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Introduction

Let ι : (K, ν K ) → (K(x), ν) be a simple transcendental extension of valued fields such that rank ν K = 1. Let (R ν K , M ν K , k ν K ) denote the valuation ring of ν K . The purpose of this paper is to present a refined version of MacLane's theory of key polynomials [START_REF] Maclane | A construction for prime ideals as absolute values of an algebraic field[END_REF], [START_REF] Maclane | A construction for absolute values in polynomial rings[END_REF], similar to those considered by M. Vaquié [START_REF] Vaquié | Famille admise associée à une valuation de K[END_REF]- [START_REF] Vaquié | Famille admissible de valuations et défaut d'une extension[END_REF], and reminiscent of related objects studied by M. Lejeune-Jalabert [START_REF] Lejeune-Jalabert | Contributions à l'étude des singularités du point de vue du polygone de Newton[END_REF], Abhyankar and Moh (approximate roots [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation I[END_REF], [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF]) and T.C. Kuo [START_REF] Kuo | Generalized Newton-Puiseux theory and Hensel's lemma in C[END_REF], [START_REF] Kuo | A simple algorithm for deciding primes in C[END_REF]. Related questions were studied by Ron Brown [START_REF] Brown | Valuations, primes and irreducibility in polynomial rings and rational function fields[END_REF]- [START_REF] Brown | Roots of Irreducible Polynomials in Tame Henselian Extension Fields[END_REF], Alexandru-Popescu-Zaharescu [START_REF] Alexandru | Minimal pairs of definition of a residual transcendental extension of a valuation[END_REF]- [START_REF] Alexandru | All valuations on K(X)[END_REF], S. K. Khanduja [START_REF] Khanduja | On valuations of K(x)[END_REF], [START_REF] Khanduja | On minimal pairs and residually transcendental extensions of valuations[END_REF], F.-V. Kuhlmann [START_REF] Kuhlmann | Value groups, residue fields, and bad places of rational function fields[END_REF] and Moyls [START_REF] Moyls | The structure of valuations of the rational function field K(x)[END_REF]. The study of key polynomials continues to be a vibrant subject and since the first version of the present paper appeared on the arxiv in 2014 several other works on the topic were published by various authors: [START_REF] Alberich-Carramiñana | Of limit key polynomials[END_REF], [START_REF] Cutkosky | On the construction of valuations and generating sequences on hypersurface singularities[END_REF], [START_REF] De Moraes | Limit key polynomials as p-polynomials[END_REF], [START_REF] Decaup | Spivakovsky Abstract key polynomials and comparison theorems with the key polynomials of Mac Lane -Vaquié[END_REF], [START_REF] Santos Barnabé | Novacoski Generating sequences and key polynomials[END_REF], [START_REF] Nart | Key polynomials over valued fields[END_REF], [START_REF] Nart | MacLane-Vaquié chains of valuations on a polynomial ring[END_REF], [START_REF]Novacoski On MacLane-Vaquié key polynomials[END_REF], [START_REF] Novacoski | Key polynomials and pseudo-convergent sequences[END_REF].

Precisely, we associate to ι a countable well ordered set

Q = {Q i } i∈Λ ⊂ K[x],
where Λ is an index set whose order type will be explicitly bounded later in the paper; the Q i are called key polynomials. Key polynomials Q i that have no immediate predecessor are called limit key polynomials We consider the main achievements of this paper compared to the earlier works on the subject to be the following.

(1) Explicit formulae for each key polynomial Q i , particularly for limit key polynomials (Proposition 9.2), in terms of the key polynomials preceding Q i . If there exists an infinite sequence of linear key polynomials then the first limit key polynomial (if it exists) can always be chosen to be a p-polynomial in Kaplansky's terminology (p-polynomials may be viewed as a generalization of Artin-Schreier polynomials).

(2) An upper bound on the order type of the set of key polynomials. Namely, we show that the order type of the set of key polynomials is bounded by ω × ω, where ω stands for the first infinite ordinal. If char k ν K = 0, the order type is bounded by ω + 1. If char k ν K = 0 and rank ν = 1, the set of key polynomials has order type at most ω.

The results comparing the value of a polynomial f ∈ K[x] with the values of its Hasse derivative ∂ b f (the definition of ∂ b is recalled later in the Introduction) proved in §7 led to an axiomatic characterization of key polynomials in [START_REF] Decaup | Spivakovsky Abstract key polynomials and comparison theorems with the key polynomials of Mac Lane -Vaquié[END_REF]. As well, this approach was used in [START_REF] Novacoski | Key polynomials and pseudo-convergent sequences[END_REF] to obtain another proof of the existence of a complete set of key polynomials.

The main application of the theory of key polynomials (particularly, of point (1) above) that we have in mind is proving the local uniformization theorem for quasi-excellent noetherian schemes in positive and mixed characteristic. It has been shown recently that to prove the local uniformization theorem in the positive equicharacteristic case, assuming local uniformization in lower dimensions, it is sufficient to monomialize the first limit key polynomial of a certain explicitly defined simple field extension K → K(x) (see [START_REF] Saturnino | Théorème de Kaplansky effectif et uniformisation locale des schémas quasi-excellents[END_REF], Chapter IV, [START_REF] Saturnino | Defect of an extension, key polynomials and local uniformization[END_REF], Theorem 6.5 and S. D. Cutkosky-H. Mourtada [START_REF] Cutkosky | Defect and Local Uniformization[END_REF]). In Chapter V of his Ph.D. thesis ( [START_REF] Saturnino | Théorème de Kaplansky effectif et uniformisation locale des schémas quasi-excellents[END_REF], Institut de Mathématiques de Toulouse, 2013), J.-C. San Saturnino proved a similar reduction for local uniformization in the case of mixed characteristic, but under somewhat restrictive additional hypotheses.

Chapter 3 of the Ph.D. thesis of W. Mahboub (Institut de Mathématiques de Toulouse, 2013) develops the theory of key polynomials for valuations of arbitrary rank. Here we limit ourselves to the case rank ν K = 1.

The particular importance of the case rank ν K = 1 is witnessed by a recent theorem of Novacoski-Spivakovsky that says that local uniformization along rank one valuations implies local uniformization in its full generality [START_REF] Novacoski | Reduction of local uniformization to the rank one case, Valuation Theory in Interaction[END_REF]- [START_REF] Novacoski | On the local uniformization problem, Algebra, Logic and Number Theory[END_REF].

Let Γ 0 (resp. Γ) denote the value group of ν K (resp. ν). Let Γ0 := Γ 0 ⊗ Z Q (the group Γ0 is called the divisible hull of Γ 0 ). Fix an embedding Γ0 → R once and for all. In this sense, we will talk about the supremum of a certain subset of Γ0 (the supremum can be either a real number or infinity) or about a certain sequence of elements of Γ0 tending to infinity.

For an ordered abelian group ∆, the notation ∆ + will stand for the semigroup formed by all the non-negative elements of ∆.

The well ordered set Q = {Q i } i∈Λ of key polynomials of ν will be defined recursively in i.

Notation. We will use the notation N for the set of strictly positive integers and N 0 for the set of non-negative integers.

For an element ∈ Λ, we will denote by + 1 the immediate successor of in Λ. The immediate predecessor of , when it exists, will be denoted by -1. For a strictly positive integer t, + t will denote the immediate successor of + (t -1). For an element ∈ Λ, the initial segment {Q i } i< of the set of key polynomials will be denoted by Q . For the rest of this paper, we let p = char k ν K if char k ν K > 0 and p = 1 if char k ν K = 0. For an element β ∈ Γ ∪ Γ0 , let

P β = {y ∈ K(x) | ν(y) ≥ β } ∪ {0} P β+ = {y ∈ K(x) | ν(y) > β } ∪ {0}. Put G ν = β∈Γ P β P β+ (1.1)
and Gν = β∈ Γ0

P β P β+ . (1.2) 
We regard G ν and Gν as k ν -algebras. Note that even though Γ0 need not be contained in Γ, we have Gν ⊂ G ν since for each β ∈ Γ0 \ Γ the corresponding summand in (1.2) is 0. For y ∈ K(x) * , let in ν y denote the natural image of y in

P β
P β+ ⊂ G ν , where β = ν(y). Let ∆x be an independent variable. For f ∈ K[x] and j ∈ N let ∂ j f denote the j-th formal (or Hasse) derivative of f with respect to x. The polynomials ∂ j f are, by definition, the coefficients appearing in the Taylor expansion of f : f (x + ∆x) = j ∂ j f (x)∆x j .

In papers on local uniformization the Hasse derivatives ∂ j are often denoted by 1 j! ∂ j ∂x j ; this notation is regarded as one indivisible symbol; its parts such as 1 j! do not make sense on their own. Details about Hasse derivatives can be found in [START_REF] Kuhlmann | Book on Valuation Theory[END_REF], Chapter 24.10, starting on p. 701, as well as in [START_REF] Kuhlmann | The relative approximation degree in valued function fields[END_REF].

For an ordinal ∈ Λ we will use the following multi-index notation: γ +1 = (γ i ) i≤ , where the γ i are non-negative integers, all but finitely many of which are equal to 0, and

Q γ +1 +1 = i≤ Q γ i i . (1.3) 
An -standard monomial in Q +1 is a product of the form

c γ +1 Q γ +1 +1 , (1.4) 
where c γ +1 ∈ K and the multiindex γ +1 satisfies certain additional conditions to ensure a form of uniqueness (see Definition 3.4). An -standard expansion is a finite sum of -standard monomials satisfying a mild additional condition. A Q -expansion is an expression of the form

s j=0 c j, Q j , (1.5) 
where c j, ∈ K[x] and deg x c j, < deg x Q for all j.

Note. Starting with an -standard expansion and grouping together all the terms involving Q j for each exponent j produces a Q -expansion.

Iterating Euclidean division of f by Q , it is easy to see that every f ∈ K[x] admits a unique Q -expansion

f = s j=0 c j, Q j .
(1.6)

In §3 we will show that for all ∈ Λ and all f ∈ K[x] the element f admits an -standard expansion.

Let

β i = ν(Q i ).
A product of the form a s j=1 Q γ j i j , where a ∈ K, i j ∈ Λ and γ j ∈ N is said to be a standard monomial if it is -standard for some ∈ Λ.

A set of key polynomials is said to be complete if for every β ∈ Γ the additive group P β ∩ K[x] is generated by standard monomials, contained in P β ∩ K[x]. It is said to be Γ0complete if the above condition holds for all β ∈ Γ0 , in other words, if for all β ∈ Γ0 every polynomial f ∈ K[x] with ν(f ) = β belongs to the additive group generated by standard monomials a

s j=1 Q γ j i j such that s j=1 γ j β i j + ν K (a) ≥ β. Remark 1.1. If Q = {Q i } i∈Λ
is a complete set of key polynomials, the data {Q i , β i } completely determines the ideals P β for all β ∈ Γ, hence also all the ideals P β+ , since P β+ = β>β P β . For an element y ∈ K(x) we have ν(y) = β if and only if y ∈ P β \ P β+ . Thus the valuation ν is completely determined by the data {Q i , β i }.

We define the -truncation ν of ν by ν (f ) = min 0≤j≤s {ν(c j, ) + jβ } for each f ∈ K [x] with Q -expansion (1.6). By the ultrametric triangle law, we have

ν(f ) ≥ ν (f ) (1.7)
for all f ∈ K[x]. Then the statement that Q is a complete set of key polynomials can be expressed as follows: for all f ∈ K[x] there exists ∈ Λ such that equality holds in (1.7); see Remark 3.34 for details. The paper is organized as follows. §2 is devoted to generalities on algebras, graded by ordered semigroups. There we define the notion of the saturation G * of a graded algebra G (Definition 2.3). We consider an extension G ⊂ G of graded algebras and a homogeneous element x ∈ G . We study the condition that x be algebraic over G. We note that x is algebraic over G if and only if it is integral over G * . We show that if x is algebraic over G then the algebra G * [x] is saturated (Lemma 2.6). Finally, we prove the simple but useful characterization of the strict inequality ν s i=1 y i > min 1≤i≤s {ν(y i )} in terms of the elements in ν y i .

In §3 we define the notion of a set of key polynomials (not necessarily complete) and study its properties. By definition, letting Q 0 = x, the one element set {x} = {Q 0 } is a set of key polynomials. We remark that if a set of key polynomials is complete then the images of the key polynomials in G ν generate the field of fractions of G ν over the field of fractions of G ν K . The element in ν Q is algebraic over G ν K [in ν Q ], where Q = {Q i } i< (in particular, β i ∈ Γ0 ) whenever i is not a maximal element of Λ (Propositions 3. 35 and 3.36).

In §4 we associate to each pair h ∈ K[x], i ∈ Λ, a positive integer numerical character δ i (h) ≤ deg x h deg x Q i to be used in later sections and study its properties. Among other things we prove that δ i (h) ≥ δ i (h) whenever i ≤ i ; (1.8) in particular, δ i (h) stabilizes for i sufficiently large. We also show that the equality in (1.8) imposes strong restrictions on h. The numerical character δ i (h) helps analyze infinite ascending sequences of key polynomials in § §8-9 and is crucial for applications to Local Uniformization. The main step of our recursive construction of sets of key polynomials is carried out in §5. Namely, we start with a set {Q i } i∈Λ of key polynomials that is not complete and enlarge it to a strictly greater set {Q i } i∈Λ + of key polynomials. The well ordered set Λ + is a union of Λ with a sequence that may be finite or infinite, depending on the situation. Roughly speaking, Q +1 is defined to be a lifting to K[x] of the monic minimal polynomial, satisfied by in ν Q over the graded algebra G ν K [in ν Q ]. This gives rise to explicit formulae describing each non-limit key polynomial in terms of the preceding key polynomials.

In §6 we iterate the procedure of §5 until the resulting set of key polynomials is complete. Namely, we start our recursive construction of the Q i by putting Q 0 := x. We assume, inductively, that a set Q = {Q } ∈Λ of key polynomials is already defined. If the set Q of key polynomials is complete, the algorithm stops here. In particular, this occurs whenever our algorithm produces a key polynomial Q i whose value does not lie in Γ0 or, more generally, such that in ν Q i is transcendental over G ν K [in ν Q i ] (Propositions 3. 35 and 3.36). If Q is not complete, we replace it by the set {Q i } i∈Λ + constructed in §5 and repeat the procedure. We remark (Remark 6.1) that the well ordered set Λ resulting from this construction has order type at most ω × ω. The set Λ contains a maximal element if and only if it contains an element such that in ν Q is transcendental over G ν K [in ν Q ], where Q = {Q i } i< (Propositions 3. 35 and 3.36).

§7 is auxiliary, to be used in § §8-9. We study the effect of Hasse derivatives ∂ j on key polynomials and standard expansions. Let b i denote the smallest element b of N which maximizes the quantity β i -ν(∂ b Q i ) b . We show that b i is of the form b i = p e i for some e i ∈ N 0 (1.9) (Corollary 7.9). The non-negative integers e i , i ∈ Λ, are important numerical characters of the extension ι : (K, ν K ) → (K(x), ν) of valued fields. Most importantly, given an -standard monomial c γ +1 Q γ +1 +1 , we prove the equality

ν ∂ p e c γ +1 Q γ +1 +1 = ν ∂ p e c γ +1 Q γ +1 +1 , (1.10) 
and derive an explicit formula for the quantity ν ∂ p e c γ +1 Q γ +1

+1 , for integers e ≥ e i , and under certain additional conditions. Also, for every -standard expansion f and every integer e ≥ e i , we derive a formula for ν (∂ p e f ) (Proposition 7.2).

The importance of this type of explicit formulae can be explained as follows. The importance of differential operators for resolution of singularities is well known. One difficulty with dealing with differential operators up to now has been the fact that they obey no simple transformation law under blowing up. Since key polynomials become coordinates after blowing up, formulae (1.10) can be viewed as comparison results for derivatives of the defining equations of a singularity before and after blowing up.

The main subject of study of § §8-9 are infinite sequences {Q +t } t∈N of key polynomials of a fixed degree and the corresponding limit key polynomials Q +ω .

In §8 we let δ denote the stable value of δ +t (Q +ω ) for a sufficiently large positive integer t (such a stable value exists by (1.8)). We use the results of §7 to show that δ must be of the form δ = p e for some e ∈ N 0 (Propositon 8.6).

Next, we assume that char k ν = char K, that the sequence {ν (Q t )} t∈N is unbounded in Γ0 and that deg x Q t = 1 for all t ∈ N. We show that Q ω ∈ K x δ (Remark 8.7).

The third set of main results of §8 starts with Proposition 8.10 which asserts that if char k ν = 0, then for an infinite sequence {Q t } t∈N 0 the sequence {β t } t∈N 0 of their values is unbounded in Γ0 . In particular, there are no limit key polynomials Q i such that β i ∈ Γ0 . This explains why Λ ≤ ω + 1 whenever char k ν = 0. The main goal of §9 is to derive explicit formulae for limit key polynomials in terms of the preceding key polynomials. We assume that char k ν = p > 0 and consider a limit ordinal + ω ∈ Λ. We assume that the sequence {ν (Q +t )} t∈N is bounded in Γ0 . We prove that Q +ω can be chosen in such a way that for some t ∈ N the Q +t -standard expansion of Q +ω is weakly affine. By definition, this means that

Q +ω = Q p e +ω i + e +ω -1 j=0 c p j ,i Q p j i + c 0i , (1.11) 
where i = + t and c 0,i and c p j ,i are Q i -free i-standard expansions (See Definition 3.5 for the notion of "Q i -free"). The results of this paper are related to those contained in the paper [START_REF] Herrera | Valuations in algebraic field extensions[END_REF] (see also [START_REF] Vaquié | Famille admissible de valuations et défaut d'une extension[END_REF]). However, there are some important differences, which we now explain. We chose to rewrite the whole theory from scratch for the following reasons.

1. In [START_REF] Herrera | Valuations in algebraic field extensions[END_REF] we work with an algebraic extension ι while for local uniformization we need to consider purely transcendental extensions. We note that the case of algebraic extensions can easily be reduced to that of transcendental ones using composition of valuations. Indeed, let ι -: (K, ν K ) → (K(x), ν) be a simple algebraic extension of valued fields.

Write

K(x) = K[X] (f )
, where f is the minimal polynomial of x over K. Let ν f denote the (f )-adic valuation of K[X] and put ν * := ν f • ν (the composition of ν f with ν). Complete sets {Q i } i∈Λ of key polynomials of the transcendental extension ι : (K, ν K ) → (K(X), ν * ) constructed in the present paper are very closely related to complete sets {Q - i } i∈Λ -of key polynomials of the algebraic extension (K, ν K ) → (K(x), ν), constructed in [START_REF] Herrera | Valuations in algebraic field extensions[END_REF]. Namely, we have Λ = Λ -∪ {Λ -} (extension by one element),

Q - i is the image of Q i under the natural map K[X] → K(x) and Q Λ -= f .
In other words, a complete set {Q i } of key polynomials for ι can be obtained from that of ι -by lifting each key polynomial Q - i to K[X] and then adding one final key polynomial f . In this sense the theory presented here can be viewed as a generalization of [START_REF] Herrera | Valuations in algebraic field extensions[END_REF]. [START_REF] Herrera | Valuations in algebraic field extensions[END_REF] was to classify all the possible extensions ν of a given ν K ; in the present paper we content ourselves with a fixed ν.

Our main interest in

3. The crucial formulae for ν (∂ p b f ) were not made explicit in [START_REF] Herrera | Valuations in algebraic field extensions[END_REF].

4. We take this opportunity to correct numerous mistakes which, unfortunately, made their way into the paper [START_REF] Herrera | Valuations in algebraic field extensions[END_REF]: an inaccuracy in the definition of complete set of key polynomials, the failure to take into account the case of mixed characteristic, a mistake in the definition of the numerical characters e i and many others which made the paper [START_REF] Herrera | Valuations in algebraic field extensions[END_REF] unreadable.

Algebras graded by ordered semigroups

Graded algebras associated to valuations will play a crucial role in this paper. In this section, we give some basic definitions and prove several easy results about graded algebras. Throughout this paper, a "graded algebra" will mean "an algebra without zero divisors, graded by an ordered semigroup". As usual, for a graded algebra G, ord will denote the natural valuation of G, given by the grading.

Let G = α∈Γ G α be a graded algebra, where Γ is an ordered abelian semigroup.

Definition 2.1. An element x ∈ G is said to be homogeneous if there exists α ∈ Γ such that x ∈ G α .
For a homogeneous element x ∈ G α ⊂ G we will write ord x = α. Now let X be an independent variable and consider the ring

G[X]. Fix a polynomial f = d i=0 a i X i ∈ G[X] such that a i is a homogeneous element of G for all i ∈ {0, . . . , d}. Fix an element β ∈ Γ.
Definition 2.2. We say that f is quasi-homogeneous with w(X) = β if for all i, j ∈ {0, . . . , d} we have iβ + ord a i = jβ + ord a j . In this situation we will also say that β is the weight assigned to X.

Definition 2.3. Let G be a graded algebra without zero divisors. The saturation of G, denoted by G * , is the graded algebra

G * = g h g, h ∈ G, h homogeneous, h = 0 . G is said to be saturated if G = G * . An element g h ∈ G * is homogeneous in G * if and only if g is homogeneous in G. If f 1 = g 1 h 1 and f 2 = g 2 h 2 are two non-zero elements of G * , where h 1 , h 2 , g 1 , g 2 are non-zero elements of G with h 1 , h 2 , g 2 homogeneous, then f 1 f 2 = g 1 h 2 g 2 h 1 ∈ G * . Thus G * = (G * ) *
for any graded algebra G, so that G * is always saturated.

Example 2.4. The main example of graded algebras we are interested in this paper are graded algebras associated to valuations, centered in prime ideals of integral domains. Namely, let R be a domain, K its field of fractions and ν : K * → Γ a valuation of K, centered at a prime ideal P of R (this means, by definition, that R ⊂ R ν and P = M ν ∩ R, where (R ν , M ν ) denotes the valuation ring of ν). Let Φ = ν(R \ {0}). For each β ∈ Φ, consider the ideals

I β : = {x ∈ R | ν(x) ≥ β} ∪ {0} and I β+ : = {x ∈ R | ν(x) > β} ∪ {0}.
(2.1)

I β is called the ν-ideal of R of value β. If β 1 > β 2 > . .
. is an infinite descending sequence of elements of Φ then I β 1 I β 2 . . . is an infinite ascending chain of ideals of R. Thus if R is noetherian then the ordered set ν(R) contains no infinite descending sequences, that is, ν(R) is well ordered.

If I is an ideal in a noetherian ring R and ν a valuation of R, ν(I) will denote min{ν(x) | x ∈ I}.

We can now define the graded algebra, associated to the valuation ν. Let R, ν and Φ be as above. For β ∈ Φ, let I β and I β+ be as in (2.1). We define

gr ν R = β∈Φ I β I β+ .
The algebra gr ν R is an integral domain. For any element x ∈ R with ν(x) = β, we may consider the natural image of x in

P β P β+ ⊂ gr ν R.
This image is a homogeneous element of gr ν R of degree β, which we will denote by in ν x. The grading induces an obvious valuation on gr ν R with values in Φ; this valuation will be denoted by ord.

Next, suppose that (R, M, k) is a local domain and ν is a valuation with value group Γ, centered at R. Let K denote the field of fractions of R. Let (R ν , M ν , k ν ) denote the valuation ring of ν. For β ∈ Γ, consider the following R ν -submodules of K:

I β = {x ∈ K | ν(x) ≥ β}, I β+ = {x ∈ K | ν(x) > β}. (2.2)
We define

G ν = β∈Γ I β I β+ .
Again, given x ∈ K, we may speak of the natural image of x in G ν , also denoted by in ν x (since gr ν R is naturally a graded subalgebra of G ν , there is no danger of confusion). Then ord is a valuation of the common field of fractions of gr ν R and G ν , with values in Γ.

