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inertia is non negligible are achieved to prove the generality and adaptability of the unresolved CFD-DEM model compared to other models. [START_REF] Abade | Computer simulation of particle aggregates during sedimentation[END_REF] 

Introduction

Immersed granular ows are ows mixing uid and grains. Increasing numbers of industrial processes make use of immersed granular ows that is why it has become an important research area. Insight into immersed granular ows will benet civil engineering (concrete, cement, etc.) and geology (avalanches, lava ows, transport of marine sediments, etc.) along with pharmaceutical, cosmetic, chemical and agro-food industries (toothpaste, fertilisers, etc.). There is lack of knowledge on immersed granular ows due to the complexity of the ow that can be greatly inhomogeneous and the inuence of these inhomogeneities on the ow regime [START_REF] Van Wachem | Methods for multiphase computational uid dynamics[END_REF].

The numerical models solving immersed granular ows can be separated with respect to the scale at which the uid and the solid phases are computed [START_REF] Zhu | Discrete particle simulation of particulate system: theoretical developments[END_REF]. On one hand, large scale simulations are performed using the continuum approaches. Grains can be modelled as a continuous phase using balance equations as in the so-called two uid model [START_REF] Gidaspow | Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[END_REF]. An averaging process is applied on variables to transform the second Newton's law of motion for an isolated grain and the Navier-Stokes equations for the uid phase into continuum equations representing the transfer of momentum between the two phases [START_REF] Anderson | A uid mechanical description of uidized beds: Stability of the uniform state of uidization[END_REF][START_REF] Jackson | Locally averaged equations of motion for a mixture of identical spherical particles and a newtonian uid[END_REF]. This Eulerian-Eulerian representation of the two phases is convenient because of the smaller computational cost but the coarse representation of the solid phase requires empirical relations [START_REF] Zhong | CFD simulation of dense particulate reaction system: Approaches, recent advances and applications[END_REF]. For example, it has been quite common to use a two uid model to compute macroscopic behaviours of a uidised bed because the solid phase can be viewed in such an application like a uid [START_REF] Pritchett | A numerical model of gas uidized beds[END_REF][START_REF] Bouillard | Hydrodynamics of uidization: fast-bubble simulation in a two-dimensional uidized bed[END_REF]. Another possibility is to consider the grains totally mixed with the uid and the whole computed with models for non-Newtonian uid [START_REF] Rzadkiewicz | Modelling of submarines landslides and generated water waves[END_REF]. It is quite obvious that the representation of the solid phase in continuum approaches is inaccurate and these models are not able to give insight on the ne scale characteristics like trajectories and forces applied on each grain.

On the other hand, there exist numerical models that fully resolved the two phases constituting the discrete approaches. This second class of models can be divided depending on the method used to solve the two phases. The trajectories of the grains are solved using discrete element methods (DEM) that compute trajectories in a Lagrangian way. The forces applied on each grain are computed and used to move the grains taking into account the constraints imposed by the other grains and the boundaries. Event driven methods [START_REF] Mcnamara | Inelastic collapse and clumping in a one-dimensional granular medium[END_REF] are not applicable to solve contacts in dense granular media where the time step between two collisions is very small. For mixtures with a high concentration of grains, it is necessary to use time stepping methods. In the smooth DEM [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF], interpenetration and slight deformations of the grains are allowed and give the elastic, plastic and friction forces between the grains. By contrast, in the nonsmooth grains model [32] deformations and interpenetrations are totally banned. The discrete approaches are also dependent on the representation of the uid interacting with the grains. Methods that are fully resolved computes the uid at a smaller (or identical) scale than the ne grain scale making the computations very CPU time consuming. On top of the cost linked to the scale resolution, methods using a mesh covering only the uid phase need to update the mesh of the computational domain at each displacement of the grains [START_REF] Hu | Direct simulation of ows of solid-liquid mixture[END_REF]; the use of a penalty or Lagrange multipliers methods to take into account the boundaries of the grains [START_REF] Peskin | The immersed boundary method[END_REF] avoid updating of mesh. However, it is possible to free itself from the use of a mesh by using, for example, the lattice-Boltzmann method to represent the uid [START_REF] Zhang | Dynamic behaviour of collision of elastic spheres in viscous uids[END_REF]. In that case, special cautions are necessary when grains are closer than one grid spacing because it leads to a loss of mass and diculties to solve the uid ow in this gap [START_REF] Nguyen | Lubrication corrections for lattice-boltzmann simulations of particle suspensions[END_REF]. Despite their computational cost, these methods have the advantage that they do not necessitate phenomenological laws and can therefore be used to calibrate the parametrisation of other approaches [START_REF] Zhang | An ecient discrete element lattice boltzmann model for simulation of particle-uid, particle-particle interactions[END_REF][START_REF] Galindo-Torres | A coupled discrete element lattice boltzmann method for the simulation of uidsolid interaction with particles of general shapes[END_REF].

