
HAL Id: hal-01887698
https://hal.science/hal-01887698v2

Submitted on 28 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Key polynomials for simple extensions of valued fields
Francisco Javier Herrera Govantes, Wael Mahboub, Miguel Angel Olalla

Acosta, Mark Spivakovsky

To cite this version:
Francisco Javier Herrera Govantes, Wael Mahboub, Miguel Angel Olalla Acosta, Mark Spivakovsky.
Key polynomials for simple extensions of valued fields. Journal of Singularities, 2022, 25, pp.197-267.
�10.5427/jsing.2022.25k�. �hal-01887698v2�

https://hal.science/hal-01887698v2
https://hal.archives-ouvertes.fr


Key polynomials for simple extensions of valued fields

F. J. Herrera Govantes

Departamento de Álgebra
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Abstract

In this paper we present a refined version of MacLane’s theory of key polynomials [24]–
[25], similar to those considered by M. Vaquié [36]–[39], and reminiscent of related objects
studied by M. Lejeune-Jalabert [23], Abhyankar and Moh (approximate roots [1], [2]) and
T.C. Kuo [21], [22].

Let (K, νK) be a valued field such that rank νK = 1. Given a simple transcendental
extension of valued fields ι : K ↪→ K(x) we associate to ι a countable well ordered set
of polynomials of K[x] called key polynomials. We define limit key polynomials and give
explicit formulae for them. We show that the order type of the set of key polynomials is
bounded by ω × ω. If the characteristic of the residue field of νK is 0, the order type is
bounded by ω + 1.

1 Introduction

Let ι : (K, νK) ↪→ (K(x), ν) be a simple transcendental extension of valued fields such that
rank νK = 1. Let (RνK ,MνK , kνK ) denote the valuation ring of νK . The purpose of this
paper is to present a refined version of MacLane’s theory of key polynomials [24], [25], similar
to those considered by M. Vaquié [36]–[39], and reminiscent of related objects studied by M.
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Lejeune-Jalabert [23], Abhyankar and Moh (approximate roots [1], [2]) and T.C. Kuo [21], [22].
Related questions were studied by Ron Brown [7]–[8], Alexandru–Popescu–Zaharescu [4]–[5], S.
K. Khanduja [16], [17], F.-V. Kuhlmann [18] and Moyls [27]. The study of key polynomials
continues to be a vibrant subject and since the first version of the present paper appeared on
the arxiv in 2014 several other works on the topic were published by various authors: [3], [10],
[11], [12], [13], [28], [29], [30], [33].

Precisely, we associate to ι a countable well ordered set

Q = {Qi}i∈Λ ⊂ K[x],

where Λ is an index set whose order type will be explicitly bounded later in the paper; the Qi are
called key polynomials. Key polynomials Qi that have no immediate predecessor are called
limit key polynomials

We consider the main achievements of this paper compared to the earlier works on the
subject to be the following.

(1) Explicit formulae for each key polynomial Qi, particularly for limit key polynomials
(Proposition 9.2), in terms of the key polynomials preceding Qi. If there exists an infinite
sequence of linear key polynomials then the first limit key polynomial (if it exists) can always
be chosen to be a p-polynomial in Kaplansky’s terminology (p-polynomials may be viewed as a
generalization of Artin–Schreier polynomials).

(2) An upper bound on the order type of the set of key polynomials. Namely, we show
that the order type of the set of key polynomials is bounded by ω × ω, where ω stands for the
first infinite ordinal. If char kνK = 0, the order type is bounded by ω + 1. If char kνK = 0 and
rank ν = 1, the set of key polynomials has order type at most ω.

The results comparing the value of a polynomial f ∈ K[x] with the values of its Hasse
derivative ∂bf (the definition of ∂b is recalled later in the Introduction) proved in §7 led to an
axiomatic characterization of key polynomials in [12]. As well, this approach was used in [33]
to obtain another proof of the existence of a complete set of key polynomials.

The main application of the theory of key polynomials (particularly, of point (1) above)
that we have in mind is proving the local uniformization theorem for quasi-excellent noetherian
schemes in positive and mixed characteristic. It has been shown recently that to prove the local
uniformization theorem in the positive equicharacteristic case, assuming local uniformization
in lower dimensions, it is sufficient to monomialize the first limit key polynomial of a certain
explicitly defined simple field extension K ↪→ K(x) (see [34], Chapter IV, [35], Theorem 6.5
and S. D. Cutkosky–H. Mourtada [9]). In Chapter V of his Ph.D. thesis ([34], Institut de
Mathématiques de Toulouse, 2013), J.-C. San Saturnino proved a similar reduction for local
uniformization in the case of mixed characteristic, but under somewhat restrictive additional
hypotheses.

Chapter 3 of the Ph.D. thesis of W. Mahboub (Institut de Mathématiques de Toulouse,
2013) develops the theory of key polynomials for valuations of arbitrary rank. Here we limit
ourselves to the case rank νK = 1.

The particular importance of the case rank νK = 1 is witnessed by a recent theorem of
Novacoski–Spivakovsky that says that local uniformization along rank one valuations implies
local uniformization in its full generality [31]–[32].

Let Γ0 (resp. Γ) denote the value group of νK (resp. ν). Let Γ̃0 := Γ0⊗ZQ (the group Γ̃0

is called the divisible hull of Γ0). Fix an embedding Γ̃0 ↪→ R once and for all. In this sense,
we will talk about the supremum of a certain subset of Γ̃0 (the supremum can be either a real
number or infinity) or about a certain sequence of elements of Γ̃0 tending to infinity.
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For an ordered abelian group ∆, the notation ∆+ will stand for the semigroup formed by
all the non-negative elements of ∆.

The well ordered set Q = {Qi}i∈Λ of key polynomials of ν will be defined recursively in i.

Notation. We will use the notation N for the set of strictly positive integers and N0 for the set
of non-negative integers.

For an element ` ∈ Λ, we will denote by ` + 1 the immediate successor of ` in Λ. The
immediate predecessor of `, when it exists, will be denoted by ` − 1. For a strictly positive
integer t, ` + t will denote the immediate successor of ` + (t − 1). For an element ` ∈ Λ, the
initial segment {Qi}i<` of the set of key polynomials will be denoted by Q`. For the rest of this
paper, we let p = char kνK if char kνK > 0 and p = 1 if char kνK = 0. For an element β ∈ Γ∪ Γ̃0,
let

Pβ = {y ∈ K(x) | ν(y) ≥ β } ∪ {0}
Pβ+ = {y ∈ K(x) | ν(y) > β } ∪ {0}.

Put

Gν =
⊕
β∈Γ

Pβ

Pβ+
(1.1)

and

G̃ν =
⊕
β∈Γ̃0

Pβ

Pβ+
. (1.2)

We regard Gν and G̃ν as kν-algebras. Note that even though Γ̃0 need not be contained in Γ, we
have G̃ν ⊂ Gν since for each β ∈ Γ̃0 \Γ the corresponding summand in (1.2) is 0. For y ∈ K(x)∗,

let inνy denote the natural image of y in
Pβ
Pβ+
⊂ Gν , where β = ν(y).

Let ∆x be an independent variable. For f ∈ K[x] and j ∈ N let ∂jf denote the
j-th formal (or Hasse) derivative of f with respect to x. The polynomials ∂jf are, by
definition, the coefficients appearing in the Taylor expansion of f : f(x+ ∆x) =

∑
j
∂jf(x)∆xj .

In papers on local uniformization the Hasse derivatives ∂j are often denoted by 1
j!
∂j

∂xj
; this nota-

tion is regarded as one indivisible symbol; its parts such as 1
j! do not make sense on their own.

Details about Hasse derivatives can be found in [19], Chapter 24.10, starting on p. 701,
as well as in [20].

For an ordinal ` ∈ Λ we will use the following multi-index notation: γ̄`+1 = (γi)i≤`, where
the γi are non-negative integers, all but finitely many of which are equal to 0, and

Q
γ̄`+1

`+1 =
∏
i≤`

Qγii . (1.3)

An `-standard monomial in Q`+1 is a product of the form

cγ̄`+1
Q
γ̄`+1

`+1 , (1.4)

where cγ̄`+1
∈ K and the multiindex γ̄`+1 satisfies certain additional conditions to ensure a form

of uniqueness (see Definition 3.4). An `-standard expansion is a finite sum of `-standard
monomials satisfying a mild additional condition. A Q`-expansion is an expression of the form

s∑̀
j=0

cj,`Q
j
` , (1.5)
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where cj,` ∈ K[x] and degx cj,` < degxQ` for all j.

Note. Starting with an `-standard expansion and grouping together all the terms involving Qj`
for each exponent j produces a Q`-expansion.

Iterating Euclidean division of f by Q`, it is easy to see that every f ∈ K[x] admits a
unique Q`-expansion

f =

s∑̀
j=0

cj,`Q
j
` . (1.6)

In §3 we will show that for all ` ∈ Λ and all f ∈ K[x] the element f admits an `-standard
expansion.

Let βi = ν(Qi).

A product of the form a
s∏
j=1

Q
γj
ij

, where a ∈ K, ij ∈ Λ and γj ∈ N is said to be a standard

monomial if it is `-standard for some ` ∈ Λ.
A set of key polynomials is said to be complete if for every β ∈ Γ the additive group

Pβ ∩ K[x] is generated by standard monomials, contained in Pβ ∩ K[x]. It is said to be Γ̃0-
complete if the above condition holds for all β ∈ Γ̃0, in other words, if for all β ∈ Γ̃0 every
polynomial f ∈ K[x] with ν(f) = β belongs to the additive group generated by standard

monomials a
s∏
j=1

Q
γj
ij

such that
s∑
j=1

γjβij + νK(a) ≥ β.

Remark 1.1. If Q = {Qi}i∈Λ is a complete set of key polynomials, the data {Qi, βi} completely
determines the ideals Pβ for all β ∈ Γ, hence also all the ideals Pβ+, since Pβ+ =

⋃̃
β>β

Pβ̃. For

an element y ∈ K(x) we have ν(y) = β if and only if y ∈ Pβ \ Pβ+. Thus the valuation ν is
completely determined by the data {Qi, βi}.

We define the `-truncation ν` of ν by ν`(f) = min
0≤j≤s`

{ν(cj,`) + jβ`} for each f ∈ K[x]

with Q`-expansion (1.6). By the ultrametric triangle law, we have

ν(f) ≥ ν`(f) (1.7)

for all f ∈ K[x]. Then the statement that Q is a complete set of key polynomials can be
expressed as follows: for all f ∈ K[x] there exists ` ∈ Λ such that equality holds in (1.7); see
Remark 3.34 for details.

The paper is organized as follows. §2 is devoted to generalities on algebras, graded by
ordered semigroups. There we define the notion of the saturation G∗ of a graded algebra G
(Definition 2.3). We consider an extension G ⊂ G′ of graded algebras and a homogeneous
element x ∈ G′. We study the condition that x be algebraic over G. We note that x is algebraic
over G if and only if it is integral over G∗. We show that if x is algebraic over G then the algebra
G∗[x] is saturated (Lemma 2.6). Finally, we prove the simple but useful characterization of the

strict inequality ν

(
s∑
i=1

yi

)
> min

1≤i≤s
{ν(yi)} in terms of the elements inνyi.

In §3 we define the notion of a set of key polynomials (not necessarily complete) and study
its properties. By definition, letting Q0 = x, the one element set {x} = {Q0} is a set of key
polynomials. We remark that if a set of key polynomials is complete then the images of the
key polynomials in Gν generate the field of fractions of Gν over the field of fractions of GνK .
The element inνQ` is algebraic over GνK [inνQ`], where Q` = {Qi}i<` (in particular, βi ∈ Γ̃0)
whenever i is not a maximal element of Λ (Propositions 3.35 and 3.36).
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In §4 we associate to each pair h ∈ K[x], i ∈ Λ, a positive integer numerical character

δi(h) ≤ degx h
degxQi

to be used in later sections and study its properties. Among other things we
prove that

δi(h) ≥ δi′(h) whenever i ≤ i′; (1.8)

in particular, δi(h) stabilizes for i sufficiently large. We also show that the equality in (1.8)
imposes strong restrictions on h. The numerical character δi(h) helps analyze infinite ascending
sequences of key polynomials in §§8–9 and is crucial for applications to Local Uniformization.

The main step of our recursive construction of sets of key polynomials is carried out in §5.
Namely, we start with a set {Qi}i∈Λ of key polynomials that is not complete and enlarge it to a
strictly greater set {Qi}i∈Λ+ of key polynomials. The well ordered set Λ+ is a union of Λ with
a sequence that may be finite or infinite, depending on the situation. Roughly speaking, Q`+1

is defined to be a lifting to K[x] of the monic minimal polynomial, satisfied by inνQ` over the
graded algebra GνK [inνQ`]. This gives rise to explicit formulae describing each non-limit key
polynomial in terms of the preceding key polynomials.

In §6 we iterate the procedure of §5 until the resulting set of key polynomials is com-
plete. Namely, we start our recursive construction of the Qi by putting Q0 := x. We assume,
inductively, that a set Q = {Q`}`∈Λ of key polynomials is already defined. If the set Q of key
polynomials is complete, the algorithm stops here. In particular, this occurs whenever our algo-
rithm produces a key polynomial Qi whose value does not lie in Γ̃0 or, more generally, such that
inνQi is transcendental over GνK [inνQi] (Propositions 3.35 and 3.36). If Q is not complete, we
replace it by the set {Qi}i∈Λ+ constructed in §5 and repeat the procedure. We remark (Remark
6.1) that the well ordered set Λ̄ resulting from this construction has order type at most ω × ω.
The set Λ̄ contains a maximal element ` if and only if it contains an element ` such that inνQ`
is transcendental over GνK [inνQ`], where Q` = {Qi}i<` (Propositions 3.35 and 3.36).

§7 is auxiliary, to be used in §§8–9. We study the effect of Hasse derivatives ∂j on key
polynomials and standard expansions. Let bi denote the smallest element b of N which maximizes
the quantity βi−ν(∂bQi)

b . We show that bi is of the form

bi = pei for some ei ∈ N0 (1.9)

(Corollary 7.9). The non-negative integers ei, i ∈ Λ, are important numerical characters of
the extension ι : (K, νK) ↪→ (K(x), ν) of valued fields. Most importantly, given an `-standard
monomial cγ̄`+1

Q
γ̄`+1

`+1 , we prove the equality

ν
(
∂pecγ̄`+1

Q
γ̄`+1

`+1

)
= ν`

(
∂pecγ̄`+1

Q
γ̄`+1

`+1

)
, (1.10)

and derive an explicit formula for the quantity ν
(
∂pecγ̄`+1

Q
γ̄`+1

`+1

)
, for integers e ≥ ei, and under

certain additional conditions. Also, for every `-standard expansion f and every integer e ≥ ei,
we derive a formula for ν` (∂pef) (Proposition 7.2).

The importance of this type of explicit formulae can be explained as follows. The im-
portance of differential operators for resolution of singularities is well known. One difficulty
with dealing with differential operators up to now has been the fact that they obey no simple
transformation law under blowing up. Since key polynomials become coordinates after blowing
up, formulae (1.10) can be viewed as comparison results for derivatives of the defining equations
of a singularity before and after blowing up.

The main subject of study of §§8–9 are infinite sequences {Q`+t}t∈N of key polynomials of
a fixed degree and the corresponding limit key polynomials Q`+ω.
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In §8 we let δ denote the stable value of δ`+t(Q`+ω) for a sufficiently large positive integer
t (such a stable value exists by (1.8)). We use the results of §7 to show that δ must be of the
form δ = pe for some e ∈ N0 (Propositon 8.6).

Next, we assume that char kν = char K, that the sequence {ν (Qt)}t∈N is unbounded in

Γ̃0 and that degxQt = 1 for all t ∈ N. We show that Qω ∈ K
[
xδ
]

(Remark 8.7).
The third set of main results of §8 starts with Proposition 8.10 which asserts that if

char kν = 0,

then for an infinite sequence {Qt}t∈N0 the sequence {βt}t∈N0 of their values is unbounded in
Γ̃0. In particular, there are no limit key polynomials Qi such that βi ∈ Γ̃0. This explains why
Λ̄ ≤ ω + 1 whenever char kν = 0.

The main goal of §9 is to derive explicit formulae for limit key polynomials in terms of
the preceding key polynomials. We assume that char kν = p > 0 and consider a limit ordinal
`+ ω ∈ Λ̄. We assume that the sequence {ν (Q`+t)}t∈N is bounded in Γ̃0. We prove that Q`+ω
can be chosen in such a way that for some t ∈ N the Q`+t-standard expansion of Q`+ω is weakly
affine. By definition, this means that

Q`+ω = Qp
e`+ω

i +

e`+ω−1∑
j=0

cpj ,iQ
pj

i + c0i, (1.11)

where i = ` + t and c0,i and cpj ,i are Qi-free i-standard expansions (See Definition 3.5 for the
notion of “Qi-free”).

The results of this paper are related to those contained in the paper [14] (see also [39]).
However, there are some important differences, which we now explain. We chose to rewrite the
whole theory from scratch for the following reasons.

1. In [14] we work with an algebraic extension ι while for local uniformization we need to
consider purely transcendental extensions. We note that the case of algebraic extensions
can easily be reduced to that of transcendental ones using composition of valuations.
Indeed, let ι− : (K, νK) ↪→ (K(x), ν) be a simple algebraic extension of valued fields.

Write K(x) = K[X]
(f) , where f is the minimal polynomial of x over K. Let νf denote the

(f)-adic valuation of K[X] and put ν∗ := νf ◦ ν (the composition of νf with ν). Complete
sets {Qi}i∈Λ of key polynomials of the transcendental extension ι : (K, νK)→ (K(X), ν∗)
constructed in the present paper are very closely related to complete sets {Q−i }i∈Λ− of key
polynomials of the algebraic extension (K, νK)→ (K(x), ν), constructed in [14]. Namely,
we have Λ = Λ− ∪ {Λ−} (extension by one element), Q−i is the image of Qi under the
natural map K[X] → K(x) and QΛ− = f . In other words, a complete set {Qi} of key
polynomials for ι can be obtained from that of ι− by lifting each key polynomial Q−i to
K[X] and then adding one final key polynomial f . In this sense the theory presented here
can be viewed as a generalization of [14].

2. Our main interest in [14] was to classify all the possible extensions ν of a given νK ; in the
present paper we content ourselves with a fixed ν.

3. The crucial formulae for ν`(∂pbf) were not made explicit in [14].

4. We take this opportunity to correct numerous mistakes which, unfortunately, made their
way into the paper [14]: an inaccuracy in the definition of complete set of key polynomials,
the failure to take into account the case of mixed characteristic, a mistake in the definition
of the numerical characters ei and many others which made the paper [14] unreadable.
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2 Algebras graded by ordered semigroups

Graded algebras associated to valuations will play a crucial role in this paper. In this section,
we give some basic definitions and prove several easy results about graded algebras. Throughout
this paper, a “graded algebra” will mean “an algebra without zero divisors, graded by an ordered
semigroup”. As usual, for a graded algebra G, ord will denote the natural valuation of G, given
by the grading.

Let G =
⊕
α∈Γ

Gα be a graded algebra, where Γ is an ordered abelian semigroup.

Definition 2.1. An element x ∈ G is said to be homogeneous if there exists α ∈ Γ such that
x ∈ Gα.

For a homogeneous element x ∈ Gα ⊂ G we will write ord x = α.
Now let X be an independent variable and consider the ring G[X]. Fix a polynomial

f =
d∑
i=0

aiX
i ∈ G[X] such that ai is a homogeneous element of G for all i ∈ {0, . . . , d}. Fix an

element β ∈ Γ.

Definition 2.2. We say that f is quasi-homogeneous with w(X) = β if for all i, j ∈
{0, . . . , d} we have iβ + ord ai = jβ + ord aj . In this situation we will also say that β is
the weight assigned to X.

Definition 2.3. Let G be a graded algebra without zero divisors. The saturation of G, denoted
by G∗, is the graded algebra

G∗ =
{ g
h

∣∣∣ g, h ∈ G, h homogeneous, h 6= 0
}
.

G is said to be saturated if G = G∗.

An element g
h ∈ G

∗ is homogeneous in G∗ if and only if g is homogeneous in G. If f1 = g1
h1

and f2 = g2
h2

are two non-zero elements of G∗, where h1, h2, g1, g2 are non-zero elements of G

with h1, h2, g2 homogeneous, then f1
f2

= g1h2
g2h1
∈ G∗. Thus G∗ = (G∗)∗ for any graded algebra G,

so that G∗ is always saturated.