We have G ν = (gr ν R) * ; in particular, G ν is saturated.

Remark 2.5. Let G, G be two graded algebras without zero divisors, with G ⊂ G . Let x be a homogeneous element of G , satisfying an algebraic dependence relation

a 0 x n + a 1 x n-1 + • • • + a n = 0 (2.3)
over G (here a j ∈ G for 0 ≤ j ≤ n). Without loss of generality, we may assume that the integer n is the smallest possible.

Claim. Without loss of generality, we may further assume that (2.3) is homogeneous (that is, all the a j are homogeneous and the quantity j ord x + ord a j is constant for 0 ≤ j ≤ n such that a j = 0).

Proof of Claim.

Let µ := min 0≤j≤n {j ord x + ord a j }. Then each a j can be written as a finite sum of homogeneous elements of G, all of orders greater than or equal to µ -j ord x. For j ∈ {0, . . . , n} write a j = a 0j + ãj , where a 0j = 0 or ord a 0j = µ -j ord x, and ãj is a sum of homogeneous elements of G of orders strictly greater than µ -j ord x (note that there exist at least two different values of j for which a 0j = 0). Now, x satisfies the equation

a 00 x n + a 01 x n-1 + • • • + a 0n = 0. (2.4)
This proves the Claim. From now on we will always take the coefficients a j to be homogeneous without mentioning it explicitly.

Dividing (2.3) by a 0 , we see that x satisfies a monic homogeneous relation over G * of degree n and no algebraic relation of degree less than n. In other words, x is algebraic over G if and only if it is integral over G * ; the conditions of being "algebraic over G * " and "integral over G * " are one and the same thing (as usual, "integral" means "satisfying a monic polynomial relation").

Let G ⊂ G , let x be as above and let G[x] denote the graded subalgebra of G , generated by x over G. By Remark 2.5, we may assume that x satisfies a homogeneous integral relation

x n + a 1 x n-1 + • • • + a n = 0 (2.5)
over G * and no algebraic relations over G * of degree smaller than n.

Lemma 2.6. Every element of (G[x]) * can be written uniquely as a polynomial in x with coefficients in G * , of degree strictly less than n.

Proof. Let y be a homogeneous element of G[x]. Since x is integral over G * , so is y ([6], p. 59, Proposition 5.1, implications (i) ⇐⇒ (ii) ⇐⇒ (iii)). Let

y m + b 1 y m-1 + • • • + b m = 0 (2.6)
with b j ∈ G * , be an integral dependence relation of y over G * , with b j homogeneous elements of G * , b m = 0, where j ord y + ord b j is constant for all j such that b j = 0. By (2.6),

1 y = - 1 b m (y m-1 + b 1 y m-2 + • • • + b m-1 ). Thus, for any z ∈ G[x], we have z y ∈ G * [x]. (2.7) 
Since y was an arbitrary homogeneous element of G[x], we have proved that

(G[x]) * = G * [x].
Now, for every element y ∈ G * [x] we can add a multiple of (2.5) to y so as to express y as a polynomial in x of degree strictly less than n. Moreover, this expression is unique because x does not satisfy any algebraic relation over G * of degree smaller than n.

Notation. If ∆ ⊂ ∆ are ordered semigroups and β is an element of ∆ , then ∆ : β will denote the positive integer defined by

∆ : β = min{n ∈ N | nβ ∈ ∆}.
If the set on the right hand side is empty, we put ∆ :

β = ∞. Note that β ∈ ∆ if and only if ∆ : β = 1.
Lemma 2.7. Let G, G be as in Remark 2.5 and x a homogeneous element of G . Assume that the degree 0 part of G (that is, the subring of G consisting of all the elements of degree 0) contains a field k and that G is generated as a k-algebra by homogeneous elements w 1 , . . . , w r . Let

β j = ord w j , 1 ≤ j ≤ r,
and let ∆ denote the group

∆ = {ord y | y ∈ G * } = r j=1
n j β j n j ∈ Z . Assume that the following two conditions hold:

(1) ∆ : (ord x) < ∞

(2) Let ñ := ∆ : (ord x). Let n 1 , . . . , n r ∈ Z be such that

ñ ord x = r j=1 n j β j . (2.8) Let y = r j=1 w n j j .
Assume that the element

z := x ñ y ∈ (G ) * (2.9)
is algebraic over k.

Then x is integral over G * . An integral dependence relation of x over G * can be described as follows. Let z be as in (2.9). Let Z be an independent variable and let

f (Z) = Z d + d-1 i=0 c i Z i (2.10)
denote the minimal polynomial of z over k. Then x is a root of the polynomial

X dñ + d-1 i=0 c i y d-i X iñ = 0. (2.11)
Conversely, suppose x is integral over G * . Then (1) holds. Suppose, furthermore, that β 1 , . . . , β r are Z-linearly independent. Then (2) also holds. In this case, (2.11) is the minimal polynomial of x over G * . In particular, the degree n of the minimal polynomial of x over G * is given by n = dñ.

(2.12)

Proof. If (1) and (2) hold, x is integral over G * because it is a root of the polynomial (2.11) (this is verified immediately by substituting (2.9) for Z in (2.10) and multiplying through by y d ). In particular, if n denotes the degree of x over G * , the equation Putting together (2.16) and (2.17), we obtain (1) of the Lemma. Now, assume that β 1 , . . . , β r are Z-linearly independent. We wish to prove (2). Since β 1 , . . . , β r are Z-linearly independent, all the monomials w γ 1 1 . . . w γr r , γ j ∈ Z, have different values with respect to ord. Since (2.5) is homogeneous with respect to ord, each a i must be a monomial in the w j with (not necessarily positive) integer exponents. Also by the Z-linear independence of β 1 , . . . , β r , the coefficients n 1 , . . . , n r in (2.8) are uniquely determined. Moreover, any relation of the form 

x dñ + d-1 i=0 c i y d-i x iñ = 0. ( 2 
i ord x - r j=1 n j β j = 0, i ∈ N, n 1 , . . . , n r ∈ Z (2.
if G * = k[x Λ ] * .
The following result is an immediate consequence of definitions:

Proposition 2.10. Let G ν be the graded algebra associated to a valuation ν : K → Γ, as above.

Consider a sum of the form y = s i=1 y i , with y i ∈ K. Let β = min 1≤i≤s ν(y i ) and

S = { i ∈ {1, . . . , n} | ν(y i ) = β} .
The following two conditions are equivalent:

1. ν(y) = β 2. i∈S in ν y i = 0.
Let G be a saturated graded algebra, graded by a group Γ, L the field of fractions of G, T an independent variable and β ∈ Γ+ := (Γ ⊗ Z Q) + . We regard G[T ] as an algebra graded by Γ + βZ, where β is the weight assigned to T . Definition 2.11. Take an element a ∈ G. Write a = t j=0 a j , where each a j is a homogeneous element of G and ord a 0 < ord a 1 < • • • < ord a t . The element a 0 is called the initial form of a and will be denoted by ā. Definition 2.12. Take a polynomial g =

d j=0 a j T j ∈ G[T ]. Let S(g) := j ∈ {0, . . . , d} ord a j T j = ord g .
The homogeneization of g is the polynomial ḡ := j∈S(g) a j T j . Remark 2.13. A polynomial f in G[T ] is said to be irreducible if it cannot be factored as a product of two polynomials, both of which have degrees strictly smaller than deg T f . Every quasi-homogeneous polynomial f admits a unique factorization of the form

f = a t j=1 g γ j j , (2.24) 
where a is the leading coefficient of f , the γ j are strictly positive integers and the g j are irreducible monic quasi-homogeneous polynomials of strictly positive degrees (we allow the possibility t = 0, in which case our claim holds trivially). Indeed, the factorization (2. 

where b ∈ G and gj ∈ G[T ] for all j. Replace b by b and each of the gj by its homogeneization ḡj . Since a is homogeneous and f quasi-homogeneous, this operation does not affect the truth of the equality (2.25). In other words, without loss of generality we may assume that b is homogeneous and all the gj quasi-homogeneous. Replacing g1 by g1 b , we may assume that b = 1. Dividing each gj by its leading coefficient and modifying a accordingly, we arrive at the situation where gj ∈ G[T ] for all j. This proves the existence of the factorization (2.24). The uniqueness of the factorization follows from its uniqueness in L[T ].

Sets of Key Polynomials

Let K → K(x) be a simple transcendental field extension, ν a valuation of K(x) and ν K the restriction of ν to K. We will assume that rank ν K = 1 and ν(x) > 0.

(3.1)

Let Λ be a countable well ordered set. Let {α i } i∈Λ be a set of strictly positive integers with

α 0 = 1. (3.2)
For an ordinal ∈ Λ, we use the notation α +1 := {α i } 0≤i≤ and γ +1 = {γ i } 0≤i≤ , where all but finitely many γ i are equal to 0.

Definition 3.1. Let i ∈ Λ. We say that i is inessential if i + ω ∈ Λ and α i+t = 1 for all t ∈ N 0 .

Notation. For i ∈ Λ with i not the maximal element of Λ, let

i+ = i + ω if i is inessential = i + 1 otherwise.
Remark 3.2. In the sequel Λ will be an index set for a set of key polynomials. By a recursive construction we will increase Λ and the set of key polynomials indexed by it. It is important to note that, given two totally ordered sets Λ ⊂ Λ , with Λ an initial segment of Λ it may happen that an index i ∈ Λ is essential in Λ but inessential in Λ . By the same token, the meaning of i+ may depend on whether we view i as an element of Λ or of Λ .

Our next goal is to define the notion of a set of key polynomials. We start with some preliminary definitions and notation, before giving the main definition (Definition 3.11).

Definition 3.3. A set {Q i } i∈Λ ⊂ K[x] of monic polynomials with Q 0 = x, (3.3) 
is said to be a set of pre-key polynomials if for all non-maximal i ≥ 1 and i 0 < i such that i 0 + = i we have

deg x Q i = α i • deg x Q i 0 .
We will use the following notation: for ∈ Λ, Q

γ +1 +1 = i≤ Q γ i i . We let β i = ν(Q i ) for each i ∈ Λ. Definition 3.4. Let ∈ Λ. A multiindex γ +1 is said to be standard with respect to α +1 if 0 ≤ γ i < α i+ for i ≤ , (3.4) 
and if i is inessential then the set {j < i + | j+ = i + and γ j = 0 } has cardinality at most one. An -standard monomial in the elements Q +1 (resp. an -standard monomial in the elements

in ν Q +1 ) is a product of the form c γ +1 Q γ +1 +1 , (resp. c γ +1 in ν Q γ +1
+1 ) where c γ +1 ∈ K (resp. c γ +1 is a homogeneous element of G ν K ) and the multiindex γ +1 is standard with respect to α +1 .

Keep the notation of Definitions 3.3-3.4 and let {Q i } i∈Λ ⊂ K[x] be a set of pre-key polynomials.

Definition 3.5. An -standard monomial c γ +1 Q γ +1
+1 is said to be Q -free if it does not involve Q , that is, if γ = 0. Definition 3.6. A Q -free -standard expansion is a finite sum of Q -free -standard monomials whose ν-value equals the minimum of the ν-values of the monomials. An -standard expansion of an element g ∈ K[x] is an expression of the form g = s j=0 c j Q j , where each c j is a Q -free -standard expansion.

Remark 3.7. Starting with an -standard expansion and grouping together all the terms involving Q j for each exponent j produces a Q -expansion.

For an element y ∈ G ν , an expression of the form y = γ cγ in ν Q γ +1 , where each cγ is a homogeneous element of G ν K and each Q γ +1 is an -standard monomial, will be called an -standard expansion of y.

Remark 3.8. We note that a Q -free -standard expansion is not just an i-standard expansion for some i < . Namely, it is required, in addition, that the exponent of the last appearing key polynomial Q i be strictly less than α i+ . Definition 3.9. Let γ cγ in ν Q γ +1 be an -standard expansion, where the cγ are homogeneous

elements of G ν K . A lifting of γ cγ in ν Q γ +1 to K[x] is an -standard expansion γ c γ Q γ +1
, where c γ is a representative of cγ in K. Definition 3.10. Assume that char k ν = p > 0. An -standard expansion j c j Q j is said to be weakly affine if c j = 0 whenever j > 0 and j is not of the form p e for some e ∈ N 0 .

Before plunging into the technical definition of key polynomials we say a few informal words to motivate it. Roughly speaking, the 0-th key polynomial Q 0 is equal to x and the key polynomials Q i with i > 0 are elements of K[x] with "unexpected" or "jumping" values. More precisely, for f =

j d j x j ∈ K[x] define ν 0 (f ) = min j {ν(d j x j )}. We have ν(f ) ≥ ν 0 (f ) (3.5)
by the ultrametric triangle inequality. The first key polyomial Q 1 measures the fact that the inequality (3.5) may be strict; in fact, Q 1 is the smallest degree polynomial for which (3.5) is strict. Once Q 1 is defined, we define the Q 1 -expansion of f for each f and the valuation ν

1 satisfying ν 0 (f ) ≤ ν 1 (f ) ≤ ν(f ). (3.6)
If the second inequality in (3.6) is strict for some f , the key polynomial Q 2 is the smallest degree polynomial for which (3.6) is strict. We iterate this procedure to construct a (possibly infinite) sequence Q 0 , Q 1 , Q 2 , . . . and the corresponding sequence ν 0 , ν 1 , . . . of truncations of ν, satisfying ν i-1 (f ) ≤ ν i (f ) ≤ ν(f ) for all f and all strictly positive integers i. The passage from Q i-1 to Q i corresponds to the successor case in the definition below. It may happen that even this infinite process does not describe the valuation ν completely, that is, there exists f ∈ K[x] such that

ν i (f ) < ν(f ) for all i ∈ N. (3.7) 
A polynomial f of smallest degree satisfying (3.7) is the first limit key polynomal Q ω . The passage from {Q i } i∈N to Q ω is the first instance of the limit case in the definition below. More generally, if is an ordinal such that the key polynomials Q +i , Q +ω are defined, (Q +i ) i∈N is a pseudo-Cauchy sequence of algebraic type and Q +ω is the minimal polynomial of a pseudo-limit of (Q +i ) i∈N . Now for the formal definition.

Definition 3.11. We say that the set {Q i } i∈Λ of pre-key polynomials is a set of key polynomials for ν if it satisfies the following conditions (throughout this definition, i stands for an element of Λ). (a)

β i ∈ Γ0 whenever i = max Λ. (3.8) (b)
The successor case. For each i ≥ 1, if i has an immediate predecessor i -1, the (i -1)standard expansion of Q i has the form

Q i = Q α i i-1 + α i -1 j=0   γi-1 c j,i,γ i-1 Q γi-1 i-1   Q j i-1 , (3.9) 
where:

(1

) if i = 1, we have Q i-1 = Q 0 = ∅, γi-1 = γ0 = ∅ by convention, Q 0 =
x and the coefficients in parentheses in (3.9) are elements of

K (2) if i ≥ 2, γi-1 = (γ i ) 0≤i <i-1
, where all but finitely many γ i are equal to 0

(3) each c j,i,γ i-1 Q γi-1 i-1 is an (i -1)-standard monomial (which is, by definition, Q i-1 -free) (4) the quantity ν K c j,i,γ i-1 + q<i-1 γ q β q + jβ i-1 is constant for all the monomials c j,i,γ i-1 Q γi-1 i-1 Q j i-1
appearing on the right hand side of (3.9) (5) the equation

in ν Q α i i-1 + α i -1 j=0   γi-1 in ν K c j,i,γ i-1 in ν Q γi-1 i-1   in ν Q j i-1 = 0 (3.10)
is the minimal algebraic relation satisfied by in

ν Q i-1 over G ν K [in ν Q i-1 ] * .
(c) The limit case. If i does not have an immediate predecessor then there exists i 0 such that i = i 0 + and for every such i 0 there exists an i 0 -standard expansion

Q i = α i j=0 c j,i 0 Q j i 0 . (3.11) Every i 0 -standard expansion (3.11) satisfies ν (Q i ) > min 0≤j≤α i ν c j,i 0 Q j i 0 . (3.12)
Moreover, the polynomial Q i is of the smallest degree among those satisfying (3.12) for all i 0 with i 0 + = i.

If sup β i | i < i < ∞ (3.13)
(in particular, whenever i is not the maximal element of Λ), then

c α i ,i 0 = 1 (3.14)
and min

0≤j≤α i ν c j,i 0 Q j i 0 = α i β i 0 = ν (c 0,i 0 ) . (3.15) (d) If for a certain degree n, the set {i ∈ Λ | deg x (Q i ) = n} is infinite, then the set {ν(Q i ) | i ∈ Λ, deg x (Q i ) = n} is cofinal in {ν(f ) | f ∈ K[x], f is monic, deg x (f ) = n}.
An element Q i of the set {Q i } i∈Λ is called a key polynomial.

Remark 3.12. It follows from Definition 3.11 that the elements β i are strictly increasing with i.

Proposition 3.13. Let i be an ordinal and t a positive integer. Assume that i + t ∈ Λ, so that the key polynomials Q i+t+1 are defined, and that

α i = • • • = α i+t = 1.
Then every (i + t)standard expansion does not involve any Q q with i ≤ q < i+t. In particular, a Q i -free i-standard expansion is the same thing as a Q i+t -free (i + t)-standard expansion.

Proof. (3.4) implies that for i ≤ q < i + t, Q q cannot appear in an (i + t)-standard expansion with a positive exponent.

We will frequently use this fact in the sequel without mentioning it explicitly.

For i ∈ Λ and α ∈ N, let G <α denote the G ν K -subalgebra of G ν , generated by elements of the form in ν f , deg x f < α. For i ∈ Λ, put ᾱi := deg x Q i .
For the rest of this section, we assume that we have a set of key polynomials {Q i } i∈Λ for ν as above and derive some properties of this set. Proposition 3.14. For each i ∈ Λ we have:

(1) If sup { β q | q < i} < ∞ (in particular, whenever i = max Λ) then ᾱi = j≤i α j . (3.16) 
(2) Take an element z ∈ K[x]. Assume that z admits a Q i -free i-standard expansion. Then

deg x z < ᾱi . (3.17)
Proof. We use transfinite induction on i. For the base of the induction, consider the case i = 0.

(3.16) says that ᾱ0 = deg x x = α 0 = 1; (3.18) this follows immediately from (3.2) and (3.3). By (3.18) and (3.4), every monomial appearing in the 0-standard expansion z is of degree strictly less than 1 = ᾱ0 , that is, is an element of K. This proves (3.17) in the case i = 0.

Assume given an ordinal i > 0. Assume that (3.16) and (3.17) are known for some ordinal i 0 such that i 0 + = i. If i = i 0 + ω then i 0 is inessential, so α i 0 +t = 1 for all t ∈ N 0 by Definition 3.1. Thus in all the cases we have ᾱi

0 = j<i α j . (3.19)
By assumption, (3.13) holds, hence so does (3.14) by condition (c) of Definition 3.11. Thus by (3.9), (3.11) and (3.17) applied to i 0 instead of i, the term Q α i i 0 in the i 0 -standard expansion of Q i has strictly greater degree than all the other terms. Hence

ᾱi = deg x Q α i i 0 = α i ᾱi 0 . (3.20) We obtain ᾱi = α i ᾱi 0 = α i j<i α j = j≤i α j ,
which proves (3.16).

Let z be as in part (2) of the Proposition. Fix a Q i -free i-standard expansion of z and let i 0 denote the greatest ordinal such that Q i 0 appears in this expansion (by definition of Q i -free,

we have i 0 < i): z = α i -1 j=0 d j,i Q j i 0 , where each d j,i is a Q i 0 -free i 0 -standard expansion. By the
induction assumption, we have deg x d j,i < ᾱi 0 for all j. Combining this with (3.20), we obtain

deg x z < max 0≤j<α i -1 {(j + 1) ᾱi 0 } ≤ α i ᾱi 0 = ᾱi , as desired.
Corollary 3.15. Let f be an i-standard expansion of an element of K

[x]. Then f is Q i -free if and only if deg x f < ᾱi .
Proof. Straightforward transfinite induction on i.

Remark 3.16. Assume that i ∈ Λ is a limit ordinal and take an i 0 ∈ Λ such that i = i 0 +. Since α i 0 +1 = 1 by definition, we have

Q i 0 +1 = Q i 0 + z, where in ν z = -in ν Q i 0 and deg x z < ᾱi 0 . Hence G ν K [in ν Q i ] ⊂ G < ᾱi 0 . (3.21) 
Below (Proposition 3.31) we will show that this inclusion is, in fact, an equality.

Remark 3.17. In §9 we will show, assuming that i is a limit ordinal and that the set {ν(Q i 0 )} i=i 0 + is bounded in Γ0 , that we can choose i 0 and Q i so that Q i is a weakly affine monic i 0 -standard expansion of degree α i = p e i for a certain integer e i and, moreover, that there exists a positive element βi ∈ R such that βi > β q for all q < i,

β i ≥ α i βi and (3.23)

p j βi + ν c p j ,i 0 = α i βi for 0 ≤ j ≤ e i . (3.24) Remark 3.18. Take an element h ∈ K[x]. Then h admits a unique Q i -expansion h = s i j=0 d j,i Q j i . (3.25) 
This can be shown by induction on deg x h. Indeed, let h = qQ i + r be the Euclidean division of h by Q i . Then d 0,i = r and for j > 0 the coefficients d j,i are nothing but the coefficients of powers of Q i in the Q i -expansion of q.

Proposition 3.19. Assume that the set {β q | q < i} is bounded in Γ0 (so that the hypothesis of Proposition 3.14 (1) is satisfied). Every coefficient d j,i in (3.25) admits a Q i -free i-standard expansion. Writing each coefficient d j,i in this way produces an i-standard expansion of h. In particular, every element of K[x] admits an i-standard expansion.

Proof. We use transfinite induction on i. For i = 0 the result is obvious. Assume that i > 0 and that the Proposition holds for all i < i. By definition of Q i -expansion we have

deg x d j,i < ᾱi for all j. (3.26) 
Take an ordinal i 0 such that i = i 0 +. By the induction assumption applied to i 0 the

Q i 0 - expansion of d j,i = q d q,j,i Q q i 0 (3.27)
can be made into an i 0 -standard expansion by writing out a Q i 0 -free i 0 -standard expansion of each coefficient d q,j,i . Moreover, by Proposition 3.14 ( 1) and (3.26), all the monomials Q j i 0 appearing in (3.27) satisfy j < α i . This makes (3.27) into a Q i -free i-standard expansion of d j,i , so (3.25) can be made into an i-standard expansion of h, as desired.

Remark 3.20. The i-standard expansions (3.27) of the d j,i need not, in general, be unique. For example, if i is a limit ordinal, d j,i admits an i 0 -standard expansion (3.27) for each

i 0 < i such that i = i 0 +, (3.28) 
but there are countably many choices of i 0 satisfying (3.28). If i ∈ N 0 , then the i-standard expansion of h is unique. This follows from Remark 3.18 by induction on i. Part of the point of Remarks 3.18 and 3.20 and Proposition 3.19 is that an i-standard expansion is a Q i -expansion together with an additional set of data, namely, a Q i -free i-standard expansion of the coefficients d j,i .