It is also possible to couple a discrete representation for the grains and a continuous model for the uid dening an Eulerian-Lagrangian model for immersed granular ows. Since the introduction by Tsuji et al. [START_REF] Tsuji | Discrete particle simulation of two dimensional uidized bed[END_REF][START_REF] Tsuji | Lagrangian numerical simulation of plug ow of cohesionless particles in a horizontal pipe[END_REF] of this kind of model to compute the behaviour of uidised beds, a lot of studies have been achieved to test the accuracy of the model [START_REF] Xu | Numerical simulation of the gas-solid ow in a uidized bed by combining discrete particle method with computational uid dynamics[END_REF][START_REF] Hoomans | Discrete particle simulation of bubble and slug formation in a two-dimensional gas-uidised bed: a hardsphere approach[END_REF]. Such an unresolved CFD-DEM model is particularly valuable because it is applicable to dense particulate reaction system like energy conversion or petro-chemical processing [START_REF] Zhong | CFD simulation of dense particulate reaction system: Approaches, recent advances and applications[END_REF] and dense particulate ows in complex geometries like gas-solid ow in pneumatic conveying band or gas cyclone separator [START_REF] Chu | Numerical simulation of complex particleuid ows[END_REF][START_REF] Chu | CFD-DEM modelling of multiphase ow in dense medium cyclones[END_REF]. The Eulerian representation of the uid has a smaller computational cost than discrete approaches while the Lagrangian representation of the grains provides information like trajectories and forces applied on each grain that are inaccessible with continuum approaches. Unresolved CFD-DEM models should then be used to compute immersed granular ows with a large discrepancy in the volume fraction of grains going from porous media to pure uid and local eects such as the obstruction of an injection pipe. The diculty of this method comes from the coupling between the two scales representing the phases. The dynamics of the uid is deduced from a continuous representation of the mixture between grains and uid at the coarse scale of a computational cell while the solid motion is at the ne grain scale [START_REF] Yu | Particle-scale modelling of gassolid ow in uidisation[END_REF]. The momentum transfer between each phase should be parametrised. It cannot be computed directly at the ne scale because the details of the uid ow are not represented [START_REF] Van Wachem | Methods for multiphase computational uid dynamics[END_REF]. Dierent coupling terms have been proposed in literature depending on pressure gradient or buoyancy force distribution on the phases [START_REF] Kafui | Discrete particle-continuum uid modelling of gas solid uidised beds[END_REF]. Comparisons with experiments tend to favour models in which the pressure drop is only supported by the uid phase [START_REF] Gupta | Verication and validation of a dem-cfd model and multiscale modelling of cohesive uidization regimes[END_REF] but a more recent review states that there exists a unique consistent set of equations presented in dierent forms [START_REF] Di Renzo | Homogeneous and bubbling uidization regimes in demcfd simulations: hydrodynamic stability of gas and liquid uidized beds[END_REF].

This article presents an unresolved CFD-DEM model for immersed granular ows. The grains motion is computed with a nonsmooth discrete element method [START_REF] Dubois | The Contact Dynamics method: A nonsmooth story[END_REF] while the uid phase is solved with the nite element method. The triangle based meshes can be easily rened and adapted at regular time interval to capture important ow features in complex geometries with a constant number of elements. Unstructured meshes using Lagrange linear shape functions for both the pressure and the velocity ensure a fast computation of ows but require to be stabilised. A stable numerical scheme is though require to apply the interaction force both on the uid and the grains due to the explicit coupling between the phases. This model is validated on simulations of the well-known problem of suspension drops that refers to cluster of grains settling in a (viscous) uid. Since the research achieved by Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a owing uid on a dense swarm of particles[END_REF] in 1947 on the force exerted by a uid on a cloud made up of grains, a lot of studies have been driven to describe accurately this problem. A great attention was given to the particular evolution of the falling drop when Reynolds number is negligible. In 1977, Adachi et al. [START_REF] Adachi | The behavior of a swarm of particles moving in a viscous uid[END_REF] tried to describe analytically the falling velocity of the drop. The theoretical model based on a steady-state assumption was not quite good but gives a lower bound compared to experiments. Injection process of the drop during experiments is a tricky step because it is practically impossible to form a perfectly spherical drop. Despite this variability in the initial shape, the drops go through similar stages during their fall that have been summarised by Adachi et al. [START_REF] Adachi | The behavior of a swarm of particles moving in a viscous uid[END_REF]. Just after the drop begins to move, some grains escape from the cloud and form a tail that grows in time until it separates from the swarm. The tail contains grains from the rear of the swarm as well as grains from inside because of the recirculation that leads grains outside the closed envelop. The rate of grains leakage is linked to the falling velocity of the swarm, the radius of the swarm and the radius of the grains [START_REF] Nitsche | Break-up of a falling cloud containing dispersed particles[END_REF]. At some time the centre of the swarm contains not enough grains and the tail breaks up. The uid can go through the centre of the swarm and it changes into an open torus that destabilises during expansion and contraction phases to form two (or more) secondary droplets [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF]. The probability the torus breaks up has been analysed statistically and linked to the initial number of grains in the swarm by Metzger et al. [START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF]. They also give another formula for the rate of grains leakage based on this initial number of grains.

Interests carried in suspension drops has increased during the last two decades both experimentally and numerically. The fall of suspension drops settling at vanishing Reynolds number also called Stokes cloud can be computed using Stokeslet model [START_REF] Nitsche | Break-up of a falling cloud containing dispersed particles[END_REF] that have been proved to provide consistent results when it is compared to experiments [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF][START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF]. However, the evolution of the suspension drop is modied by increasing inertia. Subramanian and Koch [START_REF] Subramanian | Evolution of clusters of sedimenting low-reynolds-number particles with oseen interactions[END_REF] pointed out dierent regimes for suspension drops and developed equations based on the Oseen stream function [START_REF] Lamb | Hydrodynamics[END_REF][START_REF] Batchelor | An introduction to Fluid Dynamics[END_REF] to represent the fall of suspension drops at small but non-zero Reynolds number dominated by source-eld interactions. It has been found that the drop goes through the dierent steps faster and the normalised time at which break-up occurs decreases with increasing inertia [START_REF] Pignatel | A falling cloud of particles at a small but nite reynolds number[END_REF] but it seems that this time tends to a steady state value for high Reynolds number [START_REF] Lin | Settling of particle-suspension drops at low to moderate reynolds numbers[END_REF]. The inertia has also an impact on the number of secondary droplets that are formed after break-up [START_REF] Bosse | Numerical simulation of nite reynolds number suspension drops settling under gravity[END_REF].