Example 2.4. The main example of graded algebras we are interested in this paper are graded
algebras associated to valuations, centered in prime ideals of integral domains. Namely, let R
be a domain, K its field of fractions and ν : K∗ → Γ a valuation of K, centered at a prime ideal
P of R (this means, by definition, that R ⊂ Rν and P = Mν ∩ R, where (Rν ,Mν) denotes the
valuation ring of ν). Let Φ = ν(R \ {0}). For each β ∈ Φ, consider the ideals

Iβ : = {x ∈ R | ν(x) ≥ β} ∪ {0} and

Iβ+ : = {x ∈ R | ν(x) > β} ∪ {0}.
(2.1)

Iβ is called the ν-ideal of R of value β.
If β1 > β2 > . . . is an infinite descending sequence of elements of Φ then Iβ1 $ Iβ2 $ . . .

is an infinite ascending chain of ideals of R. Thus if R is noetherian then the ordered set ν(R)
contains no infinite descending sequences, that is, ν(R) is well ordered.
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If I is an ideal in a noetherian ring R and ν a valuation of R, ν(I) will denote

min{ν(x) | x ∈ I}.

We can now define the graded algebra, associated to the valuation ν. Let R, ν and Φ be as
above. For β ∈ Φ, let Iβ and Iβ+ be as in (2.1). We define

grνR =
⊕
β∈Φ

Iβ
Iβ+

.

The algebra grνR is an integral domain. For any element x ∈ R with ν(x) = β, we may consider

the natural image of x in
Pβ
Pβ+
⊂ grνR. This image is a homogeneous element of grνR of degree

β, which we will denote by inνx. The grading induces an obvious valuation on grνR with values
in Φ; this valuation will be denoted by ord.

Next, suppose that (R,M, k) is a local domain and ν is a valuation with value group Γ,
centered at R. Let K denote the field of fractions of R. Let (Rν ,Mν , kν) denote the valuation
ring of ν. For β ∈ Γ, consider the following Rν-submodules of K:

Iβ = {x ∈ K | ν(x) ≥ β},
Iβ+ = {x ∈ K | ν(x) > β}.

(2.2)

We define

Gν =
⊕
β∈Γ

Iβ
Iβ+

.

Again, given x ∈ K, we may speak of the natural image of x in Gν , also denoted by inνx (since
grνR is naturally a graded subalgebra of Gν , there is no danger of confusion). Then ord is a
valuation of the common field of fractions of grνR and Gν , with values in Γ.

We have Gν = (grνR)∗; in particular, Gν is saturated.

Remark 2.5. Let G,G′ be two graded algebras without zero divisors, with G ⊂ G′. Let x be a
homogeneous element of G′, satisfying an algebraic dependence relation

a0x
n + a1x

n−1 + · · ·+ an = 0 (2.3)

over G (here aj ∈ G for 0 ≤ j ≤ n). Without loss of generality, we may assume that the integer
n is the smallest possible.

Claim. Without loss of generality, we may further assume that (2.3) is homogeneous (that is,
all the aj are homogeneous and the quantity j ord x + ord aj is constant for 0 ≤ j ≤ n such
that aj 6= 0).

Proof of Claim. Let µ := min
0≤j≤n

{j ord x + ord aj}. Then each aj can be written as a finite

sum of homogeneous elements of G, all of orders greater than or equal to µ − j ord x. For
j ∈ {0, . . . , n} write aj = a0j + ãj , where a0j = 0 or ord a0j = µ − j ord x, and ãj is a sum of
homogeneous elements of G of orders strictly greater than µ− j ord x (note that there exist at
least two different values of j for which a0j 6= 0). Now, x satisfies the equation

a00x
n + a01x

n−1 + · · ·+ a0n = 0. (2.4)

This proves the Claim. From now on we will always take the coefficients aj to be homogeneous
without mentioning it explicitly.
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Dividing (2.3) by a0, we see that x satisfies a monic homogeneous relation over G∗ of
degree n and no algebraic relation of degree less than n. In other words, x is algebraic over G
if and only if it is integral over G∗; the conditions of being “algebraic over G∗” and “integral
over G∗” are one and the same thing (as usual, “integral” means “satisfying a monic polynomial
relation”).

Let G ⊂ G′, let x be as above and let G[x] denote the graded subalgebra of G′, generated
by x over G. By Remark 2.5, we may assume that x satisfies a homogeneous integral relation

xn + a1x
n−1 + · · ·+ an = 0 (2.5)

over G∗ and no algebraic relations over G∗ of degree smaller than n.

Lemma 2.6. Every element of (G[x])∗ can be written uniquely as a polynomial in x with coef-
ficients in G∗, of degree strictly less than n.

Proof. Let y be a homogeneous element of G[x]. Since x is integral over G∗, so is y ([6], p. 59,
Proposition 5.1, implications (i)⇐⇒ (ii)⇐⇒ (iii)). Let

ym + b1y
m−1 + · · ·+ bm = 0 (2.6)

with bj ∈ G∗, be an integral dependence relation of y over G∗, with bj homogeneous elements
of G∗, bm 6= 0, where j ord y + ord bj is constant for all j such that bj 6= 0. By (2.6),

1

y
= − 1

bm
(ym−1 + b1y

m−2 + · · ·+ bm−1).

Thus, for any z ∈ G[x], we have
z

y
∈ G∗[x]. (2.7)

Since y was an arbitrary homogeneous element of G[x], we have proved that

(G[x])∗ = G∗[x].

Now, for every element y ∈ G∗[x] we can add a multiple of (2.5) to y so as to express y as a
polynomial in x of degree strictly less than n. Moreover, this expression is unique because x
does not satisfy any algebraic relation over G∗ of degree smaller than n.

Notation. If ∆ ⊂ ∆′ are ordered semigroups and β is an element of ∆′, then ∆ : β will denote
the positive integer defined by

∆ : β = min{n ∈ N | nβ ∈ ∆}.

If the set on the right hand side is empty, we put ∆ : β =∞.
Note that β ∈ ∆ if and only if ∆ : β = 1.

Lemma 2.7. Let G, G′ be as in Remark 2.5 and x a homogeneous element of G′. Assume
that the degree 0 part of G (that is, the subring of G consisting of all the elements of degree 0)
contains a field k and that G is generated as a k-algebra by homogeneous elements w1, . . . , wr.
Let

βj = ord wj , 1 ≤ j ≤ r,

and let ∆ denote the group ∆ = {ord y | y ∈ G∗} =

{
r∑
j=1

njβj

∣∣∣∣∣ nj ∈ Z

}
. Assume that the

following two conditions hold:
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(1) ∆ : (ord x) <∞

(2) Let ñ := ∆ : (ord x). Let n1, . . . , nr ∈ Z be such that

ñ ord x =

r∑
j=1

njβj . (2.8)

Let y =
r∏
j=1

w
nj
j . Assume that the element

z :=
xñ

y
∈ (G′)∗ (2.9)

is algebraic over k.

Then x is integral over G∗. An integral dependence relation of x over G∗ can be described as
follows. Let z be as in (2.9). Let Z be an independent variable and let

f(Z) = Zd +

d−1∑
i=0

ciZ
i (2.10)

denote the minimal polynomial of z over k. Then x is a root of the polynomial

Xdñ +

d−1∑
i=0

ciy
d−iXiñ = 0. (2.11)

Conversely, suppose x is integral over G∗. Then (1) holds. Suppose, furthermore, that β1, . . . , βr
are Z-linearly independent. Then (2) also holds. In this case, (2.11) is the minimal polynomial
of x over G∗. In particular, the degree n of the minimal polynomial of x over G∗ is given by

n = dñ. (2.12)

Proof. If (1) and (2) hold, x is integral over G∗ because it is a root of the polynomial (2.11)
(this is verified immediately by substituting (2.9) for Z in (2.10) and multiplying through by
yd). In particular, if n denotes the degree of x over G∗, the equation

xdñ +

d−1∑
i=0

ciy
d−ixiñ = 0. (2.13)

shows that
n ≤ dñ. (2.14)

Conversely, suppose x is integral over G∗. Then x satisfies a homogeneous integral relation of
the form (2.5) with an 6= 0. Since (2.5) is homogeneous, we have the equality

i ord x+ ord an−i = ord an for all i such that 0 ≤ i ≤ n and an−i 6= 0. (2.15)

Hence
n ord x = ord an. (2.16)

Now, an ∈ G∗ so that
ord an ∈ ∆. (2.17)
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Putting together (2.16) and (2.17), we obtain (1) of the Lemma.
Now, assume that β1, . . . , βr are Z-linearly independent. We wish to prove (2). Since

β1, . . . , βr are Z-linearly independent, all the monomials wγ11 . . . wγrr , γj ∈ Z, have different values
with respect to ord. Since (2.5) is homogeneous with respect to ord, each ai must be a monomial
in the wj with (not necessarily positive) integer exponents. Also by the Z-linear independence
of β1, . . . , βr, the coefficients n1, . . . , nr in (2.8) are uniquely determined. Moreover, any relation
of the form

i ord x−
r∑
j=1

n′jβj = 0, i ∈ N, n′1, . . . , n′r ∈ Z (2.18)

is a positive integer multiple of the relation

ñ ord x−
r∑
j=1

njβj = 0. (2.19)

By (2.15), if a term an−ix
i appears in (2.5), we have i ord x = ord an − ord an−i ∈ ∆. This

proves that xi may appear in (2.5) only if ñ | i; in particular, ñ | n. Let d′ := n
ñ . Let 0 ≤ i < d′.

To find each nonzero coefficient an−iñ in (2.5), note that

n ord x = d′ ñ ord x = i ñ ord x+ ord an−iñ,

so that
(d′ − i) ñ ord x = ord an−iñ. (2.20)

Since an−iñ is a monomial in w1, . . . , wr, (2.20) gives rise to a Z-linear dependence relation of the
form (2.18), which therefore must be equal to (2.19) multiplied by d′ − i. This determines the
monomial an−iñ uniquely up to multiplication by an element of k: we must have an−iñ = ciy

d′−i,

where ci ∈ k. Then z = xñ

y satisfies the algebraic dependence relation

zd
′
+

d′−1∑
i=0

ciz
i = 0. (2.21)

This proves (2) of the Lemma. Now, we have shown that, under the hypothesis of linear
independence of the βj , if x has degree n over G∗ then ñ | n and z is a root of a polynomial of
degree d′ = n

ñ . Letting d denote the degree of z over k, as above, we obtain

d′ =
n

ñ
≥ d. (2.22)

Combining (2.22) with (2.14), we obtain (2.12); in particular, (2.13) is the smallest degree
algebraic relation satisfied by x over G. This completes the proof of Lemma 2.7.

Corollary 2.8. Let G, w1, . . . , wr and β1, . . . , βr be as in Lemma 2.7. If β1, . . . , βr are Z-linearly
independent in ∆ then w1, . . . , wr are algebraically independent over k.

Proof. Induction on r. For r = 1 there is nothing to prove. For the induction step, assume that
the Corollary is true for r = i. If wi+1 were algebraic over k[w1, . . . , wi], we would have

(β1, . . . , βi) : βi+1 <∞ (2.23)

by Lemma 2.7, applied to the graded algebra k[w1, . . . , wi] and the element wi+1. (2.23) contra-
dicts the linear independence of β1, . . . , βr, and we are done. Alternatively, the Corollary can be
proved by observing that by linear independence of β1, . . . , βr, all the monomials in w1, . . . , wr
have different degrees, thus any polynomial in w1, . . . , wr over k contains a unique monomial of
smallest degree. Hence it cannot vanish by the ultrametric triangle law.

11



Definition 2.9. Let G be a graded algebra and xΛ := {xλ}λ∈Λ a collection of homogeneous
elements of G. Let k be a field, contained in the degree 0 part of G. Let k[xΛ] denote the k-
subalgebra of G, generated by xΛ. We say that xΛ rationally generate G over k if G∗ = k[xΛ]∗.

The following result is an immediate consequence of definitions:

Proposition 2.10. Let Gν be the graded algebra associated to a valuation ν : K → Γ, as above.

Consider a sum of the form y =
s∑
i=1

yi, with yi ∈ K. Let β = min
1≤i≤s

ν(yi) and

S = { i ∈ {1, . . . , n} | ν(yi) = β} .

The following two conditions are equivalent:

1. ν(y) = β

2.
∑
i∈S

inνyi 6= 0.

Let G be a saturated graded algebra, graded by a group Γ, L the field of fractions of G,
T an independent variable and β ∈ Γ̃+ := (Γ⊗Z Q)+. We regard G[T ] as an algebra graded by
Γ + βZ, where β is the weight assigned to T .

Definition 2.11. Take an element a ∈ G. Write a =
t∑

j=0
aj , where each aj is a homogeneous

element of G and ord a0 < ord a1 < · · · < ord at. The element a0 is called the initial form of
a and will be denoted by ā.

Definition 2.12. Take a polynomial g =
d∑
j=0

ajT
j ∈ G[T ]. Let

S(g) :=
{
j ∈ {0, . . . , d}

∣∣ ord
(
ajT

j
)

= ord g
}
.

The homogeneization of g is the polynomial ḡ :=
∑

j∈S(g)

ajT
j .

Remark 2.13. A polynomial f in G[T ] is said to be irreducible if it cannot be factored as a
product of two polynomials, both of which have degrees strictly smaller than degT f . Every
quasi-homogeneous polynomial f admits a unique factorization of the form

f = a

t∏
j=1

g
γj
j , (2.24)

where a is the leading coefficient of f , the γj are strictly positive integers and the gj are irre-
ducible monic quasi-homogeneous polynomials of strictly positive degrees (we allow the possi-
bility t = 0, in which case our claim holds trivially). Indeed, the factorization (2.24) exists in
L[T ]. Clearing denominators in (2.24), we can write

bf = a
t∏

j=1

g̃
γj
j , (2.25)

where b ∈ G and g̃j ∈ G[T ] for all j. Replace b by b̄ and each of the g̃j by its homogeneization ¯̃gj .
Since a is homogeneous and f quasi-homogeneous, this operation does not affect the truth of the
equality (2.25). In other words, without loss of generality we may assume that b is homogeneous
and all the g̃j quasi-homogeneous. Replacing g̃1 by g̃1

b , we may assume that b = 1. Dividing
each g̃j by its leading coefficient and modifying a accordingly, we arrive at the situation where
g̃j ∈ G[T ] for all j. This proves the existence of the factorization (2.24). The uniqueness of the
factorization follows from its uniqueness in L[T ].
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3 Sets of Key Polynomials

Let K → K(x) be a simple transcendental field extension, ν a valuation of K(x) and νK the
restriction of ν to K. We will assume that rank νK = 1 and

ν(x) > 0. (3.1)

Let Λ be a countable well ordered set.
Let {αi}i∈Λ be a set of strictly positive integers with

α0 = 1. (3.2)

For an ordinal ` ∈ Λ, we use the notation α`+1 := {αi}0≤i≤` and γ̄`+1 = {γi}0≤i≤`, where all
but finitely many γi are equal to 0.

Definition 3.1. Let i ∈ Λ. We say that i is inessential if i+ω ∈ Λ and αi+t = 1 for all t ∈ N0.

Notation. For i ∈ Λ with i not the maximal element of Λ, let

i+ = i+ ω if i is inessential

= i+ 1 otherwise.

Remark 3.2. In the sequel Λ will be an index set for a set of key polynomials. By a recursive
construction we will increase Λ and the set of key polynomials indexed by it. It is important to
note that, given two totally ordered sets Λ ⊂ Λ′, with Λ an initial segment of Λ′ it may happen
that an index i ∈ Λ is essential in Λ but inessential in Λ′. By the same token, the meaning of
i+ may depend on whether we view i as an element of Λ or of Λ′.

Our next goal is to define the notion of a set of key polynomials. We start with some
preliminary definitions and notation, before giving the main definition (Definition 3.11).

Definition 3.3. A set {Qi}i∈Λ ⊂ K[x] of monic polynomials with

Q0 = x, (3.3)

is said to be a set of pre-key polynomials if for all non-maximal i ≥ 1 and i0 < i such that
i0+ = i we have

degxQi = αi · degxQi0 .

We will use the following notation: for ` ∈ Λ, Q
γ̄`+1

`+1 =
∏
i≤`

Qγii . We let βi = ν(Qi) for each

i ∈ Λ.

Definition 3.4. Let ` ∈ Λ. A multiindex γ̄`+1 is said to be standard with respect to α`+1 if

0 ≤ γi < αi+ for i ≤ `, (3.4)

and if i is inessential then the set {j < i+ | j+ = i+ and γj 6= 0} has cardinality at most one.
An `-standard monomial in the elements Q`+1 (resp. an `-standard monomial in the
elements inνQ`+1) is a product of the form cγ̄`+1

Q
γ̄`+1

`+1 , (resp. cγ̄`+1
inνQ

γ̄`+1

`+1 ) where cγ̄`+1
∈ K

(resp. cγ̄`+1
is a homogeneous element of GνK ) and the multiindex γ̄`+1 is standard with respect

to α`+1.
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Keep the notation of Definitions 3.3–3.4 and let {Qi}i∈Λ ⊂ K[x] be a set of pre-key
polynomials.

Definition 3.5. An `-standard monomial cγ̄`+1
Q
γ̄`+1

`+1 is said to be Q`-free if it does not involve
Q`, that is, if γ` = 0.

Definition 3.6. A Q`-free `-standard expansion is a finite sum of Q`-free `-standard mono-
mials whose ν-value equals the minimum of the ν-values of the monomials. An `-standard

expansion of an element g ∈ K[x] is an expression of the form g =
s∑
j=0

cjQ
j
` , where each cj is

a Q`-free `-standard expansion.

Remark 3.7. Starting with an `-standard expansion and grouping together all the terms involving
Qj` for each exponent j produces a Q`-expansion.

For an element y ∈ Gν , an expression of the form y =
∑̄
γ
c̄γ̄ inνQ

γ̄
`+1, where each c̄γ̄ is

a homogeneous element of GνK and each Qγ̄
`+1 is an `-standard monomial, will be called an

`-standard expansion of y.

Remark 3.8. We note that a Q`-free `-standard expansion is not just an i-standard expansion
for some i < `. Namely, it is required, in addition, that the exponent of the last appearing key
polynomial Qi be strictly less than αi+.

Definition 3.9. Let
∑̄
γ
c̄γ̄ inνQ

γ̄
`+1 be an `-standard expansion, where the c̄γ̄ are homogeneous

elements of GνK . A lifting of
∑̄
γ
c̄γ̄ inνQ

γ̄
`+1 to K[x] is an `-standard expansion

∑̄
γ
cγ̄Q

γ̄
`+1, where

cγ̄ is a representative of c̄γ̄ in K.

Definition 3.10. Assume that char kν = p > 0. An `-standard expansion
∑
j
cjQ

j
` is said to be

weakly affine if cj = 0 whenever j > 0 and j is not of the form pe for some e ∈ N0.

Before plunging into the technical definition of key polynomials we say a few informal
words to motivate it. Roughly speaking, the 0-th key polynomial Q0 is equal to x and the key
polynomials Qi with i > 0 are elements of K[x] with “unexpected” or “jumping” values. More
precisely, for f =

∑
j
djx

j ∈ K[x] define ν0(f) = min
j
{ν(djx

j)}. We have

ν(f) ≥ ν0(f) (3.5)

by the ultrametric triangle inequality. The first key polyomial Q1 measures the fact that the
inequality (3.5) may be strict; in fact, Q1 is the smallest degree polynomial for which (3.5) is
strict. Once Q1 is defined, we define the Q1-expansion of f for each f and the valuation ν1

satisfying
ν0(f) ≤ ν1(f) ≤ ν(f). (3.6)

If the second inequality in (3.6) is strict for some f , the key polynomial Q2 is the smallest degree
polynomial for which (3.6) is strict. We iterate this procedure to construct a (possibly infinite)
sequence Q0, Q1, Q2, . . . and the corresponding sequence ν0, ν1, . . . of truncations of ν, satisfying
νi−1(f) ≤ νi(f) ≤ ν(f) for all f and all strictly positive integers i. The passage from Qi−1 to Qi
corresponds to the successor case in the definition below. It may happen that even this infinite
process does not describe the valuation ν completely, that is, there exists f ∈ K[x] such that

νi(f) < ν(f) for all i ∈ N. (3.7)
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A polynomial f of smallest degree satisfying (3.7) is the first limit key polynomal Qω. The
passage from {Qi}i∈N to Qω is the first instance of the limit case in the definition below. More
generally, if ` is an ordinal such that the key polynomials Q`+i, Q`+ω are defined, (Q`+i)i∈N is a
pseudo-Cauchy sequence of algebraic type and Q`+ω is the minimal polynomial of a pseudo-limit
of (Q`+i)i∈N. Now for the formal definition.