For each i ∈ Λ we define a map

ν i : K(x) * → Γ as follows. Given a Q i -expansion f = s i j=0 d j,i Q j i , (3.29) 
put ν i (f ) = min 0≤j≤s i {jβ i + ν(d j,i )}. (3.30)
By Remark 3.18, the elements d j,i ∈ K[x] are uniquely determined by f , so ν i is well defined. We extend ν i to all of K(x) by additivity.

Remark 3.21. We have

ν i (f ) ≤ ν(f ) (3.31)
by the ultrametric triangle law.

Remark 3.22. It is clear from the definition that the map ν i satisfies the ultrametric triangle law. Below, we will show that it is, in fact, a valuation.

Next, we give criteria for when the inequality (3.31) is strict and when it is an equality.

Remark 3.23. If deg x f < deg x Q i then we have s i = 0 in the i-standard expansion (3.30), so ν i (f ) = ν(d 0,i ) = ν(f ).
Remark 3.24. Consider ordinals i 0 < i and t ∈ N 0 such that i = i 0 +, i + t ∈ Λ and for each ordinal i such that i < i ≤ i + t we have

α i = 1. (3.32) 
(1) If (3.13) holds, we have (2) By (3.9), (3.32) and induction on t,

ν i 0 (Q i ) = α i β i 0 by ( 
Q i+t = Q i + t-1 q=0 z i+q , where deg z i+q < ᾱi . (3.33)
Hence every i 0 -standard expansion of Q i+t contains the term

Q α i i 0 . We obtain ν i 0 (Q i+t ) ≤ α i β i 0 .
Below (Corollary 3.42) we will see that under a mild additional hypothesis on i 0 the last inequality is, in fact, an equality.

Remark 3.25. Consider ordinals i, ∈ Λ, i < . Then ν (Q i ) = ν i (Q i ) = ν(Q i ). Indeed, if ᾱi < ᾱ our statement holds by definition of ν . Assume that ᾱi = ᾱ . Then Q = Q i + z (3.34) 
where deg x z < ᾱi and ν(z

) = β i < β . Now, Q i = Q -z is an -expansion of Q i , so ν (Q i ) = min{β i , ν(z)} = ν(z) = β i , as desired.
Proposition 3.26. For a pair of ordinals i 0 < i such that i = i 0 + we have [START_REF] De Moraes | Limit key polynomials as p-polynomials[END_REF], where j ranges over the elements of {0, . . . , α i } for which c j,i 0 = 0. This common value is, by definition, ν i 0 (Q i ). If i does not admit an immediate predecessor, the desired strict inequality is nothing but (3.12).

ν i 0 (Q i ) < β i . (3.35) Proof. Let Q i = α i j=0 c j,i 0 Q j i 0 (3.36) be the i 0 -standard expansion of Q i . If i 0 = i -1 is the immediate predecessor of i then by (3.9)- (3.10) the quantity ν(Q i ) = ν i (Q i ) is strictly greater than the common value of ν c j,i 0 Q j i 0 (cf. (4) of Definition 3.
Corollary 3.27. If i ∈ Λ is not the maximal element of Λ, then there exists f ∈ K[x] such that ν i (f ) < ν(f ). Proposition 3.28. Fix an ordinal i ∈ Λ and let θ = Q γi i be a Q i -free i-standard monomial. Then ν (θ) < β i . (3.37) 
Proof. If (3.13) does not hold, we have β i > Γ0 and the result follows immediately. Therefore we may assume that (3.13) holds. We proceed by transfinite induction on i. If i = 0 then θ = 1 and β 0 = ν(x) > 0, so the result holds. Assume that i > 0 and the Proposition holds for all the ordinals i < i. Let i 0 be the smallest ordinal such that i 0 + = i and γ i = 0 for all i such that i

0 < i < i. Write θ = Q γi 0 i 0 Q γ i 0 i 0 where γ i 0 < α i (3.38)
and

Q γi 0 i 0 is a Q i 0 -free i 0 -standard monomial. By the induction assumption, ν Q γi 0 i 0 < β i 0 .
Combining this with (3.38), Remark 3.24 and Proposition 3.26, we obtain

ν (θ) < β i 0 + γ i 0 β i 0 ≤ α i β i 0 < β i , as desired.
Proposition 3.29. Take an ordinal i ∈ Λ and assume that (3.13) holds. Then

Q i ∈ R ν K [x].
Proof. We use transfinite induction on i. For i = 0 we have Q 0 = x and the result is clear. Assume that i > 0 and the Proposition holds for all the ordinals i < i. Take an ordinal i 0 such that i = i 0 + and let

Q i = Q α i i 0 + α i -1 j=0   γi 0 c j,i,γ i 0 Q γi 0 i 0   Q j i 0 , (3.39) 
be an i 0 -standard expansion of Q i . By the induction assumption, it is enough to prove that

ν c j,i,γ i 0 ≥ 0 (3.40)
for all the choices of j, i, γi 0 . Fix j, i, γi 0 appearing in one of the terms in (3.39). We have 

ν     γi 0 c j,i,γ i 0 Q γi 0 i 0   Q j i 0   ≥ ν Q α i i 0 ( 
c j,i,γ i 0 ≥ α i β i 0 -(j + 1)β i 0 ≥ 0, as desired.
Let β * be a non-negative element of Γ. Keep the notation of (3.29). We denote

S i (β * , f ) := j ∈ {0, . . . , s i } jβ * + ν(d j,i ) = min 0≤k≤s i {kβ * + ν(d k,i )} .
Let Qi be a new variable. Notation:

S i (f ) : = S i (β i , f ). (3.42) δ i (f ) : = max S i (f ) (3.43) in i f : = j∈S i (f ) in ν d j,i Qj i ; (3.44) the polynomial in i f is quasi-homogeneous in G ν K in ν Q i , Qi
, where the weight assigned to Qi is

β i . Remark 3.30. If δ i (f ) = 0 then ν (d 0,i ) < ν d j,i Q j i for j > 0, so ν(f ) = ν(d 0,i ) = ν i (f )
, where the first equality holds by the ultrametric triangle law. Proposition 3.31. (1) For each ordinal i ∈ Λ we have

G < ᾱi = G ν K [in ν Q i ] . (3.45) (2) The elements in ν f , deg x f < ᾱi , generate G < ᾱi as a G ν K -module.
Proof. We use transfinite induction on i. For i = 0 we have ᾱ0 = 1, both sides of (3.45) coincide with G ν K and all the statements are clear. Assume that i > 0 and that the result is known for all the ordinals strictly smaller than i. To prove that

G ν K [in ν Q i ] ⊂ G < ᾱi , (3.46) 
we distinguish two cases. If i is a limit ordinal, (3.46) follows immediately from (3.21). Suppose that i is not a limit ordinal. We have

G ν K [in ν Q i ] = G ν K [in ν Q i-1 ] [in ν Q i-1 ] ∼ = G < ᾱi-1 [in ν Q i-1 ] ,
where the last isomorphism is given by the induction assumption. Since α i-1 is the degree of the minimal polynomial of in

ν Q i-1 over G ν K [in ν Q i-1 ] (Definition 3.11 (b) (5)), every element of G < ᾱi-1 [in ν Q i-1
] admits an (i -1) standard expansion with all the exponents of Q i-1 strictly smaller than α i-1 (by Lemma 2.6, with in 

ν Q i-1 playing the role of x). Such an element is represented by a polynomial f ∈ K[x] admitting a Q i -free i-standard expansion,
} = {η j | j ∈ {1, . . . , t}, ν(η j ) = β }. If i is not a limit ordinal, α i is the degree of the minimal polynomial of in ν Q i-1 over G ν K [in ν Q i-1 ] (Definition 3.
Q i-1 over G ν K [in ν Q i-1 ]
of degree strictly less than α i ), hence ν(f ) = ν(θ j ) (for all j) and j in ν θ j = in ν f (see Proposition 2.10). If i is a limit ordinal, by Definition 3.11 (c) there exists an ordinal i 0 satisfying i 0 + = i such that, letting

f = s i j=0 c j,i 0 Q j i 0 be an i 0 -standard expansion of f (where s i < α i ), we have ν (f ) = min 0≤j≤s i ν c j,i 0 Q j i 0 , (3.48) so in ν f = j∈S i 0 (f ) in ν c j,i 0 Q j i 0 (3.49)
by Proposition 2.10. In both cases we have proved that the left hand side of (3.45) is contained in the right hand side.

To prove (2) of the Proposition, first assume that i is not a limit ordinal. By the induction assumption elements of the form in x g, g ∈ K[x], deg x g < ᾱi-1 , generate G < ᾱi-1 as a G ν K -module. Elements in ν f , deg x f < ᾱi are precisely those that admit homogeneous istandard expansions where Q i-1 appears with exponents strictly smaller than α i . By part [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation I[END_REF] of this Proposition such standard expansions generate G < ᾱi as a G ν K -algebra, hence also as a G ν K -module by Lemma 2.6 (since α i is the degree of the minimal polynomial of in

ν Q i-1 over G ν K [in ν Q i-1 ]).
It remains to consider the case when i is a limit ordinal. Take an ordinal i 0 such that i = i 0 +. We have

G ν K [in ν Q i ] ⊂ G < ᾱi 0 ⊂ G < ᾱi , (3.50) 
by Remark 3.16 hence both inclusions are equalities by part (1) of this Proposition. By the induction assumption elements of the form in x g, g

∈ K[x], deg x g < ᾱi-1 , generate G < ᾱi 0 = G < ᾱi
as a G ν K -module, which completes the proof of (2).

Proposition 3.32. Take an element h of K[x] and an ordinal i ∈ Λ \ {0}. Assume that

deg x h < ᾱi . (3.51)
Then there exists an ordinal i 0 such that i ∈ {i 0 + 1, i 0 +} and ν(h) = ν i 0 (h).

Proof. For an ordinal i 0 < i we will denote by

h = s j=0 c j,i 0 Q j i 0 , (3.52) 
the i 0 -standard expansion of h. Let S i 0 (h) be as defined in (3.42). First, assume that i is not a limit ordinal; put i 0 = i -1. By (3.51) we have s < α i in (3.52). Since the degree of in

ν Q i-1 over G ν K [in ν Q i-1
] * is α i by (3.10) and

j∈S i-1 (h) in ν c j,i-1 Qj i-1
is a polynomial of degree strictly less than α i in Qi-1 , we see that

j∈S i-1 (h) in ν c j,i-1 in ν Q j i-1 = 0 in G ν .
The result now follows from Proposition 2.10. If i is a limit ordinal, the results follows immediately from the fact that by Definition 3.11 Q i is of the smallest degree among those polynomials that satisfy (3.12). Definition 3.33. Let {Q i } i∈Λ be a set of key polynomials. We say that {Q i } i∈Λ is complete for ν (or that {Q i } i∈Λ is a complete set of key polynomials for ν) if for each β ∈ Γ the additive

group P β ∩ K[x] is generated by standard monomials of the form a s j=1 Q γ j i j , a ∈ K, such that s j=1 γ j ν(Q i j ) + ν K (a) ≥ β. The collection Q = {Q i } i∈Λ is said to be Γ0 -complete if for all β ∈ Γ0 every polynomial f ∈ K[x]
with ν(f ) = β belongs to the additive group generated by standard monomials of the form a

s j=1 Q γ j i j , a ∈ K, such that s j=1 γ j ν(Q i j ) + ν K (a) ≥ β. Note, in particular, that if Q is a complete set of key polynomials then their images in ν Q i ∈ G ν rationally generate G ν over G ν K ; if Q is a Γ0 -complete
set of key polynomials then their images in ν Q i ∈ G ν rationally generate Gν over G ν K (see page 3 for the definition of Gν ).

Remark 3.34. The set Q is a complete set of key polynomials if and only if for each polynomial f ∈ K[x] there exists an ordinal such that ν(f ) = ν (f ). Indeed, assume that such an ordinal exists for all f . Take any β ∈ Γ and let f ∈ P β ∩ K[x]. Put β = ν(f ) and let be such that

β = ν(f ) = ν (f ). Write f = s j=0 d j, Q j , where each d j, Q j ∈ P β ∩ K[x] ⊂ P β ∩ K[x]. Conversely, take f ∈ K[x]. Let β = ν(f ). Write f as a finite sum f = γ d γ Q γ d γ ∈ K, (3.53) 
of standard monomials with ν (d γ Q γ ) ≥ β for all γ such that d γ = 0. Let denote the greatest ordinal such that Q appears in one of the monomials d γ Q γ . Then (3.53) can be rewritten as

f = s j=0 d j Q j , where each d j is a Q -free -standard expansion; in particular, deg x d j < ᾱ . We obtain β = ν(f ) ≥ ν (f ) = min j ν d j Q j ≥ min γ {ν (d γ Q γ )} ≥ β.
This also shows that if Q is a complete set of key polynomials then Q is not strictly contained as an initial segment in any other set of key polynomials; in other words, the construction of key polynomials cannot be continued beyond Q.

Proposition 3.35. If Λ has a maximal element i and

β i / ∈ Γ0 , (3.54) 
then in ν Q i is transcendental over G ν K [in ν Q i ].
Proof. Take a non-zero polynomial

F ( Qi ) = s j=0 cj Qj i ∈ G ν K [in ν Q i ][ Qi ]. By (3.54) the terms in the expression F (in ν Q i ) = s j=0 cj in ν Q j i
have different orders for different j (where, by definition, ord Qi = β i ); in particular, there exists a unique j min ∈ {0, . . . , s} that minimizes ord cj in ν Q j i . By the ultrametric triangle inequality, we have F (in ν Q i ) = 0, as desired.

Proposition 3.36. Take an ordinal i ∈ Λ. Assume that in ν Q i is transcendental over G ν K [in ν Q i ]. Then the set {Q } ∈Λ = {Q } ≤i of key polynomials is complete for ν. Proof. Take an element h ∈ K[x]. Let h = s j=0 c j,i Q j i (3.55) be the Q i -expansion of h. We want to prove that ν i (h) = ν(h).
Replacing h by j∈S i (h) c j,i Q j i does not change the problem. Thus we may assume that all the terms c j,i Q j i appearing in (3.55) have value

ν i (h). Since in ν Q i is transcendental over G ν K [in ν Q i ], we have j in ν (c j,i Q j i ) = 0.
The Proposition now follows from Proposition 2.10.

Proposition 3.37. Take an element h of K[x] and an ordinal i ∈ Λ. Assume that at least one of the following conditions holds:

(1) ν(h) < β i (3.56)

and h ∈ R ν K [x] (3.57) or (2) sup β i i < i = ∞. (3.58) Then ν(h) = ν i (h). Proof. Let h = s j=0 c j Q j i , (3.59) 
be an i-standard expansion of h. First, assume that 

{ β i | i < i} is unbounded in Γ0 ; in particular, β i > Γ0 . ( 3 
ν c j Q j i = ν(c j ) + jβ i > ν(h) for j > 0. (3.62) so ν(c 0 ) = ν(h) < ν(c j ) + jβ i = ν i (c j ) + jβ i for all j > 0. (3.63)
In other words, in the sum (3.59) the ν i -value (resp. the ν-value

) ν i (c 0 ) = ν(c 0 ) of c 0 is strictly smaller than the ν i -values (resp. the ν-values) ν i (c j Q j i ) = ν(c j Q j i
) of all the other terms. It is well known and follows easily from the ultrametric triangle law that in this situation we have

ν i (h) = ν i (c 0 ) = ν(c 0 ) = ν(h), as desired.
For b ∈ N 0 , let ∂ b denote the b-th Hasse derivative with respect to x. Proposition 3.38. For all b ∈ N and all i ∈ Λ, there exists an ordinal i 0 < i such that

i ∈ {i 0 + 1, i 0 +} and ν i 0 (∂ b Q i ) = ν(∂ b Q i ). (3.64)
Proof. If i is not a limit ordinal, put i 0 = i -1. If i is a limit ordinal, take i 0 such that

i = i 0 + . (3.65)
The result now follows from the fact that deg

x ∂ b Q i < deg x Q i ,
where in the case when i is a limit ordinal we must take i 0 sufficiently large subject to (3.65).

Proposition 3.39.

(1) The map ν i is a valuation.

(2) For every ordinal q < i and every

f ∈ K[x] we have ν q (f ) ≤ ν i (f ) ≤ ν(f ).
Proof. It is obvious that ν i satisfies the ultrametric triangle law. To prove (1) of the Proposition, we must prove the equality

ν i (f g) = ν i (f ) + ν i (g). (3.66)
For an ordinal i ∈ Λ let (1) i and (2) i denote, respectively, ( 1) and (2) of the Proposition with i replaced by i . We proceed by transfinite induction on i.

(1) 0 is easy to prove and (2) 0 is vacuously true. Assume that (1) i and (2) i hold for all ordinals i < i. To prove (1) i and (2) i , we start with some preliminary lemmas. For future reference we state some of the lemmas in slightly greater generality than needed for the proof of Proposition 3.39.

Consider an ordinal i 0 < i and t ∈ N 0 such that i = i 0 +, i + t ∈ Λ and for each ordinal i such that i < i ≤ i + t we have α i = 1.

(3.67) Lemma 3.40. Consider two terms of the form dQ j i+t and d Q j i+t , where j, j ∈ N 0 and d and d are Q i+t -free (i + t)-standard expansions. Assume that 15 and the definition of ν i 0 . In the general case, Proposition 3.32 and (2) q for q < i imply that there exists i 0 such that i 0 + = i and (3.70) and (3.71) hold.

ν i 0 dQ j i+t ≤ ν i 0 d Q j i+t , (3.68) 
ν dQ j i+t ≥ ν d Q j i+t , (3.69) 
ν i 0 (d) = ν(d) (3 
Proof of Lemma 3.40. We have

ν i 0 (Q i+t ) ≤ α i β i 0 < β i+t (3.72)
by Remark 3.24 and Proposition 3.26. Since ν i 0 is a valuation by (1) i 0 , the inequalities (3.68)-(3.69) can be rewritten as 

ν(d) + jν i 0 (Q i+t ) ≤ ν(d ) + j ν i 0 (Q i+t ) (3.
ν i 0   t-1 q=0 z i+q   = ν   t-1 q=0 z i+q   (3.75)
in the notation of (3.33) (note that by Proposition 3.32 such an i 0 always exists). We have

ν i 0 (Q i+t ) = α i β i 0 (3.76)
Proof. By Proposition 3.19 we may assume that (3.33) is an i 0 -standard expansion of Q i+t . The leading term of this i 0 -standard expansion is

Q α i i 0 . We have α i β i 0 = ν i 0 Q α i i 0 . Now Lemma 3.40, applied with t = j = 0 and j = 1, implies that ν i 0 Q α i i 0 < ν i 0 t-1 q=0
z i+q . This completes the proof.

Keep the above notation. Let f be a non-zero element of K

[x]. Let f = s i 0 j=0 d j,i 0 Q j i 0 (3.77) be an i 0 -standard expansion of f , where each d j,i 0 is a Q i 0 -free i 0 -standard expansion.
Consider an (i + t)-standard expansion of f :

f = s i+t j=0 d j,i+t Q j i+t , (3.78) 
where the d j,i+t are Q i+t -free standard expansions. Let δ = δ i 0 (f ). Let

µ = min 0≤j≤s i+t ν i 0 d j,i+t Q j i+t and S i 0 ,i+t = j ∈ {0, . . . , s i+t } ν i 0 d j,i+t Q j i+t = µ .
Assume that (3.75) holds and that

ν i 0 (d j,i+t ) = ν (d j,i+t )
for all j ∈ S i 0 ,i+t (note that by Proposition 3.32 and (2) q , q < i, this holds for all sufficiently large ordinals i 0 such that i 0 + = i).

Lemma 3.43. (1) We have

ν i 0 (f ) = µ = min 0≤j≤s i+t {ν(d j,i+t ) + jα i β i 0 }.
(2) Let j 0 = max S i 0 ,i+t . Then δ = α i j 0 + δ i 0 (d j 0 ,i+t ).

Proof.

(1) The second equality in (1) of the Lemma is given by Corollary 3.42 and (1)

i 0 . Let θ = min S i 0 ,i+t . Let f = j∈S i 0 ,i+t d j,i+t Q j i+t . Then ν i 0 f -f > µ, so to prove that ν i 0 (f ) = µ it is sufficient to prove that ν i 0 f = µ. (3.79)
The equality (3.79) holds if and only if

ν i 0 Q -θ i+t f = µ -θα i β i 0 . (3.80)
Therefore, without loss of generality, we may assume that θ = 0. Now, all the terms d j,i+t Q j i+t , j ∈ S i 0 ,i+t , appearing in the (i + t)-standard expansion of f , have the same ν i 0 -values, so by Lemma 3.40 they all have different ν-values with

ν (d 0,i+t ) < ν d j,i+t Q j i+t for j ∈ S i 0 ,i+t \ {0}.
By the ultrametric triangle law we have

ν f = ν (d 0,i+t ) = ν i 0 (d 0,i+t ) = µ ≤ ν i 0 f ,
hence the inequalitiy in this formula is an equality and (3.79) is proved. This proves (1) of the Lemma.

(2) In view of (1), a term of the form

aQ δ i 0 with deg x a < deg x Q i 0 and ν aQ δ i 0 = ν i 0 (f ) appears in the Q i 0 -expansion of j∈S i 0 ,i+t d j,i+t Q i+t,j
and δ is the greatest integer with this property. The Q i 0 -expansion of d j 0 ,i+t Q j 0 i+t contains a term of the form aQ

α i j 0 +δ i 0 (d j 0 ,i+t ) i 0 with deg x a < deg x Q i 0 and ν aQ α i j 0 +δ i 0 (d j 0 ,i+t ) i 0 = ν i 0 (f ); α i j 0 + δ i 0 (d j 0 ,i+t
) is the greatest power of Q i 0 appearing there. The term aQ α i j 0 +δ i 0 (d j 0 ,i+t ) i 0 cannot be canceled by contributions from any of d j,i+t Q j i+t , j ∈ S i 0 ,i+t , j < j 0 , for reasons of degree. This completes the proof of (2).

Lemma 3.44. Keep the notation and assumptions of Lemma 3.43. For every j ∈ {1, . . . , s i+t } we have

ν i+t d j,i+t Q j i+t -ν i 0 (f ) ≥ β i+t -α i β i 0 > 0. (3.81)
Proof. We have

ν i+t d j,i+t Q j i+t = ν d j,i+t Q j i+t = ν (d j,i+t ) + jβ i+t . (3.82)
By the ultrametric triangle law applied to the

Q i 0 -expansion of d i+t we have 0 ≤ ν(d j,i+t ) -ν i 0 (d j,i+t ). (3.83)
Finally, by Lemma 3.43 we have (2) We have

ν i 0 (f ) ≤ ν i 0 d j,i+t Q j i+t = ν i 0 (d j,i+t ) + jα i β i 0 . ( 3 
ν i (f ) = ν i 0 (f ) if and only if the Q i -expansion of f has non-zero coefficient d 0,i satisfying ν i (d 0,i ) = ν i 0 (d 0,i ) = ν i 0 (f ). (3.85)
Proof.

(1) follows from (3.81) (with t = 0) by transfinite induction on i -q.

(2) By (3.81) (with t = 0), for every term d j,i Q j i of the Q i -expansion of f with j > 0 we have ν d j,i Q j i > ν d j,i Q j i . This proves [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF].

Note that that the equivalent conditions of (2) of the Corollary are also equivalent to saying that the Q i -expansion of in i 0 f has non-zero coefficient d 0,i satisfying (3.85).

Remark 3.46. The first equality in (3.85) holds automatically when i is not a limit ordinal.