If a lot of these researches state about monodisperse clouds, a growing number of articles have recently dealt with polydisperse clouds. Abade and Cunha [START_REF] Abade | Computer simulation of particle aggregates during sedimentation[END_REF] studied the stability of polydisperse clouds and nd it less important than for comparable monodisperse clouds. Simulations, validated with the experiments of Mylyk et al. [START_REF] Mylyk | Break-up of suspension drops settling under gravity in a viscous uid close to a vertical wall[END_REF], show similarity between gaussian polydisperse clouds and monodisperse clouds [START_REF] Ho | Destabilization of clouds of monodisperse and polydisperse particles falling in a quiescent and viscous uid[END_REF]. One of the dierences is that small grains leave a polydisperse cloud faster than corresponding grains in a monodisperse cloud. This accelerated time of departure from the cloud have an inuence on the break-up that could occur earlier. It is also important to note that the leakage of small grains is dependant on the initial conguration of the polydisperse cloud. A greater number of grains are lost during the fall in unmixed clouds than in mixed clouds [START_REF] Bülow | On the settling behaviour of polydisperse particle clouds in viscous uids[END_REF].

In section 2 of the present paper, we state the equations of the unresolved CFD-DEM. Section 3 is devoted to the validation of the model using Stokes cloud simulations. Finally the exibility of the implementation is shown on results of ows at non negligible Reynolds number along with the possibility to obtain fast prediction by using the bidimensional version of the model.

Modelling and Numerical Background

The present section is devoted to an overview of the unresolved FEM-DEM multiscale model highlighting its key points. First comes the coarse scale averaged Navier-Stokes equations that are necessary to observe phenomena of interest in the ow motion. Then the details of the nonsmooth DEM will be exposed insisting on an original management of the iterative contact solver to nally present the interaction between the coarse scale uid variables and the ne scale solid variables.

Fluid Phase Dynamics

The physical elds computed by the Navier-Stokes equations are averaged using a weight function to smooth the inuence of the grains at each point of the uid [START_REF] Anderson | A uid mechanical description of uidized beds: Stability of the uniform state of uidization[END_REF]. These averaged variables over a local control volume are obtained by using the porosity φ as a weighting variable that represents the volume fraction of uid inside the local control volume. The complete derivation of the equations has been proposed by Anderson and Jackson [START_REF] Anderson | A uid mechanical description of uidized beds: Stability of the uniform state of uidization[END_REF]. Assuming that the uid density ρ is constant and noting u = φw the mean velocity of the uid phase, the conservation laws for the uid phase are:

ρ ∂u ∂t + ∇ • uu φ = ∇ • [2µφd(u) -pI] + f + φρg, (1) 
∂φ ∂t + ∇ • u = 0, (2) 
where p is the pressure, f is the force density coming from the uid-grains interaction, g is the gravity, I is the identity tensor and d(u) is the rate of deformation tensor:

d(u) ∇ u φ + ∇ u φ T .
It has to be noticed that the two unknown elds p and u depend on the porosity eld which can be computed at each time step using the positions of the grains in the mesh. This formulation is often referred as Model B in which the uid phase is the only one contributing to the pressure drop through the mix medium [START_REF] Gidaspow | Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[END_REF] that has been showed to provide more consistent results [START_REF] Feng | Assessment of model formulations in the discrete particle simulation of gas-solid ow[END_REF]. These equations describe a typical saddle-point problem

ρ ∂u ∂t + ∇ • uu φ = ∇ • (2µφd(u)) -∇p +f + φρg ∂φ ∂t = -∇ • u 0 0
The weak form to solve using a stabilised P 1 -P 1 nite element method can be easily obtained noting the approximation of the elds on the mesh:

p(x, t) p h (x, t), u(x, t) u h (x, t). Find (u h , p h ) such that ûh ρ ∂u h ∂t + ρ∇ • u h u h φ -f h -φρg + ∇ ûh • 2µφd(u h ) -p h I = 0 ∀ ûh , ph ∂φ ∂t + ∇ ph • -u h + ε∇p h = 0 ∀ ph , (3) 
where ûh , ph are the test functions. The Laplacian of pressure in the mass equation is used to stabilised the P 1 -P 1 nite element formulation used to solve the above equations that does not respect the LBB condition [START_REF] Ladyshenskaya | The Mathematical Theory of Viscous Incompressible Flow[END_REF][START_REF] Brezzi | Stabilized mixed method for stokes problem[END_REF][START_REF] Babuska | The nite element method with lagrangian multipliers[END_REF]. Unless the equations are stabilised, high frequency pressure modes are developing and the simulations blow up. Introducing a diusive term of pressure in the continuity equation is a simple way to couple the pressure unknowns and make the problem stable [START_REF] Hughes | A new nite element formulation for computational uid dynamics: V. circumeventing the babuska-brezzi condition: A stable petrov-galerking formulation of the stokes problem accomodating equal-order interpolations[END_REF][START_REF] Brezzi | On the stabilization of the nite element approximations of the stokes equations[END_REF]. This stabilisation term introduces a critical parameter ε that could change the nature of the problem if it is too big. However, if it is too small, the additional term does not stabilise the problem anymore. It can be shown using a convergence analysis on the Stokes problem that this parameter should be of order O(h 2 /ν) where h is the element mesh size [START_REF] Hughes | A new nite element formulation for computational uid dynamics: V. circumeventing the babuska-brezzi condition: A stable petrov-galerking formulation of the stokes problem accomodating equal-order interpolations[END_REF].