Definition 3.11. We say that the set {Qi}i∈Λ of pre-key polynomials is a set of key poly-
nomials for ν if it satisfies the following conditions (throughout this definition, i stands for an
element of Λ).
(a)

βi ∈ Γ̃0 whenever i 6= max Λ. (3.8)

(b) The successor case. For each i ≥ 1, if i has an immediate predecessor i − 1, the (i − 1)-
standard expansion of Qi has the form

Qi = Qαii−1 +

αi−1∑
j=0

∑
γ̄i−1

cj,i,γ̄i−1Q
γ̄i−1

i−1

Qji−1, (3.9)

where:
(1) if i = 1, we have Qi−1 = Q0 = ∅, γ̄i−1 = γ̄0 = ∅ by convention, Q0 = x and the coefficients
in parentheses in (3.9) are elements of K
(2) if i ≥ 2, γ̄i−1 = (γi′)0≤i′<i−1, where all but finitely many γi′ are equal to 0

(3) each cj,i,γ̄i−1Q
γ̄i−1

i−1 is an (i− 1)-standard monomial (which is, by definition, Qi−1-free)
(4) the quantity νK

(
cj,i,γ̄i−1

)
+

∑
q<i−1

γqβq + jβi−1 is constant for all the monomials

(
cj,i,γ̄i−1Q

γ̄i−1

i−1

)
Qji−1

appearing on the right hand side of (3.9)
(5) the equation

inνQ
αi
i−1 +

αi−1∑
j=0

∑
γ̄i−1

inνKcj,i,γ̄i−1 inνQ
γ̄i−1

i−1

 inνQ
j
i−1 = 0 (3.10)

is the minimal algebraic relation satisfied by inνQi−1 over GνK [inνQi−1]∗.

(c) The limit case. If i does not have an immediate predecessor then there exists i0 such that
i = i0+ and for every such i0 there exists an i0-standard expansion

Qi =

αi∑
j=0

cj,i0Q
j
i0
. (3.11)

Every i0-standard expansion (3.11) satisfies

ν (Qi) > min
0≤j≤αi

{
ν
(
cj,i0Q

j
i0

)}
. (3.12)

Moreover, the polynomial Qi is of the smallest degree among those satisfying (3.12) for all i0
with i0+ = i.

If
sup

{
βi′ | i′ < i

}
<∞ (3.13)
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(in particular, whenever i is not the maximal element of Λ), then

cαi,i0 = 1 (3.14)

and
min

0≤j≤αi

{
ν
(
cj,i0Q

j
i0

)}
= αiβi0 = ν (c0,i0) . (3.15)

(d) If for a certain degree n, the set {i ∈ Λ | degx(Qi) = n} is infinite, then the set

{ν(Qi) | i ∈ Λ, degx(Qi) = n}

is cofinal in {ν(f) | f ∈ K[x], f is monic, degx(f) = n}.

An element Qi of the set {Qi}i∈Λ is called a key polynomial.

Remark 3.12. It follows from Definition 3.11 that the elements βi are strictly increasing with i.

Proposition 3.13. Let i be an ordinal and t a positive integer. Assume that i + t ∈ Λ, so
that the key polynomials Qi+t+1 are defined, and that αi = · · · = αi+t = 1. Then every (i+ t)-
standard expansion does not involve any Qq with i ≤ q < i+t. In particular, a Qi-free i-standard
expansion is the same thing as a Qi+t-free (i+ t)-standard expansion.

Proof. (3.4) implies that for i ≤ q < i + t, Qq cannot appear in an (i + t)-standard expansion
with a positive exponent.

We will frequently use this fact in the sequel without mentioning it explicitly.

For i ∈ Λ and α ∈ N, let G<α denote the GνK -subalgebra of Gν , generated by elements of
the form inνf , degx f < α.

For i ∈ Λ, put ᾱi := degxQi.
For the rest of this section, we assume that we have a set of key polynomials {Qi}i∈Λ for

ν as above and derive some properties of this set.

Proposition 3.14. For each i ∈ Λ we have:

(1) If sup {βq | q < i} <∞ (in particular, whenever i 6= max Λ) then

ᾱi =
∏
j≤i

αj . (3.16)

(2) Take an element z ∈ K[x]. Assume that z admits a Qi-free i-standard expansion. Then

degx z < ᾱi. (3.17)

Proof. We use transfinite induction on i. For the base of the induction, consider the case i = 0.
(3.16) says that

ᾱ0 = degx x = α0 = 1; (3.18)

this follows immediately from (3.2) and (3.3). By (3.18) and (3.4), every monomial appearing
in the 0-standard expansion z is of degree strictly less than 1 = ᾱ0, that is, is an element of K.
This proves (3.17) in the case i = 0.
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Assume given an ordinal i > 0. Assume that (3.16) and (3.17) are known for some ordinal
i0 such that i0+ = i. If i = i0 +ω then i0 is inessential, so αi0+t = 1 for all t ∈ N0 by Definition
3.1. Thus in all the cases we have

ᾱi0 =
∏
j<i

αj . (3.19)

By assumption, (3.13) holds, hence so does (3.14) by condition (c) of Definition 3.11. Thus by
(3.9), (3.11) and (3.17) applied to i0 instead of i, the term Qαii0 in the i0-standard expansion of
Qi has strictly greater degree than all the other terms. Hence

ᾱi = degxQ
αi
i0

= αiᾱi0 . (3.20)

We obtain
ᾱi = αiᾱi0 = αi

∏
j<i

αj =
∏
j≤i

αj ,

which proves (3.16).
Let z be as in part (2) of the Proposition. Fix a Qi-free i-standard expansion of z and let

i0 denote the greatest ordinal such that Qi0 appears in this expansion (by definition of Qi-free,

we have i0 < i): z =
αi−1∑
j=0

dj,iQ
j
i0

, where each dj,i is a Qi0-free i0-standard expansion. By the

induction assumption, we have degx dj,i < ᾱi0 for all j. Combining this with (3.20), we obtain

degx z < max
0≤j<αi−1

{(j + 1)ᾱi0} ≤ αiᾱi0 = ᾱi,

as desired.

Corollary 3.15. Let f be an i-standard expansion of an element of K[x]. Then f is Qi-free if
and only if degx f < ᾱi.

Proof. Straightforward transfinite induction on i.

Remark 3.16. Assume that i ∈ Λ is a limit ordinal and take an i0 ∈ Λ such that i = i0+. Since
αi0+1 = 1 by definition, we have Qi0+1 = Qi0 + z, where inνz = −inνQi0 and degx z < ᾱi0 .
Hence

GνK [inνQi] ⊂ G<ᾱi0 . (3.21)

Below (Proposition 3.31) we will show that this inclusion is, in fact, an equality.

Remark 3.17. In §9 we will show, assuming that i is a limit ordinal and that the set {ν(Qi0)}i=i0+

is bounded in Γ̃0, that we can choose i0 and Qi so that Qi is a weakly affine monic i0-standard
expansion of degree αi = pei for a certain integer ei and, moreover, that there exists a positive
element β̄i ∈ R such that

β̄i > βq for all q < i, (3.22)

βi ≥ αiβ̄i and (3.23)

pj β̄i + ν
(
cpj ,i0

)
= αiβ̄i for 0 ≤ j ≤ ei. (3.24)

Remark 3.18. Take an element h ∈ K[x]. Then h admits a unique Qi-expansion

h =

si∑
j=0

dj,iQ
j
i . (3.25)
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This can be shown by induction on degx h. Indeed, let h = qQi + r be the Euclidean division
of h by Qi. Then d0,i = r and for j > 0 the coefficients dj,i are nothing but the coefficients of
powers of Qi in the Qi-expansion of q.

Proposition 3.19. Assume that the set {βq | q < i} is bounded in Γ̃0 (so that the hypothesis
of Proposition 3.14 (1) is satisfied). Every coefficient dj,i in (3.25) admits a Qi-free i-standard
expansion. Writing each coefficient dj,i in this way produces an i-standard expansion of h. In
particular, every element of K[x] admits an i-standard expansion.

Proof. We use transfinite induction on i. For i = 0 the result is obvious. Assume that i > 0 and
that the Proposition holds for all i′ < i. By definition of Qi-expansion we have

degx dj,i < ᾱi for all j. (3.26)

Take an ordinal i0 such that i = i0+. By the induction assumption applied to i0 the Qi0-
expansion of

dj,i =
∑
q

dq,j,iQ
q
i0

(3.27)

can be made into an i0-standard expansion by writing out a Qi0-free i0-standard expansion
of each coefficient dq,j,i. Moreover, by Proposition 3.14 (1) and (3.26), all the monomials Qji0
appearing in (3.27) satisfy j < αi. This makes (3.27) into a Qi-free i-standard expansion of dj,i,
so (3.25) can be made into an i-standard expansion of h, as desired.

Remark 3.20. The i-standard expansions (3.27) of the dj,i need not, in general, be unique. For
example, if i is a limit ordinal, dj,i admits an i0-standard expansion (3.27) for each

i0 < i such that i = i0+, (3.28)

but there are countably many choices of i0 satisfying (3.28). If i ∈ N0, then the i-standard
expansion of h is unique. This follows from Remark 3.18 by induction on i. Part of the point of
Remarks 3.18 and 3.20 and Proposition 3.19 is that an i-standard expansion is a Qi-expansion
together with an additional set of data, namely, a Qi-free i-standard expansion of the coefficients
dj,i.

For each i ∈ Λ we define a map νi : K(x)∗ → Γ as follows. Given a Qi-expansion

f =

si∑
j=0

dj,iQ
j
i , (3.29)

put
νi(f) = min

0≤j≤si
{jβi + ν(dj,i)}. (3.30)

By Remark 3.18, the elements dj,i ∈ K[x] are uniquely determined by f , so νi is well defined.
We extend νi to all of K(x) by additivity.

Remark 3.21. We have
νi(f) ≤ ν(f) (3.31)

by the ultrametric triangle law.

Remark 3.22. It is clear from the definition that the map νi satisfies the ultrametric triangle
law. Below, we will show that it is, in fact, a valuation.
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Next, we give criteria for when the inequality (3.31) is strict and when it is an equality.

Remark 3.23. If degx f < degxQi then we have si = 0 in the i-standard expansion (3.30), so
νi(f) = ν(d0,i) = ν(f).

Remark 3.24. Consider ordinals i0 < i and t ∈ N0 such that i = i0+, i + t ∈ Λ and for each
ordinal i′ such that i < i′ ≤ i+ t we have

αi′ = 1. (3.32)

(1) If (3.13) holds, we have νi0(Qi) = αiβi0 by (4) of Definition 3.11 (b) and (3.15) (recall
that (3.13) can only fail if i = max Λ).

(2) By (3.9), (3.32) and induction on t,

Qi+t = Qi +
t−1∑
q=0

zi+q, where deg zi+q < ᾱi. (3.33)

Hence every i0-standard expansion of Qi+t contains the term Qαii0 . We obtain νi0(Qi+t) ≤ αiβi0 .

Below (Corollary 3.42) we will see that under a mild additional hypothesis on i0 the last
inequality is, in fact, an equality.

Remark 3.25. Consider ordinals i, ` ∈ Λ, i < `. Then ν`(Qi) = νi(Qi) = ν(Qi). Indeed, if
ᾱi < ᾱ` our statement holds by definition of ν`.

Assume that ᾱi = ᾱ`. Then
Q` = Qi + z (3.34)

where degx z < ᾱi and ν(z) = βi < β`. Now, Qi = Q` − z is an `-expansion of Qi, so
ν`(Qi) = min{βi, ν(z)} = ν(z) = βi, as desired.

Proposition 3.26. For a pair of ordinals i0 < i such that i = i0+ we have

νi0(Qi) < βi. (3.35)

Proof. Let

Qi =

αi∑
j=0

cj,i0Q
j
i0

(3.36)

be the i0-standard expansion of Qi. If i0 = i−1 is the immediate predecessor of i then by (3.9)–

(3.10) the quantity ν(Qi) = νi(Qi) is strictly greater than the common value of ν
(
cj,i0Q

j
i0

)
(cf. (4) of Definition 3.11), where j ranges over the elements of {0, . . . , αi} for which cj,i0 6= 0.
This common value is, by definition, νi0(Qi). If i does not admit an immediate predecessor, the
desired strict inequality is nothing but (3.12).

Corollary 3.27. If i ∈ Λ is not the maximal element of Λ, then there exists f ∈ K[x] such that
νi(f) < ν(f).

Proposition 3.28. Fix an ordinal i ∈ Λ and let θ = Qγ̄i
i be a Qi-free i-standard monomial.

Then
ν (θ) < βi. (3.37)
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Proof. If (3.13) does not hold, we have βi > Γ̃0 and the result follows immediately. Therefore
we may assume that (3.13) holds. We proceed by transfinite induction on i. If i = 0 then θ = 1
and β0 = ν(x) > 0, so the result holds. Assume that i > 0 and the Proposition holds for all the
ordinals i′ < i. Let i0 be the smallest ordinal such that i0+ = i and γi′ = 0 for all i′ such that
i0 < i′ < i. Write θ = Q

γ̄i0
i0
Q
γi0
i0

where
γi0 < αi (3.38)

and Q
γ̄i0
i0

is a Qi0-free i0-standard monomial. By the induction assumption, ν
(
Q
γ̄i0
i0

)
< βi0 .

Combining this with (3.38), Remark 3.24 and Proposition 3.26, we obtain

ν (θ) < βi0 + γi0βi0 ≤ αiβi0 < βi,

as desired.

Proposition 3.29. Take an ordinal i ∈ Λ and assume that (3.13) holds. Then Qi ∈ RνK [x].

Proof. We use transfinite induction on i. For i = 0 we have Q0 = x and the result is clear.
Assume that i > 0 and the Proposition holds for all the ordinals i′ < i. Take an ordinal i0 such
that i = i0+ and let

Qi = Qαii0 +

αi−1∑
j=0

∑
γ̄i0

cj,i,γ̄i0Q
γ̄i0
i0

Qji0 , (3.39)

be an i0-standard expansion of Qi. By the induction assumption, it is enough to prove that

ν
(
cj,i,γ̄i0

)
≥ 0 (3.40)

for all the choices of j, i, γ̄i0 . Fix j, i, γ̄i0 appearing in one of the terms in (3.39). We have

ν

∑
γ̄i0

cj,i,γ̄i0Q
γ̄i0
i0

Qji0

 ≥ ν (Qαii0 ) (3.41)

by Definition 3.11 (b) (4) and (3.15) and ν
(
Q
γ̄i0
i0

)
< βi0 by Proposition 3.28 with i replaced by

i0. Combining the last inequality with (3.41), we obtain ν
(
cj,i,γ̄i0

)
≥ αiβi0 − (j + 1)βi0 ≥ 0, as

desired.

Let β∗ be a non-negative element of Γ. Keep the notation of (3.29). We denote

Si(β
∗, f) :=

{
j ∈ {0, . . . , si}

∣∣∣∣ jβ∗ + ν(dj,i) = min
0≤k≤si

{kβ∗ + ν(dk,i)}
}
.

Let Q̄i be a new variable.

Notation:

Si(f) : = Si(βi, f). (3.42)

δi(f) : = max Si(f) (3.43)

inif : =
∑

j∈Si(f)

inνdj,iQ̄
j
i ; (3.44)

the polynomial inif is quasi-homogeneous in GνK
[
inνQi, Q̄i

]
, where the weight assigned to Q̄i

is βi.
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Remark 3.30. If δi(f) = 0 then ν (d0,i) < ν
(
dj,iQ

j
i

)
for j > 0, so ν(f) = ν(d0,i) = νi(f), where

the first equality holds by the ultrametric triangle law.

Proposition 3.31. (1) For each ordinal i ∈ Λ we have

G<ᾱi = GνK [inνQi] . (3.45)

(2) The elements inνf , degx f < ᾱi, generate G<ᾱi as a GνK -module.

Proof. We use transfinite induction on i. For i = 0 we have ᾱ0 = 1, both sides of (3.45) coincide
with GνK and all the statements are clear. Assume that i > 0 and that the result is known for
all the ordinals strictly smaller than i. To prove that

GνK [inνQi] ⊂ G<ᾱi , (3.46)

we distinguish two cases. If i is a limit ordinal, (3.46) follows immediately from (3.21).
Suppose that i is not a limit ordinal. We have

GνK [inνQi] = GνK [inνQi−1] [inνQi−1] ∼= G<ᾱi−1 [inνQi−1] ,

where the last isomorphism is given by the induction assumption. Since αi−1 is the degree of
the minimal polynomial of inνQi−1 over GνK [inνQi−1] (Definition 3.11 (b) (5)), every element
of G<ᾱi−1 [inνQi−1] admits an (i− 1) standard expansion with all the exponents of Qi−1 strictly
smaller than αi−1 (by Lemma 2.6, with inνQi−1 playing the role of x). Such an element is
represented by a polynomial f ∈ K[x] admitting a Qi-free i-standard expansion, that is, a
polynomial such that degx f < ᾱi (Corollary 3.15). This proves the inclusion (3.46).

To prove the opposite inclusion, take f ∈ K[x] with

degx f < ᾱi. (3.47)

By Corollary 3.15 f admits a Qi-free i-standard expansion f =
t∑

j=1
ηj , where η1, . . . , ηt are Qi-free

i-standard monomials. Let β = min
j
{ν(ηj)} and {θ1, . . . , θs} = {ηj | j ∈ {1, . . . , t}, ν(ηj) = β }.

If i is not a limit ordinal, αi is the degree of the minimal polynomial of inνQi−1 over
GνK [inνQi−1] (Definition 3.11 (b) (5)). By (3.47) we have

∑
j

inνθj 6= 0 in Gν (otherwise we

would have an algebraic relation satisfied by inνQi−1 over GνK [inνQi−1] of degree strictly less
than αi), hence ν(f) = ν(θj) (for all j) and

∑
j

inνθj = inνf (see Proposition 2.10). If i is a limit

ordinal, by Definition 3.11 (c) there exists an ordinal i0 satisfying i0+ = i such that, letting

f =
si∑
j=0

cj,i0Q
j
i0

be an i0-standard expansion of f (where si < αi), we have

ν (f) = min
0≤j≤si

{
ν
(
cj,i0Q

j
i0

)}
, (3.48)

so
inνf =

∑
j∈Si0 (f)

inν

(
cj,i0Q

j
i0

)
(3.49)

by Proposition 2.10. In both cases we have proved that the left hand side of (3.45) is contained
in the right hand side.
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To prove (2) of the Proposition, first assume that i is not a limit ordinal. By the in-
duction assumption elements of the form inxg, g ∈ K[x], degx g < ᾱi−1, generate G<ᾱi−1 as
a GνK -module. Elements inνf , degx f < ᾱi are precisely those that admit homogeneous i-
standard expansions where Qi−1 appears with exponents strictly smaller than αi. By part (1)
of this Proposition such standard expansions generate G<ᾱi as a GνK -algebra, hence also as a
GνK -module by Lemma 2.6 (since αi is the degree of the minimal polynomial of inνQi−1 over
GνK [inνQi−1]).

It remains to consider the case when i is a limit ordinal. Take an ordinal i0 such that
i = i0+. We have

GνK [inνQi] ⊂ G<ᾱi0 ⊂ G<ᾱi , (3.50)

by Remark 3.16 hence both inclusions are equalities by part (1) of this Proposition. By the
induction assumption elements of the form inxg, g ∈ K[x], degx g < ᾱi−1, generateG<ᾱi0 = G<ᾱi
as a GνK -module, which completes the proof of (2).

Proposition 3.32. Take an element h of K[x] and an ordinal i ∈ Λ \ {0}. Assume that

degx h < ᾱi. (3.51)

Then there exists an ordinal i0 such that i ∈ {i0 + 1, i0+} and ν(h) = νi0(h).