Take a finite collection of polynomials f 1 , . . . , f s ∈ K[x] such that deg x f j < ᾱi for all j ∈ {1, . . . , s}. Let

s j=1 f j = qQ i+t + r (3.86)
be the Euclidean division of

s j=1 f j by Q i+t . Assume that i = i 0 +, ν i 0 (f j ) = ν(f j ) for all j ∈ {1, . . . , s} (3.87) 
ν i 0 (q) = ν(q) (3.88) 
and

ν i 0 (r) = ν(r) (3.89) 
(such an i 0 exists by Proposition 3.32 and (2) i ).

Lemma 3.47. We have ν s j=1

f j = ν i 0 s j=1 f j = ν(r) and ν i+t (qQ i+t ) -ν   s j=1 f j   ≥ β i+t -α i β i 0 > 0.
Proof. By (1) i 0 we have We are now in the position to finish the proof of (1) i . Let g =

ν i 0   s j=1 f j   = s j=1 ν i 0 (f j ) = s j=1 ν (f j ) = ν   s j=1 f j   . ( 3 
u i j=0 c j,i Q j i and f = s i j=0 d j,i Q j i
be the respective i-standard expansions of g and f . By Lemma 3.47, for every j ∈ {0, . . . , s i } and j ∈ {0, . . . , u i }, we have d j,i c j ,i = q j,j Q i + r j,j with ν d j,i c j ,i = ν r j,j < ν q j,j Q i .

This implies that all the terms in the i-standard expansion of f g have value at least ν i (f ) + ν i (g) and some terms (for example, the term involving

Q δ i (f )+δ i (g) i
) have exactly this value. This completes the proof.

The valuation ν i will be called the i-truncation of ν.

Remark 3.48. By (2) i , if ν(f ) = ν i 0 (f ) then ν i (f ) = ν i 0 (f ).
Proposition 3.49. (1) We have

gr ν i K[x] ∼ = G ν K in ν Q i , Qi , (3.91) 
where the symbol Qi denotes an element, transcendental over

G ν K [in ν Q i ] with ord Qi = β i . The element Qi is the image of in ν i Q i under the isomorphism (3.91).
(2) With the identification (3.91) there is a natural degree-preserving homomorphism

φ : gr ν i K[x] -→ gr ν K[x] of G ν K [in ν Q i ]-algebras defined by φ Qi = in ν Q i .
For parts (3) and ( 4) of the Proposition, assume that i + 1 ∈ Λ.

(3) Ker φ is generated by the polynomial obtained from the left hand side of (3.10) by first replacing i by i + 1 and then replacing in ν Q i by Qi .

(

) Im φ = G ν K [in ν Q i+1 ] = {0} { in ν f | f ∈ K[x], ν i (f ) = ν(f )}. 4 
Proof.

(2) The homomorphism φ is self-explanatory.

(1) Let G (i)

< ᾱi denote the gr ν K K-subalgebra of gr ν i K[x], generated by all the in ν i f with deg x f < ᾱi . The homomorphism φ maps G (i) < ᾱi isomorphically onto G < ᾱi . Given a non-zero element f ∈ K[x] with i-standard expansion (3.77), in ν i f can be written as

in ν i f = j∈S i (f ) in ν i d j,i in ν i Q j i with in ν i d j,i ∈ G (i) < ᾱi . If we had a non-trivial relation of the form j dj,i in ν i Q j i = 0 with dj,i ∈ G (i) < ᾱi ,
we could take it to be homogeneous and lift it to an element f =

j d j,i Q j i ∈ K[x] such that ν i (f ) > min j ν d j,i Q j i contradicting the definition of ν i . Thus in ν i Q i is transcendental over G (i) < ᾱi . Conversely, given an element f ∈ G (i) < ᾱi [in ν i Q i ]
we can consider its i-standard expansion and lift it to an element f (3) follows from the fact that in

∈ K[x] such that in ν i f = f . Thus in ν i K[x] ∼ = G (i) < ᾱi [in ν i Q i ] with in ν i Q i transcendental over G (i) < ᾱi [in ν i Q i ] and G (i) < ᾱi [in ν i Q i ] ∼ = G ν K in ν Q i ,
ν i Q i+1 is the minimal polynomial satisfied by in ν Q i over G ν K [in ν Q i ] (Definition 3.11 (b) (5)).
(4) follows from the fact that φ(f ) = 0 ⇐⇒ ν i (f ) = ν(f ) (Proposition 2.10). [START_REF] Alexandru | Minimal pairs of definition of a residual transcendental extension of a valuation[END_REF] The numerical character δ i (h)

Let {Q i } i∈Λ be a set of key polynomials for ν.

Let i ∈ Λ and h ∈ K[x]. Let h = s i j=0 d j,i Q j i (4.1)
be an i-standard expansion of h, where each d j,i is a Q i -free i-standard expansion. In this section we study the properties of the numerical character

δ i (h) = max S i (h) = deg Qi in i h (4.2) (cf. (3.42)-(3. 44 
)) that will play a crucial role in the rest of the paper. We prove that δ i (h) does not increase with i. We also show that the equality δ i (h) = δ i+1 (h) imposes strong restrictions on in i h.

Definition 4.1. The i-th Newton polygon of h with respect to ν is the convex hull ∆ i (h) of the set

s i j=0 (ν(d j,i ), j) + Γ0+ × Q + in Γ0 × Q. Definition 4.2. The vertex ν d δ i (h),i , δ i (h) of the Newton polygon ∆ i (h) is called the piv- otal vertex of ∆ i (h). Let ν + i (h) = min ν d j,i Q j i δ i (h) < j ≤ s i (4.3) and S i (h) = j ∈ {δ i (h) + 1, . . . , s i } ν d j,i Q j i = ν + i (h) .
If the set on the right hand side of (4.3) is empty, we adopt the convention that ν + i (h) = ∞. We have δ i (h) > 0 whenever ν i (h) < ν(h) by Remark 3.30.

Take an ordinal i ∈ Λ. Assume that there exists a polynomial h such that

ν i (h) < ν(h) (4.4) 
(this happens, for instance, whenever i + 1 ∈ Λ by Corollary 3.27). Consider the i-th Newton polygon of h. Let S i (h) be as in (3.42).

Definition 4.3. For a polynomial f ∈ K[x], we say that β * determines a side of ∆ i (f ) if the set S i (β * , f ) has at least two elements.

Proposition 4.4. We have

j∈S i (f ) in ν d j,i Q j i = 0 in P ν i (h) P ν i (h)+ ⊂ G ν .
Proof. This follows immediately from (4.4), the fact that

j∈S i (h) d j,i Q j i = h - j∈{0,...,s i }\S i (h) d j,i Q j i
and Proposition 2.10.

In the following corollary, recall that a factorization of in i h into irreducible factors exists and is unique by Remark 2.13. Corollary 4.5. Viewing in i h as a polynomial in the variable Qi with coefficients in

G ν K [in ν Q i ], we have in i h (in ν Q i ) = 0. In particular, the element in ν Q i is integral over G ν K [in ν Q i ]. Its minimal polynomial over G ν K [in ν Q i ] is one of the irreducible factors of in i h.
Corollary 4.6. The element β i determines a side of ∆ i (h).

Proof. Suppose not. Then the i-standard expansion of h contains a unique term

d j,i Q j i of minimal value, so ν(h) = ν(d j,i Q j i ) = ν i (h), contradicting (4.4). Corollary 4.6 is proved. Let in i h = in ν d δ,i t j=1 g γ j,i j,i (4.5) 
be the factorization of in i h into (monic) irreducible factors in

G ν K [in ν Q i ] Qi , where δ = δ i (h) (4.6) 
and

g 1,i is the minimal polynomial of in ν Q i over G ν K [in ν Q i ].
The next Proposition shows that δ i (h) is non-increasing with i and that the equality δ i+1 (h) = δ i (h) imposes strong restrictions on in i h. Proposition 4.7. Assume that i + 1 ∈ Λ and ν(h) > ν i (h).

(4.7)

(1) We have

α i+1 δ i+1 (h) ≤ δ. (4.8) (2) If δ i+1 (h) = δ then Q i+1 = Q i + z i , (4.9) 
where z i is some Q i -free i-standard expansion,

in i h = in ν d δ,i Qi + in ν z i δ (4.10)
and in i+1 h contains a monomial of the form in ν d δ,i Qδ i+1 ; in particular,

in ν d δ,i = in ν d δ,i+1 . (4.11) 
(3) If δ i+1 (h) = δ, then for all j > δ we have

ν d j,i+1 Q j i+1 -ν i+1 (h) ≥ ν + i (h) -ν i (h). (4.12)
Remark 4.8. This Proposition is true as stated without the hypothesis (4.7), but the proof given below needs to be modified to include the case of equality in (4.7). In the sequel, the Proposition will only be used under the assumption (4.7).

Proof. We start with a lemma. Consider an (i + 1)-standard expansion of h:

h = s i+1 j=0 d j,i+1 Q j i+1 , (4.13) 
where the d j,i+1 are Q i+1 -free (i + 1)-standard expansions.

In the notation immediately preceding Lemma 3.43 (with f replaced by h and (i 0 , i + t) by (i, i + 1)), let θ i+1 (h) = min S i,i+1 . Definition 4.9. The vertex (ν(d

θ i+1 (h),i+1 ), θ i+1 (h)) is called the characteristic vertex of ∆ i+1 (h).
The polynomial in i h is divisible by the minimal polynomial

g 1,i of in ν Q i over G ν K [in ν Q i ]; in particular, we have δ = deg Qi in i h > 0.
For j ∈ {1, . . . , t}, let g j,i,0 denote the coefficient of in ν Q 0 i in the polynomial g j,i . Lemma 4.10. We have

γ 1,i = θ i+1 (h) (4.14) (in particular, d γ 1,i ,i+1 = 0) and in ν d θ i+1 (h),i+1 = in ν d δ,i t j=2 g γ j,i j,i,0 . (4.15) 
Proof. Write h = q∈S i,i+1 d q,i+1 Q q i+1 + q∈{0,...,s}\S i,i+1 d q,i+1 Q q i+1 .
By Lemma 3.43, the terms of lowest ν i -value in the Q i -expansion of h are recovered from the terms of lowest ν i -value of

q∈S i,i+1
d q,i+1 Q q i+1 , in other words,

in i h = q∈S i,i+1 in i d q,i+1 in i Q q i+1 . (4.16) 
By definition of key polynomials (Definition 3.11 (b) ( 5)), we have

in i Q i+1 = g 1,i . (4.17) 
By definition of θ i+1 (h), in i Q 

θ i+1 (h) i+1 is the highest power of in i Q i+1 dividing q∈S i,i+1 in i d q,i+1 in i Q q i+1 . Since g γ 1,i
1,i = in i Q θ i+1 (h) i+1
, we obtain

q∈S i,i+1 in i d q,i+1 in i Q q-θ i+1 (h) i+1 = in ν d δ,i t j=2 g γ j,i j,i . (4.18) 
Equating the constant terms in (4.18) yields (4.15).

We are now in the position to finish the proof of Proposition 4.7. Apply Lemma 3.40 to the monomials

d θ i+1 (h),i+1 Q θ i+1 (h) i+1 and d δ i+1 (h),i+1 Q δ i+1 (h) i+1
. We have

ν d δ i+1 (h),i+1 Q δ i+1 (h) i+1 ≤ ν d θ i+1 (h),i+1 Q θ i+1 (h) i+1 (4.19)
by definition of δ i+1 and 

ν i d θ i+1 (h),i+1 Q θ i+1 (h) i+1 = ν i (h) ≤ ν i d δ i+1 (h),i+1 Q δ i+1 (h) i+1
θ i+1 (h) ≥ δ i+1 (h). (4.21) Since α i+1 θ i+1 (h) = α i+1 γ 1,i ≤ deg Qi in i h = δ (4.22)
by Lemma 4.10 and (4.5), (1) of the Proposition follows.

(2) Assume that δ i+1 (h) = δ (where the notation is as in (4.6)). Recall that δ > 0 by Remark 3.30. Then the monomials

d θ i+1 (h),i+1 Q θ i+1 (h) i+1 and d δ i+1 (h),i+1 Q δ i+1 (h) i+1
coincide and

α i+1 = 1. (4.23) 
This proves (4.9). Furthermore, we have equality in (4.22). Then (4.5) rewrites as

in i h = in ν d δ,i g δ 1,i t j=2 g γ j,i j,i (4.24) 
Now, the left hand side of (4.24) is a polynomial of degree δ in Qi , while the right hand side is divisible by the non-constant polynomial g δ 1,i . This implies that

t = 1, t j=2 g γ j,i j,i = 1, (4.25) 
and in i h = in ν d δ,i g δ 1,i . (4.10) now follows from (4.9) and (4.17). The equality (4.11) follows from (4.15), (4.25) and the fact that θ i+1 (h) = δ i+1 (h) = δ.

(3) Assume that δ i+1 (h) = δ. Fix an integer j > δ. The Q i+1 -expansion (4.13) of h is obtained from its Q i -expansion (4.1) by making the substitution Q i = Q i+1 -z i and performing repeated Euclidean divisions by Q i+1 to turn the result into a Q i+1 -expansion. For j < j, monomials of the form d j ,i Q j i have degrees strictly less than j ᾱi+1 . Hence they contribute nothing to d j,i+1 Q j i+1 ; in other words, the coefficient d j,i+1 is completely determined by

s i j =j d j, i Q j i .
Fix an integer j ∈ {j, . . . , s i }. Write

d j ,i Q j i = d j ,i (Q i+1 -z i ) j = d j ,i j k=0 j k (-1) k Q k i+1 z j -k i , (4.26) 
where z i is a Q i -free i-standard expansion. Again, the terms on the right hand side of (4.26) with k > j contribute nothing to d j,i+1 Q j i+1 . For k ≤ j, let d j ,k,i denote the coefficient of Q j i+1 in the (i + 1)-standard expansion of d j ,i Q k i+1 z j -k i . To prove (3), it is sufficient to prove that for all j ∈ {j, . . . , s i } and all k ∈ {0, . . . , j} we have

ν d j ,k,i Q j i+1 -ν i+1 (h) ≥ ν + i (h) -ν i (h). (4.27)
To prove (4.27), we start out by noting that (4.9) is an i-standard expansion of Q i+1 . Hence

ν i (Q i+1 ) = β i = ν(z i ), (4.28) 
where the last equality holds by Definition 3.11 [START_REF] Alexandru | Minimal pairs of definition of a residual transcendental extension of a valuation[END_REF]. By Lemma 3.43,

ν i d j ,i Q k i+1 z j -k
i equals the minimum of the ν i -values of the terms appearing in its (i + 1)-standard expansion, so

ν i d j ,i Q k i+1 z j -k i ≤ ν i d j ,k,i Q j i+1 .
Combining this with (4.28) and with Proposition 3.32 applied to d j ,k,i and the ordinal i + 1, we obtain

ν d j ,k,i = ν i d j ,k,i ≥ (j -j)β i + ν d j ,i . (4.29) 
By definition of δ i+1 (h), since δ i+1 (h) = δ and in view of (4.11), we have

ν i+1 (h) = ν(d δ,i+1 ) + δβ i+1
Combining this with (4.29) and using (4.11) again, we obtain

ν d j ,k,i Q j i+1 -ν i+1 (h) = ν d j ,k,i -ν (d δ,i+1 ) + (j -δ)β i+1 ≥ ≥ (j -j)β i + ν d j ,i -ν (d δ,i+1 ) + (j -δ)β i = ν d j ,i Q j i -ν d δ,i Q δ i ≥ ν + i (h) -ν i (h), (4.30) 
as desired. This completes the proof of the Proposition.

Corollary 4.11. For as long as the character δ i (h) remains constant (that is, does not strictly decrease), the quantity ν + i (h) -ν i (h) is non-decreasing with i.

Proof. Take the minimum over all j on the left hand side of (4.12).

Remark 4.12. One way of interpreting Lemma 

Augmenting sets of key polynomials

Suppose we are given a set of key polynomials {Q i } i∈Λ that is not complete for ν. In this section, we will construct a set {Q i } i∈Λ + where Λ + is a well-ordered set of order type less than ω × ω, and Λ Λ + .

Sets of key polynomials having a maximal element

Suppose first that Λ has a maximal element . Since {Q i } i∈Λ is not complete, there exists h ∈ K[x] such that ν (h) < ν(h).

(5.1)

Let Q be a new variable. Take a polynomial h satisfying (5.1). By Proposition 4.4, we have

j∈S (h) in ν d j, Q j = 0 (5.2) in P ν (h) P ν (h)+
⊂ G ν . By Corollary 4.6 the element β determines a side of ∆ (h). Let

in ν h = in ν d δ, t j=1 g γ j, j, , (5.3) 
where δ = δ (h), be the factorization of in h into monic, quasi-homogeneous irreducible factors in G ν K [in ν Q ] Q (such a factorization exists and is unique by Remark 2.13). By (5.2), the element in ν Q is integral over

G ν K [in ν Q ]. Its minimal polynomial over G ν K [in ν Q ] is one of the irreducible factors g j, of (5.3). Let α +1 denote the degree of in ν Q over G ν K [in ν Q ].
Renumbering the factors in (5.3), if necessary, we may assume that g 1, is the minimal polynomial of in ν Q over

G ν K [in ν Q ], so that α +1 = deg Q g 1, . (5.4) 
Let

g 1, = Qα +1 + α +1 -1 j=0 γ c +1,j,γ in ν Q γ Qj (5.5)
be an -standard expansion of g 1, . Let X be a new variable, and consider a lifting of the right hand side of (5.5) to K[X], that is, a polynomial of the form

X α +1 + α +1 -1 j=0 γ c +1,j,γ Q γ X j
, where in ν c +1,j,γ = c +1,j,γ for all the choices of , j, and γ . Define the ( + 1)-st key polynomial of ν to be

Q +1 = Q α +1 + α +1 -1 j=0 γ c +1,jγ Q γ Q j . (5.6) 
Let Λ + = Λ ∪ { + 1}. By definition Q +1 has the form (3.9). The set {Q i } i∈Λ + satisfies Definition 3.11: it is a set of key polynomials.

In the special case when α +1 = 1

(5.7)

we will define several consecutive key polynomials at the same time.

Assume that α +1 = 1. Let T denote the set of all the polynomials of the form

Q = Q + w,
where deg x w < ᾱ = deg x Q . To define Q +1 , consider two cases: Case 1. The set ν(T ) contains a maximal element. Let Q = Q + w be an element of T for which the maximum is attained. Write w = s t=0 z +t + w, where s ∈ N 0 , for each t ∈ {0, . . . , s} the expression z +t is a homogeneous Q -free -standard expansion, such that

β = ν(z ) < ν(z +1 ) < • • • < ν(z +s ) < ν Q (5.8)
and w is a Q -free -standard expansion all of whose terms have value greater than or equal to ν (Q ). Put Λ + = Λ ∪ { + 1, . . . , s + 1} and

Q i = Q + z + • • • + z i-1 for + 1 ≤ i ≤ + s + 1.
Case 2. The set ν(T ) does not contain a maximal element. Let Q +t = Q + wt t∈N 0 be a sequence of elements of T such that the sequence ν Q +t t∈N 0 is strictly increasing and cofinal in ν(T ). We will now define, recursively in q, an infinite sequence (z +q ) q∈N 0 (5.9)

of homogeneous Q -free -standard expansions of strictly increasing values and a sequence (w t ) t≥-1 consisting of certain partial sums of the sequence (5.9). We adopt the convention that z -1 = w -1 = 0. Assume that for certain integers t 0 , q 0 the finite sequences (z +q ) q≤q 0 and (w t ) t≤t 0 are already defined, that w t 0 = q 0 q=0 z +q and ν(z +q ) < ν Q +t 0 for all q ≤ q 0 . Write wt 0 +1 -w t 0 = q 1 q=q 0 +1 z +q + w t 0 +1 , where each z +q is a homogeneous Q -free -standard expansion, ν(z +q 0 +1 ) < • • • < ν(z +q 1 ) < ν Q +t 0 +1 and w t 0 +1 is a Q -free -standard expansion, each of whose terms has value greater than or equal to ν Q +t 0 +1 . Put

w t 0 +1 := w t 0 + q 1 q=q 0 +1 z +q .
This completes the recursive definition of the infinite sequences (z +q ) q∈N 0 and (w t ) t≥-1 . Define

α +t = 1, Q +t = Q + z + z +1 + • • • + z +t-1 for t ∈ N,
and put Λ + = Λ ∪ { + t} t∈N .

In both Cases 1 and 2, for each t under consideration we have

ν(Q +t ) = ν(z +t ) < ν(Q +t+1 ) = ν(z +t+1 ).
Thus, by the choice of the sequences ν Q +t t∈N 0 , (z +q ) q∈N 0 and (w t ) t≥-1 , conditions (a)-(d) of Definition 3.11 are satisfied for all the ordinals i of the form i = + t, t ∈ N 0 . Therefore in all cases the set {Q i } i∈Λ + is a set of key polynomials for ν.

Remark 5.1. We claim that Q +1 is an irreducible polynomial in x. Indeed, consider a factorization

Q +1 = f g in K[x].
Passing to the natural images of Q +1 , f and g in

G ν K [in ν Q ] Q ∼ = G ν ,
we obtain g 1, = in f in g. Since g 1, is an irreducible polynomial in Q by definition, we have, up to interchanging f and g,

deg Q in f = α +1 .
(5.10)

Then deg x f ≥ α +1 deg x Q = deg x Q +1 , (5.11) 
where the equality holds since g 1 has the form (5.5). We must have equality in (5.11) and deg x g = 0. Thus g ∈ K; this completes the proof of the irreducibility of

Q +1 in K[x].
Similarly, in the case when (5.7) holds, Q +t is irreducible for all t ∈ N for which Q +t is defined. This follows from the above argument by induction on t.

Augmenting sets of key polynomials without maximal elements

Suppose that the set Λ does not have a maximal element. Since the set {Q i } i∈Λ of key polynomials is not complete, by Corollary 4.13 the degrees of the polynomials Q i , i ∈ Λ, are bounded in N. Hence there exists such that for each i ∈ Λ, i > , we have i = + t and α +t = 1 for t ∈ N. Since this set of key polynomials is not complete for ν, there exists a monic polynomial h such that ν +t (h) < ν(h) (5.12) for all t ∈ N. In this case, define Q +ω to be a smallest degree monic polynomial h satisfying (5.12).

Remark 5.2. The inequality (5.12) implies that

deg x Q +ω ≥ deg x Q = deg x Q +t for all t ∈ N.
(5.13) by Proposition 3.32. If the inequality in (5.13) were an equality, we would have a contradiction with the condition (d) of Definition 3.11. Thus,

deg x Q +ω > deg x Q = deg x Q +t , t ∈ N.
For each t ∈ N, the expression Q +t = Q +t+1 -z +t is an ( + t + 1)-expansion of Q +t . Thus, in view of Proposition 3.29, h = Q +t satisfies the hypotheses of Proposition 3.37 (1) with i = + t + 1. We obtain ν +t+1 (Q +t ) = ν (Q +t ). To summarize, we have

ν(Q +t+1 ) = ν +t+1 (Q +t+1 ) > ν +t+1 (Q +t ) = ν (Q +t ) . (5.14) Let β = sup { ν (Q +t ) | t ∈ N} .
(here we allow the possibility β = ∞, which means that the set

{ ν (Q ) | Q ∈ T } is unbounded in Γ0 ).
We put Λ + = Λ ∪ {Q +ω }. By Remark 3.18 and Proposition 3.19, for every t ∈ N 0 the polynomial Q +ω admits an ( + t)-standard expansion (3.11):

Q +ω = α +ω j=0 c j, +t Q j +t .
(5.15) By (5.12), the inequality (3.12) holds for i = + ω and i 0 = + t.