Solid Phase Dynamics

In this paper, we use a nonsmooth discrete element method considering spherical grains that interact only via contact forces. The velocity of a grain i (here free of contact) is computed using Newton second law of motion d dt

(m i v i ) = m i g -V i ∇p| x i -f i (4) 
where m i , V i , x i and v i are respectively the mass, the volume, the position and the velocity of the grain. The uid-grains interaction force is represented by the combination of V i ∇p| x i and f i . The velocity of a grain obtained by integrating the dierential equation above is a free velocity; it does not take into account any contact. In order to prevent the overlapping of the grains, this free velocity is corrected due to contact reactions computed with the nonsmooth Contact Dynamics method (NSCD) [32], as detailed in Algorithm 1. As a rst step, it is required to detect all the potential contacts.

A pair of grains are susceptible to be in contact if they are closer than an alert distance. This alert distance should depend on the solid time step and on the velocities of the grains. In practice the alert distance is xed and equal to the radius of a grain. It results from this choice of a xed alert distance that the solid time step is variable and computed so that the fastest grain does not travel more than its radius during this variable time step. Then the contact reactions are iteratively computed to verify the contact laws.

Algorithm 1: ContactSolver Create a queue Q containing all the potential contacts for each contact q ∈ Q do

dq = x j -x i -(r j + r i )
the separating distance between the two objects i and j implied in q nq = x j -x i x j -x i the centre-to-centre normal between the two objects implied in q

The normal relative velocity δvq is initialised with its value at the previous step end while Q is not empty do for each contact q ∈ Q do

• Verify the interaction law to update the velocities of the objects implied in contact q:

v i v j ← v i + m j m i + m j δvqnq ← v j - m i m i + m j δvqnq
remove the old correction on the velocities coming from the contact q δvq ← max 0, (v i -v j ) • nqdq ∆t compute the contribution of contact q to verify interaction law for the velocities modied by all the other contacts

v i v j ← v i - m j m i + m j δvqnq ← v j + m i m i + m j δvqnq
update the velocities of the grains concerned by contact q

• Suppress q from Q • Actualise Q if ∆δvq∆t > ζ
where ζ is a geometrical tolerance and ∆δvq is the dierence between the correction of the current contact resolution and the previous one then

Insert in Q all the potential contacts that are not in Q implying i or j end end end Considering inelastic collisions, the contact reaction applied on a grain is the resultant of all the active contacts involving this grain during the time step. A boundary is considered as an object with innite mass at rest. An improvement to the commonly non-linear Gauss-Seidel method (NLGS) used in NSCD has been achieved to fasten computations. Usually a loop over all the potential contacts is performed during the NLGS iterations [32, [START_REF] Jean | Unilaterality and dry friction in the dynamics of rigid body collections[END_REF][START_REF] Renouf | A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media[END_REF][START_REF] Alart | A mixed formulation for frictional contact problems prone to newton like solution methods[END_REF][START_REF] Jourdan | A gauss-seidel like algorithm to solve frictional contact problems[END_REF]; it could result in a loss of time particularly when many grains are at rest as in deposit. This situation is prevented by skipping contact computation when the involved grains motion is not modied by other contacts up to a tolerance. The use of a queue to process the contacts can then improve the computational time without loss of accuracy. The steady conguration of the grains without overlapping is reached when the queue is empty.

Fluid-Grains Interaction Force

One question remains to solve the problem: which constitutive law should be used for the uid-grains interaction force? There is no commonly accepted expression for the drag force tting all the situations. Theoretical developments for multigrains ows can be found using simplifying assumptions like a Stokes regime or a dilute suspension [START_REF] Batchelor | Sedimentation in a dilute dispersion of spheres[END_REF] but for many applications, drag formula are empirically deduced within the range of parameters needed usually based on measurements of the pressure drop inside the uid percolating through a xed assemble of grains [START_REF] Ergun | Fluid ow through packed columns[END_REF] or on the settling velocity of a dilute pack of grain in a uid [START_REF] Richardson | The sedimentation of a suspension of uniform spheres under conditions of viscous ow[END_REF]. Dealing with multigrains medium requires to take into account the inuence of the neighbouring grains on the uid-grain interaction force experienced by an individual grain. This can be done by multiplying the uid-grain interaction force experienced by a single grain with an independent function of the porosity g(φ) [START_REF] Richardson | The sedimentation of a suspension of uniform spheres under conditions of viscous ow[END_REF]. The uid-grain interaction force can be written:

f i = g φ| x i C d πr 2 i ρ 2 v i - u φ x i γ i v i - u φ x i (5) 
where r i is the radius of the grain and C d is the drag coecient for which a wellestablished correlation for spherical grains over a wide range of grain Reynolds number Re i has been given by Dallavalle [START_REF] Dallavalle | Micromeritics: the technology of the particles[END_REF]:

C d = 0.63 + 4.8 √ Re i 2 with Re i = 2r i ρ φ| x i µ v i - u φ x i
Wen and Yu [62] have suggested a simple power law for the independent multiplier function of the porosity that is suitable for low and high Reynolds regimes:

g φ| x i = φ -β
x i with β = 1.8 but there exists many renements for this coecient [START_REF] Zhu | Discrete particle simulation of particulate system: theoretical developments[END_REF][START_REF] Kafui | Discrete particle-continuum uid modelling of gas solid uidised beds[END_REF][START_REF] Li | Gas-particle interactions in dense gas-uidized beds[END_REF][START_REF] Taghipour | Experimental and computational study of gassolid uidized bed hydrodynamics[END_REF][START_REF] Felice | The voidage function for uid-particle interaction systems[END_REF] to t the intermediate as well as the extreme Reynolds regimes. By the Newton third law of motion, this force is linked to the interaction force applied by the grains on the uid in equation ( 1):

f = i∈G V i ∇p| x i + f i δ| x i
where G is the set of grains and δ| x i is the Dirac function centred at the grains position. With this denition and the use of the Dirac function it is now clear that the relation between f and its approximation on the mesh f h is exactly the same that the relation between p, u and p h , u h .

Time Integration Method

For many applications, the uid-grains interaction source-term is large and needs a particular attention because of the coupling between the uid and the grains. An easy way to treat this dominant term is to use a semi-implicit scheme [START_REF] Patankar | Numerical heat transfer and uid ow[END_REF] to linearise the source-term and deduce a prediction of the grain velocity at the next time step. Introducing the drag force formula (5) in the solid momentum equation ( 4), we can develop the discrete time evolution of the grain velocity using a semiimplicit scheme for the drag force:

m i ∆t v * i -v n i = m i g -V i ∇p n+1 x i -γ n i v * i - u n+1 φ n x i
where n denotes the previous time step and v * i is a prediction of the free velocity of grain i at the current time step. This prediction can be isolated as

v * i = m i ∆t + γ n i -1 m i ∆t v n i + γ n i u n+1 φ n x i + m i g -V i ∇p n+1 x i .
and then included in the source-term dened by equation ( 5) to determine the stable drag force used to compute the unknowns at current time (n + 1)∆t:

f n+1 i = 1 γ n i + ∆t m i -1 v n i - u n+1 φ n x i + ∆t g - V i ∇p n+1 x i m i
This force formulation making use of the implicit uid velocity is computed during the implicit Euler time integration of the nite element problem. The forces are evaluated at the grain positions by evaluating the uid velocity at the centre of each grain and then interpolated at the uid nodes. The dierent steps of a time loop computing the granular ow dynamics are presented in Algorithm 2.

Algorithm 2: GranularFlowSolver while n∆t < T f do 1. Obtain the porosity φ n from the positions of the grains x n 2. Compute the uid velocity u n+1 , the pressure p n+1 and the interaction forces f n+1 i from u n , p n , v n i and φ n by using an implicit Euler scheme for the time integration of the nite element problem The rst tests of the model stage the fall of a swarm or a drop made up of grains in a viscous uid. Such a drop passes through dierent steps during its fall. In the next sections, these steps are explained and qualitative comparisons between experiments found in literature and our simulations for mono-and polydisperse drops are achieved. A special attention is paid to the comparison of bidimensional and tridimensional simulations achieved with the same model.

Stokes Cloud Made of Grains

A spherical cloud made of grains falling in a viscous uid is considered. Metzger et al. [START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF] gave a complete description of the evolution of such a cloud based on experiments and Stokeslet simulations. In order to model the injection process of the mixture cloud by a syringe in the viscous medium, the initial vertical velocity of the cloud is set to the Stokes settling velocity:

U 0 ∼ φR 2 0 g m i -ρV i V i µ
where R 0 is the initial horizontal radius of the cloud. Machu et al. [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF] studied the eect of the initial shape on the evolution of the cloud. It is practically impossible to create a perfect spherical cloud in experiments and an initial bell-shaped cloud slightly change the evolution of the cloud. In this section, a perfectly spherical cloud is considered as the rst assumption made by Adachi et al. [START_REF] Adachi | The behavior of a swarm of particles moving in a viscous uid[END_REF]. The fall of the cloud creates a toroidal velocity eld in the uid phase. In the frame of reference of the cloud, the uid streamlines are closed inside the mixture and open outside so that no uid from the surrounding medium is able to enter in the cloud. The uid streamlines form a closed envelop containing the cloud as illustrated in Figure 1.This Figure 1 presented in this paper shows the same features than Figure 12 presented in Metzger et al. [START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF].

After being released in the uid, the upper part of the cloud lengthens while the lower part remains almost hemispherical. Some grains are led to the rear by the circulating velocity eld and they escape the cloud where the streamlines break. This causes a decrease of the aspect ratio between the cloud horizontal radius R(t) and the cloud vertical radius H(t) dened in Figure 2. The cloud horizontal radius is dened as the radius of a circle centred at the centre of mass of the cloud in

t = 0s t = 100s t = 275s t = 400s
Fig. 1: Fluid streamlines in the frame of reference of the drop at dierent time of a tridimensional simulation achieved with parameters Set 1 in Table 1. The blue circles represent the sectional area of the grains with the vertical plane centred in depth. Top-right corner gures show the dierent step at the same scale. This 3d simulation has been performed using 1704 grains.

the plane xy containing 80% of the grains while the cloud vertical radius is the distance between the centre of mass to the leading front.