Proof. For an ordinal i0 < i we will denote by

h =
s∑
j=0

cj,i0Q
j
i0
, (3.52)

the i0-standard expansion of h. Let Si0(h) be as defined in (3.42). First, assume that i is not a
limit ordinal; put i0 = i − 1. By (3.51) we have s < αi in (3.52). Since the degree of inνQi−1

over GνK [inνQi−1]∗ is αi by (3.10) and
∑

j∈Si−1(h)

inνcj,i−1Q̄
j
i−1 is a polynomial of degree strictly

less than αi in Q̄i−1, we see that
∑

j∈Si−1(h)

inνcj,i−1inνQ
j
i−1 6= 0 in Gν . The result now follows

from Proposition 2.10.
If i is a limit ordinal, the results follows immediately from the fact that by Definition 3.11

Qi is of the smallest degree among those polynomials that satisfy (3.12).

Definition 3.33. Let {Qi}i∈Λ be a set of key polynomials. We say that {Qi}i∈Λ is complete
for ν (or that {Qi}i∈Λ is a complete set of key polynomials for ν) if for each β ∈ Γ the additive

group Pβ ∩K[x] is generated by standard monomials of the form a
s∏
j=1

Q
γj
ij

, a ∈ K, such that

s∑
j=1

γjν(Qij ) + νK(a) ≥ β. The collection Q = {Qi}i∈Λ is said to be Γ̃0-complete if for all

β ∈ Γ̃0 every polynomial f ∈ K[x] with ν(f) = β belongs to the additive group generated by

standard monomials of the form a
s∏
j=1

Q
γj
ij

, a ∈ K, such that
s∑
j=1

γjν(Qij ) + νK(a) ≥ β.

Note, in particular, that if Q is a complete set of key polynomials then their images
inνQi ∈ Gν rationally generate Gν over GνK ; if Q is a Γ̃0-complete set of key polynomials then
their images inνQi ∈ Gν rationally generate G̃ν over GνK (see page 3 for the definition of G̃ν).
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Remark 3.34. The set Q is a complete set of key polynomials if and only if for each polynomial
f ∈ K[x] there exists an ordinal ` such that ν(f) = ν`(f). Indeed, assume that such an ordinal
exists for all f . Take any β ∈ Γ and let f ∈ Pβ ∩K[x]. Put β′ = ν(f) and let ` be such that

β′ = ν(f) = ν`(f). Write f =
s∑̀
j=0

dj,`Q
j
` , where each dj,`Q

j
` ∈ Pβ′ ∩K[x] ⊂ Pβ ∩K[x].

Conversely, take f ∈ K[x]. Let β = ν(f). Write f as a finite sum

f =
∑
γ

dγQ
γ dγ ∈ K, (3.53)

of standard monomials with ν (dγQ
γ) ≥ β for all γ such that dγ 6= 0. Let ` denote the greatest

ordinal such that Q` appears in one of the monomials dγQ
γ . Then (3.53) can be rewritten as

f =
s∑
j=0

djQ
j
` , where each dj is a Q`-free `-standard expansion; in particular, degx dj < ᾱ`. We

obtain
β = ν(f) ≥ ν`(f) = min

j

{
ν
(
djQ

j
`

)}
≥ min

γ
{ν (dγQ

γ)} ≥ β.

This also shows that if Q is a complete set of key polynomials then Q is not strictly contained
as an initial segment in any other set of key polynomials; in other words, the construction of
key polynomials cannot be continued beyond Q.

Proposition 3.35. If Λ has a maximal element i and

βi /∈ Γ̃0, (3.54)

then inνQi is transcendental over GνK [inνQi].

Proof. Take a non-zero polynomial F (Q̄i) =
s∑
j=0

c̄jQ̄
j
i ∈ GνK [inνQi][Q̄i]. By (3.54) the terms in

the expression F (inνQi) =
s∑
j=0

c̄j inνQ
j
i have different orders for different j (where, by definition,

ord Q̄i = βi); in particular, there exists a unique jmin ∈ {0, . . . , s} that minimizes ord c̄j inνQ
j
i .

By the ultrametric triangle inequality, we have F (inνQi) 6= 0, as desired.

Proposition 3.36. Take an ordinal i ∈ Λ. Assume that inνQi is transcendental over
GνK [inνQi]. Then the set {Q`}`∈Λ = {Q`}`≤i of key polynomials is complete for ν.

Proof. Take an element h ∈ K[x]. Let

h =
s∑
j=0

cj,iQ
j
i (3.55)

be the Qi-expansion of h. We want to prove that

νi(h) = ν(h).

Replacing h by
∑

j∈Si(h)

cj,iQ
j
i does not change the problem. Thus we may assume that all the

terms cj,iQ
j
i appearing in (3.55) have value νi(h). Since inνQi is transcendental over GνK [inνQi],

we have
∑
j

inν(cj,iQ
j
i ) 6= 0. The Proposition now follows from Proposition 2.10.
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Proposition 3.37. Take an element h of K[x] and an ordinal i ∈ Λ. Assume that at least one
of the following conditions holds:

(1)
ν(h) < βi (3.56)

and
h ∈ RνK [x] (3.57)

or

(2)
sup

{
βi′

∣∣ i′ < i
}

=∞. (3.58)

Then ν(h) = νi(h).

Proof. Let

h =
s∑
j=0

cjQ
j
i , (3.59)

be an i-standard expansion of h. First, assume that {βi′ | i′ < i} is unbounded in Γ̃0; in
particular,

βi > Γ̃0. (3.60)

Then the Proposition holds by Propositions 3.35 and 3.36.
Next, suppose that (3.56)–(3.57) hold and sup {βi′ | i′ < i} <∞. Since (3.59) is obtained

from h by iterating Euclidean division by Qi which is monic, and in view of Proposition 3.29,
we have

ν(cj) ≥ 0 for all j ∈ {0, . . . , s}. (3.61)

By definition of standard expansion, each cj in (3.59) is a Qi-free i-standard expansion. Then
νi(cj) = ν(cj) for 0 ≤ j ≤ s. By (3.56) and (3.61),

ν
(
cjQ

j
i

)
= ν(cj) + jβi > ν(h) for j > 0. (3.62)

so
ν(c0) = ν(h) < ν(cj) + jβi = νi(cj) + jβi for all j > 0. (3.63)

In other words, in the sum (3.59) the νi-value (resp. the ν-value) νi(c0) = ν(c0) of c0 is strictly
smaller than the νi-values (resp. the ν-values) νi(cjQ

j
i ) = ν(cjQ

j
i ) of all the other terms. It is

well known and follows easily from the ultrametric triangle law that in this situation we have
νi(h) = νi(c0) = ν(c0) = ν(h), as desired.

For b ∈ N0, let ∂b denote the b-th Hasse derivative with respect to x.

Proposition 3.38. For all b ∈ N and all i ∈ Λ, there exists an ordinal i0 < i such that

i ∈ {i0 + 1, i0+}

and
νi0(∂bQi) = ν(∂bQi). (3.64)
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Proof. If i is not a limit ordinal, put i0 = i− 1. If i is a limit ordinal, take i0 such that

i = i0 + . (3.65)

The result now follows from the fact that degx ∂bQi < degxQi, where in the case when i is a
limit ordinal we must take i0 sufficiently large subject to (3.65).

Proposition 3.39. (1) The map νi is a valuation.
(2) For every ordinal q < i and every f ∈ K[x] we have νq(f) ≤ νi(f) ≤ ν(f).

Proof. It is obvious that νi satisfies the ultrametric triangle law. To prove (1) of the Proposition,
we must prove the equality

νi(fg) = νi(f) + νi(g). (3.66)

For an ordinal i′ ∈ Λ let (1)i′ and (2)i′ denote, respectively, (1) and (2) of the Proposition with
i replaced by i′. We proceed by transfinite induction on i. (1)0 is easy to prove and (2)0 is
vacuously true.

Assume that (1)i′ and (2)i′ hold for all ordinals i′ < i. To prove (1)i and (2)i, we start
with some preliminary lemmas. For future reference we state some of the lemmas in slightly
greater generality than needed for the proof of Proposition 3.39.

Consider an ordinal i0 < i and t ∈ N0 such that i = i0+, i+ t ∈ Λ and for each ordinal i′

such that i < i′ ≤ i+ t we have
αi′ = 1. (3.67)

Lemma 3.40. Consider two terms of the form dQji+t and d′Qj
′

i+t, where j, j′ ∈ N0 and d and d′

are Qi+t-free (i+ t)-standard expansions. Assume that

νi0

(
dQji+t

)
≤ νi0

(
d′Qj

′

i+t

)
, (3.68)

ν
(
dQji+t

)
≥ ν

(
d′Qj

′

i+t

)
, (3.69)

νi0(d) = ν(d) (3.70)

and
νi0(d′) = ν(d′) (3.71)

Then j ≥ j′. If at least one of the inequalities (3.68), (3.69) is strict then j > j′.

Remark 3.41. If i = i0 + 1 then assumptions (3.70) and (3.71) hold automatically by Corollary
3.15 and the definition of νi0 . In the general case, Proposition 3.32 and (2)q for q < i imply that
there exists i0 such that i0+ = i and (3.70) and (3.71) hold.

Proof of Lemma 3.40. We have

νi0(Qi+t) ≤ αiβi0 < βi+t (3.72)

by Remark 3.24 and Proposition 3.26. Since νi0 is a valuation by (1)i0 , the inequalities (3.68)–
(3.69) can be rewritten as

ν(d) + jνi0(Qi+t) ≤ ν(d′) + j′νi0(Qi+t) (3.73)

and
ν(d) + jβi+t ≥ ν(d′) + j′βi+t (3.74)

Subtract (3.73) from (3.74) and use (3.72). The result follows.
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Corollary 3.42. Keep the notation of the last lemma. Assume that

νi0

 t−1∑
q=0

zi+q

 = ν

 t−1∑
q=0

zi+q

 (3.75)

in the notation of (3.33) (note that by Proposition 3.32 such an i0 always exists). We have

νi0(Qi+t) = αiβi0 (3.76)

Proof. By Proposition 3.19 we may assume that (3.33) is an i0-standard expansion of Qi+t. The
leading term of this i0-standard expansion is Qαii0 . We have αiβi0 = νi0

(
Qαii0

)
. Now Lemma

3.40, applied with t = j = 0 and j′ = 1, implies that νi0
(
Qαii0

)
< νi0

(
t−1∑
q=0

zi+q

)
. This completes

the proof.

Keep the above notation. Let f be a non-zero element of K[x]. Let

f =

si0∑
j=0

dj,i0Q
j
i0

(3.77)

be an i0-standard expansion of f , where each dj,i0 is a Qi0-free i0-standard expansion.

Consider an (i+ t)-standard expansion of f :

f =

si+t∑
j=0

dj,i+tQ
j
i+t, (3.78)

where the dj,i+t are Qi+t-free standard expansions. Let δ = δi0(f). Let

µ = min
0≤j≤si+t

νi0

(
dj,i+tQ

j
i+t

)
and

Si0,i+t =
{
j ∈ {0, . . . , si+t}

∣∣∣ νi0 (dj,i+tQji+t) = µ
}
.

Assume that (3.75) holds and that

νi0 (dj,i+t) = ν (dj,i+t)

for all j ∈ Si0,i+t (note that by Proposition 3.32 and (2)q, q < i, this holds for all sufficiently
large ordinals i0 such that i0+ = i).

Lemma 3.43. (1) We have

νi0(f) = µ = min
0≤j≤si+t

{ν(dj,i+t) + jαiβi0}.

(2) Let j0 = max Si0,i+t. Then δ = αij0 + δi0(dj0,i+t).
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Proof. (1) The second equality in (1) of the Lemma is given by Corollary 3.42 and (1)i0 . Let
θ = min Si0,i+t.

Let f̄ =
∑

j∈Si0,i+t
dj,i+tQ

j
i+t. Then νi0

(
f − f̄

)
> µ, so to prove that νi0 (f) = µ it is

sufficient to prove that
νi0
(
f̄
)

= µ. (3.79)

The equality (3.79) holds if and only if

νi0

(
Q−θi+tf̄

)
= µ− θαiβi0 . (3.80)

Therefore, without loss of generality, we may assume that θ = 0.
Now, all the terms dj,i+tQ

j
i+t, j ∈ Si0,i+t, appearing in the (i + t)-standard expansion of

f̄ , have the same νi0-values, so by Lemma 3.40 they all have different ν-values with

ν (d0,i+t) < ν
(
dj,i+tQ

j
i+t

)
for j ∈ Si0,i+t \ {0}. By the ultrametric triangle law we have

ν
(
f̄
)

= ν (d0,i+t) = νi0 (d0,i+t) = µ ≤ νi0
(
f̄
)
,

hence the inequalitiy in this formula is an equality and (3.79) is proved. This proves (1) of the
Lemma.

(2) In view of (1), a term of the form aQδi0 with degx a < degxQi0 and

ν
(
aQδi0

)
= νi0(f)

appears in the Qi0-expansion of
∑

j∈Si0,i+t
dj,i+tQi+t,j and δ is the greatest integer with this

property. The Qi0-expansion of dj0,i+tQ
j0
i+t contains a term of the form aQ

αij0+δi0 (dj0,i+t)

i0
with

degx a < degxQi0 and ν
(
aQ

αij0+δi0 (dj0,i+t)

i0

)
= νi0(f); αij0 + δi0(dj0,i+t) is the greatest power of

Qi0 appearing there. The term aQ
αij0+δi0 (dj0,i+t)

i0
cannot be canceled by contributions from any

of dj,i+tQ
j
i+t, j ∈ Si0,i+t, j < j0, for reasons of degree. This completes the proof of (2).

Lemma 3.44. Keep the notation and assumptions of Lemma 3.43. For every j ∈ {1, . . . , si+t}
we have

νi+t

(
dj,i+tQ

j
i+t

)
− νi0(f) ≥ βi+t − αiβi0 > 0. (3.81)

Proof. We have

νi+t

(
dj,i+tQ

j
i+t

)
= ν

(
dj,i+tQ

j
i+t

)
= ν (dj,i+t) + jβi+t. (3.82)

By the ultrametric triangle law applied to the Qi0-expansion of di+t we have

0 ≤ ν(dj,i+t)− νi0(dj,i+t). (3.83)

Finally, by Lemma 3.43 we have

νi0(f) ≤ νi0
(
dj,i+tQ

j
i+t

)
= νi0 (dj,i+t) + jαiβi0 . (3.84)

Adding up (3.83) and (3.84), subtracting the result from (3.82) and using the fact that j ≥ 1,
we obtain (3.81).
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Corollary 3.45. (1) Conclusion (2)i holds.
(2) We have νi(f) = νi0(f) if and only if the Qi-expansion of f has non-zero coefficient

d0,i satisfying
νi (d0,i) = νi0 (d0,i) = νi0(f). (3.85)

Proof. (1) follows from (3.81) (with t = 0) by transfinite induction on i− q.
(2) By (3.81) (with t = 0), for every term dj,iQ

j
i of the Qi-expansion of f with j > 0 we

have ν
(
dj,iQ

j
i

)
> ν

(
dj,iQ

j
i

)
. This proves (2).

Note that that the equivalent conditions of (2) of the Corollary are also equivalent to
saying that the Qi-expansion of ini0f has non-zero coefficient d0,i satisfying (3.85).

Remark 3.46. The first equality in (3.85) holds automatically when i is not a limit ordinal.

Take a finite collection of polynomials f1, . . . , fs ∈ K[x] such that degx fj < ᾱi for all
j ∈ {1, . . . , s}. Let

s∏
j=1

fj = qQi+t + r (3.86)

be the Euclidean division of
s∏
j=1

fj by Qi+t. Assume that i = i0+,

νi0(fj) = ν(fj) for all j ∈ {1, . . . , s} (3.87)

νi0(q) = ν(q) (3.88)

and
νi0(r) = ν(r) (3.89)

(such an i0 exists by Proposition 3.32 and (2)i).

Lemma 3.47. We have ν

(
s∏
j=1

fj

)
= νi0

(
s∏
j=1

fj

)
= ν(r) and

νi+t(qQi+t)− ν

 s∏
j=1

fj

 ≥ βi+t − αiβi0 > 0.

Proof. By (1)i0 we have

νi0

 s∏
j=1

fj

 =

s∑
j=1

νi0 (fj) =

s∑
j=1

ν (fj) = ν

 s∏
j=1

fj

 . (3.90)

Now, r in (3.86) is nothing but the constant term in the (i + t)-standard expansion of
s∏
j=1

fj ,

whereas qQi+t is the sum of all the remaining terms in this (i + t)-standard expansion. Now

the inequality of the Lemma is a special case of Lemma 3.44. The fact that ν(r) = ν

(
s∏
j=1

fj

)
follows immediately from this by the ultrametric triangle law.
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We are now in the position to finish the proof of (1)i. Let g =
ui∑
j=0

cj,iQ
j
i and f =

si∑
j=0

dj,iQ
j
i

be the respective i-standard expansions of g and f . By Lemma 3.47, for every j ∈ {0, . . . , si}
and j′ ∈ {0, . . . , ui}, we have dj,icj′,i = qj,j′Qi + rj,j′ with

ν
(
dj,icj′,i

)
= ν

(
rj,j′

)
< ν

(
qj,j′Qi

)
.

This implies that all the terms in the i-standard expansion of fg have value at least νi(f)+νi(g)

and some terms (for example, the term involving Q
δi(f)+δi(g)
i ) have exactly this value. This

completes the proof.

The valuation νi will be called the i-truncation of ν.

Remark 3.48. By (2)i, if ν(f) = νi0(f) then νi(f) = νi0(f).

Proposition 3.49. (1) We have

grνiK[x] ∼= GνK
[
inνQi, Q̄i

]
, (3.91)

where the symbol Q̄i denotes an element, transcendental over GνK [inνQi] with ord Q̄i = βi. The
element Q̄i is the image of inνiQi under the isomorphism (3.91).

(2) With the identification (3.91) there is a natural degree-preserving homomorphism

φ : grνiK[x] −→ grνK[x]

of GνK [inνQi]-algebras defined by φ
(
Q̄i
)

= inνQi.

For parts (3) and (4) of the Proposition, assume that i+ 1 ∈ Λ.

(3) Ker φ is generated by the polynomial obtained from the left hand side of (3.10) by first
replacing i by i+ 1 and then replacing inνQi by Q̄i.

(4) Im φ = GνK [inνQi+1] = {0}
⋃
{ inνf | f ∈ K[x], νi(f) = ν(f)}.

Proof. (2) The homomorphism φ is self-explanatory.

(1) Let G
(i)
<ᾱi denote the grνKK-subalgebra of grνiK[x], generated by all the inνif with

degx f < ᾱi. The homomorphism φ maps G
(i)
<ᾱi isomorphically onto G<ᾱi . Given a non-zero

element f ∈ K[x] with i-standard expansion (3.77), inνif can be written as

inνif =
∑

j∈Si(f)

inνidj,iinνiQ
j
i

with inνidj,i ∈ G
(i)
<ᾱi . If we had a non-trivial relation of the form

∑
j
d̄j,iinνiQ

j
i = 0 with

d̄j,i ∈ G(i)
<ᾱi ,

we could take it to be homogeneous and lift it to an element f =
∑
j
dj,iQ

j
i ∈ K[x] such that

νi(f) > min
j

{
ν
(
dj,iQ

j
i

)}
contradicting the definition of νi. Thus inνiQi is transcendental over

G
(i)
<ᾱi .

Conversely, given an element f̄ ∈ G(i)
<ᾱi [inνiQi] we can consider its i-standard expansion

and lift it to an element f ∈ K[x] such that inνif = f̄ . Thus inνiK[x] ∼= G
(i)
<ᾱi [inνiQi] with inνiQi
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transcendental over G
(i)
<ᾱi [inνiQi] and G

(i)
<ᾱi [inνiQi]

∼= GνK
[
inνQi, Q̄i

]
in view of Proposition

3.31 and the identification G
(i)
<ᾱi
∼= G<ᾱi given by φ.

(3) follows from the fact that inνiQi+1 is the minimal polynomial satisfied by inνQi over
GνK [inνQi] (Definition 3.11 (b) (5)).

(4) follows from the fact that φ(f) 6= 0 ⇐⇒ νi(f) = ν(f) (Proposition 2.10).