To complete the proof that {Q i } i∈Λ + is a set of key polynomials for ν, it remains to prove (3.14) and (3.15), assuming (3.13) (with i replaced by + ω and i 0 replaced by + t, t ∈ N).

Therefore, assume that the sequence (β +t ) t∈N has an upper bound (but no maximum) in Γ0 .

To simplify the notation, for the purposes of the next Proposition we will denote Q +ω by f . We have

deg Q f := deg x f deg x Q ≥ δ (f ).
(5.16) By Proposition 4.7 there exists t 0 ∈ N such that δ +t (f ) = δ +t 0 (f ) for all t ≥ t 0 (5.17) (in fact, (5.17) holds already for t 0 = 1, but we have not proved that yet). Let δ denote the stable value of δ +t (f ) for large t. The inequality (5.16) implies that

deg Q f ≥ δ. (5.18)
The next Proposition says that equality holds in (5.18).

In what follows, the index i will run over the set { + t} t∈N 0 .

Proposition 5.3. For each i ∈ { + t} t∈N 0 we have

deg x f = δ deg x Q i (5.19) and β ≤ 1 δ ν (f ) .
(5.20)

Proof. By (5.12) for all t ∈ N 0 we have ν(f ) > ν +t (f ) = δν(Q +t ). This proves (5.20). The main point is to prove (5.19). Our strategy for doing this consists in gradually modifying f while preserving the numerical character δ i (f ) and the condition ν i (f ) < ν(f ) for all i of the form i = + t, t ∈ N (5.21) though possibly changing deg x f in the process, until we arrive at a polynomial of degree δ ᾱi . Since α i = 1 for all i, deg x Q i is independent of i, so all the i-standard expansions of f have the same degree α +ω in Q i . For each i, let

f = α +ω j=0 a j,i Q j i (5.22)
be an i-standard expansion of f . Lemma 5.4. There exists a polynomial a * ∈ K[x] of degree strictly less than

deg x Q such that in ν a * in ν a δ, = 1 (5.23) in G ν .
Proof. Let -denote the smallest ordinal such that ᾱ -= ᾱ . By Proposition 3.32 (applied to h = a δ, ), there exists an ordinal 0 < -such that -= 0 + and ν 0 (a δ, ) = ν(a δ, ).

(5.24) By (5.24) and Proposition 3.49 (4) we have in

ν a δ, ∈ G ν K [in ν Q 0 +1 ] = G ν K [in ν Q 0 ] [in ν Q 0 ]. By Definition 3.11, in ν Q 0 is integral over G ν K [in ν Q 0 +1
] of degree α 0 +1 . By Lemma 2.6 and transfinite induction on 0 , the graded algebras

G ν K [in ν Q 0 ] ⊂ G ν K [in ν Q 0 ] [in ν Q 0 ] (5.25) are saturated. Hence the homogeneous element in ν a δ, ∈ G ν K [in ν Q 0 ] [in ν Q 0 ] has a multiplica- tive inverse ā * ∈ G ν K [in ν Q 0 ] [in ν Q 0 ].
Again by Lemma 2.6, ā * admits an 0 -standard expansion whose degree in in ν Q 0 is strictly less than α 0 +1 . A lifting of this 0 -standard expansion to K[x] is the desired element a * .

Note that by Proposition 4.7 (2) and transfinite induction on i, for all i ≥ in ν a δ, = in ν a δ,i (5.26)

and in i f = in ν a δ,i ( Qi + in ν z i ) δ .
Hence, in view of (5.23) and (5.26), we have

in i (a * f ) = ( Qi + in ν z i ) δ . (5.27) Now, Qi + in ν z i is the minimal algebraic relation satisfied by in ν Q i over G ν K [Q i ]
, so this polynomial maps to 0 under the homomorphism φ of Proposition 3.49 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF]. Therefore Qi + in ν z i δ ∈ Ker φ.

Together with (5.27) and Proposition 3.49 (3)-( 4) this implies that ν(a * f ) > ν i (a * f ) for all i.

(5.28)

We claim that δ i (a * f ) = δ for all i.

(5.29) Indeed, applying Lemma 3.47 with s = 2 to the pairs of polynomials

(f 1 , f 2 ) = (a δ,i , a * ) and (f 1 , f 2 ) = (a δ-1,i , a * ),
we see that after multiplying f by a * and applying Euclidean division of a * f by Q i to obtain the i-standard expansion of a * f , only the remainders in the Euclidean division contribute to in i (a * f ). This means that the powers of Qi that appear in in i (a * f ) with non-zero coefficients are exactly the same as those appearing in in i f and (5.29) follows. Thus, replacing f by a * f , we may assume that in ν a δ,i = 1 for all i.

Let θ(i) = 1 2 min ν + i (f ) -ν i (f ), β i -β ; (5.30)
we have θ(i) > 0. By Corollary 4.11 the quantity ν + i (f ) -ν i (f ) is non-decreasing with i and hence so is θ(i). Taking into account the fact that β = lim i→∞ β i , we have, for i sufficiently large,

ν(a δ,i ) + δ β -ν i (f ) = δ( β -β i ) < θ(i).
(5.31)

By choosing 1 > sufficiently large, we may assume that (5.31) holds for i ≥ 1 .

For each i ≥ 1 , write a δ,i = 1 + a † i with ν a † i > 0.

(5.32)

Write f = fi + fi , where fi = Q δ i + δ-1 j=0 a j,i Q j i and fi = a † i Q δ i + n i j=δ+1 a j,i Q j i .
We want to compare the 1 -standard expansion of f with its i-standard expansion for i > 1 and, in particular, to study the dependence on i of a δ,i and a † i := a δ,i -1. First of all, for all j with δ < j ≤ n 1 and all i ≥ 1 we have 1), (5.33) where:

ν i a j, 1 Q j 1 -δβ i ≥ ν 1 a j, 1 Q j 1 -δβ 1 -δ(β i -β 1 ) ≥ ν + 1 (f ) -ν 1 (f ) -δ( β -β 1 ) > θ(
the first inequality holds by Proposition 3.39 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF] the second inequality holds by the definitions of ν + 1 (f ) and of β and the third inequality holds by (5.30)- (5.31).

For i > 1 , write Q i = Q 1 + w i , where w i is a Q i -free i-standard expansion (in particular, deg x w i < ᾱi = ᾱ 1 . To compute the coefficient a i,δ in the i-standard expansion of f = f 1 + f 1 , we must consider the expressions Q δ 1 + δ-1 j=0 a j, 1 Q j 1 = (Q i -w i ) δ + δ-1 j=0 a j, 1 (Q i -w i ) j (5.34)
and

a † 1 Q δ 1 + n 1 j=δ+1 a j, 1 Q j 1 = a † 1 (Q i -w i ) δ + n 1 j=δ+1 a j, 1 (Q i -w i ) j ,
open the parentheses and perform the appropriate Euclidean divisions by Q i . We have

deg x δ-1 j=0 a j, 1 (Q i -w i ) j < δ ᾱi .
As well, every term in the Newton binomial expansion of (Q i -w i ) δ except for Q δ i has degree strictly smaller than δ ᾱi . Therefore no terms in (5.34) contribute anything to a † i . By (5.33), all the contributions to a † i by terms of the form a j, 1 Q 1 , j > δ, have ν i -value strictly greater than θ( 1 ).

It remains to study the contribution to a

† i from a † 1 (Q i -w i ) δ = δ j=0 δ j a † 1 w j i Q δ-j i
. For j = 0 this contribution equals a † 1 . For each j ∈ {1, . . . , δ} this contribution is nothing but the coefficient d j of Q j i in the i-standard expansion of a † 1 w j i . We have

ν(d j ) ≥ ν i (d j ) ≥ β i -β -j(β i -β 1 ) > θ( 1 ),
where the second inequality follows from Lemma 3.47, applied with s = j + 1,

f 1 = a † 1 , f 2 = • • • = f s = w i , i + t
replaced by i and i 0 replaced by . Putting together all of the above information, we obtain

ν i a † i ≥ min θ( 1 ), ν a † 1 . (5.35)
Take an ordinal 2 of the form

2 = 1 + t 1 , t 1 ∈ N, such that β -β 2 < ν a † 1 .
Since for all i ≥ 2 we have ν a † i > 0 and in view of the definition of δ, every term in the Q i -expansion of fi has value strictly greater than Proof. This follows immediately from (5.19) and Proposition 4.7 (2) (specifically, the equality (4.10)).

δβ i . Hence ν f 2 ≥ ν i f 2 > ν i f 2 which implies that ν i f 2 = ν i (f ) < min ν(f ), ν f 2 ≤ ν f -f 2 = ν f 2 . Since deg x f 2 = δ deg x Q ≤ deg x f
Below, in Proposition 8.6, we will show that δ(f ) is of the form δ(f ) = p e 0 for some e 0 ∈ N 0 . Together with Remark 5.2 this will prove that, under the assumptions of this section, we have char k ν > 0 and e 0 > 0.

Proposition 5.6. If ν(Q +t ) ∈ Γ0 for all t ∈ N 0 and the sequence (β +t ) t∈N 0 is cofinal in Γ0 , then the set Q +ω of key polynomials defined above is Γ0 -complete. In other words, for every element β ∈ Γ0+ every polynomial h ∈ K[x] with ν(h) = β belongs to the additive subgroup of P β ∩ K[x] generated by all the standard monomials in Q +ω , multiplied by elements of K, of value β or higher.

Proof. Take an element h ∈ K[x]. Without loss of generality, we may assume that, writing h = s j=0 d j x j , we have ν K (d j ) ≥ 0 for all j (5.36)

(otherwise, multiply h by a suitable element of K). In other words, we may assume that

h ∈ R ν K [x]
. Since the sequence {β +t } t∈N 0 is cofinal in Γ0 , there exists i of the form i = + t, t ∈ N 0 , such that β i > ν(h).

(5.37)

Then h satisfies the hypotheses of Proposition 3.37. Now, Proposition 3.37 says that

ν i (h) = ν(h).
This means, by definition, that h can be written as a sum of standard monomials in Q i+1 of value at least ν(h), hence it belongs to the additive abelian group generated by all such monomials. This completes the proof.

Constructing a complete set of key polynomials

In this section we will recursively construct a complete set of key polynomials.

First, consider the set {Q i } i∈Λ , with Q 0 = x and Λ = {0}. It is a set of key polynomials.

Next, assume that a set {Q i } i∈Λ of key polynomials is constructed and that Λ < ω × ω. If Λ does not have a maximal element then there exists and ordinal such that

{ + t | t ∈ N 0 } is a subset of Λ, cofinal in Λ.
If the set {Q i } i∈Λ is complete for ν, put Λ := Λ and stop. Otherwise, consider the set {Q i } i∈Λ + of key polynomials constructed in the previous section. If the set {Q i } i∈Λ + of key polynomials is complete, put Λ := Λ + and stop here. Otherwise, replace {Q i } i∈Λ by {Q i } i∈Λ + and repeat the procedure. Remark 6.1. If Q = {Q i } i∈Λ is a set of key polynomials, i 0 , i ∈ Λ, i is a limit ordinal and i 0 + = i then ᾱi > ᾱi 0 (6.1) by Remark 5.2. Therefore, if as a result of the above recursive procedure we arrive at a set of key polynomials with Λ = ω × ω, since Λ contains infinitely many limit ordinals, such a set of key polynomials must have unbounded degrees and is therefore complete by Proposition 3.14 (1) and Corollary 4.13. This proves that the aobve recursive procedure produces a complete set of key polynomials after at most ω × ω steps. In other words, Λ ≤ ω × ω.

We have proved the following:

Theorem 6.2. The well ordered set Q := {Q i } i∈ Λ constructed above is a complete set of key polynomials. In other words, for every element β ∈ Γ the R ν -module P β ∩ K[x] is generated as an additive group by all the monomials in the Q i of value β or higher, multiplied by elements of K. In particular, we have β∈Γ

P β P β+ = G ν K [in ν Q] * .
In §8 we will fix an ordinal such that + ω ∈ Λ and will study further properties of Q +ω . Among other things, we will show (Propositions 8.6 and 8.10 and Remark 8.7) that:

(a) if char k ν = 0 then our construction gives a complete set of key polynomials that is of order type at most ω + 1.

(b) if, in addition, rank ν = 1 then the construction produces a complete set of key polynomials that is of order type at most ω.

In the next section we study the effect of differential operators on the polynomials Q i in order to give a more precise description of the form of limit key polynomials.

Key polynomials and differential operators

This section is devoted to proving some basic results about the effect of differential operators on key polynomials. Here and below, for a non-negative integer b, ∂ b will denote the b-th Hasse (or formal) derivative, defined in the Introduction. Given an -standard expansion h, we are interested in proving lower bounds on (and, in some cases, exact formulae for) the quantities ν(∂ b h) and ν (∂ b h) and in computing the elements in ν ∂ b h and in ∂ b h. In particular, we will give sufficient conditions for the element ∂ b h to be non-zero.

Assume given a complete set Q := {Q i } i∈ Λ of key polynomials. Take an ordinal i ∈ Λ. Let b i denote the smallest positive integer which maximizes the quantity

β i -ν(∂ b i Q i ) b i (7.1)
(later in this section, we will show that b i is necessarily of the form p e i for some e i ∈ N 0 and, in particular, that b i = 1 if char k ν = 0). Let h be an element of K[x]. We use the following convention for binomial coefficients: if s < t, the binomial coefficient s t is considered to be 0. We view the binomial coefficients as elements of K via the natural map Z → K.

Notation:

Let p be as defined in the Introduction. If p > 1, for an integer a we shall denote by ν (p) (a) the p-adic value of a, that is, the greatest power of p that divides a. If p = 1, we adopt the convention ν (p) (a) = 1 for all non-zero a and ν (p) (0) = ∞. (1) For all b ∈ N 0 we have

ν i (h) -ν i (∂ b h) ≤ b b i (β i -ν(∂ b i Q i )) . (7.2) (2) Let h = s j=0 d j,i Q j i be an i-standard expansion of h. Assume that j ∈ {0, . . . , s} ν d j,i Q j i = ν i (h) = {0}
(in particular, we have s > 0). Let d j,i Q j i denote the term in the i-standard expansion of h which minimizes the triple ν i d j,i Q j i , ν (p) (j), j in the lexicographical ordering. Let e = ν (p) (j) and b(i, h) = b i p e . Then equality holds in (7.2) for b = b(i, h). 

Q i ) = ν i 0 (∂ b Q i ). (7.3) In particular ν(∂ b i Q i ) = ν i 0 (∂ b i Q i ). Thus replacing ν(∂ b i Q i ) by ν i 0 (∂ b i Q i ) in (7.
2) gives rise to an equivalent inequality. Also,

ν i (∂ b h) ≤ ν (∂ b h), so replacing ν i (∂ b h) by ν (∂ b h) in (7.
2) gives rise to a true, but an a priori weaker inequality.

Proof of Proposition 7.2. We prove Proposition 7.2 by transfinite induction. For i = 0 we have Assume that 0 < b ≤ s. There exists j, 0 ≤ j ≤ s, such that

Q i =
ν 0 (∂ b h) = ν j b d j,0 x j-b ≥ ν(d j,0 ) + (j -b)β 0 ≥ ν 0 (h) -bβ 0 ,
which gives (7.2).

To prove (2), chose d j,0 x j as in part ( 2 Assume that i > 1 and that the result is known for all the ordinals strictly smaller than i.

Lemma 7.4. Consider a pair of ordinals i , i such that i < i ≤ i. Then

β i -ν ∂ b i Q i b i < β i -ν ∂ b i Q i b i (7.5)
Proof. Basic Case. First, assume that i = i + and that for every b ∈ N we have

ν(∂ bQ i ) = ν i (∂ bQ i ). (7.6)
By definition of b i , it is sufficient to prove that there exists a strictly positive integer b such that (7.5) holds with b i replaced by b. We take b := b (i , Q i ). We have:

β i -ν ∂ bQ i > ν i (Q i ) -ν ∂ bQ i = ν i (Q i ) -ν i ∂ bQ i = = b b i β i -ν ∂ b i Q i .
Here the first inequality is given by Proposition 3.26, the first equality by (7.6) and the second equality by Proposition 7.2 (2) applied to i < i, which we are allowed to use by the induction assumption of Proposition 7.2. This completes the proof of the Basic Case.

In the general case, we argue by contradiction. Assume that (7.5) does not hold. Take the smallest ordinal ≤ i such that there exists an ordinal satisfying i ≤ < and

β -ν ∂ b Q b ≥ β -ν ∂ b Q b . (7.7)
Increasing , if necessary, we may assume that = + . (7.8) By Propositions 3.32 and 3.39 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF], by further increasing we may assume, in addition, that

ν ∂ bQ = ν ∂ bQ for all b ∈ N. (7.9) 
Together with (7.7) and (7.8) this contradicts the Basic Case. The proof of the Lemma is complete.

To prove Proposition 7.2 (1), it is sufficient to prove it for each i-standard monomial appearing in the i-standard expansion of h. Indeed, let

h = γi+1 ∈W d γi+1 Q γi+1 i+1 (7.10)
be an i-standard expansion of h, where W is a certain finite index set. Assume that the result is true for each i-standard monomial Q γi+1 i+1 appearing in (7.10). This means that for each γi+1 ∈ W we have

ν i ∂ b Q γi+1 i+1 ≥ ν i Q γi+1 i+1 - b b i (β i -ν (∂ b i Q i )) .
Thus

ν i (∂ b h) ≥ min γi+1 ν i d γi+1 ∂ b Q γi+1 i+1 ≥ ν d γi+1 + min γi+1 ν i Q γi+1 i+1 - b b i (β i -ν (∂ b i Q i )) = =ν i (h) - b b i (β i -ν (∂ b i Q i )) , (7.11) 
as desired (here the last equality holds because, by Definition 3.6, a Q i -free i-standard expansion is a finite sum of Q i -free i-standard monomials whose ν-value equals the minimum of the ν-values of the monomials). Let Q γi+1 i+1 be such an i-standard monomial. Let γi+1 = ( γ j | j ≤ i) and write

Q γi+1 i+1 = Q γi i Q γ i i .
We want to expand

∂ b Q γi+1 i+1 in terms of products of the form Q γ i -q i ∂ j 0 Q γi i q t=1 (∂ jt Q i ),
where q ≤ γ i and j 0 + j 1 + • • • + j q = b. Each such product appears in the sum with a certain positive integer coefficient that we will now compute explicitly.

To do that, we first prove some general formulae about Hasse derivatives of products and powers of polynomials. We start with the following generalized Leibniz rule. Lemma 7.5. For any two polynomials A(X), B(X) ∈ K[X] and any positive integer b, we have

∂ b (A(X)B(X)) = b j=0 (∂ j A(X))(∂ b-j B(X)). (7.12) 
Proof. Let m = deg X A(X) and n = deg X B(X). By definition, Hasse derivatives are the coefficients in Taylor expansions:

A(X + Y ) = m i=0 ∂ i A(X)Y i and B(X + Y ) = n i=0 ∂ i B(X)Y i .
We obtain

AB(X + Y ) = A(X + Y )B(X + Y ) = m+n b=0   b j=0 ∂ j A(X)∂ b-j B(X)   Y b .
Since the coefficients in the Taylor expansion are uniquely determined, this proves (7.12).

For positive integers a 1 ≤ • • • ≤ a q , let k denote the number of distinct elements in the set {a 1 , . . . , a q }. We define the multiplicities n 1 , . . . , n k of a 1 , . . . , a q as follows. Let n 1 be the number of appearances of a 1 in the sequence a 1 , . . . , a q . Let n 2 the number of appearances of the second smallest element of {a 1 , . . . , a q }, and so on until n k , which is, by definition, the number of appearances of a q .

Notation. Take an integer n ≥ q. Let C n (a 1 , . . . , a q ) = n!

(n-q)!•n 1 !•...•n k ! .
Lemma 7.6. For every polynomial B(X) and all positive integers b and n we have

∂ b (B(X) n ) = 1≤q≤n j 1 +•••+jq=b 0<j 1 ≤•••≤jq C n (j 1 , . . . , j q )B(X) n-q q t=1 (∂ jt B(X)) . (7.13) 
Proof. Let m = deg B(X). We have

B(X + Y ) n = m i=0 ∂ i B(X)Y i n = B(X) n + mn b=1   j 1 +•••+jn=b n t=1 ∂ jt B(X)   Y b , (7.14) 
where the j t run over non-negative integers; the j t are not necessarily ordered by size.

Next, we rewrite (7.14) in the following way. In each of the products appearing in parentheses on the right hand side of (7.14), we separate the terms with j t = 0 from those with j t > 0. Precisely, for each product appearing in parentheses on the right hand side of (7.14), let

q = # {t ∈ {1, . . . n} | j t = 0 } .
Then we can rewrite (7.14) as

B(X + Y ) n = B(X) n + mn b=1   n q=1 j 1 +•••+jq=b B n-q (X) q t=1 ∂ jt B(X)   Y b , (7.15) 
where the third sum is taken over all the distinct ways in which b can be written as the sum of q strictly positive integers j t . Again, the j t are not necessarily ordered by size. Now we have to count how often the same product B n-q (X)

q t=1
∂ jt B(X) appears in the third sum on the right hand side. Fix n non-negative integers j 1 , . . . , j n such that n t=1 j t = b. Renumber them so that

j 1 ≤ • • • ≤ j n .
How many distinct n-tuples can we obtain in (7.14) from the numbers j 1 , . . . , j n ? If all the j t are distinct then the number is n!. But if some of the j t 's are equal, then permuting them only among themselves does not produce new tuples. Similarly, if n -q ≥ 2, permuting the (n -q) factors in B n-q (X) among themselves does not produce new tuples. Let the numbers n 1 , . . . , n k be the multiplicities of the numbers j 1 , . . . , j n , defined above. Then the number of appearances of B n-q (X)

q t=1 ∂ jt B(X) is n! (n -q)! • n 1 ! • . . . • n k ! = C n (j 1 , . . . , j q ), (7.16) 
where 0 < j 1 ≤ • • • ≤ j q . This proves that the coefficient of Y b in (7.14) equals

1≤q≤n j 1 +•••+jq=b 0<j 1 ≤•••≤jq C n (j 1 , . . . , j q )B n-q (X) q t=1 (∂ jt B(X)) .
By definition of Hasse derivative, this coeffecient is nothing but ∂ b (B(X) n ). The proof is complete.

Lemma 7.7. For every two polynomials A(X) and B(X) and all positive integers b and n, we have

∂ b (A(X)B(X) n ) = 0≤q≤n j 0 +•••+jq=b 0<j 1 ≤•••≤jq C n (j 1 , . . . , j q )B(X) n-q (∂ j 0 A(X)) q t=1 (∂ jt B(X)) .
(7.17)

Proof. By Lemma 7.5, we have ∂ b (A(X)B(X) n ) = b j 0 =0 (∂ j 0 A(X))(∂ b-j 0 B(X) n ). Now Lemma 7.
7 follows from Lemma 7.6.

