the traffic sound level with the help of the NMF framework. The different NMF approaches are described in section 2. Next, the corpus of urban sound scenes is presented in section 3, from the sound database built-up to its validation. The experimental protocol and the results are then presented and discussed in section 4 and 5.

Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a linear approximation method proposed by Paatero and Tapper [START_REF] Paatero | Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values[END_REF] and popularized by Lee and Seung [START_REF] Lee | Learning the parts of objects by non-810 negative matrix factorization[END_REF]. It consists in V ≈ WH.

(

) 1 
The choice of the dimensions is often made such as 

F × K + K × N < F × N so that
D (V WH) , ( 2 
)
where D(• •) is a divergence calculation such as:

D (V||WH) = F f =1 N n=1 d β V f n | [WH] f n . ( 3 
)
d β (x|y) is usually chosen as a β-divergence [START_REF] Févotte | Algorithms for nonnegative matrix fac-840 torization with the β-divergence[END_REF], a sub-145 classes belonging to the Bregman divergences [START_REF] Hennequin | Beta-Divergence as a Subclass of Bregman Divergence[END_REF] which include 3 specific divergence calculations: the Euclidean distance (eq. 4a), the Kullback-Leibler divergence (eq. 4b)

and the Itakura-Saïto divergence (eq. 4c):

d β (x|y) =              1 2 (x -y) 2 , β = 2, (4a) x log x y -x + y, β = 1, (4b) x y -log x y -1 β = 0. ( 4c 
)
The minimization problem (2) is solved iteratively by updating the form of matrices W and H. Different algorithms such as Alternating Least Square Method [START_REF] Cichocki | Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorization[END_REF] or

Projected Gradient [START_REF] Lin | Projected Gradient Methods for Nonnegative Matrix Factorization[END_REF] have been considered. The most commonly used algorithm is the Multiplicative Update [START_REF] Lee | Algorithms for Non-negative Matrix Factorization[END_REF]. The latter method is chosen here, as it ensures non-155 negative results and the convergence of the results [START_REF] Févotte | Algorithms for nonnegative matrix fac-840 torization with the β-divergence[END_REF].

Supervised NMF

The most easiest case of NMF is the one where the sound sources can be known a priori and W can be built directly from audio samples. It leads to supervised NMF 160 (SUP-NMF). H is then the only matrix to estimate and is updated at every iteration (eq. 5) [START_REF] Févotte | Algorithms for nonnegative matrix fac-840 torization with the β-divergence[END_REF]:

H (i+1) ← H (i) ⊗     W T WH (i) (β-2) ⊗ V W T WH (i) (β-1)     γ(β) (5) with γ(β) = 1 2-β , for β < 1, γ(β) = 1, for β ∈ [1, 2] and γ(β) = 1 β-1 for β > 2.
Thus, the choice of the βdivergence in the equation 4 affects how the matrix H is Here, in an urban context, if the sound sources are known, their audio samples can be obtained to learn W, see section 4.2. As the position of each element is indexed, the traffic source separation from the other sound sources is made by extracting, from the dictionary and the activation matrix, the related elements:

Ṽtraffic = [WH] traf f ic . (6)

Semi-supervised NMF

The main issue with the supervised approach is the 175 representational limit imposed by a fixed W. To be completely successful, all the acoustical sources must be considered in the basis W which is not always possible in a complex urban environment. To overcome this issue, semisupervised NMF (SEM-NMF) [START_REF] Lee | Semi-Supervised Nonnegative Matrix 855 Factorization[END_REF] 

V ≈ WH = W s H s + W r H r . (7) 
H r and H s are updated separately, see eq. 8b to eq. .