4 The numerical character δi(h)

Let {Qi}i∈Λ be a set of key polynomials for ν. Let i ∈ Λ and h ∈ K[x]. Let

h =

si∑
j=0

dj,iQ
j
i (4.1)

be an i-standard expansion of h, where each dj,i is a Qi-free i-standard expansion. In this section
we study the properties of the numerical character

δi(h) = max Si(h) = degQ̄i inih (4.2)

(cf. (3.42)–(3.44)) that will play a crucial role in the rest of the paper. We prove that δi(h) does
not increase with i. We also show that the equality δi(h) = δi+1(h) imposes strong restrictions
on inih.

Definition 4.1. The i-th Newton polygon of h with respect to ν is the convex hull ∆i(h) of the

set
si⋃
j=0

(
(ν(dj,i), j) +

(
Γ̃0+ ×Q+

))
in Γ̃0 ×Q.

Definition 4.2. The vertex
(
ν
(
dδi(h),i

)
, δi(h)

)
of the Newton polygon ∆i(h) is called the piv-

otal vertex of ∆i(h).

Let
ν+
i (h) = min

{
ν
(
dj,iQ

j
i

) ∣∣∣ δi(h) < j ≤ si
}

(4.3)

and
S′i(h) =

{
j ∈ {δi(h) + 1, . . . , si}

∣∣∣ ν (dj,iQji) = ν+
i (h)

}
.

If the set on the right hand side of (4.3) is empty, we adopt the convention that ν+
i (h) = ∞.

We have δi(h) > 0 whenever νi(h) < ν(h) by Remark 3.30.
Take an ordinal i ∈ Λ. Assume that there exists a polynomial h such that

νi(h) < ν(h) (4.4)

(this happens, for instance, whenever i + 1 ∈ Λ by Corollary 3.27). Consider the i-th Newton
polygon of h. Let Si(h) be as in (3.42).

Definition 4.3. For a polynomial f ∈ K[x], we say that β∗ determines a side of ∆i(f) if the
set Si(β

∗, f) has at least two elements.

Proposition 4.4. We have
∑

j∈Si(f)

inν

(
dj,iQ

j
i

)
= 0 in

Pνi(h)
Pνi(h)+

⊂ Gν .
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Proof. This follows immediately from (4.4), the fact that∑
j∈Si(h)

dj,iQ
j
i = h−

∑
j∈{0,...,si}\Si(h)

dj,iQ
j
i

and Proposition 2.10.

In the following corollary, recall that a factorization of inih into irreducible factors exists
and is unique by Remark 2.13.

Corollary 4.5. Viewing inih as a polynomial in the variable Q̄i with coefficients in GνK [inνQi],
we have inih (inνQi) = 0. In particular, the element inνQi is integral over GνK [inνQi]. Its
minimal polynomial over GνK [inνQi] is one of the irreducible factors of inih.

Corollary 4.6. The element βi determines a side of ∆i(h).

Proof. Suppose not. Then the i-standard expansion of h contains a unique term dj,iQ
j
i of

minimal value, so ν(h) = ν(dj,iQ
j
i ) = νi(h), contradicting (4.4). Corollary 4.6 is proved.

Let

inih = inνdδ,i

t∏
j=1

g
γj,i
j,i (4.5)

be the factorization of inih into (monic) irreducible factors in GνK [inνQi]
[
Q̄i
]
, where

δ = δi(h) (4.6)

and g1,i is the minimal polynomial of inνQi over GνK [inνQi].
The next Proposition shows that δi(h) is non-increasing with i and that the equality

δi+1(h) = δi(h) imposes strong restrictions on inih.

Proposition 4.7. Assume that i+ 1 ∈ Λ and

ν(h) > νi(h). (4.7)

(1) We have
αi+1δi+1(h) ≤ δ. (4.8)

(2) If δi+1(h) = δ then
Qi+1 = Qi + zi, (4.9)

where zi is some Qi-free i-standard expansion,

inih = inνdδ,i
(
Q̄i + inνzi

)δ
(4.10)

and ini+1h contains a monomial of the form inνdδ,iQ̄
δ
i+1; in particular,

inνdδ,i = inνdδ,i+1. (4.11)

(3) If δi+1(h) = δ, then for all j > δ we have

ν
(
dj,i+1Q

j
i+1

)
− νi+1(h) ≥ ν+

i (h)− νi(h). (4.12)
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Remark 4.8. This Proposition is true as stated without the hypothesis (4.7), but the proof given
below needs to be modified to include the case of equality in (4.7). In the sequel, the Proposition
will only be used under the assumption (4.7).

Proof. We start with a lemma. Consider an (i+ 1)-standard expansion of h:

h =

si+1∑
j=0

dj,i+1Q
j
i+1, (4.13)

where the dj,i+1 are Qi+1-free (i+ 1)-standard expansions.
In the notation immediately preceding Lemma 3.43 (with f replaced by h and (i0, i + t)

by (i, i+ 1)), let θi+1(h) = min Si,i+1.

Definition 4.9. The vertex (ν(dθi+1(h),i+1), θi+1(h)) is called the characteristic vertex of
∆i+1(h).

The polynomial inih is divisible by the minimal polynomial g1,i of inνQi over GνK [inνQi];
in particular, we have δ = degQ̄i inih > 0.

For j ∈ {1, . . . , t}, let gj,i,0 denote the coefficient of inνQ
0
i in the polynomial gj,i.

Lemma 4.10. We have
γ1,i = θi+1(h) (4.14)

(in particular, dγ1,i,i+1 6= 0) and

inνdθi+1(h),i+1 = inνdδ,i

t∏
j=2

g
γj,i
j,i,0. (4.15)

Proof. Write

h =
∑

q∈Si,i+1

dq,i+1Q
q
i+1 +

∑
q∈{0,...,s}\Si,i+1

dq,i+1Q
q
i+1.

By Lemma 3.43, the terms of lowest νi-value in the Qi-expansion of h are recovered from the
terms of lowest νi-value of

∑
q∈Si,i+1

dq,i+1Q
q
i+1, in other words,

inih =
∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1. (4.16)

By definition of key polynomials (Definition 3.11 (b) (5)), we have

iniQi+1 = g1,i. (4.17)

By definition of θi+1(h), iniQ
θi+1(h)
i+1 is the highest power of iniQi+1 dividing∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1.

Since g
γ1,i
1,i is, by definition, the highest power of g1,i dividing inih, (4.16)–(4.17) imply (4.14).

Combining (4.5) and (4.16) and dividing both equations by g
γ1,i
1,i = iniQ

θi+1(h)
i+1 , we obtain

∑
q∈Si,i+1

inidq,i+1iniQ
q−θi+1(h)
i+1 = inνdδ,i

t∏
j=2

g
γj,i
j,i . (4.18)

Equating the constant terms in (4.18) yields (4.15).
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We are now in the position to finish the proof of Proposition 4.7. Apply Lemma 3.40 to

the monomials dθi+1(h),i+1Q
θi+1(h)
i+1 and dδi+1(h),i+1Q

δi+1(h)
i+1 . We have

ν
(
dδi+1(h),i+1Q

δi+1(h)
i+1

)
≤ ν

(
dθi+1(h),i+1Q

θi+1(h)
i+1

)
(4.19)

by definition of δi+1 and

νi

(
dθi+1(h),i+1Q

θi+1(h)
i+1

)
= νi(h) ≤ νi

(
dδi+1(h),i+1Q

δi+1(h)
i+1

)
(4.20)

by Lemma 3.43, so the hypotheses of Lemma 3.40 are satisfied (note that (3.70) and (3.71) hold
by definition of νi and Qi-expansion of h). By Lemma 3.40

θi+1(h) ≥ δi+1(h). (4.21)

Since
αi+1θi+1(h) = αi+1γ1,i ≤ degQ̄i inih = δ (4.22)

by Lemma 4.10 and (4.5), (1) of the Proposition follows.
(2) Assume that δi+1(h) = δ (where the notation is as in (4.6)). Recall that δ > 0 by

Remark 3.30. Then the monomials dθi+1(h),i+1Q
θi+1(h)
i+1 and dδi+1(h),i+1Q

δi+1(h)
i+1 coincide and

αi+1 = 1. (4.23)

This proves (4.9). Furthermore, we have equality in (4.22). Then (4.5) rewrites as

inih = inνdδ,ig
δ
1,i

t∏
j=2

g
γj,i
j,i (4.24)

Now, the left hand side of (4.24) is a polynomial of degree δ in Q̄i, while the right hand side is
divisible by the non-constant polynomial gδ1,i. This implies that

t = 1,

t∏
j=2

g
γj,i
j,i = 1, (4.25)

and inih = inνdδ,ig
δ
1,i. (4.10) now follows from (4.9) and (4.17).

The equality (4.11) follows from (4.15), (4.25) and the fact that θi+1(h) = δi+1(h) = δ.

(3) Assume that δi+1(h) = δ. Fix an integer j > δ. The Qi+1-expansion (4.13) of
h is obtained from its Qi-expansion (4.1) by making the substitution Qi = Qi+1 − zi and
performing repeated Euclidean divisions by Qi+1 to turn the result into a Qi+1-expansion.

For j′ < j, monomials of the form dj′,iQ
j′

i have degrees strictly less than jᾱi+1. Hence they

contribute nothing to dj,i+1Q
j
i+1; in other words, the coefficient dj,i+1 is completely determined

by
si∑
j′=j

dj,′iQ
j′

i .

Fix an integer j′ ∈ {j, . . . , si}. Write

dj′,iQ
j′

i = dj′,i (Qi+1 − zi)j
′

= dj′,i

j′∑
k=0

(
j′

k

)
(−1)kQki+1z

j′−k
i , (4.26)
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where zi is a Qi-free i-standard expansion. Again, the terms on the right hand side of (4.26)
with k > j contribute nothing to dj,i+1Q

j
i+1. For k ≤ j, let dj′,k,i denote the coefficient of Qji+1

in the (i+ 1)-standard expansion of dj′,iQ
k
i+1z

j′−k
i . To prove (3), it is sufficient to prove that for

all j′ ∈ {j, . . . , si} and all k ∈ {0, . . . , j} we have

ν
(
dj′,k,iQ

j
i+1

)
− νi+1(h) ≥ ν+

i (h)− νi(h). (4.27)

To prove (4.27), we start out by noting that (4.9) is an i-standard expansion of Qi+1. Hence

νi(Qi+1) = βi = ν(zi), (4.28)

where the last equality holds by Definition 3.11 (4). By Lemma 3.43, νi

(
dj′,iQ

k
i+1z

j′−k
i

)
equals

the minimum of the νi-values of the terms appearing in its (i + 1)-standard expansion, so

νi

(
dj′,iQ

k
i+1z

j′−k
i

)
≤ νi

(
dj′,k,iQ

j
i+1

)
. Combining this with (4.28) and with Proposition 3.32

applied to dj′,k,i and the ordinal i+ 1, we obtain

ν
(
dj′,k,i

)
= νi

(
dj′,k,i

)
≥ (j′ − j)βi + ν

(
dj′,i

)
. (4.29)

By definition of δi+1(h), since δi+1(h) = δ and in view of (4.11), we have

νi+1(h) = ν(dδ,i+1) + δβi+1

Combining this with (4.29) and using (4.11) again, we obtain

ν
(
dj′,k,iQ

j
i+1

)
− νi+1(h) = ν

(
dj′,k,i

)
− ν (dδ,i+1) + (j − δ)βi+1 ≥

≥ (j′ − j)βi + ν
(
dj′,i

)
− ν (dδ,i+1) + (j − δ)βi = ν

(
dj′,iQ

j′

i

)
− ν

(
dδ,iQ

δ
i

)
≥ ν+

i (h)− νi(h),

(4.30)

as desired. This completes the proof of the Proposition.

Corollary 4.11. For as long as the character δi(h) remains constant (that is, does not strictly
decrease), the quantity ν+

i (h)− νi(h) is non-decreasing with i.

Proof. Take the minimum over all j on the left hand side of (4.12).

Remark 4.12. One way of interpreting Lemma 3.40, together with the inequalities (4.19)–(4.21)
is that the characteristic vertex

(
ν
(
dθi+1(h),i+1

)
, θi+1(h)

)
of ∆i+1(h) always lies above its pivotal

vertex
(
ν
(
dδi+1(h),i+1

)
, δi+1(h)

)
.

Corollary 4.13 (of Proposition 4.7). Assume that the set {i ∈ Λ | αi > 1} is infinite. Then
{Qi}i∈Λ is a complete set of key polynomials.

Proof. Take an element h ∈ K[x] and an index i ∈ Λ. If νi(h) = ν(h), there is nothing to prove.
Assume that ν(h) > νi(h). Then δi(h) > 0 by Remark 3.30. Proposition 4.7 (1) says that

δi+1(h) < δi(h) (4.31)

whenever αi+1 > 1. Since the set {i ∈ Λ | αi > 1} is infinite and the strict inequality (4.31) can
occur for at most finitely many values of i, we have δi(h) = 0 for some i ∈ Λ. Then νi(h) = ν(h)
by Remark 3.30.
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5 Augmenting sets of key polynomials

Suppose we are given a set of key polynomials {Qi}i∈Λ that is not complete for ν. In this section,
we will construct a set {Qi}i∈Λ+ where Λ+ is a well-ordered set of order type less than ω × ω,
and Λ $ Λ+.

5.1 Sets of key polynomials having a maximal element

Suppose first that Λ has a maximal element `.
Since {Qi}i∈Λ is not complete, there exists h ∈ K[x] such that

ν`(h) < ν(h). (5.1)

Let Q̄` be a new variable. Take a polynomial h satisfying (5.1).
By Proposition 4.4, we have ∑

j∈S`(h)

inν

(
dj,`Q

j
`

)
= 0 (5.2)

in
Pν`(h)
Pν`(h)+

⊂ Gν . By Corollary 4.6 the element β` determines a side of ∆`(h). Let

inν`h = inν`dδ,`

t∏
j=1

g
γj,`
j,` , (5.3)

where δ = δ`(h), be the factorization of in`h into monic, quasi-homogeneous irreducible factors
in GνK [inνQ`]

[
Q̄`
]

(such a factorization exists and is unique by Remark 2.13). By (5.2), the
element inνQ` is integral over GνK [inνQ`]. Its minimal polynomial over GνK [inνQ`] is one of
the irreducible factors gj,` of (5.3).

Let α`+1 denote the degree of inνQ` over GνK [inνQ`]. Renumbering the factors in (5.3),
if necessary, we may assume that g1,` is the minimal polynomial of inνQ` over GνK [inνQ`], so
that

α`+1 = degQ̄` g1,`. (5.4)

Let

g1,` = Q̄
α`+1

` +

α`+1−1∑
j=0

(∑
γ̄`

c̄`+1,j,γ̄` inνQ
γ̄`
`

)
Q̄j` (5.5)

be an `-standard expansion of g1,`. Let X be a new variable, and consider a lifting of the right
hand side of (5.5) to K[X], that is, a polynomial of the form

Xα`+1 +
α`+1−1∑
j=0

(∑̄
γ`

c`+1,j,γ̄`Q
γ̄`
`

)
Xj , where inνc`+1,j,γ̄` = c̄`+1,j,γ̄` for all the choices of `, j, and

γ̄`.
Define the (`+ 1)-st key polynomial of ν to be

Q`+1 = Q
α`+1

` +

α`+1−1∑
j=0

(∑
γ̄`

c`+1,jγ̄`Q
γ̄`
`

)
Qj` . (5.6)

Let Λ+ = Λ ∪ {` + 1}. By definition Q`+1 has the form (3.9). The set {Qi}i∈Λ+ satisfies
Definition 3.11: it is a set of key polynomials.
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In the special case when
α`+1 = 1 (5.7)

we will define several consecutive key polynomials at the same time.
Assume that α`+1 = 1. Let T denote the set of all the polynomials of the form

Q′ = Q` + w,

where degxw < ᾱ` = degxQ`. To define Q`+1, consider two cases:
Case 1. The set ν(T ) contains a maximal element. Let Q′ = Q` + w be an element of T for

which the maximum is attained. Write w =
s∑
t=0

z`+t + w̃, where s ∈ N0, for each t ∈ {0, . . . , s}

the expression z`+t is a homogeneous Q`-free `-standard expansion, such that

β` = ν(z`) < ν(z`+1) < · · · < ν(z`+s) < ν
(
Q′
)

(5.8)

and w̃ is a Q`-free `-standard expansion all of whose terms have value greater than or equal to
ν (Q′). Put Λ+ = Λ ∪ {`+ 1, . . . , s+ 1} and

Qi = Q` + z` + · · ·+ zi−1 for `+ 1 ≤ i ≤ `+ s+ 1.

Case 2. The set ν(T ) does not contain a maximal element. Let
(
Q̃`+t = Q` + w̃t

)
t∈N0

be

a sequence of elements of T such that the sequence
(
ν
(
Q̃`+t

))
t∈N0

is strictly increasing and

cofinal in ν(T ). We will now define, recursively in q, an infinite sequence

(z`+q)q∈N0 (5.9)

of homogeneous Q`-free `-standard expansions of strictly increasing values and a sequence
(wt)t≥−1 consisting of certain partial sums of the sequence (5.9). We adopt the convention
that z`−1 = w−1 = 0. Assume that for certain integers t0, q0 the finite sequences (z`+q)q≤q0 and

(wt)t≤t0 are already defined, that wt0 =
q0∑
q=0

z`+q and ν(z`+q) < ν
(
Q̃`+t0

)
for all q ≤ q0. Write

w̃t0+1 −wt0 =
q1∑

q=q0+1
z`+q +w′t0+1, where each z`+q is a homogeneous Q`-free `-standard expan-

sion, ν(z`+q0+1) < · · · < ν(z`+q1) < ν
(
Q̃`+t0+1

)
and w′t0+1 is a Q`-free `-standard expansion,

each of whose terms has value greater than or equal to ν
(
Q̃`+t0+1

)
. Put

wt0+1 := wt0 +

q1∑
q=q0+1

z`+q.

This completes the recursive definition of the infinite sequences (z`+q)q∈N0 and (wt)t≥−1. Define
α`+t = 1,

Q`+t = Q` + z` + z`+1 + · · ·+ z`+t−1 for t ∈ N,
and put Λ+ = Λ ∪ {`+ t}t∈N.

In both Cases 1 and 2, for each t under consideration we have

ν(Q`+t) = ν(z`+t) < ν(Q`+t+1) = ν(z`+t+1).

Thus, by the choice of the sequences
(
ν
(
Q̃`+t

))
t∈N0

, (z`+q)q∈N0 and (wt)t≥−1, conditions (a)–

(d) of Definition 3.11 are satisfied for all the ordinals i of the form i = `+ t, t ∈ N0.
Therefore in all cases the set {Qi}i∈Λ+ is a set of key polynomials for ν.

36



Remark 5.1. We claim that Q`+1 is an irreducible polynomial in x. Indeed, consider a factor-
ization Q`+1 = fg in K[x]. Passing to the natural images of Q`+1, f and g in

GνK [inνQ`]
[
Q̄`
] ∼= Gν` ,

we obtain g1,` = in`f in`g. Since g1,` is an irreducible polynomial in Q̄` by definition, we have,
up to interchanging f and g,

degQ̄` in`f = α`+1. (5.10)

Then
degx f ≥ α`+1 degxQ` = degxQ`+1, (5.11)

where the equality holds since g1` has the form (5.5). We must have equality in (5.11) and
degx g = 0. Thus g ∈ K; this completes the proof of the irreducibility of Q`+1 in K[x].

Similarly, in the case when (5.7) holds, Q`+t is irreducible for all t ∈ N for which Q`+t is
defined. This follows from the above argument by induction on t.

5.2 Augmenting sets of key polynomials without maximal elements

Suppose that the set Λ does not have a maximal element. Since the set {Qi}i∈Λ of key polyno-
mials is not complete, by Corollary 4.13 the degrees of the polynomials Qi, i ∈ Λ, are bounded
in N. Hence there exists ` such that for each i ∈ Λ, i > `, we have i = ` + t and α`+t = 1 for
t ∈ N. Since this set of key polynomials is not complete for ν, there exists a monic polynomial
h such that

ν`+t(h) < ν(h) (5.12)

for all t ∈ N. In this case, define Q`+ω to be a smallest degree monic polynomial h satisfying
(5.12).

Remark 5.2. The inequality (5.12) implies that

degxQ`+ω ≥ degxQ` = degxQ`+t for all t ∈ N. (5.13)

by Proposition 3.32. If the inequality in (5.13) were an equality, we would have a contradiction
with the condition (d) of Definition 3.11. Thus, degxQ`+ω > degxQ` = degxQ`+t, t ∈ N.