The escaped grains fall more slowly than the cloud and they form a growing tail by continuously increasing the number of grains n(t) inside the tail. The fraction of the total amount of grains inside the tail is shown in Figure 3(c). After a while, the tail is disconnected from the cloud and left behind. The rate of this grain leakage has been shown to be dependent on the falling velocity of the cloud, the radius of the cloud and the radii of the grains [START_REF] Nitsche | Break-up of a falling cloud containing dispersed particles[END_REF].

An overpressure point in front of the motion and an underpressure point at the rear of the motion go along with the circulating velocity eld and forces the lower part of the cloud to atten. This attening increases the aspect ratio and slows down the falling velocity of the cloud as illustrated in Figure 3(a) and 3(b). In Figure 3 the star exponent means that the variables are adimensionalised with R 0 and U 0 .

If the initial cloud contains a too small number of grains, it is disintegrated by constantly losing grains into the tail [START_REF] Nitsche | Break-up of a falling cloud containing dispersed particles[END_REF]. Otherwise, when enough grains have left the swarm, the overpressure point forces the uid to go through the cloud changing

R(t) H(t) n(t) R(t) F r o n t v i e w
T o p v i e w Fig. 2: Shape evolution up to the destabilisation and the torus formation of a single cloud made up of grains falling in a viscous uid obtained with a tridimensional simulation using the parameter Set 1 in Table 1. Cloud states are shifted to the right each time interval of ∆t = 5s.

it into an open torus. This open torus experiences expansion and contraction phases with a predominance of the expansion [START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF]. The torus is unstable and can divide into two or more droplets depending on the initial number of grains inside the cloud [START_REF] Nitsche | Break-up of a falling cloud containing dispersed particles[END_REF] (see Figure 1). The description above is only valid for Stokes falling cloud i.e. cloud falling in a viscous uid such that the cloud Reynolds number and the grains Stokes number are small. The cloud Reynolds number is dened as the ratio between the uid inertia due to the cloud motion and the viscosity of the uid:

Re = U 0 R 0 ν ∼ φ (ρ i -ρV i )g R 3 0 ρV i ν 1,
and the grains Stokes number is dened as the ratio between the kinetic energy of the cloud and the energy dissipated by friction:

St = m i U 2 0 6πµr i U 0 R 0 1.
For dilute suspension, it is possible to consider only the grains Reynolds number because the settling velocity of the cloud is of order of the Stokes settling velocity of an isolated grain. Then inertia can be neglected if the grains Reynolds number is small. For dense clouds in which the number of grains is suciently high to increase signicantly the velocity of the cloud with respect to the Stokes settling velocity of an isolated grain due to mutually induced motion, the cloud Reynolds number needs to be considered [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF]. We keep it with the grains Stokes number as indicators of the uid inertia because it is the more stringent requirement. Simulations achieved with the unresolved CFD-DEM model can be altered by the stabilisation parameter ε. As presented in the previous Section 2 this parameter should vary with the mesh size and the viscosity of the uid [START_REF] Brezzi | On the stabilization of the nite element approximations of the stokes equations[END_REF][START_REF] Hughes | A new nite element formulation for computational uid dynamics: V. circumeventing the babuska-brezzi condition: A stable petrov-galerking formulation of the stokes problem accomodating equal-order interpolations[END_REF] for the Stokes problem but the stabilisation coecient depends on the problem and renements have to be considered for the general case of unsteady Navier-Stokes equations [START_REF] Tezduyar | Stabilized nite element formulations for incompressible ow computations[END_REF][START_REF] Tezduyar | Incompressible ow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements[END_REF][START_REF] Sanchez | Study of a stabilized mixed nite element with emphasis on its numerical performance for strain localization problems[END_REF].

Figure 3 sums up the main features of a Stokes cloud for dierent value of the ε parameter. First of all, it should be noted that all the simulations provide the expected behaviour. During the fall, the drop attens increasing its horizontal radius (Figure 3(b)). Due to this attening, the density of the swarm decreases and the cloud slows down (Figure 3(a)). The departure of the grains from the cloud at the rear of the motion is associated with the expansion and deceleration phase (Figure 3(c)). The leakage rate decreases with time until the tail is left behind and the cloud form an open torus. 1. Clouds states are shifted to the right each time interval of ∆t = 12.5s. The 3d simulation has been performed using 12812 grains.

Forecasting with Bidimensional Simulations

The great advantage of the unresolved CFD-DEM model is its generality. The constitutive equations of the model can easily be implemented for bidimensional problems by considering the spherical grains as cylindrical grains of unity depth. It requires to change the formula of the grains Reynolds number and the expression of the drag force because the sectional surface is changed to a rectangle of length d and unity width:

Re i = √ 2d φ| x i µ f i = g φ| x i C d d ρ 2 v i - u φ x i v i - u φ x i
It is important to note that changing the grains from spheres to cylinders also change the computation of the volume and hence the porosity. 1. Clouds states are shifted to the right each time interval of ∆t = 5s. The 3d simulation has been performed using 73590 grains.

Bidimensional simulations are convenient because of the low computational cost. In the case of Stokes cloud made up of grains, the bidimensional features of the cloud can be seen as a vertical cut of the tridimensional case. The traditional Stokeslet simulations [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF][START_REF] Metzger | Falling clouds of particles in viscous uids[END_REF] are unable to provide bidimensional simulations because the Stokes solution for the ow around a sphere is not acceptable for innite cylinders and Oseen correction terms have to be considered [START_REF] Landau | Fluid mechanics[END_REF].