Wr (i+1) ← Wr (i) ⊗   WrHr (i) (β-2) ⊗ V Hr T WrHr (i) (β-1) Hr T   γ(β)
,

Hr (i+1) ← Hr (i) ⊗   Wr T WrHr (i) (β-2) ⊗ V Wr T WrHr (i) (β-1)   γ(β)
,

Hs (i+1) ← Hs (i) ⊗   Ws T WsHs (i) (β-2) ⊗ V Ws T WsHs (i) (β-1)   γ(β) . ( 8a 
) (8b) (8c) 
In this study, W s is composed of traffic audio spectra, as it is the sound source of interest. Sources included in W r are other sound sources (corresponding to the interfer-195 ing class) that can be present in the urban sound scenes.

The traffic signal estimation is next defined by the fixed part,

Ṽtraffic = [W s H s ] . ( 9 
)
The addition of W r gives more flexibility to the method to represent correctly the spectrogram V. The represen-200 tational capability is increased, thus the approach is more adaptive to the different urban sound environments. Applications of SEM-NMF can be found for musical [START_REF] Weninger | Supervised and semisupervised suppression of background music in monaural speech recordings[END_REF][START_REF] Kitamura | Music Signal Separation Based on Supervised Nonnegative Matrix Factorization with Orthogonality and Maximum-Divergence Penalties[END_REF] and speech contents [START_REF] Mysore | A non-negative approach to semisupervised separation of speech from noise with the use of temporal dynamics[END_REF][START_REF] Joder | Realtime speech separation by semi-supervised nonnegative matrix factorization[END_REF].

Thresholded Initialized NMF
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To allow even more flexibility while still considering prior knowledge of the source of interest, we propose a third approach based on the unsupervised NMF framework: Threshold Initialized NMF (TI-NMF). Usually, in unsupervised NMF, the dictionary is initiated randomly when there is no prior knowledge on the sound sources present. Here, as the target sound source is known and the spectra are available, an initial dictionary, W 0 , is designed and then updated alternatively with H,

W (i+1) ← W (i) ⊗   W (i) H (β-2) ⊗ V H T W (i) H (β-1) H T   γ(β) . ( 10 
)
With this operation, W 0 is oriented to the focused cosine similarity D θ (W 0 W ) is computed for each element k as it is scale-invariant and bounded,

D θ (w 0 w ) = w 0 .w w 0 . w . ( 11 
)
where w is a k element of W of F × 1 dimensions.

When D θ (w 0 w )=1, the element w is identical to w 0 .

If D θ (w 0 w )=1, both elements are fully different. The 225 extraction of traffic elements in W is carried out by a hard thresholding method [START_REF] Donoho | Threshold selection for wavelet shrinkage of noisy data[END_REF]. It consists in weighting in a binary way W according to D θ (w 0 w ) and a threshold value α k such as:

w traf f ic = α k w . ( 12 
)
with and is constrained to used it to obtain Ṽtraffic . SEM-NMF completes this dictionary by the add of a mobile dictionary to better consider the interfering sound events and then offer more flexibility. Finally, TI-NMF considers first a dictionary composed of traffic spectra, as SUP-

α k = 1 iff D θ (w 0 w ) > t h , (13a) 
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NMF, but allows an update of them. The interest of an initiated dictionary is then to focus on the source of interest during the updates. This method therefore makes it more suitable for solving the generalization issues as it is the entire dictionary that can be fully adapted to the 245 sound scenes. The elements that deviates too much from the originals spectra are then discarded by the thresholding step.

These above described methods are applied on an evaluation corpus, composed of simulated sound scenes, in or-250 der to compare the estimated traffic sound levels with an exact reference. This new sound corpus is designed by considering realistic urban sound environments with many kinds of mixed sound sources. This annotation phase makes it possible to produce simulated sound scenes with the same positions of sound events than the recordings and therefore as close as possible to 295 the real scenes.