Coming back to the proof of Proposition 7.2 (1), we have

∂ b Q γi+1 i+1 = 0≤q≤γ i j 0 +j 1 +•••+jq=b 0<j 1 ≤•••≤jq C γ i (j 1 , . . . j q )Q γ i -q i ∂ j 0 Q γi i q t=1 (∂ jt Q i ) , (7.18) 
by Lemma 7.7. By Propositions 3.32 and 3.39 (2), we have

ν i (∂ jt Q i ) = ν (∂ jt Q i ) .
We have

β i -ν i (∂ jt Q i ) = β i -ν (∂ jt Q i ) ≤ j t b i (β i -ν (∂ b i Q i )) (7.19) 
by definition of b i . Further,

ν i Q γi i -ν i ∂ j 0 Q γi i = ν i 0 Q γi i -ν i 0 ∂ j 0 Q γi i ≤ j 0 b i (β i -ν(∂ b i Q i )), (7.20) 
where i 0 is sufficiently large with i 0 + = i, the equality holds because Q i does not appear in Q γi i and by Proposition 3.32, and the inequality by the induction assumption and in view of Lemma 7.4. Note that by Lemma 7.4 the inequality in (7.20) is strict whenever j 0 > 0. Adding the inequalities (7.19) for 1 ≤ t ≤ q and (7.20), we obtain:

ν i Q γi+1 i+1 -ν i Q γ i -q i ∂ j 0 Q γi i q t=1 (∂ jt Q i ) ≤ ≤ j 0 + j 1 + • • • + j q b i (β i -ν(∂ b i Q i )) = b b i (β i -ν(∂ b i Q i )). (7.21) 
By (7.18), (7.21) and since ν is non-negative on N (in particular, ν(C γ i (j 1 , . . . , j q )) ≥ 0), we have

ν i Q γi+1 i+1 -ν i ∂ b Q γi+1 i+1 ≤ ≤ ν i Q γi+1 i+1
-min (j 0 ,...,jq)

ν i Q γ i -q i ∂ j 0 Q γi i q t=1 (∂ jt Q i ) ≤ b b i (β i -ν(∂ b i Q i )), (7.22) 
as desired. Proposition 7.2 (1) is proved.

Now let the notation be as in Proposition 7.2 (2); in particular, b stands for b(i, h). To prove this part, we first show that replacing

ν i (∂ b h) by ν (∂ b i Q i ) p e d j,i Q j-p e i
gives equality in (7.2). Indeed, we have

ν i (h) -ν (∂ b i Q i ) p e d j,i Q j-p e i = ν i (h) -(p e ν i (∂ b i Q i ) + ν(d j,i ) + (j -p e )ν(Q i )) = =p e ν(Q i ) -p e ν(∂ b i Q i ) = b i p e b i (β i -ν i (∂ b i Q i )) = b b i (β i -ν i (∂ b i Q i )). (7.23) 
Therefore by part (1) of the Proposition, ν i (∂ b h) must be greater than or equal to

ν (∂ b i Q i ) p e d j,i Q j-p e i
and it is sufficient to prove that the i-standard expansion of ∂ b h contains a term of the form

dQ j-p e i with ν(d) = ν (∂ b i Q i ) p e d ji and all the other terms d Q j i satisfy either j = j -p e or ν i d Q j i > ν i dQ j-p e i .
We proceed by considering all the terms of the form Q γi+1 i+1 that appear in the i-standard expansion of h.

First, consider such a term appearing in d j,i Q j i , of minimal value. Write b = q t=1 j t , where q = p e and j t = b i for all t. For each Q i -free standard monomial Q γi i , appearing in d j,i , the corresponding term in (7.18) 

is j p e Q j-p e i Q γi i (∂ b i Q i ) p e by (7.16). Put d = j p e Q γi i (∂ b i Q i ) p e .
The binomial coefficient j p e is not divisible by p by definition of e and j, so ν j p e = 0. Using Proposition 3.32 and 3.39 (2) and Lemma 3.47, we obtain

ν(d) = ν (∂ b i Q i ) p e d j,i .
Now for any other choice of j 0 , j 1 , . . . , j q such that q = p e and q t=0 j t = b we would have at least one t ∈ {1, . . . , q} such that j t < b i . Therefore such terms satisfy strict inequality in (1) since they satisfy strict inequality in (7.20) or in (7.19) and hence their value is strictly greater than ν i dQ j-p e i . We obtain

ν i d j,i Q j i -ν i ∂ b d j,i Q j i = b b i (β i -ν(∂ b i Q i )) . (7.24) Now assume Q γi+1 i+1 is such that ν Q γi+1 i+1 > ν i d j,i Q j i . By (7.2) we have ν Q γi+1 i+1 -ν ∂ b Q γi+1 i+1 ≤ b b i (β i -ν(∂ b i Q i ))
and using (7.24) we find ν ∂

b Q γi+1 i+1 > ν i ∂ b d j,i Q j i = ν i dQ j-p e i . Now consider terms Q γi+1 i+1 that appear in an expression d m,i Q m i , m = j, such that ν Q γi+1 i+1 = ν i d j,i Q j i .
It is sufficient to show that for j = m -q = j -p e such terms satisfy the strict inequality in (7.2), so in view of (7.24) their valuation is strictly greater than ν i dQ j-p e i .

Take one such term. We have two cases. If m > j then, by definition of j, either

ν (d m,i Q m i ) > ν d j,i Q j i or ν (d m,i Q m i ) = ν d j,i Q j i and ν (p) (m) > ν (p) (j)
. By Proposition 7.2 (1), in either case such a term satisfies strict inequality in (7.2).

If m < j and m -q = j -p e then q < p e , so for any choice of j 0 , j 1 , . . . , j t with q t=1 j t = b we must have at least one t ∈ {1, . . . , q} such that j t < b i . Therefore such terms satisfy strict inequality in Proposition 7.1 (1) since they satisfy strict inequality in (7.20) or (7.19).

Remark 7.8. Let Corollary 7.9. For each ordinal i ≤ , each bi ∈ I i,max is of the form bi = p ẽi for some ẽi ∈ N 0 .

I i,max = bi ∈ N 0 β i -ν(∂ b i Q i ) b i = β i -ν(∂ bi Q i ) bi . ( 7 
In particular, b i = p e i for some e i ∈ N 0 . In the special case when char k ν = 0 we have p = 1 and so I i,max = {b i } = {1}.

Proof. Write bi = p ẽi u, where p | u if char k ν = p > 0, and p ẽi = 1 if char k ν = 0. We want to prove that u = 1. We argue by contradiction. Assume that u > 1. We claim that we can write bi Indeed, we can take b = p ẽi and b = p ẽi (u -1). Now, by Remark 7.12 below, p does not divide bi b and therefore its natural image in K is non-zero and its value is 0 (as usual, we view bi b as an element of K via the natural map N → K).

b ∂ bi = ∂ b • ∂ b , (7.26) 
Take i 0 as in (7.3), with b replaced by b . We have 

β i -ν ∂ bi Q i = (β i -ν (∂ b Q i )) + ν i 0 (∂ b Q i ) -ν i 0 ∂ bi Q i (7.29) ν i 0 (∂ b Q i ) -ν i 0 ∂ bi Q i ≤ b b i 0 β i 0 -ν ∂ bi 0 Q i 0 < b bi β i -ν ∂ bi Q i (7.
β i -ν(∂ b Q i ) > 1 - b bi β i -ν(∂ bi Q i ) = b bi β i -ν(∂ bi Q i )
which contradicts the fact that bi ∈ I i,max . Corollary 7.9 is proved.

Next, we investigate further the case of equality in (7.2). We give a necessary condition on h and b for the equality to hold in (7.2) and prove that this condition is sufficient under some additional assumptions. Finally, we derive a formula for in i h in the case when this criterion for equality in (7.2) holds. We start with the case when h is a single i-standard monomial. 

γ i = p e u, where p | u if p > 1. (7.32) 
(1) If equality holds in (7.2) then p e+e i b.

(2) We have the following partial converse to [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation I[END_REF]. Assume that (7.33) holds and that either b = p e+e i or I i,max = {b i }.

Then equality holds in (7.2) if and only if

ν u b/p e+e i = 0. (7.35) 
(3) Assume that (7.33)-(7.35) hold. Then Proof of Proposition 7.10. We go through the proof of Proposition 7.2 and analyze the case of equality at each step. We start with a general remark about binomial coefficients in positive and mixed characteristic.

in ν i ∂ b Q γi+1 i+1 = u b/p e+e i in ν i Q γi i Q γ i -b b i i (∂ b i Q i ) b b i ; (7.36) in particular, ∂ b Q γi+1 i+1 ≡ 0.
Remark 7.12. If char k ν = 0, we have ν γ j = 0 (7.37) for all non-negative integers j ≤ γ; similarly, ν(C γ i (j 1 , . . . , j q )) = 0 for every γ i and every qtuple (j 1 , . . . , j q ) as in (7.18). If char k ν = p > 0, the following is a well known characterization of the equality (7.37). Let γ = k 0 + pk 1 + • • • + p s k s and j = t 0 + pt 1 + • • • + p s t s , with k 0 , . . . , k s , t 0 , . . . , t s ∈ {0, 1, . . . , p -1}, denote the respective p-adic expansions of γ and j (where we allow one of the (s + 1)-tuples (k 0 , . . . , k s ) and (t 0 , . . . , t s ) to end in zeroes). Then (7.37) holds if and only if k j ≥ t j for all j ∈ {0, . . . , s}. (7.38) We recall the proof for the reader's convenience. For a positive integer n, recall that ν (p) (n!) denotes the p-adic value of n!. If n = n 0 + pn 1 + • • • + p s n s is the p-adic expansion of n, we have

ν (p) (n!) = n 1 + p 2 -1 p -1 n 2 + • • • + p s -1 p -1 n s .
Let γ -j = l 0 + pl 1 + • • • + p s l s be the p-adic expansion of γ -j. First, suppose that (7.38) holds. Then k j = t j + l j for all j. We have

ν (p) (γ!) = k 1 + p 2 -1 p-1 k 2 + • • • + p s -1 p-1 k s , (7.39) 
ν (p) (j!) = t 1 + p 2 -1 p-1 t 2 + • • • + p s -1 p-1 t s , (7.40) 
ν (p) ((γ -j)!) = l 1 + p 2 -1 p-1 l 2 + • • • + p s -1 p-1 l s (7.41)
Thus ν (p) (γ!) = ν (p) (j!) + ν (p) ((γ -j)!) and (7.37) holds. Conversely, assume that (7.38) is not true. Let (j 0 , j 0 + 1, . . . , j 1 -1, j 1 ) (7.42) be a maximal subsequence of (1, . . . , s) consisting of consecutive integers such that k j = t j + l j for j 0 ≤ j ≤ j 1 . Then k j 0 = t j 0 + l j 0 -p, k j = t j + l j -p + 1 for j 0 < j < j 1 and k j 1 = t j 1 + l j 1 + 1.

Thus the total contribution of (7.42) to ν (p) (γ!) -ν (p) (j!) -ν (p) ((γ -j)!) is This is proved by induction on a, the case a = 2 having been treated above. This gives a helpful necessary and sufficient condition for the equality ν(C γ i (j 1 , . . . , j q )) = 0 which will be used in the sequel. One consequence of the equivalent conditions stated in (7.43) is d ,j ≤ k j for all ∈ {1, . . . , a} and j ∈ {0, . . . , s}. (7.44)

p j 1 -1 p -1 - j 1 -1 j=j 0 +1 (p j -1) -p p j 0 -1 p -1 = j 1 -j 0 ≥ 1. The quantity ν (p) (γ!) -ν (p) (j!) -ν (p) ((γ -j)!)
Below, we will be particularly interested in the following special cases of (7.38):

(1) If γ = p e u with p | u (7.45) then (7.37) implies that p e | j.

(2) We have the following partial converse to (1): if γ is as in (7.45) and j = p e then (7.38) holds. Indeed, we have t e = 1, t j = 0 for j = e and k e ≥ 1. In this case since p e u-j p e -j ≡ 1 mod m ν for all j ∈ {1, . . . , p e -1}. This is the main situation in which Proposition 7.10 will be applied in this paper.

In the next Lemma, let j 0 , . . . , j t be as in the proof of Proposition 7.2. Lemma 7.13. (1) The inequality in (7.19) is strict unless j t ∈ I i,max .

(2) Let γ i and b i be as in (7.31)- (7.32). Assume that j 0 = 0, and j t ∈ I i,max for 1 ≤ t ≤ q.

(7.46) If ν(C γ i (j 1 , . . . , j q )) = 0 (7.47) then p e+e i b.

(7.48)

(3) Let the assumptions be as in [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF] and assume, in addition, that b = p e+e i . Then (7.47) holds if and only if q = p e and j 1 = • • • = j q = b i .

Proof. (1) is immediate from definitions.

(2) Let {p c 1 , . . . , p c } ⊂ I i,max with

e i ≤ c 1 < c 2 < • • • < c (7.49)
denote the set of distinct natural numbers appearing among {j 1 , . . . , j q } (cf. (7.46) and Corollary 7.9). For 1 ≤ j ≤ , let a j = #{t ∈ {1, . . . , q} | j t ≤ p c j }; let a 0 = 0. Then b = j=1 (a j -a j-1 )p c j . (7.50)

Assume that (7.47) holds. Apply Remark 7.12 (specifically, (7.44)), with a j -a j-1 playing the role of d j . By definition of e, we have p e | γ i , so the first e entries in the p-adic expansion of γ i are 0. By (7.44), the same must be true of each of a j -a j-1 . In other words, p e | a j for 1 ≤ j ≤ . (3) Assume, in addition, that b = p e+e i .

"Only if". From (7.49)-(7.51), we see that = 1 and a 1 = p e ; the result follows immediately.

"If". By assumptions, we have = 1 = q and a 1 = p e . By (7.16) and Remark 7.12 (2), we have

C γ i (j 1 , . . . , j q ) = C γ i (b i , . . . , b i p e ) = γ i p e = u mod m ν
and the result follows.

We can now finish the proof of Proposition 7. [START_REF] Cutkosky | On the construction of valuations and generating sequences on hypersurface singularities[END_REF]. By (7.20) and Lemma 7.13 (1), the inequality in (7.21) is strict unless j 0 = 0, and

j t ∈ I i,max . (7.52) 
By Lemma 7.13 (3), equality (7.47) holds, so we may apply Lemma 7.13 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF]. By Lemma 7.13

(2), the first inequality in (7.22) is strict unless j 0 = 0 and p e+e i | b. This proves (1) of the Proposition.

(2) Assume that (7.33) holds. If b = p e+e i , by Lemma 7.13 (3) there is exactly one term on the right hand side of (7.18) for which equality holds in (7.21), namely, the term with q = p e and j 1 = • • • = j q = b i . If I i,max = {b i }, then by Lemma 7.13 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation I[END_REF] there is at most one term on the right hand side of (7.18) for which equality holds in (7.21); if such a term exists, it is the term with q = b b i and j 1 = • • • = j q = b i . Moreover, this term satisfies equality in (7.21) if and

only if ν(C(b i , . . . , b i b/b i )) = ν γ i b/b i = ν u b/p e+e i
= 0, where the second equality follows from Remark 7.12. In either case, there is at most one term on the right hand side of (7.18) for which equality holds in (7.21), and there is exactly one such term if and only if ν u b/p e+e i = 0. This proves [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF].

(3) of the Proposition follows from ( 2) and (7.18).

Let

γ i = k 0 + pk 1 + • • • + p s k s ,
with k 0 , . . . , k s ∈ {0, 1, . . . , p-1}, denote the p-adic expansion of γ i . Take integers s ∈ {0, . . . , s},

k s ∈ {0, . . . , k s }. Let b = (k 0 + pk 1 + • • • + p s -1 k s -1 + p s k s )b i .
Corollary 7.14. For this b, equality holds in (7.2) for the monomial

h = Q γi+1 i+1 . The element in i ∂ b Q γi+1
i+1 is given by the formula (7.36).

Proof Then equality holds in (7.2). In particular, we have ∂ b h ≡ 0.

(3) Assume that (7.54) holds. Let S b i = j ∈ S i p e+1 does not divide j . Then

in ν i ∂ b h = j∈S b i in ν i j p e d j,i Q j-p e i (∂ b i Q i ) p e .
Proof.

(1), ( 2) and (3) of Proposition 7.15 follow, respectively, from (1), ( 2) and (3) of Proposition 7.10.

Corollary 7.16. In the notation of Proposition 7.15, assume that (7.54) holds. We have h / ∈ K x p e+e i +1 . (7.55)

Proof. Take b as in (7.54). Now the result follows from Proposition 7.15 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF].

Let the notation be as in Proposition 7.15.

Proposition 7.17. Take an element j ∈ S i . Write j = p e u, where

p | u if char k ν = p > 0.
Assume that p e+1 j for all j ∈ S i , j < j. (7.56)

Let u = t 0 + t 1 p + • • • + t s p s be the p-adic expansion of u. Then

ν i (∂ jb i h) = ν i (h) -j(β i -ν(∂ b i Q i )), (7.57) 
in ν i ∂ jb i h =   s q=1 t q !   in ν i d j,i (in ν i ∂ b i Q i ) j + terms involving in ν i Q i . (7.58) 
For every j = j we have

ν i (h) -ν i (∂ j b i h) j ≤ ν i (h) -ν i (∂ jb i h) j , (7.59) 
and the inequality is strict whenever j / ∈ S i or j < j.

Proof. By ( Here is an alternative, more explicit explanation of (7.58). Take j ∈ {j, . . . , s} and apply (7.18) to one of the monomials appearing in d j ,i Q j i (we take γ i = j and b = jb i in (7.18)), in order to decide which values of j and which decompositions

ν i ∂ jb i d j,i Q j i = ν i d j,i Q j i -j(β i -ν(∂ b i Q i )) (7.60) and ν i (∂ jb i h) = ν i (h) -j(β i -ν(∂ b i Q i )); ( 7 
j 0 + • • • + j q = b contribute to in i ∂ b h.
If either j > j, q = j, j 0 = 0 or j t = b i for some t ∈ {1, . . . , j} then, by definition of b i , the corresponding term in (7.18) is either divisible by Q i or has ν i -value strictly greater than

ν i d j,i Q j i -j(β i -ν(∂ b i Q i ))
. This proves (7.58). Let q c q,i Q q i denote the i-standard expansion of ∂ jb i h. The above considerations prove that c 0,i coincides with the coefficient of Q 0 i in the i-standard expansion of d j,i (∂ b i Q i ) j modulo an element of higher ν i -value. In particular, c 0,i = 0 and ν(c 0,i ) = ν i (c 0,i ).

(7.62)

We have 

ν(c 0,i ) = ν i (∂ jb i h) = ν i ∂ jb i d j,i Q j i = ν i d j,i Q j i -j(β i -ν(∂ b i Q i )). ( 7 
ν i (h) = min 0≤j≤s {ν i (∂ jb i h) + j(β i -ν(∂ b i Q i ))} (7.64)
and the minimum in (7.64) is attained for all j ∈ S i , satisfying (7.56).

Infinite sequences of key polynomials

In this section, we take an ordinal such that + t ∈ Λ and α +t = 1 for all t ∈ N. Take an element h ∈ K[x]. Proposition 4.7 (1) implies that δ +t (h) stabilizes for t sufficiently large. Let δ(h) denote this stable value of δ +t (h). For a positive integer t we have

δ +t (h) = 0 =⇒ ν(h) = ν +t (h) =⇒ δ +t+1 (h) = 0.
Thus saying that ν(h) = ν +t (h) for all t sufficiently large is equivalent to saying that δ +t (h) = 0 for all t sufficiently large. Assume that there exists h ∈ K[x] such that ν(h) > ν +t (h) for all t ∈ N (8.1) (in other words, δ +t (h) > 0 for all t ∈ N and + ω ∈ Λ); put h = Q +ω . One of the three main results of this section says that δ(h) has the form p e for some e ∈ N 0 (in particular, δ(h) = 1 if char k ν = 0). To prove this, we use differential operators and their properties derived in §7.

The second main result of this section is the statement that if either char k ν = 0 or p | δ(h) then the sequences (β +t ) t∈N and (ν +t (h)) t∈N are unbounded in Γ0 (this is precisely the situation of Proposition 5.6 of subsection 5.2); in particular, the set Q +ω of key polynomials is Γ0 -complete by Proposition 5.6. Finally, in Remark 8.7 we take = 1 and assume that α t = 1 for all t ∈ N and that the sequence {β t } t∈N is unbounded in Γ0 . We show that h ∈ K x δ(h) .

Replacing by + t for a sufficiently large t, we may assume that δ +t (h) = δ(h) for all positive integers t. Below the ordinal i will run over the set { + t | t ∈ N 0 }. By definition, for all such i we have

Q i+1 = Q i + z i , (8.2) 
where z i is a homogeneous Q -free standard expansion of value β i (cf. Proposition 3.13). By Proposition 3.14 (2), we have deg

x z i < deg x Q i . (8.3) Finally, in ν Q i = -in ν z i (8.4)
by (5.14). As before, let

h = s i j=0 d j,i Q j i
be an i-standard expansion of h for i ≥ , where each d j,i is a Q -free i-standard expansion. Note that since α +t = 1 for t ∈ N 0 , we have

deg x Q i = i j=2 α j = j=2 α j = deg x Q
and so Proof. Write Q i+1 = Q i + z i , as above.

s i = deg x h deg x Q i = deg x h deg x Q = s . ( 8 
Lemma 8.2. For each b ∈ N we have

β i -ν(∂ b z i ) b < β i -ν(∂ b i Q i ) b i . (8.6) If, in addition, b ≥ b i , then β i+1 -ν(∂ b z i ) b < β i+1 -ν(∂ b i Q i ) b i . (8.7)
Proof. Let i denote the smallest ordinal such that 

ν i (z i ) = ν(z i ) and ν i (∂ b z i ) = ν(∂ b z i ); ( 8 
i -ν(∂ b i Q i ) b i > β i -ν(∂ b i Q i ) b i . (8.9) 
Combining (8.9) with (7.2), we obtain

ν i (z i ) -ν i (∂ b z i ) b ≤ β i -ν(∂ b i Q i ) b i < β i -ν(∂ b i Q i ) b i , (8.10) 
which gives the inequality (8.6). If b ≥ b i , (8.7) follows immediately by adding the inequality 

β i+1 -β i b ≤ β i+1 -β i b i to (8.6). Corollary 8.3. We have ν(∂ b i z i ) > ν(∂ b i Q i ) = ν(∂ b i Q i+1 ). ( 8 
β i+1 -ν(∂ b i+1 z i ) b i+1 < β i+1 -ν(∂ b i Q i ) b i . (8.13) 
We have

β i -ν(∂ b i+1 Q i ) b i+1 ≤ β i -ν(∂ b i Q i ) b i (8.14)
by definition of b i . Combining (8.14) with (8.12), we obtain

β i+1 -ν(∂ b i+1 Q i ) b i+1 < β i+1 -ν(∂ b i Q i ) b i . (8.15) 
We can rewrite (8.13) and (8.15) as (8.17)

min{ν(∂ b i+1 Q i ), ν(∂ b i+1 z i )} > β i+1 - b i+1 b i (β i+1 -ν(∂ b i Q i )) . (8.16) Since ∂ b i+1 Q i+1 = ∂ b i+1 Q i + ∂ b i+1 z i , (8.16) shows that ν(∂ b i+1 Q i+1 ) > β i+1 - b i+1 b i (β i+1 -ν(∂ b i Q i )) ,
Then β i+1 -β i b < β i+1 -β i b i . (8.18)
By definition of b i , we have 

β i -ν(∂ b Q i ) b ≤ β i -ν(∂ b i Q i ) b i . ( 8 
β i+1 -ν(∂ b Q i+1 ) b < β i+1 -ν(∂ b i+1 Q i+1 ) b i+1 , so b / ∈ I i+1,max
. This proves the Corollary.

Recall that δ(h) denotes the stable value of δ +t (h) for all sufficiently large integers t. Set δ := δ(h). Replacing by + t for a suitable integer t, we may assume that δ +t (h) = δ for all t ∈ N. Write δ = p e u, where p | u if p > 1.