For each t ∈ N, the expression Q`+t = Q`+t+1 − z`+t is an (` + t + 1)-expansion of Q`+t.
Thus, in view of Proposition 3.29, h = Q`+t satisfies the hypotheses of Proposition 3.37 (1) with
i = `+ t+ 1. We obtain ν`+t+1 (Q`+t) = ν (Q`+t). To summarize, we have

ν(Q`+t+1) = ν`+t+1(Q`+t+1) > ν`+t+1(Q`+t) = ν (Q`+t) . (5.14)

Let
β̄ = sup {ν (Q`+t) | t ∈ N} .

(here we allow the possibility β̄ =∞, which means that the set {ν (Q′) | Q′ ∈ T} is unbounded
in Γ̃0).

We put Λ+ = Λ ∪ {Q`+ω}. By Remark 3.18 and Proposition 3.19, for every t ∈ N0 the
polynomial Q`+ω admits an (`+ t)-standard expansion (3.11):

Q`+ω =

α`+ω∑
j=0

cj,`+tQ
j
`+t. (5.15)

By (5.12), the inequality (3.12) holds for i = `+ ω and i0 = `+ t.
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To complete the proof that {Qi}i∈Λ+ is a set of key polynomials for ν, it remains to prove
(3.14) and (3.15), assuming (3.13) (with i replaced by `+ ω and i0 replaced by `+ t, t ∈ N).

Therefore, assume that the sequence (β`+t)t∈N has an upper bound (but no maximum) in
Γ̃0.

To simplify the notation, for the purposes of the next Proposition we will denote Q`+ω by
f . We have

degQ` f :=

[
degx f

degxQ`

]
≥ δ`(f). (5.16)

By Proposition 4.7 there exists t0 ∈ N such that

δ`+t(f) = δ`+t0(f) for all t ≥ t0 (5.17)

(in fact, (5.17) holds already for t0 = 1, but we have not proved that yet). Let δ denote the
stable value of δ`+t(f) for large t. The inequality (5.16) implies that

degQ` f ≥ δ. (5.18)

The next Proposition says that equality holds in (5.18).
In what follows, the index i will run over the set {`+ t}t∈N0 .

Proposition 5.3. For each
i ∈ {`+ t}t∈N0

we have
degx f = δ degxQi (5.19)

and

β̄ ≤ 1

δ
ν (f) . (5.20)

Proof. By (5.12) for all t ∈ N0 we have ν(f) > ν`+t(f) = δν(Q`+t). This proves (5.20). The
main point is to prove (5.19). Our strategy for doing this consists in gradually modifying f
while preserving the numerical character δi(f) and the condition

νi(f) < ν(f) for all i of the form i = `+ t, t ∈ N (5.21)

though possibly changing degx f in the process, until we arrive at a polynomial of degree δᾱi.
Since αi = 1 for all i, degxQi is independent of i, so all the i-standard expansions of f

have the same degree α`+ω in Qi. For each i, let

f =

α`+ω∑
j=0

aj,iQ
j
i (5.22)

be an i-standard expansion of f .

Lemma 5.4. There exists a polynomial a∗ ∈ K[x] of degree strictly less than degxQ` such that

inνa
∗inνaδ,` = 1 (5.23)

in Gν .
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Proof. Let `− denote the smallest ordinal such that ᾱ`− = ᾱ`. By Proposition 3.32 (applied to
h = aδ,`), there exists an ordinal `0 < `− such that `− = `0+ and

ν`0(aδ,`) = ν(aδ,`). (5.24)

By (5.24) and Proposition 3.49 (4) we have inνaδ,` ∈ GνK [inνQ`0+1] = GνK [inνQ`0 ] [inνQ`0 ].
By Definition 3.11, inνQ`0 is integral over GνK [inνQ`0+1] of degree α`0+1. By Lemma 2.6 and
transfinite induction on `0, the graded algebras

GνK [inνQ`0 ] ⊂ GνK [inνQ`0 ] [inνQ`0 ] (5.25)

are saturated. Hence the homogeneous element inνaδ,` ∈ GνK [inνQ`0 ] [inνQ`0 ] has a multiplica-
tive inverse ā∗ ∈ GνK [inνQ`0 ] [inνQ`0 ]. Again by Lemma 2.6, ā∗ admits an `0-standard expansion
whose degree in inνQ`0 is strictly less than α`0+1. A lifting of this `0-standard expansion to K[x]
is the desired element a∗.

Note that by Proposition 4.7 (2) and transfinite induction on i, for all i ≥ `

inνaδ,` = inνaδ,i (5.26)

and
inif = inνaδ,i(Q̄i + inνzi)

δ.

Hence, in view of (5.23) and (5.26), we have

ini(a
∗f) = (Q̄i + inνzi)

δ. (5.27)

Now, Q̄i + inνzi is the minimal algebraic relation satisfied by inνQi over GνK [Qi], so this
polynomial maps to 0 under the homomorphism φ of Proposition 3.49 (2). Therefore(

Q̄i + inνzi
)δ ∈ Ker φ.

Together with (5.27) and Proposition 3.49 (3)–(4) this implies that

ν(a∗f) > νi(a
∗f) for all i. (5.28)

We claim that
δi(a

∗f) = δ for all i. (5.29)

Indeed, applying Lemma 3.47 with s = 2 to the pairs of polynomials

(f1, f2) = (aδ,i, a
∗)

and
(f1, f2) = (aδ−1,i, a

∗),

we see that after multiplying f by a∗ and applying Euclidean division of a∗f by Qi to obtain
the i-standard expansion of a∗f , only the remainders in the Euclidean division contribute to
ini(a

∗f). This means that the powers of Q̄i that appear in ini(a
∗f) with non-zero coefficients

are exactly the same as those appearing in inif and (5.29) follows.
Thus, replacing f by a∗f , we may assume that inνaδ,i = 1 for all i.
Let

θ(i) =
1

2
min

{
ν+
i (f)− νi(f), βi − β`

}
; (5.30)
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we have θ(i) > 0. By Corollary 4.11 the quantity ν+
i (f) − νi(f) is non-decreasing with i and

hence so is θ(i). Taking into account the fact that β̄ = lim
i→∞

βi, we have, for i sufficiently large,

ν(aδ,i) + δβ̄ − νi(f) = δ(β̄ − βi) < θ(i). (5.31)

By choosing `1 > ` sufficiently large, we may assume that (5.31) holds for i ≥ `1.

For each i ≥ `1, write aδ,i = 1 + a†i with

ν
(
a†i

)
> 0. (5.32)

Write
f = f̄i + f̃i,

where

f̄i = Qδi +
δ−1∑
j=0

aj,iQ
j
i

and

f̃i = a†iQ
δ
i +

ni∑
j=δ+1

aj,iQ
j
i .

We want to compare the `1-standard expansion of f with its i-standard expansion for i > `1
and, in particular, to study the dependence on i of aδ,i and a†i := aδ,i − 1.

First of all, for all j with δ < j ≤ n`1 and all i ≥ `1 we have

νi

(
aj,`1Q

j
`1

)
− δβi ≥ ν`1

(
aj,`1Q

j
`1

)
− δβ`1 − δ(βi − β`1) ≥ ν+

`1
(f)− ν`1(f)− δ(β̄ − β`1) > θ(`1),

(5.33)
where:

the first inequality holds by Proposition 3.39 (2)
the second inequality holds by the definitions of ν+

`1
(f) and of β̄ and

the third inequality holds by (5.30)–(5.31).

For i > `1, write Qi = Q`1 +wi, where wi is a Qi-free i-standard expansion (in particular,
degxwi < ᾱi = ᾱ`1 . To compute the coefficient ai,δ in the i-standard expansion of f = f̄`1 + f̃`1 ,
we must consider the expressions

Qδ`1 +

δ−1∑
j=0

aj,`1Q
j
`1

= (Qi − wi)δ +

δ−1∑
j=0

aj,`1 (Qi − wi)j (5.34)

and

a†`1Q
δ
`1 +

n`1∑
j=δ+1

aj,`1Q
j
`1

= a†`1 (Qi − wi)δ +

n`1∑
j=δ+1

aj,`1 (Qi − wi)j ,

open the parentheses and perform the appropriate Euclidean divisions by Qi. We have

degx

δ−1∑
j=0

aj,`1 (Qi − wi)j < δᾱi.

As well, every term in the Newton binomial expansion of (Qi − wi)δ except for Qδi has degree

strictly smaller than δᾱi. Therefore no terms in (5.34) contribute anything to a†i . By (5.33), all
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the contributions to a†i by terms of the form aj,`1Q`1 , j > δ, have νi-value strictly greater than
θ(`1).

It remains to study the contribution to a†i from a†`1 (Qi − wi)δ =
δ∑
j=0

(
δ
j

)
a†`1w

j
iQ

δ−j
i . For

j = 0 this contribution equals a†`1 . For each j ∈ {1, . . . , δ} this contribution is nothing but the

coefficient dj of Qji in the i-standard expansion of a†`1w
j
i . We have

ν(dj) ≥ νi(dj) ≥ βi − β` − j(βi − β`1) > θ(`1),

where the second inequality follows from Lemma 3.47, applied with s = j + 1, f1 = a†`1 ,

f2 = · · · = fs = wi,

i+ t replaced by i and i0 replaced by `. Putting together all of the above information, we obtain

νi

(
a†i

)
≥ min

{
θ(`1), ν

(
a†`1

)}
. (5.35)

Take an ordinal `2 of the form `2 = `1 + t1, t1 ∈ N, such that β̄ − β`2 < ν
(
a†`1

)
.

Since for all i ≥ `2 we have ν
(
a†i

)
> 0 and in view of the definition of δ, every term in

the Qi-expansion of f̃i has value strictly greater than δβi. Hence ν
(
f̃`2

)
≥ νi

(
f̃`2

)
> νi

(
f̄`2
)

which implies that νi
(
f̄`2
)

= νi (f) < min
{
ν(f), ν

(
f̃`2

)}
≤ ν

(
f − f̃`2

)
= ν

(
f̄`2
)
. Since

degx f̄`2 = δ degxQ` ≤ degx f and f was chosen of minimal degree subject to inequality (5.21),
we must have degx f = degx f̄`2 = δ degxQ`.

Corollary 5.5. We have equalities (3.14) and (3.15) (with i replaced by `+ ω and i0 replaced
by `+ t, t ∈ N). In particular, the set {Qi}i∈Λ+ is a set of key polynomials for ν.

Proof. This follows immediately from (5.19) and Proposition 4.7 (2) (specifically, the equality
(4.10)).

Below, in Proposition 8.6, we will show that δ(f) is of the form δ(f) = pe0 for some
e0 ∈ N0. Together with Remark 5.2 this will prove that, under the assumptions of this section,
we have char kν > 0 and e0 > 0.

Proposition 5.6. If ν(Q`+t) ∈ Γ̃0 for all t ∈ N0 and the sequence (β`+t)t∈N0
is cofinal in Γ̃0,

then the set Q`+ω of key polynomials defined above is Γ̃0-complete. In other words, for every
element β ∈ Γ̃0+ every polynomial h ∈ K[x] with ν(h) = β belongs to the additive subgroup of
Pβ ∩ K[x] generated by all the standard monomials in Q`+ω, multiplied by elements of K, of
value β or higher.

Proof. Take an element h ∈ K[x]. Without loss of generality, we may assume that, writing

h =
s∑
j=0

djx
j , we have

νK(dj) ≥ 0 for all j (5.36)

(otherwise, multiply h by a suitable element of K). In other words, we may assume that
h ∈ RνK [x]. Since the sequence {β`+t}t∈N0 is cofinal in Γ̃0, there exists i of the form i = ` + t,
t ∈ N0, such that

βi > ν(h). (5.37)

41



Then h satisfies the hypotheses of Proposition 3.37. Now, Proposition 3.37 says that

νi(h) = ν(h).

This means, by definition, that h can be written as a sum of standard monomials in Qi+1 of value
at least ν(h), hence it belongs to the additive abelian group generated by all such monomials.
This completes the proof.

6 Constructing a complete set of key polynomials

In this section we will recursively construct a complete set of key polynomials.

First, consider the set {Qi}i∈Λ, with Q0 = x and Λ = {0}. It is a set of key polynomials.

Next, assume that a set {Qi}i∈Λ of key polynomials is constructed and that Λ < ω×ω. If
Λ does not have a maximal element then there exists and ordinal ` such that {`+ t | t ∈ N0 }
is a subset of Λ, cofinal in Λ.

If the set {Qi}i∈Λ is complete for ν, put Λ̄ := Λ and stop. Otherwise, consider the set
{Qi}i∈Λ+ of key polynomials constructed in the previous section. If the set {Qi}i∈Λ+ of key
polynomials is complete, put Λ̄ := Λ+ and stop here. Otherwise, replace {Qi}i∈Λ by {Qi}i∈Λ+

and repeat the procedure.

Remark 6.1. If Q = {Qi}i∈Λ is a set of key polynomials, i0, i ∈ Λ, i is a limit ordinal and i0+ = i
then

ᾱi > ᾱi0 (6.1)

by Remark 5.2. Therefore, if as a result of the above recursive procedure we arrive at a set of
key polynomials with Λ = ω × ω, since Λ contains infinitely many limit ordinals, such a set of
key polynomials must have unbounded degrees and is therefore complete by Proposition 3.14
(1) and Corollary 4.13. This proves that the aobve recursive procedure produces a complete set
of key polynomials after at most ω × ω steps. In other words, Λ̄ ≤ ω × ω.

We have proved the following:

Theorem 6.2. The well ordered set Q := {Qi}i∈Λ̄ constructed above is a complete set of key
polynomials. In other words, for every element β ∈ Γ the Rν-module Pβ ∩K[x] is generated as
an additive group by all the monomials in the Qi of value β or higher, multiplied by elements of
K. In particular, we have ⊕

β∈Γ

Pβ

Pβ+
= GνK [inνQ]∗.

In §8 we will fix an ordinal ` such that ` + ω ∈ Λ̄ and will study further properties of
Q`+ω. Among other things, we will show (Propositions 8.6 and 8.10 and Remark 8.7) that:

(a) if char kν = 0 then our construction gives a complete set of key polynomials that is of
order type at most ω + 1.

(b) if, in addition, rank ν = 1 then the construction produces a complete set of key
polynomials that is of order type at most ω.

In the next section we study the effect of differential operators on the polynomials Qi in
order to give a more precise description of the form of limit key polynomials.
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7 Key polynomials and differential operators

This section is devoted to proving some basic results about the effect of differential operators
on key polynomials. Here and below, for a non-negative integer b, ∂b will denote the b-th Hasse
(or formal) derivative, defined in the Introduction. Given an `-standard expansion h, we are
interested in proving lower bounds on (and, in some cases, exact formulae for) the quantities
ν(∂bh) and ν`(∂bh) and in computing the elements inν∂bh and in`∂bh. In particular, we will give
sufficient conditions for the element ∂bh to be non-zero.

Assume given a complete set Q := {Qi}i∈Λ̄ of key polynomials. Take an ordinal i ∈ Λ̄.
Let bi denote the smallest positive integer which maximizes the quantity

βi − ν(∂biQi)

bi
(7.1)

(later in this section, we will show that bi is necessarily of the form pei for some ei ∈ N0 and, in
particular, that bi = 1 if char kν = 0).

Let h be an element of K[x]. We use the following convention for binomial coefficients: if
s < t, the binomial coefficient

(
s
t

)
is considered to be 0. We view the binomial coefficients as

elements of K via the natural map Z→ K.

Notation:
Let p be as defined in the Introduction. If p > 1, for an integer a we shall denote by ν(p)(a)
the p-adic value of a, that is, the greatest power of p that divides a. If p = 1, we adopt the
convention ν(p)(a) = 1 for all non-zero a and ν(p)(0) =∞.

Remark 7.1. Consider e, b, b′ ∈ N such that b 6 | pe (this holds, in particular, whenever b < pe)
and pe | b′. Then (x+ ∆x)b

′ ∈ K
[
xp

e
,∆xp

e]
, so ∂bx

b′ = 0.

Proposition 7.2. Take an element h ∈ K[x] \ {0}.

(1) For all b ∈ N0 we have

νi(h)− νi (∂bh) ≤ b

bi
(βi − ν(∂biQi)) . (7.2)

(2) Let h =
s∑
j=0

dj,iQ
j
i be an i-standard expansion of h. Assume that

{
j ∈ {0, . . . , s}

∣∣∣ ν (dj,iQji) = νi(h)
}
6= {0}

(in particular, we have s > 0). Let dj,iQ
j
i denote the term in the i-standard expansion of

h which minimizes the triple
(
νi

(
dj,iQ

j
i

)
, ν(p)(j), j

)
in the lexicographical ordering. Let

e = ν(p)(j) and b(i, h) = bip
e. Then equality holds in (7.2) for b = b(i, h).

Remark 7.3. For all b ∈ N we have degx ∂bQi < ᾱi. By Proposition 3.32 there exists an ordinal
i0 such that i0+ = i and

ν(∂bQi) = νi0(∂bQi). (7.3)

In particular ν(∂biQi) = νi0(∂biQi). Thus replacing ν(∂biQi) by νi0(∂biQi) in (7.2) gives rise to
an equivalent inequality. Also, νi (∂bh) ≤ ν (∂bh), so replacing νi (∂bh) by ν (∂bh) in (7.2) gives
rise to a true, but an a priori weaker inequality.
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Proof of Proposition 7.2. We prove Proposition 7.2 by transfinite induction. For i = 0 we have

Qi = x, bi = 1 and b = pe. Write h =
s∑
j=0

dj,0x
j . For b = 0 and for b > s, (7.2) is trivially true.

Assume that 0 < b ≤ s. There exists j, 0 ≤ j ≤ s, such that

ν0(∂bh) = ν

((
j

b

)
dj,0x

j−b
)
≥ ν(dj,0) + (j − b)β0 ≥ ν0(h)− bβ0,

which gives (7.2).
To prove (2), chose dj,0x

j as in part (2), then ν0(h) = ν0(dj,0x
j) = ν(dj,0) + jβ0. By

definition of e and b, we have ν0

((
j
b

))
= ν

((
j
b

))
= 0. Now,

ν0

(
∂pedj,0x

j
)

= ν0

((
j

pe

)
dj,0x

j−pe
)

= ν0

((
j

pe

))
+ ν(dj,0) + (j − pe)β0 =

=ν(dj,0) + jβ0 − peβ0 = ν0(h)− peβ0.

(7.4)

Assume that i > 1 and that the result is known for all the ordinals strictly smaller than i.

Lemma 7.4. Consider a pair of ordinals i′, i′′ such that i′ < i′′ ≤ i. Then

βi′ − ν
(
∂bi′Qi′

)
bi′

<
βi′′ − ν

(
∂bi′′Qi′′

)
bi′′

(7.5)

Proof. Basic Case. First, assume that i′′ = i′+ and that for every b̃ ∈ N we have

ν(∂b̃Qi′′) = νi′(∂b̃Qi′′). (7.6)

By definition of bi′′ , it is sufficient to prove that there exists a strictly positive integer b̃ such
that (7.5) holds with bi′′ replaced by b̃.

We take b̃ := b (i′, Qi′′). We have:

βi′′ − ν
(
∂b̃Qi′′

)
> νi′ (Qi′′)− ν

(
∂b̃Qi′′

)
= νi′ (Qi′′)− νi′

(
∂b̃Qi′′

)
=

=
b̃

bi′

(
βi′ − ν

(
∂bi′Qi′

))
.

Here the first inequality is given by Proposition 3.26, the first equality by (7.6) and the second
equality by Proposition 7.2 (2) applied to i′ < i, which we are allowed to use by the induction
assumption of Proposition 7.2. This completes the proof of the Basic Case.