Design of realistic urban sound scenes

Generation of the evaluation corpus

The sound scenes are generated with the SimScene software2 , [START_REF] Rossignol | SimScene: a web-based acoustic scenes simulator[END_REF], a simulation software generating monaural sound mixtures in wav format from an isolated sounds 300 database. This software has already been used in a wide range of experiments for sound detection algorithm assessment [START_REF] Lafay | A New Experimental Approach for Urban Soundscape Characterization Based on Sound Manipulation : A Pilot Study[END_REF][START_REF] Benetos | Detection of overlapping acoustic events using a temporally-constrained probabilistic model[END_REF]. The SimScene software allows the design of 

mT IR = M i=1 L p,traf f ic -L p,interf ering M . ( 14 
)
where M is the number of available scenes for each 

Perceptual test

To evaluate the level of realism of the evaluation corpus composed of replicated urban sound scenes, a perceptual test is considered.

The perceptual test is conducted with a panel of 50 (m recorded = 4.9 (± 1.6)). To determine whether a replicated scene is perceived in a similar way to that recorded, a Student's t-test is performed, for each scene, between the scores from the recorded sample and those from the 420 replicated sample with the H 0 hypothesis which considers the similarity between the distribution of the rates for the recorded and the replicated scenes of each participant with a p-value threshold of 5%. The 20 performed t-tests show that the differences in the assessment of the replicated and 425 the recorded scene, according to their degree or realism, is not significant (p-value> 5%).

More details on the results can be found in [START_REF] Gloaguen | Creation of a corpus of realistic urban sound scenes with controlled acoustic properties[END_REF]. As the perceived realism of the replicated and the recorded scenes are not significantly different, we consider that these sound mixtures are relevant to assess the performances of NMF according to the traffic sound level estimate.

Methods for the performance evaluation

The experiment aims at evaluating in a meaningful manner the performance of the NMF approach. To do so, the 74 replicated sound scenes, organized on 4 different types of sound environments are iteratively fed to the estimator which output an estimate of the equivalent sound level of the traffic within each scene Lp,traffic (dB). This result is then compared to the reference sound level value given by the simulation process, L p,traf f ic , see Figure 6.

Reference estimator

A reference estimator is necessary to be able to compare the performances of the different NMF-methods. As the road traffic is mainly composed of a low frequency con-445 tent, a frequency low-pass filter (LP filter) is considered as baseline. The estimation of the traffic sound level with this reference estimator is simply the sound level after low-pass filtering,

Ṽtraffic = V fc . ( 15 
)
Different cut-off frequencies have been chosen such as 450 f c ∈ {500, 1k, 2k, 5k, 10k, 20k} Hz. The experimental factors related to this estimator are summarized in Table 2.

The second estimator is based on the three NMF formula presented in part 2 (see Figure 8). Multiple experimental factors are involved in this second estimator where each of them having different modalities.

Dictionary building for NMF-methods

The dictionary is designed from a sound database specially dedicated to this task. To prevent any overfitting 2 summarizes the different modalities of the two experimental factors (K and w t ).

NMF experimental factors

NMF is performed for 3 β-divergences: β = 2 (Eu- 2.
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The approximated traffic spectrograms Ṽtraffic are obtained after 400 iterations. The estimated traffic sound level in dB, Lp,traffic , is then computed, Lp,traffic = 20 log

p rms p 0 , ( 16 
)
where p 0 is the reference sound pressure, p 0 = 2 × 10 -5

Pa. For each setting, M traffic sound levels, correspond-510 ing to the M scenes of each sound environment, are then calculated.

Metrics

The traffic sound levels, Lp,traffic , are compared to the exact values, L p,traf f ic , through the Mean Absolute 515

Error (M AE) [START_REF] Willmott | Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance[END_REF]. The M AE consists in the average across of the absolute difference between the exact and the estimated sound levels,

M AE j = M i=1 |L i p,traf f ic -Li p,traf f ic | M j , (17) 
for each setting j. But it is also possible to average this metric according to the 4 different sound environments, 520 through the mean M AE error mM AE, to estimate the optimal setting that offers the lowest error for all the sound environments:

mM AE = 4 i=1 M AE i 4 , (18) 
where the other experimental factors (estimator, f c , K, w t , β, threshold value t h ) are fixed.