If char k ν = 0, equations (5.3) and (4.10) imply that d δ-1, = 0 and

g 1, = Q + in ν d δ-1, δ d δ, . (8.20) 
If char k ν = p > 0 then, according to Proposition 4.7 (2) and using the notation of (3.42), we see that for

i = + t, t ∈ N 0 , δ -p e ∈ S i (h) (8.21) 
(in particular, d δ-p e ,i = 0) and

in i z i = in i d δ-p e ,i u in i d δ,i 1 p e . ( 8.22) 
The equation (4.10) rewrites as in h = in ν d δ, g δ 1, .

Take ordinals i and 1 such that < 1 < i < + ω. Next, we prove a comparison result showing that the coefficient d δ,i agrees with d δ, 1 modulo terms of sufficiently high value.

Proposition 8.5. Assume that

δ i+1 (h) = δ (h) = δ. (8.24) We have d δ,i ≡ d δ, 1 mod P ν(d δ, 1 )+min ν + 1 (h)-ν 1 (h),β 1 -β . (8.25)
Proof. By definitions, we have

Q i = Q 1 + z 1 + • • • + z i-1
, where the z i are homogeneous Q ifree i-standard expansions. For simplicity, write z := z 1 + • • • + z i-1 . We will compare the 1 -standard expansion of h with the i-standard one. To this end, we substitute 

Q i = Q 1 + z into the i-standard expansion of h. We obtain h = s i j=0 d j,i Q j i = s i j=0 d j,i (Q 1 + z) j . ( 8 
in ν i g = v in ν i d δ,i (∂ b i Q i ) p e (Q i + z i ) δ-p e .
In particular,

ν(g) > ν d δ,i (∂ b i Q i ) p e + δβ +t -p e β +t = ν d δ,i (∂ b i Q i ) p e + p e (v -1)β +t = ν i (g)
(here is where we are using v > 1). Now, h was defined as h = Q +ω , in other words, h is assumed to have minimal degree among all the polynomials satisfying ν(h) > ν i (h). This is a contradiction. The Proposition is proved.

Remark 8.7. Let the notation be as in Proposition 8.6. Assume, in addition, that the sequence {β +t } is unbounded in Γ0 . Then ν(h) / ∈ Γ0 . Assume that char k ν = char K, = 1 and α t = 1 for all t ∈ N.

(8.30)

In particular, b t = 1 for all t ∈ N and b ∞ = 1. Let e ω be the integer e of Proposition 8.6.

We have p eω = δ. We claim that

h ∈ K x δ ; (8.31) 
in particular, for all strictly positive integers b < δ we have 

∂ b h = 0. ( 8 
in h = δ = 1, so in h = in (Q + d 0, ) . (8.39) 
In view of (8.1), we have d 0, = 0 and

ν(Q ) < ν (Q + d 0, ) , (8.40) 
hence in ν Q = -in ν d 0, . (8.41) 
We have Q + d 0, ∈ T . Put w 1 := d 0,

and Q +1 = Q + w 1 . From now till the end of the proof, for every object X pertaining to the key polynomials Q i let us use the notation X for the analogous object pertaining to the key polynomials Qi that we are about to construct. Let A denote the Z-subalgebra of K[x] generated by x and the finitely many coefficients of the polynomial Q . The ring A is noetherian. We have Q

+1 ∈ A. Let h = s j=0 dj, +1 Qj +1 (8.42)
be the ( + 1)-standard expansion with respect to Q +1 . Since δ = 1, we have ν d j, Q j > β whenever j > 1. Hence ν dj, +1 Qj +1 > β +1 whenever j > 1. The expression (8.42) contains the term Q +1 (with coefficient equal to 1 modulo terms of strictly positive value).

Since the set ν(T ) does not have a maximal element, there exists We now iterate the procedure with Q replaced by Q +1 . Precisely, assume that w 1 , . . . , w t and Q +q = Q + w q ∈ A, q ∈ {1, . . . , t} are already constructed, ν(h) > ν +1 (h) (8.44) and δ +t = d1, +t = 1. By Proposition 4.7 (2), applied to the newly constructed set

i = + t, t ∈ N, such that ν i (h) = β i > β +1 ≥ ν +1 (h). ( 8 
Q +1 Q +q q∈{1,...,t}
of key polynomials, we have

in +t h = in +t Q +t + in ν d0, +t . (8.45) 
Note that (8.44) and (8.45) imply that d0, +t = 0. We now define

w t+1 := w t + d0, +t and Q +t+1 = Q + w t+1 . We have Q +t+1 ∈ A.
This completes the recursive construction. Notice that all the elements w t and Q +t lie in the noetherian ring A. Localizing A at the prime ideal A ∩ M ν , we may further assume that A is a local noetherian ring. Lemma 8.11. Let µ be a rank one valuation, centered in a local noetherian domain (R, M, k) (that is, non-negative on R and strictly positive on M ). Let

Φ = µ(R \ {0}) ⊂ Γ0 .
Then Φ contains no infinite strictly increasing bounded sequences.

Proof. An infinite ascending sequence α 1 < α 2 < . . . in Φ, bounded above by an element β ∈ Φ, would give rise to an infinite descending chain of ideals in R I β , where I β denotes the µ-ideal of R of value β. Thus it is sufficient to prove that R I β has finite length. Let := µ(M ) ≡ min(Φ \ {0}). Since µ is of rank one, there exists n ∈ N such that β ≤ n . Then M n ⊂ I β , so that there is a surjective map R Applying Lemma 8.11 to the local noetherian ring A M HA M and using the fact that the sequence β i is strictly increasing with i, we obtain that {β i } is unbounded in Γ0 , as desired. Remark 8.12. Take a polynomial g ∈ K[x] such that ν +t (g) < ν(g) for all t ∈ N, not necessarily of the smallest degree. Let δ := δ(g) denote the stable value of δ +t (g) for t ∈ N sufficiently large. Assume that p e = 1 in the notation of (8.29) (in other words, either char k ν = 0 or char k ν = p > 0 and p | δ). For i = + t with t sufficiently large we have ν i (g) = ν(d δ,i ) + δβ i with ν(d δ,i ) independent of i. Thus ν i (g) is unbounded in Γ0 .

Limit key polynomials in the case of fields of positive (equi-) characteristic

In this section, we assume that char k ν = char K = p > 0. We assume that we have a set of key polynomials {Q i } i∈Λ such that Λ contains at least one limit ordinal. Let + ω ∈ Λ be a limit ordinal. Assume that the sequence {ν(Q +t )} t∈N is bounded in Γ0 . The main result of this section, Proposition 9.2, says that the polynomial Q +ω can be chosen in such a way that there exist i 0 = + t 0 ∈ Λ, t 0 ∈ N (so that i 0 + = + ω), such that the i 0 -standard expansion of Q +ω is weakly affine.

Remark 9.1. If = 0 and deg x Q t = 1 for all t ∈ N, this result was proved by I. Kaplansky. In Kaplansky's terminology x is a limit of a pseudo-convergent sequence {ρ j } j of algebraic type in K, and Q +ω is a monic polynomial of minimal degree, not fixing the values of {ρ j } j (see [START_REF] Kaplansky | Maximal Fields with valuations I[END_REF], Lemma 10, page 311). In the special case = 0 and deg x Q t = 1 for all t ∈ N, the polynomial Q +ω is an additive polynomial plus a constant. Kaplansky later called such polynomials "ppolynomials".

Let the notation be as in §5.2. Write δ = p e 0 with e 0 ∈ N (we know that δ is a power of p by Proposition 8.6).

For a technical reason that will become apparent later, we will assume (without loss of generality) that is not a limit ordinal.

Recall the definition of β:

β = sup { ν (Q +t ) | t ∈ N} .
Proposition 9.2. The polynomial Q +ω can be chosen in such a way that there exists i ∈ { + t} t∈N 0 such that the i-standard expansion Q +ω = δ j=0 c j,i Q j i of Q +ω is weakly affine and monic of degree p e 0 in Q i , with β ≤ 1 p e 0 ν (Q +ω ) (9.1) and ν(c j,i ) = (p e 0 -j) β whenever j > 0 and c j,i = 0. (9.2)

Proof. Let f = Q +ω be a limit key polynomial; we have

ν(f ) > ν +t (f ) for all t ∈ N. (9.
3)

The idea is to gradually modify the polynomial f until we arrive at a limit key polynomial g satisfying the conclusion of the Proposition.

For i = + t, t ∈ N, let f = δ j=0 a j,i Q j i (9.4)
denote an i-standard expansion of f . By Proposition 5.3, the polynomial f is of degree δ deg x Q .

In particular, we have a δ,i = 1. Choose i 0 ≥ sufficiently large so that

β i 0 -α β -1 > 2p e 0 ( β -β i 0 ). ( 9.5) 
Before plunging into technical details, let us try to informally outline the strategy of the proof. Let (γ, l) be the coordinate system on the plane where the Newton polygon ∆ i (f ) lives. Conclusion (9.2) of the Proposition says that for each monomial a j,i Q j i , j > 0, appearing in (9.4) the pair (ν(c j,i ), j) lies on the "critical line" γ + l β = p e 0 β. Assume that for a certain i ≥ i 0 the i-standard expansion (9.4) does not satisfy the conclusion of the Proposition. This means that at least one of the monomials a j,i Q j i , j > 0, appearing in (9.4), has one of the following properties:

(a) the point (ν(a j,i ), j) lies strictly above the critical line γ + l β = p e 0 β (b) the point (ν(a j,i ), j) lies strictly below the critical line (c) the point (ν(a j,i ), j) lies on the critical line and j is not a power of p.

In general, momomials a j,i Q j i lying strictly above the critical line cannot be immediately discarded, because they could give rise to monomials on or below the critical line in the (i + 1)standard expansion of f after the substitution Q i = Q i+1 -z i . However, this problem does not occur if ν a j,i Q j i is sufficiently large, that is, if our monomial lies far enough above the critical line (this fact, as well as the precise meaning of "sufficiently large", is explained in the Remark below). Such monomials are called i-superfluous. We define a monomial to be bad if it is not i-superfluous and satisfies one the conditions (a)-(c) above. We analyze all three types of bad monomials and show, after three lemmas, that all of the bad monomials disappear for some i < + ω sufficiently large.

In the rest of the proof of the Proposition we will consider ordinals i satisfying + ω > i ≥ i 0 .

Definition 9.3. Take an ordinal i, i 0 ≤ i < + ω. A polynomial g ∈ K[x] is said to be i-superfluous if ν i (g) ≥ p e 0 β + (p e 0 -j) β -β i . (9.6)

Let i be an ordinal such that i ≤ i < + ω. Take an integer j, 1 ≤ j < p e 0 . The monomial a j,i Q j i is said to be i-superfluous if it is i-superfluous viewed as an element of K[x].

The set of all i-superfluous polynomials wil be denoted by SU P i .

Remark 9.4. A monomial a j,i Q j i is i-superfluous if and only if ν(a j,i ) + j β ≥ 2p e 0 β -p e 0 β i . (9.7)

In particular, SU P i ⊂ SU P i+1 . (9.8)

Remark 9.5. Let i, i be as above. Consider an i-superfluous monomial a j,i Q j i appearing in the i-expansion of f . By Proposition 3.39 (2), we have ν i a j,i Q j i = ν a j,i Q j i . Hence ν i a j,i Q j i ≥ 2p e 0 β -p e 0 β i + jβ i -j β > p e 0 β > p e 0 β i = ν i (f ). (9.9)

Then in i f -a j,i Q j i = in i f and

ν i f -a j,i Q j i < ν f -a j,i Q j i .
Thus replacing f by f -a j,i Q j i does not affect the condition (9.3); f -a j,i Q j i is still a limit key polynomial with index + ω. Remark 9.10. We want to compare the Q i -and the Q i+1 -expansions of f . To do that, write f = δ j =0 a j ,i (Q i+1 -z i ) j .

(9.16)

Consider an integer j of the form j = p e , e ∈ {1, . . . , e 0 -1}. Then a j ,i (Q i+1 -z i ) j = a j ,i Q p e i+1 -a j ,i z p e i .

(9.17)

In general, the right hand side of (9.17) need not be a Q i+1 -expansion, since deg x a j ,i z p e i may be quite large, even as large or larger than deg x Q p e i+1 . However, the Q i+1 -expansion of a j ,i (Q i+1 -z i ) p e is obtained from it by Euclidean division by Q i+1 , as follows. Write a j ,i z p e i = Q i+1 g + r a j ,i z j i with deg x r a j ,i z j i < deg x Q i+1 (here r a j ,i z j i is the remainder of the Euclidean division of a j ,i z j i by Q i+1 ). By Lemma 3.47 and Corollary 3.42 we have ν -1 a j ,i z p e i = ν a j ,i z p e i = ν i+1 a j ,i z p e i , and

ν i+1 (Q i+1 g) -ν a j ,i z p e i ≥ β i+1 -α β -1 . (9.18) 
Hence ν i+1 (Q i+1 g) -(β i+1 -α β -1 ) ≥ ν a j ,i z p e i ≥ p e 0 β i . Thus Q j i+1 -r a j ,i z j i is a Q i+1expansion and ν i+1 a j ,i z j i -r a j ,i z j i ≥ p e 0 β i + (β i+1 -α β -1 ), and hence, using (9.5), we have a j ,i z j i -r a j ,i z j i ∈ SU P i+1 . (9.19) Exactly the same analysis can be carried out for every j ∈ {1, . . . , p e 0 -1 }, regardless of whether j is a power of p, but the notation is simpler in the p-power case which is enough for our purposes.

Notation. For j ∈ {0, . . . , δ -1} write Sup j,i (f ) = {s ∈ {j + 1, . . . , δ}} | a s,i Q s i is i-superfluous } and N S j,i (f ) = {j + 1, . . . , δ} \ Sup i (f ).

Proof of Lemma 9.7. Let j = j(i). Since j is the greatest element of N S 0,i satisfying one of the conditions (1)-(3) of Definition 9.6, every j ∈ N S j,i is a power of p and satisfies ν(a j ,i ) = (p e 0 -j ) β. (9.20) We want to analyze the monomial a j,i+1 Q j i+1 in the Q i+1 -expansion of f . Let b = p e b ∞ . Arguing as in the proof of Lemma 9.7, we can show that j(i) and ν(a j,i ) remain unchanged as i increases. Moreover, after suitably increasing and i, we may assume that b = b i = b ∞ (by Proposition 8.1) and deg x Q = deg x Q i . Let us denote the common value of deg x Q and deg x Q i by ᾱ∞ . By Corollary 8.4 there is at most one value of i = + t, t ∈ N, for which #I i,max > 1. Hence, increasing and i, we may assume, in addition, that I i ,max = {b ∞ } for all i ≥ . (9.24)

Finally, increasing and i again, if necessary, and using (9.24), we may assume that

β i -β > δb ∞ ( β -β i ). (9.25)
We continue to use the notation of (9.10) for the i-expansion of f i .

For each polynomial a with deg x a < deg x Q i (9.26) by Proposition 3.32 (applied separately to i and then to i replaced by and using the fact that neither nor i are limit ordinals), we have ν (a) = ν i (a) = ν(a). For each b ∈ N and each i , < i < + ω, we have

ν(∂ b a) = ν (∂ b a) ≥ ν(a) - b b ∞ (β -ν(∂ b∞ Q )) = =ν(a) - b b ∞ (β i -ν(∂ b∞ Q i )) + b b ∞ (β i -β ) > >ν(a) - b b ∞ (β i -ν(∂ b∞ Q i )) + 2p e 0 b b ∞ ( β -β i ) (9.27) 
by Proposition 7.2.

Remark 9.11. For i = + t , t ∈ N (the integer t is strictly positive here), we trivially have In particular, the quantity ν (∂ b∞ Q +t ) is independent of t ∈ N.

ν (∂ b∞ Q i ) = ν (Q i ) -(β i -ν (∂ b∞ Q i )) . ( 9 
Remark 9.12. By (9.24), for all i > and all b ∈ {1, . . . , b} \ {b ∞ } we have

β i -ν(∂ b∞ Q i ) b ∞ > β i -ν(∂ b Q i ) b . (9.30) 
Assume that In particular, the quantity ν (∂ b Q i ) is the same for all those i that satisfy (9.31). In this way, we have generalized Remark 9.11 from the case of the pair (b ∞ , i ) to the case of every pair (b , i ) satisfying (9.31).

β i -ν(∂ b∞ Q i ) b ∞ - β i -ν(∂ b Q i ) b < 1 b ∞ (β i -β ). ( 9 
By Lemma 7.7, for all s, t ∈ N, letting i = + t , we have

∂ b a s,i Q s i = 0≤q≤s j 0 +•••+jq=b 0<j 1 ≤•••≤jq
C s (j 1 , . . . , j q )Q s-q i ∂ j 0 a s,i q t=1 (∂ jt Q i ) , (9.33) so

∂ b f = δ s=0 0≤q≤s j 0 +•••+jq=b 0<j 1 ≤•••≤jq
C s (j 1 , . . . , j q )Q s-q i ∂ j 0 a s,i q t=1 (∂ jt Q i ) .

(9.34) Remark 9.13. ( 1) Consider an integer s ∈ {1, . . . , j -1} ∪ Sup j,i . We have

ν a j,i Q j i < ν a s,i Q s i . (9.35) 
Indeed, (9.35) holds for s ∈ {1, . . . , j -1} by (9.22)-(9.23), with i replaced by i , since β i < β. It holds for s ∈ Sup j,i since, by (9.9) (with i replaced by i ), each i -superfluous monomial has value strictly greater than p e 0 β > ν a j,i Q j i .

(2) By definition of j = j(i) = j(i ), every s ∈ N S j,i (f ) is of the form s = p e . Since s > j, we have e > e.

By (7.12), we have C s (j 1 , . . . , j q ) = 0 unless j 0 = 0, q = s = p e (in particular, s ≤ b) and j 1 = • • • = j q = b p e . (3) By ( 1) and ( 2), for every non-zero term C s (j 1 , . . . , j q )Q s-q i ∂ j 0 a s,i q t=1 (∂ jt Q i ) on the right hand side of (9.34), at least one of the following three conditions holds: This shows that to prove the Claim it is sufficient to restrict attention to the terms C s (j 1 , . . . , j q )Q s-q ir (∂ j 0 a s,ir ) We will use the formulae (9.40) and (9.41) which are valid for all s ∈ {0, . . . , δ}. Let us take the limit as r tends to ∞ separately of each summand on the right hand side of (9.40). By (9.41), we have lim r→∞ ν a j,ir Q j ir ≤ lim r→∞ ν a s,ir Q s ir . Applying (9.30) with i = i r for each r ∈ N and passing to the limit as r goes to infinity, we obtain By the Claim, for all r ∈ N we have ν(∂ b f ) = ν Q j-p e ir a j,ir (∂ b∞ Q ir ) p e with the left hand side independent of r and the right hand side -a strictly increasing linear function of r, which gives the desired contradiction. This completes the proof of Lemma 9.9. Let j = j(i). By Lemma 9.9 the inequality (9.12) holds for j. By Lemma 9.7 (cf. (9.15)), in ν a j,i is independent of i ≥ i 0 . Since β -β i can be made arbitrarily small as i → i 0 + = + ω, by (9.12), taking i 1 sufficiently large, we can ensure that ν (a j,i ) + j β ≥ 2p e 0 β -p e 0 β i 1 .

(9.44) Take the smallest i 1 satisfying (9.44). By the minimality of i 1 , Lemma 9.7 (specifically, (9.15)) and induction on i , i ≤ i < i 1 , we see that the monomial a j,i Q j i remains bad for i ≤ i < i 1 and that ν (a j,i ) = ν (a j,i 1 ) . (9.45) From (9.44)-( 9.45) we obtain ν (a j,i 1 ) + j β ≥ 2p e 0 β -p e 0 β i 1 .

(9.46)

Thus the monomial a j,i 1 Q j i 1 is i 1 -superfluous. Therefore j(i 1 ) < j(i ) for all i < i 1 .

(9.47)

Since the strict inequality (9.47) can occur for at most finitely many values of i 1 , there exists i 2 < + ω such that f containing no bad monomials. Let Q +ω be equal to f minus the sum of all the i 2 -superfluous monomials of f . Now, Q +ω is monic of degree p e 0 ᾱi and satisfies (9.1). It contains no i 2 -superfluous or bad monomials, hence it satisfies (9.2); in particular, it is weakly affine. The polynomial Q +ω satisfies (9.3) and so is a limit key polynomial by Remark 9.5. This completes the proof of Proposition 9.2.

Remark 9.14. The property that the i 2 -standard expansion of Q +ω is weakly affine is not preserved when we pass from i 2 to some other ordinal i 2 + t, t ∈ N. However, the above results show that for all i of the form i = i + t, t ∈ N 0 , Q +ω is a sum of a weakly affine expansion in Q i all of whose monomials a j,i Q j i for j > 0 lie on the critical line ν(a j,i ) = (p e 0 -j) β and another i -standard expansion of degree strictly less than p e 0 ᾱ , all of whose monomials are i -superfluous.

  4) of Definition 3.11 (b) and (3.15) (recall that (3.13) can only fail if i = max Λ).

  3.41) by Definition 3.11 (b) (4) and (3.15) and ν Q γi 0 i 0 < β i 0 by Proposition 3.28 with i replaced by i 0 . Combining the last inequality with (3.41), we obtain ν

  11 (b) (5)). By (3.47) we have j in ν θ j = 0 in G ν (otherwise we would have an algebraic relation satisfied by in ν

  .60) Then the Proposition holds by Propositions 3.35 and 3.36. Next, suppose that (3.56)-(3.57) hold and sup {β i | i < i } < ∞. Since (3.59) is obtained from h by iterating Euclidean division by Q i which is monic, and in view of Proposition 3.29, we have ν(c j ) ≥ 0 for all j ∈ {0, . . . , s}. (3.61) By definition of standard expansion, each c j in (3.59) is a Q i -free i-standard expansion. Then ν i (c j ) = ν(c j ) for 0 ≤ j ≤ s. By (3.56) and (3.61),

  .70) and ν i 0 (d ) = ν(d ) (3.71) Then j ≥ j . If at least one of the inequalities (3.68), (3.69) is strict then j > j . Remark 3.41. If i = i 0 + 1 then assumptions (3.70) and (3.71) hold automatically by Corollary 3.

  73) and ν(d) + jβ i+t ≥ ν(d ) + j β i+t (3.74) Subtract (3.73) from (3.74) and use (3.72). The result follows. Corollary 3.42. Keep the notation of the last lemma. Assume that

  .84) Adding up (3.83) and (3.84), subtracting the result from (3.82) and using the fact that j ≥ 1, we obtain (3.81). Corollary 3.45. (1) Conclusion (2) i holds.

  .90) Now, r in (3.86) is nothing but the constant term in the (i + t)-standard expansion of s j=1 f j , whereas qQ i+t is the sum of all the remaining terms in this (i + t)-standard expansion. Now the inequality of the Lemma is a special case of Lemma 3.44. The fact that ν(r) = ν s j=1 f j follows immediately from this by the ultrametric triangle law.

  Qi in view of Proposition 3.31 and the identification G (i) < ᾱi ∼ = G < ᾱi given by φ.

( 4 . 20 )

 420 by Lemma 3.43, so the hypotheses of Lemma 3.40 are satisfied (note that (3.70) and (3.71) hold by definition of ν i and Q i -expansion of h). ByLemma 3.40 

  and f was chosen of minimal degree subject to inequality (5.21), we must have degx f = deg x f 2 = δ deg x Q . Corollary 5.5.We have equalities (3.14) and (3.15) (with i replaced by + ω and i 0 replaced by + t, t ∈ N). In particular, the set {Q i } i∈Λ + is a set of key polynomials for ν.

Remark 7 . 1 .Proposition 7 . 2 .