Interacting clouds experiments have been achieved by Machu et al. [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF]. The case of two vertically aligned clouds is presented in Figure 4. During the fall the upper cloud lengthens very fast while the lower one attens. This results from the addition of the two circulating velocity eld. The lower cloud is compressed between its own overpressure point and the overpressure point of the upper cloud. This crushing changes the lower cloud in an open torus through which the upper cloud can cross. Until this time the initially upper cloud seems to experience the expedited evolution of a single cloud, forming the reverse mushroom with the other cloud around the tail. Then the initially upper cloud slow down and wrap the other cloud.

Figure 4 shows vertical cuts of the evolution steps of the clouds during the fall and comparisons with bidimensional simulations. The same features can be observed with some dierences due to the loss of one dimension. In the rst detailed step, there is a larger layer of interstitial uid between the two clouds in the 3d simulation. This could be explained by the cylinder representation of the grain. In bidimensional simulations the uid can only move in a vertical plane because the height of the cylinder is equal to the depth of the domain.

It also can be seen that the grains spread more in 2d simulations. Due to the fall of the clouds the uid has to go up. For the 3d case the uid is able to circumvent the clouds in-depth but in the 2d case it has to cross the cloud vertically spreading the grains.

The same observations are made for the case of two interacting clouds with an horizontal oset. The evolution of the clouds is similar to the previous case but the attraction between the clouds causes a diagonal trajectories to the clouds. Figures 4 and5 of this paper have been inspired on purpose respectively by Figures 14 and16 presented by Machu et al. [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF] to ease comparisons and validation. 1 using dierent mesh sizes and the adaptive mesh.

Adaptive Mesh

To speed up the computations, the uid is solved at a greater scale than the grain scale. However, for many applications the global domain is much greater than a grain. Capturing interactions between grains and uid at a mesoscopic Fig. 7: Pressure eld around a Stokes cloud with parameters Set 1 in Table 1 using the adaptive mesh obtained using GMSH. The mesh contained approximately 20000 elements and a minimum mesh size of 10 -3 . scale requires to cover the global domain with several thousands of elements that slow down the computations. Using an adaptive mesh reduces the computational cost. The velocity eld, the pressure eld and the porosity eld allow to predict the location of the important physical eects where the mesh needs to be rened and compute a size eld L accordingly to the empirical formula: 

                       L = max (min (L p , L u , h max ) , h min ) L p = h
where h max and h min are the maximum and minimum size in which the length of an element have to lie and the indices max and min for the gradient of pressure and velocity means the maximum and minimum gradient over all the nodes of the mesh. Knowing the size eld, the new number of elements is computed to estimate the ratio between the expected number of elements and the real number of elements. The size eld is then multiplied by this ratio with the constraint that no value of the size eld can be smaller than h min . Figure 7 shows the fall of a bidimensional Stokes cloud using an adaptive mesh containing approximately 20000 elements with a minimum mesh size of 10 -3 m.

Uniform Adaptive

Element size (10 -3 m) This mesh is generated automatically by GMSH [START_REF] Geuzaine | Gmsh: A 3-d nite element mesh generator with built-in preand post-processing facilities[END_REF] using a size eld determined by the previous empirical formula ( 6) that has proven its eciency for many examples.

h = 4 h = 2 h = 1 h ∈ [1;
The adaptive mesh contains approximately the same number of elements than the mesh with elements of size h = 2 • 10 -3 m and four times less than the mesh with elements of size h = 10 -3 m. The results show a good agreement between the curve obtained with the most rened uniform mesh and the curve obtained with the adaptive mesh (see Figure 6) while the CPU time is 4,45 times smaller with the adaptive mesh. The CPU times until the state shown in Figure 7 and the properties of each mesh are sum up in Table 2.

For now the mesh is rebuild from scratch when the adaptation is needed and the unknown elds have to be evaluated at the new mesh nodes. This procedure is not optimal and create an additional computational cost that can be seen by comparing the CPU time of the uniform mesh with h = 2 • 10 -3 m with the CPU time of the adaptive mesh. These two meshes have approximately the same number of elements but the computation using the adaptive mesh is 1.5 times slower because of the adaptation. That is why it is not fruitful to adapt the mesh at each iteration. In practice for the case of cloud falling in a uid, the number of iterations between two adaptations of the mesh can be estimated based on the rened area and the settling velocity of the swarm. For the case shown in Figure 7, the mesh is adapted each 20 iterations. It ensures that the clouds do not go out of the rened area. 1) is lighter than the uid while the red ones (parameter Set 4 in Table 1) are heavier. Clouds states are shifted to the right each time interval of ∆t = 2.5s. Fig. 9: Shape evolution of interacting Clouds made up with grains of dierent densities. The blue drop (parameter Set 7 in Table 1) is lighter than the uid while the red ones (parameter Set 6 in Table 1) are heavier. Clouds states are shifted to the right each time interval of ∆t = 0.25s. 