Results and discussion

Table 3 summarizes the lowest mM AE errors according to the estimator (LP filter, NMF) and β with the best setting of the experimental factors.

The LP filter with f c = 20 kHz cut-off frequency is equivalent to consider the sound level of the entire scene without specific distinction between the sound sources.

The error is then important with a high standard devi- in the highest errors. Indeed, this degree of freedom generates higher error as W r is not constrained and is free to include traffic component in it, penalizing the traffic sound level estimation.

Finally, TI-NMF presents the most performing results, except in the park environment (M AE = 2.95 dB). In this sound environment, with the threshold value t h = 0.32, the traffic dictionary is composed, on average, of 136 elements. By increasing this value, it would be possible to put aside the spectra furthest away of the traffic elements and then decrease the error. For the rest of the sound environments, TI-NMF has the lowest errors. For very noisy environment the error is even very low (M AE = 0.28 dB).

With on average 198 elements in W traf f ic , almost all the elements present in W can be considered as traffic elements. Considering a unique dictionary fitted to the sound scene under evaluation thus makes TI-NMF very effective when traffic is predominant, while the thresholding step makes it possible to discard the elements of the dictionary that deviate too much when the traffic is less present.

To better understand the behavior of TI-NMF, the evo- 3.

factor, will disappear after a set of iterations.

Conclusion

The non-negative matrix factorization framework has been considered as a source separation tool to estimate the traffic sound level from a corpus of urban sound scenes artificially built. Those scenes are designed to be as similar as possible to the outputs of a deployed sensor networks with the advantages of the simulation process (sound level and position of each source controlled and known). The realism of the scenes has been verified thanks to a perceptual test.

The results confirm the potential of the NMF method on such application scenario as it takes into account the overlap between the multiple sound sources present in cities and is suited to monophonic sensor networks. Different NMF algorithmic schemes have been studied through the supervised and semi-supervised approach. On all the sound environments, these common approaches reveal to be not sufficiently efficient: supervised NMF approach, with its fixed dictionary, does not succeed to estimate correctly the traffic sound level especially when this sound source is quiet, while semi-supervised approach with the presence of a mobile part in the dictionary is the best estimator for 665 park environments but fails on heavily traffic scenes.

The proposed approach, named Thresholded Initialized NMF, achieved the lowest error in the evaluation corpus.

Consequently, in the case where the location or the type of sound environments the sensors are monitoring cannot 670 be identified (for instance within a mobile measurement framework), TI-NMF appears to be the most appropriate method. If the sound environment can be identified through a prior analysis, or based on positioning data [START_REF] Can | Noise indicators to diagnose urban sound environments at multiple spatial scales[END_REF][START_REF] Lavandier | Urban 920 soundscape maps modelled with geo-referenced data[END_REF], it should be possible to adapt the estimation pro-675 cedure by selecting the most efficient approach in order to further reduce the error in the estimated road traffic sound levels.

Further analyses are required to extend the proposed method to other sound sources, such as birds or voices 680 sounds, which can conveniently be done by replacing or adding elements in the dictionary. This utilization would be useful in the context of muti-source noise mapping that is gaining interest [START_REF] Aumond | Probabilistic modeling framework for multisource sound mapping[END_REF][START_REF] Aletta | Noise indicators to diagnose urban sound environments at multiple spatial scales[END_REF]. Finally, the parameters selected in this study are valid for this evaluation corpus. Further 685 analyses on various corpus of sound scenes are needed to evaluate the robustness of the method and select the most relevant approaches for specific sound environments (predominance of water or industrial sounds, rural environments. . . ).