 7172 Consider e, b, b ∈ N such that b | p e (this holds, in particular, whenever b < p e ) and p e | b . Then (x + ∆x) b ∈ K x p e , ∆x p e , so ∂ b x b = 0. Take an element h ∈ K[x] \ {0}.

Remark 7 . 3 .

 73 For all b ∈ N we have deg x ∂ b Q i < ᾱi . By Proposition 3.32 there exists an ordinal i 0 such that i 0 + = i and ν(∂ b

  x, b i = 1 and b = p e . Write h = s j=0 d j,0 x j . For b = 0 and for b > s, (7.2) is trivially true.

ν 0

 0 ), then ν 0 (h) = ν 0 (d j,0 x j ) = ν(d j,0 ) + jβ 0 . By definition of e and b, we have ν 0 ∂ p e d j,0 x j = ν 0 j p e d j,0 x j-p e = ν 0 j p e + ν(d j,0 ) + (j -p e )β 0 = =ν(d j,0 ) + jβ 0 -p e β 0 = ν 0 (h) -p e β 0 .(7.4)

. 25 )

 25 By definition, we have b i = min I i,max . Proposition 7.2 (1) holds equally well with b i replaced by any bi ∈ I i,max . Similarly, Lemma 7.4 holds if the pair (b i , b i ) is replaced by bi , bi with bi ∈ N, bi ∈ I i ,max .

  where b , b are strictly positive integers such that b + b = bi (

Proposition 7 . 10 .

 710 Consider an i-standard monomial h = Q γi+1 i+1 . Write b i = p e i and (7.31)

Remark 7 . 11 .

 711 If b = p e+e i holds in Proposition 7.10 (2) then b p e+e i = 1 and u b/p e+e i = u, so (7.35) holds automatically in this case.

γ j = p e u p e = p e u(p e u - 1 )

 1 • . . . • (p e u -p e + 1) p e ! ≡ u mod m ν

  (7.51) (7.49)-(7.51) imply (7.48), as desired.

  .61) this proves (7.57). (7.58) follows from Proposition 7.15 (3), by induction on u. Finally, the last statement of the Proposition follows from Proposition 7.15 (1) and (3), by induction on u. Remark 7.18.

. 63 )

 63 Corollary 7.19. We have

. 5 ) 8 . 1 .

 581 Proposition For each i of the form i = + t, t ∈ N, we have b i+1 ≤ b i .

. 11 )

 11 Proof. The inequality in(8.11) is a special case of (8.6) when b = b i . The equality in(8.11) follows immediately from the inequality by the ultrametric triangle law. To prove Proposition 8.1, we argue by contradiction. Suppose that b i+1 > b i . (8.12) Letting b = b i+1 in Lemma 8.2, we obtain

1 . 8 . 4 .

 184 which contradicts the definition of b i+1 . This completes the proof of Proposition 8.Corollary Keep the above notation. Assume that b i+1 = b i . Then I i+1,max = {b i+1 }. Proof. Take an integer b > b i+1 = b i .

  M n R I β . Thus R I β has finite length, as desired. Coming back to the proof of the Proposition, let H = {a ∈ A | ν(a) / ∈ Γ0 } and M = {a ∈ A | ν(a) > 0}.

. 28 )

 28 Combining this with (9.27), applied to a = z+ • • • + z i -1 and b = b ∞ , we obtain ν(∂ b∞ Q i ) = ν(∂ b∞ Q ).(9.29)

. 31 )

 31 Combining this with (9.27), applied toa = z + • • • + z i -1 , we obtain ν(∂ b Q i ) = ν(∂ b Q ). (9.32) 



  (a) i (9.35) (b) i s = p e , where p e < p e ≤ b and {j 0 , j 1 , . . . , j q } = 0, b p e , . . . , i j 0 > 0 (this condition holds whenever s = 0) (d) i s = up e = j and{j 0 , j 1 , . . . , j q } = 0, b ∞ , . . . , b ∞ p e .Claim. There exists a strictly increasing infinite sequence (t r ) r∈N ⊂ N and s ∈ ∞ r=1 S j,ir (wherei r = i + t r ) such that, for all r ∈ N, the term C j (b ∞ , . . . , b ∞ p e )a j,ir Q j-p e ir (∂ b∞ Q ir ) p e has strictlysmaller value than all the other terms in the sum on the right hand side of (9.34).satisfies condition (b) ir (in particular, it is the uniqe term with the given s). Using the notation of (b) ir , we have = ν (a s,ir ) + p e ν ∂ b p eQ ir = = ν a s,ir Q s ir -p e β ir -(9.22) and (9.23), applied to i r instead of i, we haveν a j,ir Q j ir -ν a s,ir Q s ir ≤ (s -j)( β -β ir ) < δ( β -β ir ). (9.41) Combining (9.25), the negation of (9.31) and (9.40)-(9.41), we obtain ν   a s,ir ∂ b p eQ ir p e   ≥ ν a s,ir Q s ir -p e (β ir -ν(∂ b∞ Q i )) + p e (β ir -β ) ≥ ≥ ν a j,ir Q j ir -p e (β ir -ν(∂ b∞ Q i )) + p e (β ir -β ) -δb β -β ir >> ν a j,ir Q j ir -p e (β ir -ν(∂ b∞ Q ir )) = ν Q j-p e ir a j,ir (∂ b∞ Q ir ) p e .(9.42)

(Q

  ∂ jt Q ir ) appearing on the right hand side of (9.34) such that s ∈ J 1 .Consider one such term. It must satisfy condition (b) ir , so it is completely determined by s and we can write it as a s,ir ∂ ir does not depend on r ∈ N. Therefore,



  lim r→∞ p e (β ir -ν (∂ b∞ Q ir )) ≥ lim r→∞ p e β ir -,ir Q s ir -p e β ir -ν ∂ b p e Q ir ≥ ≥ lim r→∞ ν a j,ir Q j ir -p e (β ir -ν(∂ b∞ Q ir )) = lim r→∞ ν Q j-p e ir a j,ir (∂ b∞ Q ir ) p e. is independent of r and ν Q j-p e ir a j,ir (∂ b∞ Q ir ) p e is a strictly increasing linear function of r, we have ν Q j-p e ir a j,ir (∂ b∞ Q ir ) p e for all r ∈ N. This completes the proof of the Claim.

  Since a n-iñ is a monomial in w 1 , . . . , w r ,(2.20) gives rise to a Z-linear dependence relation of the form (2.18), which therefore must be equal to(2.19) multiplied by d -i. This determines the monomial a n-iñ uniquely up to multiplication by an element of k: we must have a n-iñ = c i y d -i , where c i ∈ k. Then z = x Let G, w 1 , . . . , w r and β 1 , . . . , β r be as in Lemma 2.7. If β 1 , . . . , β r are Z-linearly independent in ∆ then w 1 , . . . , w r are algebraically independent over k. , . . . , β r , and we are done. Alternatively, the Corollary can be proved by observing that by linear independence of β 1 , . . . , β r , all the monomials in w 1 , . . . , w r have different degrees, thus any polynomial in w 1 , . . . , w r over k contains a unique monomial of smallest degree. Hence it cannot vanish by the ultrametric triangle law. Definition 2.9. Let G be a graded algebra and x Λ := {x λ } λ∈Λ a collection of homogeneous elements of G. Let k be a field, contained in the degree 0 part of G. Let k[x Λ ] denote the ksubalgebra of G, generated by x Λ . We say that x Λ rationally generate G over k

			18)
	is a positive integer multiple of the relation		
		r	
	ñ ord x -	n j β j = 0.	(2.19)
		j=1	
	By (2.15), if a term a n-i x i appears in (2.5), we have i ord x = ord a n -ord a n-i ∈ ∆. This
	proves that x i may appear in (2.5) only if ñ | i; in particular, ñ | n. Let d := n ñ . Let 0 ≤ i < d .
	To find each nonzero coefficient a n-iñ in (2.5), note that	
	n ord x = d ñ ord x = i ñ ord x + ord a n-iñ ,	
	so that		
	(d -i) ñ ord x = ord a n-iñ .	(2.20)
	ñ y satisfies the algebraic dependence relation	
	d -1	
	z d +	c i z i = 0.	(2.21)
	i=0	
	This proves (2) of the Lemma. Now, we have shown that, under the hypothesis of linear
	independence of the β j , if x has degree n over G * then ñ | n and z is a root of a polynomial of
	degree d = n ñ . Letting d denote the degree of z over k, as above, we obtain	
	d =	n ñ ≥ d.	(2.22)
	Combining (2.22) with (2.14), we obtain (2.12); in particular, (2.13) is the smallest degree
	algebraic relation satisfied by x over G. This completes the proof of Lemma 2.7.	
	Corollary 2.8. Proof. Induction on r. For r = 1 there is nothing to prove. For the induction step, assume that
	the Corollary is true for r = i. If w i+1 were algebraic over k[w 1 , . . . , w i ], we would have	
	(β 1 , . . . , β i ) : β i+1 < ∞	(2.23)
	by Lemma 2.7, applied to the graded algebra k[w 1 , . . . , w i ] and the element w i+1 . (2.23) contra-
	dicts the linear independence of β 1		

  is obtained by summing the contributions of all the subsequences of the form (7.42), hence it is strictly positive, as desired.More generally, consider a finite set of positive integers d 1 , . . . , d a such that For ∈ {1, . . . , a}, let d = d ,0 + pd ,1 + • • • + p s d ,s , with d ,j ∈ {0, 1, . . . , p -1}, denote the p-adic expansions of d (again, we allow the s-tuple (d ,0 , d ,1 , . . . , d ,s ) to end in zeroes in order to be able to compare tuples of different lengths). Then

					a	
						d = γ.
					=1	
	ν	γ! d 1 ! • . . . • d a !	= 0 if and only if	a =1	d ,j < p for all j ∈ {0, . . . , s}.	(7.43)

  . Repeated application of Proposition 7.10 (2) and (3), first k 0 times with b replaced by 1, then k 1 times with b replaced by p, and so on. Write b i = p e i , as above. Let e be the greatest non-negative integer such that for all j ∈ S i we have p e | j.

	Let h = as in (3.42). Write in i h = s j=0 d j,i Q j i be an i-standard expansion. Let S i = S i (h), where the notation is j∈S i in i d j,i Q j p e+e i b. (7.53) (2) Assume that i . Proposition 7.15. (1) If equality holds in (7.2) then b = p e+e i . (7.54)

  Q j i does not affect any of the statements of the Proposition. Apply Proposition 7.15 repeatedly t 0 + t 1 + • • • + t s times. By (2) of Proposition 7.15,

	s	
	satisfy strict inequality in (7.2) with b = jb i . Thus replacing h by	d j ,i
	j =j	
	7.56) and Proposition 7.10 (1), terms of the form d j ,i Q j i with
	j ∈ S i , j < j	
	54	

  .8) by Proposition 3.32 and (8.3), i < i. Let z i =

	s i j=0	c j,i Q j i be an i -standard expansion of z i . By
	Lemma 7.4 we have	
	β	

  .26) b = p e+e∞ and g = ∂ b h. By Proposition 4.7[START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation II[END_REF], in i h has the form (4.10) for i = + t, as t runs over N 0 , in particular, S i (h) = {0, p e , 2p e , . . . , vp e } and is independent of i. Thus p e is the same as in Proposition 7.15. Hence h and b satisfy the hypotheses of Proposition 7.15. By Proposition 7.15 (3) and (4.10), g ≡ 0 and, for t sufficiently large, we have

  We have deg x ∂ p e h < deg x h, so there exists t 0 ∈ N such that ν t 0 ∂ p e h = ν ∂ p e h . Q j t denote the sum of all those monomials appearing in the t-standard expansion of h whose exponent j is not divisible by p e +1 . Note that by (8.30) we have c j,t ∈ K for all pairs (j, t). By Remark 7.1, the operator ∂ p e annihilates all the monomials whose exponents are divisible by p e +1 . Thus ∂ p e h = ∂ p e ∈ K[x] denote a polynomial such that in ν d * 1, in ν d 1, = 1 in G ν . According to Lemma 2.6 we may choose d * 1, to be of degree strictly less than deg x Q = deg x Q +t . We have ν d * (the new polynomial d * 1, h may no longer have minimal degree with respect to this property, but we will not use the minimality of degree in the rest of the proof). Therefore we may assume that in ν d 1,i = in i d 1,i = 1 for all i of the form + t, t ∈ N. (8.38) We will now construct polynomials Q +t = Q +w t such that deg x w t < deg x Q and the sequence ν Q +t

	First, let d * 1, 1, = ν d * 1,	by Proposition 3.32, hence ν i d * 1,	= ν d * 1,	for all i ≥ by Proposition
	3.39 (2).								
	Indeed, by Lemma 3.47 applied with s = 2 the graded algebra G < ᾱ is closed under
	multiplication. Hence in (d * 1, h) = in d * 1, in h and δ i (d * 1, h) = 1 for all i of the form + t, t ∈ N. Thus multiplying h by d * 1, does not change the problem in the sense that
			ν d * 1, h > ν i d * 1, h	for all i
	is strictly increasing and unbounded in Γ0 .		
	t We have deg Q								
										(8.33)
	Take an integer t > t 0 . Let	p e +1 | j c j,t 					
				p e +1 | j	c j,t Q j t	 =	p e +1 | j	c j,t	j p e Q j-p e t	.	(8.34)

.32) by Remark 7.1. We prove (8.31) by contradiction. Assume the contrary. Let e denote the greatest non-negative integer such that h ∈ K x p e ; by assumption, e < e ω . Then h involves at least one monomial x j such that j is of the form j = up e where u is not divisible by p.
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First note that deg x δ-1 j=0 d j,i (Q 1 + z) j < δ deg x Q i . Hence d δ, 1 is completely determined by d δ,i , d δ+1,i , . . . , d s i ,i . Next, by (4.29) in the proof of Proposition 4.7 (3), for 0 < j ≤ s i -δ the coefficient d δ+j,i is a sum of terms of the form d j ,k, 1 with j ≥ j + δ satisfying ν d j ,k, 1 = ν 1 d j ,k, 1 ≥ (j -j -δ)β 1 + ν d j , 1 .

Hence

so for 0 < j ≤ s i -δ the terms d δ+j,i Q δ+j i in (8.26) contribute nothing to d δ, 1 mod P (ν 1 (h)-δβ 1 )+min{ν + 1 (h)-ν 1 (h),β 1 -β } . (8.28)

Therefore, the only term on the left hand side of (8.26) that affects the element (8.28) is d δ,i (Q 1 + z) δ . We have

For j < δ, the coefficient of Q j 1 in the 1 -standard expansion of d δ,i z j contributes to d δ, 1 . Let us denote this coefficient by d j . We have

and ν (d δ,i ) = ν(d δ,i ).

By Lemma 3.43 [START_REF] Abhyankar | Newton-Puiseux expansion and generalized Tschirnhausen transformation I[END_REF], the quantity ν (d δ,i z j ) is the minimum of the ν -values of the summands appearing in the 1 -standard expansion of d δ,i z j . Thus

Hence

does not affect the element (8.28). This completes the proof.

Proposition 8.6. The integer δ is of the form δ = p e for some e ∈ N 0 (in particular, δ = 1 whenever char k ν = 0).

Proof. We give a proof by contradiction. Write In fact, by a similar argument this statement can be proved not only for h, but for any polynomial satisfying the strict inequalities (8.1).

Remark 8.8. Keep the assumption that {β +t } is unbounded in Γ0 , as well as (8.30), but now assume that char K = 0 and char k ν = p > 0. By studying the coefficient of Q δ-1 t in the t-standard expansion of h for different t, one can prove that δ = p e = 1. Remark 8.9. It was pointed out to us by the referee that the result of Remark 8.7 was generalized in [START_REF] Alberich-Carramiñana | Of limit key polynomials[END_REF], Theorem 4.11. For every valued field (K, ν) and every continuous family of iterated augmentations on K[x] such that {β +t } is unbounded, all the limit key polynomials of the family belong to K x δb∞ .

More precisely, Theorem 4.11 of [START_REF] Alberich-Carramiñana | Of limit key polynomials[END_REF] shows that m := δb ∞ is the smallest positive integer such that ∂ m h = 0. In particular, if K is of characteristic zero, we have δ = 1 [START_REF] Alberich-Carramiñana | Of limit key polynomials[END_REF], Corollary 4.12. This also generalizes the statement of Remark 8.8. Proposition 8.10. Keep the notation and assumptions stated in the beginning of this section. Assume that δ = p e = 1 in the notation of (8.29) (this assumption holds automatically if char k ν = 0). Then the sequences

where i runs over the set

Thus to show that the sequence (8.36) is unbounded in Γ0 it is sufficient to show that (8.37) is unbounded in Γ0 . Moreover, to prove that (8.37) is unbounded, it is sufficient to show that the set ν(T ) itself is unbounded in Γ0 (where

To prove the unboundedness of ν(T ), we will start with the (not necessarily complete) set of key polynomials Q +1 and will define a new set of key polynomials

For most of the proof of the Proposition we will work with non-superfluous monomials. At the end of the proof we will modify the polynomial f by subtracting all the superfluous monomials from it.

Next, we will compare the Q i -expansions of f for different i.

Definition 9.6. Take an i ≥ i 0 . Let

be the Q i -expansion of f and let a j,i Q j i be a monomial appearing in this expansion. We say that a j,i Q j i is bad if it is not i-superfluous and at least one of the following three conditions holds:

(1) ν(a j,i ) < (p e 0 -j) β (9.11)

(2) j is not a power of p

(3) ν(a j,i ) > (p e 0 -j) β. (9.12)

In view of Remark 9.5, to arrive at an i-standard expansion (9.10) satisfying the conclusion of Proposition 9.2 it is sufficient to show that it contains no bad monomials, in which case, after subtracting all the i-superfluous monomials from f , there will be nothing more to do.

Take i ≥ i 0 . Assume that the Q i -expansion of f contains at least one bad monomial. Let j(i) denote the greatest j ∈ {1, ..., p e 0 -1} such that the monomial a j,i Q j i is bad. Let j • (i) denote the element j ∈ {1, ..., p e 0 -1} which minimizes the pair (ν(a j,i ) + jβ i , -j) in the lexicographical ordering among all the elements of {1, ..., p e 0 -1} such that the monomial a j,i Q j i is bad. To finish the proof of Proposition 9.2, we will first prove the following three Lemmas. Lemma 9.7. Assume that the Q i+1 -expansion of f contains at least one bad monomial. We have j(i + 1) ≤ j(i) (9.13) and j • (i + 1) ≤ j • (i). (9.14)

Lemma 9.8. If j ∈ {j(i), j • (i)} then (9.11) does not hold.

Lemma 9.9. If j = j(i) then (9.12) holds.

After proving the three lemmas, we will show that increasing i either eliminates the last bad monomial or strictly decreases j(i). At that point the proof of Proposition 9.2 will be finished by induction on j(i).

Before embarking on the proofs, we make a general remark on comparing the Q i -and the Q i+1 -expansions of f that will be used in these proofs. Now, terms in (9.16) with j < j or j ∈ Sup j,i do not affect either in ν a j,i+1 or in ν a j,i . We claim that the same is true of the terms with j ∈ N S j,i . Indeed, take a j ∈ N S j,i . As explained in the beginning of the proof of this Lemma, j is a power of p. Write j = p e . By Remark 9.10 (specifically, (9.18)), (9.5) and the fact that a j,i Q j i is not i-superfluous, all the monomials dQ s i+1 , s > 0, appearing in the Q i+1 -expansion of a j ,i z p e i satisfy ν dQ s i+1 > ν(a j,i ) + jβ i+1 .

In particular, if such a monomial is of the form dQ j i+1 , with deg x d < ᾱi+1 , we have ν(d) > ν(a j,i ). This proves that (9.15) holds for j = j(i).

The fact that all the new monomials with strictly positive exponents arising from the Euclidean division of a j ,i z p e i , j > j, are (i + 1)-superfluous also shows that no bad monomials a j ,i+1 Q j i+1 with j > j appear in the Q i+1 -expansion of f . This proves (9.13).

The proof of the Lemma in the case j = j • (i) is very similar to that of j = j(i), except for the following minor change. We can no longer assert that j is a power of p. On the other hand, j satisfies ν(a j ,i ) + j β i > ν i (f ), which allows us to use similar arguments as in the j = j(i) case. This completes the proof of Lemma 9.7.

Proof of Lemma 9.8. We argue by contradiction. Suppose that j = j(i) and that (9.11) holds for this j. (9.11) can be rewritten as ν(a j,i ) + j β < p e 0 β. Combining this with (9.15) we obtain that (9.11) holds with i replaced by i + 1 and

so the monomial a j,i+1 Q j i+1 is also bad and j(i + 1) = j(i) in view of (9.13). By induction on i ≥ i we see that j(i ) is independent of i , so the Q i -expansion of f contains a monomial a j,i Q j i with ν a j,i Q j i = ν(a j,i ) + jβ i = ν(a j,i ) + jβ i < ν(a j,i ) + j β.

Then p e 0 β i = ν i (f i ) < ν(a j,i ) + j β < p e 0 β for all i ≥ i, where the equality holds because

Therefore the least upper bound of {β i } i≤i < +ω is bounded above by 1 p e 0 (ν(a j,i )+j β) and hence is strictly less than β. This contradicts the definition of β.

The proof in the case j = j • (i) is similar to that with j = j(i) and we omit it.

Proof of Lemma 9.9. We argue by contradiction. Assume that j = j(i) and that (9.12) does not hold. In view of Lemma 9.8 this implies that ν(a j,i ) + j β = p e 0 β. (9.22) Then, by definition of j(i), j is not a power of p. Write j = p e u, u ≥ 2 and p | u, and

Lemma 9.8, applied to j • (i), implies that ν(a j ,i ) + j β ≥ p e 0 β for all j ∈ {1, . . . , p e 0 }. )) = 0. Hence, for all i of the form i = i + t , t ∈ N, we have

(recall that ν a j,i and ν (∂ b∞ Q i ) are independent of i ).

First, let us prove that all the terms on the right hand side of (9.34) satisfying (a) i or (c) i have values strictly greater than ν a j,i Q

Consider a non-zero term C s (j 1 , . . . , j q )Q s-q i ∂ j 0 a s,i q t=1 (∂ jt Q i ) appearing on the right hand side of (9.34). For all positive integers s and b , we have 

If (9.35) holds, we obtain

If (c) i is satisfied, that is, j 0 > 0, (9.39) holds again. This shows that in order to prove the Claim it is sufficient to restrict attention to the terms on the right hand side of (9.34) satisfying (b) i .

Next, choose a strictly increasing sequence (t r ) r∈N ⊂ N such that for each s ∈ {j +1, . . . , δ} one of the following conditions holds for all r ∈ N:

(1) s ∈ S j,ir and (9.31) holds with i = i r (2) either s ∈ Sup j,ir or (9.31) does not hold with i = i r

We obtain a decomposition {j + 1, . . . , δ} = J 1 J 2 , where (1) holds for s ∈ J 1 and (2) holds for s ∈ J 2 . We have j ∈ J 1 ; in particular, J 1 = ∅. The set J 2 is non-empty since it contains all the non-powers of p in the set {j + 1, . . . , δ}.

We will now show that for s ∈ J 2 and r 0 the strict inequality (9.39) holds with i = i r . For s ∈ Sup j,ir this has already been shown (and does not require r to be large). Assume that s ∈ S j,ir and (9.31) does not hold with i = i r . Consider a non-zero term C s (j 1 , . . . , j q )Q s-q ir (∂ j 0 a s,ir ) q t=1 (∂ jt Q ir ) appearing on the right hand side of (9.34). This term