General Model for Polydisperse Flows with Non Negligible Reynolds Number

Due to the complete representation of the uid, the Reynolds number can be increased continuously without changing the model. To show the eect of inertia on the grains dynamics, an example is presented in which three clouds made up of grains with a greater density than the uid fall over a cloud made up of grains with a smaller density than the uid. This situation is shown in Figures 8 and9. At the beginning of the simulation, the two lower clouds move towards each other, while the two upper clouds are attracted exactly like in the simulations showing two vertical interacting clouds. At this stage, it is already possible to distinguish the eect of the inertia by observing the vortices let by the clouds in their wake. In the case of a small Re, the dissipation is such that the vortices of the heavy clouds merge when they approach the light cloud while they are still separate in the case of a greater Re as shown in Figure 10. The adimensionalisation of the time is based on the initial cloud radius and the Stokes settling velocity. It also has to be noticed that the circulating velocity elds have a greater interaction in the small Reynolds number case. The two lower clouds atten completely before they collide while they remains hemispherical for the case with higher Reynolds number. This greater interaction forces the upper clouds to lengthens so that we observe a bigger tail in the viscous case and an accelerated evolution of the clouds. [START_REF] Anderson | A uid mechanical description of uidized beds: Stability of the uniform state of uidization[END_REF] 

Conclusions

In this paper we have coupled a stabilised nite element method and a nonsmooth discrete element method to represent the ow of grains immersed in a uid. Using this method it is possible to model accurately the local eects at the grain scale due to their Lagrangian representation with a computational convenience coming from the representation of the uid at a greater scale than the grain's one.

The sensitive part of the model is the empirical formula used for the grain-uid interaction force. This force is a dominant source-term so that its parametrisation has a great inuence on the results and it is required to use a semi-implicit scheme to stabilise the momentum coupling between the two phases. This stable form of the drag force make use of a prediction of the grains free velocities at the next time step so that the uid experiences a force due to the grains that does not exactly correspond to the dissipation due to the real relative motion of the two phases.

Many steps still need to be completed to fully certify the model. The precision of simulations will suer from the continuous representation of the uid while the discrete representation of the solid phase will limit the software to applications in which the number of grains is restricted. Comparisons with suitable experiments have to be achieved in order to determine the range of application of this model. It is often complicated to reproduce exactly experiments found in literature because of the lack of some data and the misconception of the real laboratory conditions. A perfect validation will require experiments calibrated with the exact conditions enforced in the software.

However, comparisons with experiments and simulations found in literature have been achieved and prove the good performance of the implementation. The results have been discussed and a focus on the basic stabilisation of the nite element method have shown its consistency and a convergence towards a unique solution. The CPU times have been presented along with a empirical formula to adapt the size eld of the mesh during the computation. Comparing the settling velocity of a Stokes cloud with dierent meshes we have shown that the adaptive mesh gives accurate results with a much smaller CPU time.

The great advantage of this model is its generality. It is possible to add grains with various material properties and shapes in various geometries containing an arbitrary uid. The only numerical requirement is that the radii of the grains have to be smaller than the edge of the elements representing the uid. One advantage of this numerical model compared with Stokeslet simulations [START_REF] Machu | Coalescence, torus formation and break-up of sedimenting clouds: experiments and computer simulations[END_REF] is that it does not require to consider correction terms of the Oseen stream function [START_REF] Subramanian | Evolution of clusters of sedimenting low-reynolds-number particles with oseen interactions[END_REF] when the inertia increases. Achieving simulations at various Reynolds number we have shown the exibility of the implementation and the importance of the contacts computation when clouds collide at non negligible Reynolds number. The free Marblesbag software based on the equations presented in this paper and the dierent simulations shown in gures are available to the following link https:// git.immc.ucl.ac.be/uidparticles/marblesbag.
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 3 Fig. 3: (a) Dimensionless vertical cloud settling velocity U * , (b) dimensionless horizontal radius R * and (c) fraction of grains in the tail versus dimensionless time T * for dierent value of the numerical parameter ε using a cloud with Re = 9 • 10 -5 and St = 2 • 10 -8 .

Fig. 4 :

 4 Fig.4: Shape evolution of vertically aligned interacting clouds using the parameter Set 2 in Table1. Clouds states are shifted to the right each time interval of ∆t = 12.5s. The 3d simulation has been performed using 12812 grains.

Fig. 5 :

 5 Fig.5: Shape evolution of interacting clouds with an horizontal oset corresponding to the diameter of the drops using the parameter Set 3 in Table1. Clouds states are shifted to the right each time interval of ∆t = 5s. The 3d simulation has been performed using 73590 grains.
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 6 Fig.6: Dimensionless vertical falling velocity of a Stokes cloud with the parameter Set 1 in Table1using dierent mesh sizes and the adaptive mesh.

Fig. 8 :

 8 Fig. 8: Shape evolution of interacting clouds made up with grains of dierent densities. The blue cloud (parameter Set 5 in Table1) is lighter than the uid while the red ones (parameter Set 4 in Table1) are heavier. Clouds states are shifted to the right each time interval of
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Fig. 10 :

 10 Fig. 10: Comparison of the uid streamlines at the same adimensional times for two dierent Reynolds numbers. The blue drop is lighter than the uid while the red ones are heavier.

  

Table 1 :

 1 Parameters used for the dierent simulations of clouds falling in uid

	3. Compute the grain velocities v n+1 i using the Algorithm 1	that prevent interpenetration from v n i and f n+1 i	by
	4. Update the positions of the grains x n+1 i	with the velocities v n i
	end		

Table 2 :

 2 5] CPU times and mesh properties used to compute the fall of a bidimensional Stokes cloud using the parameters Set 1 in Table1until t * = 27

	Nb of elements	5155	20081	79895	∼20000
	CPU time (s)	5	33	221	50
	U * (t * = 25)	0.8369 0.9093 0.9228	0.9231
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