For reproducibility purposes, the evaluation corpus, the experimental protocol and the programs developed under the Matlab software are available online 4 as the sound dataset 5 .
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Figure 1 :

 1 Figure 1: Block diagram of the blind source separation model

60 level.

 60 Even if road traffic is predominant on many urban areas, urban sound environments are composed of many different overlapping sound sources (passing cars, voices, footsteps, car horn, whistling birds . . . ), what makes the task of estimating correctly the traffic sound level within 65 an urban sound mixture not trivial. Many works have dealt with the classification [20, 21],

Figure 2 :

 2 Figure 2: NMF decomposition of an audio spectrogram V composed of 3 elements (K = 3): passing car (a), car horn (b) and whistling bird (c).

  165 updated. The A ⊗ B and A/B operators represent the Hadamard product and ratio.
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  To summarize, to approximate the audio spectrogram V and estimate the traffic component, 3 methods are used which deal differently with the a priori knowledge on the traffic. SUP-NMF is only based on fixed traffic elements

  235

255Figure 3 :Figure 4 :

 34 Figure 3: Bloc diagram of the design of the evaluation corpus

Figure 5 :

 5 Figure 5: Spectrogram of a simple scene created with the SimScene software with one sound background (road traffic in blue) and 3 sound events (car horn in green, passing car in yellow and whistling bird in red).

  sound environment (M = 8 for park environment, M = 35 for quiet street environment, M = 23 for noisy street environment and M = 8 for very noisy street environment).The mT IR is always negative for the park as it is the sound environment where the traffic is less present. The interfering sound class is therefore the main sound source which is 365 coherent with this kind of environment. The mT IR can be positive or negative depending on the traffic presence on the scene in the case of the quiet street. For the 2 others sound environments, when the traffic becomes the main sound source, mT IR is always positive.

  370

375 listeners that are asked to assess the level of realism on a 7 -

 7 point scale (1 is not realistic at all, 7 is very realistic) of a set of replicated and recorded scenes. The total number of sound scenes tested is set at 40. This is less than the number of scenes available to ensure that each audio sample 380 is sufficiently assess. The first half includes 20 30-seconds audio files corresponding to the real scenes, including 5 scenes that belong to the sound environment park, 6 from quiet street, 4 from noisy street and 5 from very noisy street chosen randomly among the recorded scenes. The second 385 half is composed of the replicated scenes from the evaluation corpus corresponding to the same 20 reference scenes. In order to limit the duration of the test to preserve the concentration of the subjects, each subject listens to only a subset of 20 sound scenes. All the scenes are normalized to the same sound level, chosen at 65 dB, and the subjects are not allowed to change the output sound level once set at the beginning of the experiment. The experimental design is elaborated following a partially Balanced Incomplete Block Design (PBIBD) [54] the 395 audio allocated to each participant and the listening order. This process allows to each sound sample to be assessed almost the same number of time and to avoid statistical biais. The experimental design and the listening order per participant are performed with the package sensoMineR 400 on the R software [55]. The test was available online from February 8th, 2017 and the needed number of participant (50) has been reached 12 days later. During the test, the participants had the 405 possibility to listen to each scene as many times as wanted before assessing, without being able to change their judgment afterwards. The participants could also leave a comment on each audio to explain the rating 3 . Based on the information provided, the panel of 50 listeners was made of 410 31 males and 18 females (one not documented) with an average age of 36 (± 12) years old. 62% of the participants declared having no experience in the listening of urban sound mixtures. The results show that the average score (with its standard deviation) of all the replicated scenes 415 (m replicated = 5.1 (± 1.6)) is close to the recorded ones

1 .Figure 7 .