In the general case, we argue by contradiction. Assume that (7.5) does not hold. Take
the smallest ordinal `′′ ≤ i′′ such that there exists an ordinal `′ satisfying i′ ≤ `′ < `′′ and

β`′ − ν
(
∂b`′Q`′

)
b`′

≥
β`′′ − ν

(
∂b`′′Q`′′

)
b`′′

. (7.7)

Increasing `′, if necessary, we may assume that

`′′ = `′ + . (7.8)

By Propositions 3.32 and 3.39 (2), by further increasing `′ we may assume, in addition, that

ν
(
∂b̃Q`′′

)
= ν`′

(
∂b̃Q`′′

)
for all b̃ ∈ N. (7.9)

Together with (7.7) and (7.8) this contradicts the Basic Case. The proof of the Lemma is
complete.
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To prove Proposition 7.2 (1), it is sufficient to prove it for each i-standard monomial
appearing in the i-standard expansion of h. Indeed, let

h =
∑

γ̄i+1∈W
dγ̄i+1Q

γ̄i+1

i+1 (7.10)

be an i-standard expansion of h, where W is a certain finite index set. Assume that the result is
true for each i-standard monomial Q

γ̄i+1

i+1 appearing in (7.10). This means that for each γ̄i+1 ∈W
we have

νi

(
∂bQ

γ̄i+1

i+1

)
≥ νi

(
Q
γ̄i+1

i+1

)
− b

bi
(βi − ν (∂biQi)) .

Thus

νi(∂bh) ≥ min
γ̄i+1

νi

(
dγ̄i+1∂bQ

γ̄i+1

i+1

)
≥ ν

(
dγ̄i+1

)
+ min

γ̄i+1

νi

(
Q
γ̄i+1

i+1

)
− b

bi
(βi − ν (∂biQi)) =

=νi(h)− b

bi
(βi − ν (∂biQi)) ,

(7.11)

as desired (here the last equality holds because, by Definition 3.6, a Qi-free i-standard expansion
is a finite sum of Qi-free i-standard monomials whose ν-value equals the minimum of the ν-values
of the monomials).

Let Q
γ̄i+1

i+1 be such an i-standard monomial. Let γ̄i+1 = (γj | j ≤ i) and write

Q
γ̄i+1

i+1 = Qγ̄i
i Q

γi
i .

We want to expand ∂bQ
γ̄i+1

i+1 in terms of products of the form Qγi−qi

(
∂j0Q

γ̄i
i

) q∏
t=1

(∂jtQi), where

q ≤ γi and j0 + j1 + · · ·+ jq = b. Each such product appears in the sum with a certain positive
integer coefficient that we will now compute explicitly.

To do that, we first prove some general formulae about Hasse derivatives of products and
powers of polynomials. We start with the following generalized Leibniz rule.

Lemma 7.5. For any two polynomials A(X), B(X) ∈ K[X] and any positive integer b, we have

∂b(A(X)B(X)) =
b∑

j=0

(∂jA(X))(∂b−jB(X)). (7.12)

Proof. Let m = degX A(X) and n = degX B(X). By definition, Hasse derivatives are the
coefficients in Taylor expansions:

A(X + Y ) =

m∑
i=0

∂iA(X)Y i and B(X + Y ) =

n∑
i=0

∂iB(X)Y i.

We obtain

AB(X + Y ) = A(X + Y )B(X + Y ) =

m+n∑
b=0

 b∑
j=0

∂jA(X)∂b−jB(X)

Y b.

Since the coefficients in the Taylor expansion are uniquely determined, this proves (7.12).
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For positive integers a1 ≤ · · · ≤ aq, let k denote the number of distinct elements in the
set {a1, . . . , aq}. We define the multiplicities n1, . . . , nk of a1, . . . , aq as follows. Let n1 be the
number of appearances of a1 in the sequence a1, . . . , aq. Let n2 the number of appearances of the
second smallest element of {a1, . . . , aq}, and so on until nk, which is, by definition, the number
of appearances of aq.

Notation. Take an integer n ≥ q. Let Cn(a1, . . . , aq) = n!
(n−q)!·n1!·...·nk! .

Lemma 7.6. For every polynomial B(X) and all positive integers b and n we have

∂b(B(X)n) =
∑

1≤q≤n
j1+···+jq=b
0<j1≤···≤jq

Cn(j1, . . . , jq)B(X)n−q
q∏
t=1

(∂jtB(X)) . (7.13)

Proof. Let m = deg B(X). We have

B(X + Y )n =

(
m∑
i=0

∂iB(X)Y i

)n
= B(X)n +

mn∑
b=1

 ∑
j1+···+jn=b

n∏
t=1

∂jtB(X)

Y b, (7.14)

where the jt run over non-negative integers; the jt are not necessarily ordered by size.

Next, we rewrite (7.14) in the following way. In each of the products appearing in paren-
theses on the right hand side of (7.14), we separate the terms with jt = 0 from those with jt > 0.
Precisely, for each product appearing in parentheses on the right hand side of (7.14), let

q = # {t ∈ {1, . . . n} | jt 6= 0} .

Then we can rewrite (7.14) as

B(X + Y )n = B(X)n +

mn∑
b=1

 n∑
q=1

∑
j1+···+jq=b

Bn−q(X)

q∏
t=1

∂jtB(X)

Y b, (7.15)

where the third sum is taken over all the distinct ways in which b can be written as the sum of
q strictly positive integers jt. Again, the jt are not necessarily ordered by size. Now we have to

count how often the same product Bn−q(X)
q∏
t=1

∂jtB(X) appears in the third sum on the right

hand side. Fix n non-negative integers j1, . . . , jn such that
n∑
t=1

jt = b. Renumber them so that

j1 ≤ · · · ≤ jn. How many distinct n-tuples can we obtain in (7.14) from the numbers j1, . . . , jn?
If all the jt are distinct then the number is n!. But if some of the jt’s are equal, then permuting
them only among themselves does not produce new tuples. Similarly, if n − q ≥ 2, permuting
the (n−q) factors in Bn−q(X) among themselves does not produce new tuples. Let the numbers
n1, . . . , nk be the multiplicities of the numbers j1, . . . , jn, defined above. Then the number of

appearances of Bn−q(X)
q∏
t=1

∂jtB(X) is

n!

(n− q)! · n1! · . . . · nk!
= Cn(j1, . . . , jq), (7.16)
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where 0 < j1 ≤ · · · ≤ jq. This proves that the coefficient of Y b in (7.14) equals

∑
1≤q≤n

j1+···+jq=b
0<j1≤···≤jq

Cn(j1, . . . , jq)B
n−q(X)

q∏
t=1

(∂jtB(X)) .

By definition of Hasse derivative, this coeffecient is nothing but ∂b (B(X)n). The proof is
complete.

Lemma 7.7. For every two polynomials A(X) and B(X) and all positive integers b and n, we
have

∂b(A(X)B(X)n) =
∑

0≤q≤n
j0+···+jq=b
0<j1≤···≤jq

Cn(j1, . . . , jq)B(X)n−q (∂j0A(X))

q∏
t=1

(∂jtB(X)) . (7.17)

Proof. By Lemma 7.5, we have ∂b(A(X)B(X)n) =
b∑

j0=0
(∂j0A(X))(∂b−j0B(X)n). Now Lemma

7.7 follows from Lemma 7.6.

Coming back to the proof of Proposition 7.2 (1), we have

∂bQ
γ̄i+1

i+1 =
∑

0≤q≤γi
j0+j1+···+jq=b

0<j1≤···≤jq

Cγi(j1, . . . jq)Q
γi−q
i

(
∂j0Q

γ̄i
i

) q∏
t=1

(∂jtQi) , (7.18)

by Lemma 7.7. By Propositions 3.32 and 3.39 (2), we have

νi (∂jtQi) = ν (∂jtQi) .

We have

βi − νi (∂jtQi) = βi − ν (∂jtQi) ≤
jt
bi

(βi − ν (∂biQi)) (7.19)

by definition of bi. Further,

νi
(
Qγ̄i
i

)
− νi

(
∂j0Q

γ̄i
i

)
= νi0

(
Qγ̄i
i

)
− νi0

(
∂j0Q

γ̄i
i

)
≤ j0
bi

(βi − ν(∂biQi)), (7.20)

where i0 is sufficiently large with i0+ = i, the equality holds because Qi does not appear in Qγ̄i
i

and by Proposition 3.32, and the inequality by the induction assumption and in view of Lemma
7.4. Note that by Lemma 7.4 the inequality in (7.20) is strict whenever j0 > 0. Adding the
inequalities (7.19) for 1 ≤ t ≤ q and (7.20), we obtain:

νi

(
Q
γ̄i+1

i+1

)
− νi

(
Qγi−qi

(
∂j0Q

γ̄i
i

) q∏
t=1

(∂jtQi)

)
≤

≤ j0 + j1 + · · ·+ jq
bi

(βi − ν(∂biQi)) =
b

bi
(βi − ν(∂biQi)).

(7.21)

47



By (7.18), (7.21) and since ν is non-negative on N (in particular, ν(Cγi(j1, . . . , jq)) ≥ 0), we
have

νi

(
Q
γ̄i+1

i+1

)
− νi

(
∂bQ

γ̄i+1

i+1

)
≤

≤ νi
(
Q
γ̄i+1

i+1

)
− min

(j0,...,jq)

{
νi

(
Qγi−qi

(
∂j0Q

γ̄i
i

) q∏
t=1

(∂jtQi)

)}
≤ b

bi
(βi − ν(∂biQi)),

(7.22)

as desired. Proposition 7.2 (1) is proved.

Now let the notation be as in Proposition 7.2 (2); in particular, b stands for b(i, h). To

prove this part, we first show that replacing νi(∂bh) by ν
(

(∂biQi)
pe dj,iQ

j−pe
i

)
gives equality in

(7.2). Indeed, we have

νi(h)− ν
(

(∂biQi)
pe dj,iQ

j−pe
i

)
= νi(h)− (peνi(∂biQi) + ν(dj,i) + (j − pe)ν(Qi)) =

=peν(Qi)− peν(∂biQi) =
bip

e

bi
(βi − νi(∂biQi)) =

b

bi
(βi − νi(∂biQi)).

(7.23)

Therefore by part (1) of the Proposition, νi(∂bh) must be greater than or equal to

ν
(

(∂biQi)
pe dj,iQ

j−pe
i

)
and it is sufficient to prove that the i-standard expansion of ∂bh contains a term of the form

dQj−p
e

i with ν(d) = ν
(

(∂biQi)
pe dji

)
and all the other terms d′Qj

′

i satisfy either j′ 6= j − pe or

νi

(
d′Qj

′

i

)
> νi

(
dQj−p

e

i

)
.

We proceed by considering all the terms of the form Q
γ̄i+1

i+1 that appear in the i-standard
expansion of h.

First, consider such a term appearing in dj,iQ
j
i , of minimal value. Write b =

q∑
t=1

jt, where

q = pe and jt = bi for all t. For each Qi-free standard monomial Qγ̄i
i , appearing in dj,i, the

corresponding term in (7.18) is
(
j
pe

)
Qj−p

e

i Qγ̄i
i (∂biQi)

pe by (7.16). Put d =
(
j
pe

)
Qγ̄i
i (∂biQi)

pe .

The binomial coefficient
(
j
pe

)
is not divisible by p by definition of e and j, so ν

((
j
pe

))
= 0. Using

Proposition 3.32 and 3.39 (2) and Lemma 3.47, we obtain

ν(d) = ν
(

(∂biQi)
pe dj,i

)
.

Now for any other choice of j0, j1, . . . , jq such that q = pe and
q∑
t=0

jt = b we would have at least

one t ∈ {1, . . . , q} such that jt < bi. Therefore such terms satisfy strict inequality in (1) since
they satisfy strict inequality in (7.20) or in (7.19) and hence their value is strictly greater than

νi

(
dQj−p

e

i

)
. We obtain

νi

(
dj,iQ

j
i

)
− νi

(
∂b

(
dj,iQ

j
i

))
=

b

bi
(βi − ν(∂biQi)) . (7.24)

Now assume Q
γ̄i+1

i+1 is such that ν
(
Q
γ̄i+1

i+1

)
> νi

(
dj,iQ

j
i

)
. By (7.2) we have

ν
(
Q
γ̄i+1

i+1

)
− ν

(
∂bQ

γ̄i+1

i+1

)
≤ b

bi
(βi − ν(∂biQi))
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and using (7.24) we find ν
(
∂bQ

γ̄i+1

i+1

)
> νi

(
∂b

(
dj,iQ

j
i

))
= νi

(
dQj−p

e

i

)
.

Now consider terms Q
γ̄i+1

i+1 that appear in an expression dm,iQ
m
i , m 6= j, such that

ν
(
Q
γ̄i+1

i+1

)
= νi

(
dj,iQ

j
i

)
.

It is sufficient to show that for j′ = m − q = j − pe such terms satisfy the strict inequality in

(7.2), so in view of (7.24) their valuation is strictly greater than νi

(
dQj−p

e

i

)
.

Take one such term. We have two cases. If m > j then, by definition of j, either

ν (dm,iQ
m
i ) > ν

(
dj,iQ

j
i

)
or ν (dm,iQ

m
i ) = ν

(
dj,iQ

j
i

)
and ν(p)(m) > ν(p)(j). By Proposition 7.2

(1), in either case such a term satisfies strict inequality in (7.2).

If m < j and m− q = j − pe then q < pe, so for any choice of j0, j1, . . . , jt with
q∑
t=1

jt = b

we must have at least one t ∈ {1, . . . , q} such that jt < bi. Therefore such terms satisfy strict
inequality in Proposition 7.1 (1) since they satisfy strict inequality in (7.20) or (7.19).

Remark 7.8. Let

Ii,max =

{
b̃i ∈ N0

∣∣∣∣∣ βi − ν(∂biQi)

bi
=
βi − ν(∂b̃iQi)

b̃i

}
. (7.25)

By definition, we have bi = min Ii,max. Proposition 7.2 (1) holds equally well with bi replaced

by any b̃i ∈ Ii,max. Similarly, Lemma 7.4 holds if the pair (bi′ , bi′′) is replaced by
(
b̃i′ , b̃i′′

)
with

b̃i′ ∈ N, b̃i′′ ∈ Ii′′,max.

Corollary 7.9. For each ordinal i ≤ `, each b̃i ∈ Ii,max is of the form b̃i = pẽi for some ẽi ∈ N0.
In particular, bi = pei for some ei ∈ N0. In the special case when char kν = 0 we have p = 1
and so Ii,max = {bi} = {1}.

Proof. Write b̃i = pẽiu, where p 6 | u if char kν = p > 0, and pẽi = 1 if char kν = 0. We want to
prove that u = 1. We argue by contradiction. Assume that u > 1. We claim that we can write(

b̃i
b′

)
∂b̃i = ∂b′ ◦ ∂b′′ , (7.26)

where b′, b′′ are strictly positive integers such that

b′ + b′′ = b̃i (7.27)

and

ν

((
b̃i
b′

))
= 0 (7.28)

Indeed, we can take b′ = pẽi and b′′ = pẽi(u− 1). Now, by Remark 7.12 below, p does not divide(
b̃i
b′

)
and therefore its natural image in K is non-zero and its value is 0 (as usual, we view

(
b̃i
b′

)
as

an element of K via the natural map N→ K).

Take i0 as in (7.3), with b replaced by b′′. We have

βi − ν
(
∂b̃iQi

)
= (βi − ν (∂b′′Qi)) +

(
νi0 (∂b′′Qi)− νi0

(
∂b̃iQi

))
(7.29)
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by (7.3). By (7.26), we have ∂b̃iQi =
(
b̃i
b′

)
∂b′ (∂b′′Qi). Hence

νi0 (∂b′′Qi)− νi0
(
∂b̃iQi

)
≤ b′

bi0

(
βi0 − ν

(
∂b̃i0

Qi0

))
<
b′

b̃i

(
βi − ν

(
∂b̃iQi

))
(7.30)

by (7.28), Proposition 7.2 (1) and Lemma 7.4. From (7.29)–(7.30) we obtain

βi − ν(∂b′′Qi) >

(
1− b′

b̃i

)(
βi − ν(∂b̃iQi)

)
=
b′′

b̃i

(
βi − ν(∂b̃iQi)

)
which contradicts the fact that b̃i ∈ Ii,max. Corollary 7.9 is proved.

Next, we investigate further the case of equality in (7.2). We give a necessary condition
on h and b for the equality to hold in (7.2) and prove that this condition is sufficient under some
additional assumptions. Finally, we derive a formula for inih in the case when this criterion for
equality in (7.2) holds. We start with the case when h is a single i-standard monomial.

Proposition 7.10. Consider an i-standard monomial h = Q
γ̄i+1

i+1 . Write

bi = pei and (7.31)

γi = peu, where p 6 | u if p > 1. (7.32)

(1) If equality holds in (7.2) then
pe+ei

∣∣ b. (7.33)

(2) We have the following partial converse to (1). Assume that (7.33) holds and that

either b = pe+ei or Ii,max = {bi}. (7.34)

Then equality holds in (7.2) if and only if

ν

((
u

b/pe+ei

))
= 0. (7.35)

(3) Assume that (7.33)–(7.35) hold. Then

inνi∂bQ
γ̄i+1

i+1 =

(
u

b/pe+ei

)
inνi

(
Qγ̄i
i Q

γi− b
bi

i (∂biQi)
b
bi

)
; (7.36)

in particular, ∂bQ
γ̄i+1

i+1 6≡ 0.

Remark 7.11. If b = pe+ei holds in Proposition 7.10 (2) then b
pe+ei

= 1 and
(

u
b/pe+ei

)
= u, so

(7.35) holds automatically in this case.

Proof of Proposition 7.10. We go through the proof of Proposition 7.2 and analyze the case of
equality at each step. We start with a general remark about binomial coefficients in positive
and mixed characteristic.
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Remark 7.12. If char kν = 0, we have

ν

((
γ

j

))
= 0 (7.37)

for all non-negative integers j ≤ γ; similarly, ν(Cγi(j1, . . . , jq)) = 0 for every γi and every q-
tuple (j1, . . . , jq) as in (7.18). If char kν = p > 0, the following is a well known characterization
of the equality (7.37). Let γ = k0 + pk1 + · · · + psks and j = t0 + pt1 + · · · + psts, with
k0, . . . , ks, t0, . . . , ts ∈ {0, 1, . . . , p−1}, denote the respective p-adic expansions of γ and j (where
we allow one of the (s + 1)-tuples (k0, . . . , ks) and (t0, . . . , ts) to end in zeroes). Then (7.37)
holds if and only if

kj ≥ tj for all j ∈ {0, . . . , s}. (7.38)

We recall the proof for the reader’s convenience. For a positive integer n, recall that
ν(p)(n!) denotes the p-adic value of n!. If n = n0 + pn1 + · · ·+ psns is the p-adic expansion of n,
we have

ν(p)(n!) = n1 +
p2 − 1

p− 1
n2 + · · ·+ ps − 1

p− 1
ns.

Let γ − j = l0 + pl1 + · · ·+ psls be the p-adic expansion of γ − j.
First, suppose that (7.38) holds. Then kj = tj + lj for all j. We have

ν(p)(γ!) = k1 + p2−1
p−1 k2 + · · ·+ ps−1

p−1 ks, (7.39)

ν(p)(j!) = t1 + p2−1
p−1 t2 + · · ·+ ps−1

p−1 ts, (7.40)

ν(p)((γ − j)!) = l1 + p2−1
p−1 l2 + · · ·+ ps−1

p−1 ls (7.41)

Thus ν(p)(γ!) = ν(p)(j!) + ν(p)((γ − j)!) and (7.37) holds.
Conversely, assume that (7.38) is not true. Let

(j0, j0 + 1, . . . , j1 − 1, j1) (7.42)

be a maximal subsequence of (1, . . . , s) consisting of consecutive integers such that kj 6= tj + lj
for j0 ≤ j ≤ j1. Then kj0 = tj0 + lj0−p, kj = tj + lj−p+1 for j0 < j < j1 and kj1 = tj1 + lj1 +1.
Thus the total contribution of (7.42) to ν(p)(γ!)− ν(p)(j!)− ν(p)((γ − j)!) is

pj1 − 1

p− 1
−

j1−1∑
j=j0+1

(pj − 1)− pp
j0 − 1

p− 1
= j1 − j0 ≥ 1.

The quantity ν(p)(γ!)− ν(p)(j!)− ν(p)((γ − j)!) is obtained by summing the contributions of all
the subsequences of the form (7.42), hence it is strictly positive, as desired.

More generally, consider a finite set of positive integers d1, . . . , da such that
a∑̀
=1

d` = γ.

For ` ∈ {1, . . . , a}, let d` = d`,0 + pd`,1 + · · · + psd`,s, with d`,j ∈ {0, 1, . . . , p − 1}, denote the
p-adic expansions of d` (again, we allow the s-tuple (d`,0, d`,1, . . . , d`,s) to end in zeroes in order
to be able to compare tuples of different lengths). Then

ν

(
γ!

d1! · . . . · da!