 17 Figure 7. From the 53 audio files, we obtain respectively 2218 elements for w t = 0.5 second and 1109 elements for w t = 1 second.475

485Figure 6 :

 6 Figure 6: Bloc diagram of the different stages for the estimation of the traffic sound level.

Figure 7 :Figure 8 :

 78 Figure7: Dictionary building on a 3 second example of a passing car with w t = 1 second, in dashed line a temporal frame of 1 s. In this case, the dictionary W is made of 3 spectra, each representative of a texture frame of w t duration.

  ation (mM AE = 3.76 (± 4.35) dB). The lowest error for a LP filter is obtained with f c = 500 Hz (mM AE = 2.14 (± 1.83) dB).When considering all the sound scenes, SUP-NMF does not succeed to achieve a lower error than the 500 Hz LP filter for all the β values. By adding the mobile part W r in the dictionary, SEM-NMF with β = 0 and β = 1 allows a lower error than 500 Hz LP filter with a reduced standard deviation especially for β = 1 (mM AE = 1.94 (± 0.38) dB). TI-NMF is the approach with the lowest global error (< 1.50 dB). The best result is obtained for TI-NMF (M AE 545 = 1.24 (± 1.24) dB) with β = 2, K = 200, w t = 0.5 s and as threshold value t h = 0.32. This combination of settings offers the most efficient method adapted to the different sound environments. Furthermore, on the dictionary creation, only SEM-NMF proposes the same dictio-550 nary design for all the best methods according to β. In the opposite, SUP and TI-NMF propose different associations between K and w t . One can notice that, through the 3 methods, it is mainly a high number of elements in K (100, 200) that is preferred. With more elements, it 555 makes it possible to resolve easily the generalization issue.From these global results, the M AE errors are compared to the LP filter and each method for the 4 types of sound environments, see Figure9.Aside SEM-NMF, all the methods show the same error 560 evolution: a decrease of the error with the increase of the traffic predominance. On contrary, SEM-NMF shows an almost constant error for all 4 sound environments. The LP filter error is mainly important for environments where the traffic is less present. As this approach considers the 565

Figure 9 :

 9 Figure 9: M AE errors with the standard deviations according to each sound environment for the best combination of the LP filter (fc = 500 Hz), SUP-NMF (β = 2, K = 25, w t = 1 second), SEM-NMF (β = 1, K = 200, w t = 1 second) and TI-NMF (β = 2, K = 200, w t = 0.5 second, t h = 0.32).

Figure 10 :

 10 Figure 10: Normalized reconstruction error of the global sound mixtures a and the traffic component b for each sound environment.

  lution of the normalized cost function (D(V WH)/(F × N ) as the duration of each audio sample is different) and the error M AE as the function of the number of iterations are displayed for each sound environment in Figure 10. For each sound environment, the cost function is very low after 400 iterations, meaning that WH approximates correctly V. However, even if the convergence is not reached (Fig-620 ure 10a), the traffic error reconstruction is constant after the 200th iteration (Figure 10b), which means that the updates of W and H are mostly dedicated to the interfering sound sources. Also, even if the cost function is higher for the very noisy street than the park, the traffic sound 625 level estimation is better in the very noisy street sound environment due to the higher presence of this component in it. Finally, the influence of the number of elements K in W and the size of the temporal frame w t on the mM AE 630 error made with TI-NMF, with the other experimental factors keep constant, are summarized in Figure 11. Naturally, the traffic error reconstruction decreases, with the increase of the number of basis in W, as it allows more basis to describe the traffic sound source. If this improve-635 ment is major between 25 and 100 elements, its influence decreases between 100 and 200 elements suggesting that the increase of the size of K will not improve significantly the quality of the estimation. The temporal frame w t is a less influential parameter for TI-NMF. As the matrices are 640 updates at each iteration, it makes sense that the variations in the spectra shape in W 0 , due to this experimental (a) Influence of the experimental factor K (TI-NMF, wt = 0.5 s, β = 2, t h = 0.32, 400 iterations). (b) Influence of the experimental factor wt (TI-NMF, K = 200 s, β = 2, t h = 0.32, 400 iterations).

Figure 11 :

 11 Figure 11: Influence of the number of elements K (a) and the temporal frame w t (b) on the mM AE error with the best TI-NMF obtained in Table3.

Table 1 :

 1 Mean Traffic Interfering Ratio and its standard deviation for each sound environment.

		mT IR (dB)
	park	-9.10 (± 7.35)
	quiet street	0.88 (± 5.92)
	noisy street	6.96 (± 5.16)

very noisy street 15.75 (± 9.78) tiple samples (carHorn01.wav, carHorn02.wav . . . ) that are randomly chosen by the simScene software to bring 330 diversity. As the road traffic is the main component in urban environment and is the sound source of interest, recordings of car passages have been made on the Ifsttar's runway. The recordings have been made for 4 different cars (Renault Scenic, Renault Mégane, Renault Clio and 335 Dacia Sandero), at different speeds and gear ratios. Overall, 103 car passages have been recorded. In order to avoid overfitting issues, the audio samples of the first two cars (Renault Scenic and Renault Mégane) are included in the SimScene's elemental corpus (50 audio files in total). The 340 last 53 audio samples are dedicated to the dictionary design, W as part of NMF, see section 4.2. A full description of the recordings can be found in [53]. With this built-up corpus, the SimScene software and the transcriptions of the recordings, 74 simulated sound 345 scenes are generated, which have the same temporal structure of the reference recordings. The sound level of each sound class is adjusted manually on each sound scene to be faithful compared to the recorded scenes. To check this adjustment, the mean Traffic Interfering Ratio (mT IR) 350 is calculated, see

Table 1 .

 1 It expresses, on all the scenes of a sound environment, the mean difference between the equivalent traffic sound levels of each scene, L p,traf f ic , with the sound level of the interfering sound class, L p,interf ering , which gathered all the other sound sources not related to

355

the traffic, see Eq. 14. It quantifies the predominance of the traffic component for the 4 types of sound environments,

Table 2 :

 2 Experimental factors and their modalities for the NMF estimator.

	experimental							number of
				modalities			
	factors							modalities
	sound	park	quiet street	noisy street	very noisy street	
								4
	environment	'P'	'Q'		'N'	'vN'		
	method	LP Filter	SUP NMF	SEM NMF	TI NMF	4
	f c (kHz)	0.5	1	2	5	10	20	6
	w t (s)		0.5			1		2
	K	25	50		100	200		4
	β	0		1		2		3
	hard threshold t h		from 0.30 to 0.60 with a 0.01 step			31

Table 3 :

 3 Best mM AE errors according to the experimental factor β and the traffic sound level assessment method (in bold letter, the lowest error).

	method	f c (kHz) β	K	w t (s)	t h	mM AE (dB)
	filter	20	-	-	-	-	3.76 (± 4.35)
	filter	0.5	-	-	-	-	2.14 (± 1.83)
	SUP-NMF	-	0 200	0.5	-	4.06 (± 4.69)
	SUP-NMF	-	1 200	0.5	-	2.79 (± 3.38)
	SUP-NMF	-	2	25	1	-	2.32 (± 2.80)
	SEM-NMF	-	0 200	1	-	2.05 (± 0.70)
	SEM-NMF	-	1 200	1	-	1.94 (± 0.38)
	SEM-NMF	-	2 200	1	-	2.39 (± 1.23)
	TI-NMF	-	0	25	1	0.39	1.42 (± 0.89)
	TI-NMF	-	1 100	1	0.35	1.38 (± 0.88)
	TI-NMF	-	2 200	0.5	0.32 1.24 (± 1.24)

sound source (the road traffic) but also can be adapted to the content of the scene thanks to the updates. After N iterations, each element k of the final dictionary, W , is compared with its initial value in W 0 , in order to identify which element is stayed close to the traffic component. A

Open-source project available at: https://bitbucket.org/ mlagrange/simscene

The interface of the experiment is available http:// soundthings.org/research/xpRealism
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