)
= 0 if and only if

a∑
`=1

d`,j < p for all j ∈ {0, . . . , s}. (7.43)

51



This is proved by induction on a, the case a = 2 having been treated above. This gives a helpful
necessary and sufficient condition for the equality ν(Cγi(j1, . . . , jq)) = 0 which will be used in
the sequel. One consequence of the equivalent conditions stated in (7.43) is

d`,j ≤ kj for all ` ∈ {1, . . . , a} and j ∈ {0, . . . , s}. (7.44)

Below, we will be particularly interested in the following special cases of (7.38):

(1) If
γ = peu with p 6 | u (7.45)

then (7.37) implies that pe | j.

(2) We have the following partial converse to (1): if γ is as in (7.45) and j = pe then (7.38)
holds. Indeed, we have te = 1, tj = 0 for j 6= e and ke ≥ 1. In this case(

γ

j

)
=

(
peu

pe

)
=
peu(peu− 1) · . . . · (peu− pe + 1)

pe!
≡ u mod mν

since peu−j
pe−j ≡ 1 mod mν for all j ∈ {1, . . . , pe − 1}.

This is the main situation in which Proposition 7.10 will be applied in this paper.

In the next Lemma, let j0, . . . , jt be as in the proof of Proposition 7.2.

Lemma 7.13. (1) The inequality in (7.19) is strict unless jt ∈ Ii,max.

(2) Let γi and bi be as in (7.31)–(7.32). Assume that j0 = 0, and

jt ∈ Ii,max for 1 ≤ t ≤ q. (7.46)

If
ν(Cγi(j1, . . . , jq)) = 0 (7.47)

then
pe+ei

∣∣ b. (7.48)

(3) Let the assumptions be as in (2) and assume, in addition, that b = pe+ei. Then (7.47)
holds if and only if q = pe and j1 = · · · = jq = bi.

Proof. (1) is immediate from definitions.

(2) Let {pc1 , . . . , pc`} ⊂ Ii,max with

ei ≤ c1 < c2 < · · · < c` (7.49)

denote the set of distinct natural numbers appearing among {j1, . . . , jq} (cf. (7.46) and
Corollary 7.9). For 1 ≤ j ≤ `, let aj = #{t ∈ {1, . . . , q} | jt ≤ pcj}; let a0 = 0. Then

b =
∑̀
j=1

(aj − aj−1)pcj . (7.50)

Assume that (7.47) holds. Apply Remark 7.12 (specifically, (7.44)), with aj−aj−1 playing
the role of dj . By definition of e, we have pe | γi, so the first e entries in the p-adic
expansion of γi are 0. By (7.44), the same must be true of each of aj − aj−1. In other
words,

pe | aj for 1 ≤ j ≤ `. (7.51)

(7.49)–(7.51) imply (7.48), as desired.
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(3) Assume, in addition, that b = pe+ei .

“Only if”. From (7.49)–(7.51), we see that ` = 1 and a1 = pe; the result follows immedi-
ately.

“If”. By assumptions, we have ` = 1 = q and a1 = pe. By (7.16) and Remark 7.12 (2), we
have

Cγi(j1, . . . , jq) = Cγi(bi, . . . , bi︸ ︷︷ ︸
pe

) =

(
γi
pe

)
= u mod mν

and the result follows.

We can now finish the proof of Proposition 7.10.
By (7.20) and Lemma 7.13 (1), the inequality in (7.21) is strict unless j0 = 0, and

jt ∈ Ii,max. (7.52)

By Lemma 7.13 (3), equality (7.47) holds, so we may apply Lemma 7.13 (2). By Lemma 7.13
(2), the first inequality in (7.22) is strict unless j0 = 0 and pe+ei | b. This proves (1) of the
Proposition.

(2) Assume that (7.33) holds. If b = pe+ei , by Lemma 7.13 (3) there is exactly one term
on the right hand side of (7.18) for which equality holds in (7.21), namely, the term with q = pe

and j1 = · · · = jq = bi. If Ii,max = {bi}, then by Lemma 7.13 (1) there is at most one term on
the right hand side of (7.18) for which equality holds in (7.21); if such a term exists, it is the
term with q = b

bi
and j1 = · · · = jq = bi. Moreover, this term satisfies equality in (7.21) if and

only if ν(C(bi, . . . , bi︸ ︷︷ ︸
b/bi

)) = ν
(( γi

b/bi

))
= ν

((
u

b/pe+ei

))
= 0, where the second equality follows from

Remark 7.12. In either case, there is at most one term on the right hand side of (7.18) for which

equality holds in (7.21), and there is exactly one such term if and only if ν
((

u
b/pe+ei

))
= 0. This

proves (2).
(3) of the Proposition follows from (2) and (7.18).

Let
γi = k0 + pk1 + · · ·+ psks,

with k0, . . . , ks ∈ {0, 1, . . . , p−1}, denote the p-adic expansion of γi. Take integers s′ ∈ {0, . . . , s},
k′s′ ∈ {0, . . . , ks′}. Let b = (k0 + pk1 + · · ·+ ps

′−1ks′−1 + ps
′
k′s′)bi.

Corollary 7.14. For this b, equality holds in (7.2) for the monomial h = Q
γ̄i+1

i+1 . The element

ini∂bQ
γ̄i+1

i+1 is given by the formula (7.36).

Proof. Repeated application of Proposition 7.10 (2) and (3), first k0 times with b replaced by 1,
then k1 times with b replaced by p, and so on.

Let h =
s∑
j=0

dj,iQ
j
i be an i-standard expansion. Let Si = Si(h), where the notation is

as in (3.42). Write inih =
∑
j∈Si

ini

(
dj,iQ

j
i

)
. Write bi = pei , as above. Let e be the greatest

non-negative integer such that for all j ∈ Si we have pe | j.
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Proposition 7.15. (1) If equality holds in (7.2) then

pe+ei
∣∣ b. (7.53)

(2) Assume that
b = pe+ei . (7.54)

Then equality holds in (7.2). In particular, we have ∂bh 6≡ 0.

(3) Assume that (7.54) holds. Let Sbi =
{
j ∈ Si

∣∣ pe+1 does not divide j
}

. Then

inνi∂bh =
∑
j∈Sbi

inνi

((
j

pe

)
dj,iQ

j−pe
i (∂biQi)

pe
)
.

Proof. (1), (2) and (3) of Proposition 7.15 follow, respectively, from (1), (2) and (3) of Propo-
sition 7.10.

Corollary 7.16. In the notation of Proposition 7.15, assume that (7.54) holds. We have

h /∈ K
[
xp

e+ei+1
]
. (7.55)

Proof. Take b as in (7.54). Now the result follows from Proposition 7.15 (2).

Let the notation be as in Proposition 7.15.

Proposition 7.17. Take an element j ∈ Si. Write j = peu, where

p 6 | u if char kν = p > 0.

Assume that
pe+1

∣∣ j′ for all j′ ∈ Si, j′ < j. (7.56)

Let u = t0 + t1p+ · · ·+ tsp
s be the p-adic expansion of u. Then

νi(∂jbih) = νi(h)− j(βi − ν(∂biQi)), (7.57)

inνi∂jbih =

 s∏
q=1

tq!

 inνidj,i (inνi∂biQi)
j + terms involving inνiQi. (7.58)

For every j′ 6= j we have

νi(h)− νi(∂j′bih)

j′
≤
νi(h)− νi(∂jbih)

j
, (7.59)

and the inequality is strict whenever j′ /∈ Si or j′ < j.

Proof. By (7.56) and Proposition 7.10 (1), terms of the form dj′,iQ
j′

i with

j′ ∈ Si, j′ < j
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satisfy strict inequality in (7.2) with b = jbi. Thus replacing h by
s∑

j′=j
dj′,iQ

j′

i does not affect

any of the statements of the Proposition. Apply Proposition 7.15 repeatedly t0 + t1 + · · · + ts
times. By (2) of Proposition 7.15,

νi

(
∂jbi

(
dj,iQ

j
i

))
= νi

(
dj,iQ

j
i

)
− j(βi − ν(∂biQi)) (7.60)

and
νi(∂jbih) = νi(h)− j(βi − ν(∂biQi)); (7.61)

this proves (7.57). (7.58) follows from Proposition 7.15 (3), by induction on u. Finally, the last
statement of the Proposition follows from Proposition 7.15 (1) and (3), by induction on u.

Remark 7.18. Here is an alternative, more explicit explanation of (7.58). Take j′ ∈ {j, . . . , s}
and apply (7.18) to one of the monomials appearing in dj′,iQ

j′

i (we take γi = j′ and b = jbi
in (7.18)), in order to decide which values of j′ and which decompositions j0 + · · · + jq = b
contribute to ini∂bh.

If either j′ > j, q 6= j, j0 6= 0 or jt 6= bi for some t ∈ {1, . . . , j} then, by definition of bi,
the corresponding term in (7.18) is either divisible by Qi or has νi-value strictly greater than

νi

(
dj,iQ

j
i

)
− j(βi − ν(∂biQi)). This proves (7.58).

Let
∑
q
cq,iQ

q
i denote the i-standard expansion of ∂jbih. The above considerations prove

that c0,i coincides with the coefficient of Q0
i in the i-standard expansion of dj,i (∂biQi)

j modulo
an element of higher νi-value. In particular, c0,i 6= 0 and

ν(c0,i) = νi(c0,i). (7.62)

We have

ν(c0,i) = νi(∂jbih) = νi

(
∂jbi

(
dj,iQ

j
i

))
= νi

(
dj,iQ

j
i

)
− j(βi − ν(∂biQi)). (7.63)

Corollary 7.19. We have

νi(h) = min
0≤j≤s

{νi(∂jbih) + j(βi − ν(∂biQi))} (7.64)

and the minimum in (7.64) is attained for all j ∈ Si, satisfying (7.56).

8 Infinite sequences of key polynomials

In this section, we take an ordinal ` such that ` + t ∈ Λ̄ and α`+t = 1 for all t ∈ N. Take an
element h ∈ K[x]. Proposition 4.7 (1) implies that δ`+t(h) stabilizes for t sufficiently large. Let
δ(h) denote this stable value of δ`+t(h). For a positive integer t we have

δ`+t(h) = 0 =⇒ ν(h) = ν`+t(h) =⇒ δ`+t+1(h) = 0.

Thus saying that ν(h) = ν`+t(h) for all t sufficiently large is equivalent to saying that δ`+t(h) = 0
for all t sufficiently large.

Assume that there exists h ∈ K[x] such that

ν(h) > ν`+t(h) for all t ∈ N (8.1)
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(in other words, δ`+t(h) > 0 for all t ∈ N and `+ ω ∈ Λ̄); put h = Q`+ω. One of the three main
results of this section says that δ(h) has the form pe for some e ∈ N0 (in particular, δ(h) = 1 if
char kν = 0). To prove this, we use differential operators and their properties derived in §7.

The second main result of this section is the statement that if either char kν = 0 or
p 6 | δ(h) then the sequences (β`+t)t∈N and (ν`+t(h))t∈N are unbounded in Γ̃0 (this is precisely
the situation of Proposition 5.6 of subsection 5.2); in particular, the set Q`+ω of key polynomials
is Γ̃0-complete by Proposition 5.6. Finally, in Remark 8.7 we take ` = 1 and assume that αt = 1
for all t ∈ N and that the sequence {βt}t∈N is unbounded in Γ̃0. We show that h ∈ K

[
xδ(h)

]
.

Replacing ` by ` + t for a sufficiently large t, we may assume that δ`+t(h) = δ(h) for all
positive integers t. Below the ordinal i will run over the set {`+ t | t ∈ N0}. By definition, for
all such i we have

Qi+1 = Qi + zi, (8.2)

where zi is a homogeneous Q`-free standard expansion of value βi (cf. Proposition 3.13). By
Proposition 3.14 (2), we have

degx zi < degxQi. (8.3)

Finally,
inνQi = −inνzi (8.4)

by (5.14). As before, let

h =

si∑
j=0

dj,iQ
j
i

be an i-standard expansion of h for i ≥ `, where each dj,i is a Q`-free i-standard expansion.
Note that since α`+t = 1 for t ∈ N0, we have

degxQi =
i∏

j=2

αj =
∏̀
j=2

αj = degxQ`

and so

si =

[
degx h

degxQi

]
=

[
degx h

degxQ`

]
= s`. (8.5)

Proposition 8.1. For each i of the form i = `+ t, t ∈ N, we have bi+1 ≤ bi.

Proof. Write Qi+1 = Qi + zi, as above.

Lemma 8.2. For each b ∈ N we have

βi − ν(∂bzi)

b
<
βi − ν(∂biQi)

bi
. (8.6)

If, in addition, b ≥ bi, then

βi+1 − ν(∂bzi)

b
<
βi+1 − ν(∂biQi)

bi
. (8.7)

Proof. Let i′ denote the smallest ordinal such that

νi′(zi) = ν(zi) and νi′(∂bzi) = ν(∂bzi); (8.8)
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by Proposition 3.32 and (8.3), i′ < i. Let zi =
si′∑
j=0

cj,i′Q
j
i′ be an i′-standard expansion of zi. By

Lemma 7.4 we have
βi − ν(∂biQi)

bi
>
βi′ − ν(∂bi′Qi′)

bi′
. (8.9)

Combining (8.9) with (7.2), we obtain

νi′(zi)− νi′(∂bzi)
b

≤
βi′ − ν(∂bi′Qi′)

bi′
<
βi − ν(∂biQi)

bi
, (8.10)

which gives the inequality (8.6). If b ≥ bi, (8.7) follows immediately by adding the inequality
βi+1−βi

b ≤ βi+1−βi
bi

to (8.6).

Corollary 8.3. We have
ν(∂bizi) > ν(∂biQi) = ν(∂biQi+1). (8.11)

Proof. The inequality in (8.11) is a special case of (8.6) when b = bi. The equality in (8.11)
follows immediately from the inequality by the ultrametric triangle law.

To prove Proposition 8.1, we argue by contradiction. Suppose that

bi+1 > bi. (8.12)

Letting b = bi+1 in Lemma 8.2, we obtain

βi+1 − ν(∂bi+1
zi)

bi+1
<
βi+1 − ν(∂biQi)

bi
. (8.13)

We have
βi − ν(∂bi+1

Qi)

bi+1
≤ βi − ν(∂biQi)

bi
(8.14)

by definition of bi. Combining (8.14) with (8.12), we obtain

βi+1 − ν(∂bi+1
Qi)

bi+1
<
βi+1 − ν(∂biQi)

bi
. (8.15)

We can rewrite (8.13) and (8.15) as

min{ν(∂bi+1
Qi), ν(∂bi+1

zi)} > βi+1 −
bi+1

bi
(βi+1 − ν(∂biQi)) . (8.16)

Since ∂bi+1
Qi+1 = ∂bi+1

Qi + ∂bi+1
zi, (8.16) shows that

ν(∂bi+1
Qi+1) > βi+1 −

bi+1

bi
(βi+1 − ν(∂biQi)) ,

which contradicts the definition of bi+1. This completes the proof of Proposition 8.1.

Corollary 8.4. Keep the above notation. Assume that bi+1 = bi. Then Ii+1,max = {bi+1}.
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Proof. Take an integer
b > bi+1 = bi. (8.17)

Then
βi+1 − βi

b
<
βi+1 − βi

bi
. (8.18)

By definition of bi, we have
βi − ν(∂bQi)

b
≤ βi − ν(∂biQi)

bi
. (8.19)

Adding up (8.18) and (8.19) and using Corollary 8.3, we obtain

βi+1 − ν(∂bQi+1)

b
<
βi+1 − ν(∂bi+1

Qi+1)

bi+1
,

so b /∈ Ii+1,max. This proves the Corollary.

Recall that δ(h) denotes the stable value of δ`+t(h) for all sufficiently large integers t. Set
δ := δ(h). Replacing ` by ` + t for a suitable integer t, we may assume that δ`+t(h) = δ for all
t ∈ N. Write δ = peu, where p 6 | u if p > 1.

If char kν = 0, equations (5.3) and (4.10) imply that dδ−1,` 6= 0 and

g1,` = Q̄` + inν
dδ−1,`

δ dδ,`
. (8.20)

If char kν = p > 0 then, according to Proposition 4.7 (2) and using the notation of (3.42), we
see that for i = `+ t, t ∈ N0,

δ − pe ∈ Si(h) (8.21)

(in particular, dδ−pe,i 6= 0) and

inizi =

(
inidδ−pe,i
u inidδ,i

) 1
pe

. (8.22)

The equation (4.10) rewrites as
in`h = inνdδ,`g

δ
1,`. (8.23)

Take ordinals i and `1 such that ` < `1 < i < `+ω. Next, we prove a comparison result showing
that the coefficient dδ,i agrees with dδ,`1 modulo terms of sufficiently high value.

Proposition 8.5. Assume that
δi+1(h) = δ`(h) = δ. (8.24)

We have
dδ,i ≡ dδ,`1 mod P

ν(dδ,`1)+min
{
ν+`1

(h)−ν`1 (h),β`1−β`
}. (8.25)

Proof. By definitions, we have Qi = Q`1 + z`1 + · · · + zi−1, where the zi are homogeneous Qi-
free i-standard expansions. For simplicity, write z := z`1 + · · · + zi−1. We will compare the
`1-standard expansion of h with the i-standard one. To this end, we substitute Qi = Q`1 + z
into the i-standard expansion of h. We obtain

h =

si∑
j=0

dj,iQ
j
i =

si∑
j=0

dj,i(Q`1 + z)j . (8.26)
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First note that degx
δ−1∑
j=0

dj,i (Q`1 + z)j < δ degxQi. Hence dδ,`1 is completely determined by

dδ,i, dδ+1,i, . . . , dsi,i. Next, by (4.29) in the proof of Proposition 4.7 (3), for

0 < j ≤ si − δ

the coefficient dδ+j,i is a sum of terms of the form dj′,k,`1 with j′ ≥ j + δ satisfying

ν
(
dj′,k,`1

)
= ν`1

(
dj′,k,`1

)
≥ (j′ − j − δ)β`1 + ν

(
dj′,`1

)
.

Hence
ν`1

(
dδ+j,iQ

δ+j
i

)
≥ ν+

`1
(h), (8.27)

so for 0 < j ≤ si − δ the terms dδ+j,iQ
δ+j
i in (8.26) contribute nothing to

dδ,`1 mod P(ν`1 (h)−δβ`1 )+min{ν+`1 (h)−ν`1 (h),β`1−β`}
. (8.28)

Therefore, the only term on the left hand side of (8.26) that affects the element (8.28) is
dδ,i(Q`1 + z)δ.

We have

dδ,iQ
δ
i = dδ,i

δ∑
j=0

(
δ

j

)
Qδ−j`1

zj .

For j < δ, the coefficient of Qj`1 in the `1-standard expansion of dδ,iz
j contributes to dδ,`1 . Let

us denote this coefficient by d′j . We have

ν`(z) = ν(z)

and
ν`(dδ,i) = ν(dδ,i).

By Lemma 3.43 (1), the quantity ν`(dδ,iz
j) is the minimum of the ν`-values of the summands

appearing in the `1-standard expansion of dδ,iz
j . Thus

ν`
(
dδ,iz

j
)

= ν
(
dδ,iz

j
)
≤ ν`

(
d′jQ

j
`1

)
.

Hence

ν
(
d′jQ

j
`1

)
= ν`

(
d′jQ

j
`1

)
+ j (β`1 − β`) ≥ ν

(
dδ,iz

j
)

+ j (β`1 − β`) = ν (dδ,i) + 2jβ`1 − jβ`.

This shows that ν(d′j) ≥ ν(dδ,i) + j (β`1 − β`) ≥ ν(dδ,i) + (β`1 − β`), so for j > 0 the term d′jQ
j
`1

does not affect the element (8.28). This completes the proof.

Proposition 8.6. The integer δ is of the form δ = pe for some e ∈ N0 (in particular, δ = 1
whenever char kν = 0).

Proof. We give a proof by contradiction. Write

δ = pev, where p 6 | v if char kν = p > 0. (8.29)

Suppose that v > 1. By Proposition 8.1, the sequence {bi} is non-increasing with t and hence
stabilizes for t sufficiently large. Let b∞ denote the stable value of bi. Write b∞ = pe∞ . Let
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b = pe+e∞ and g = ∂bh. By Proposition 4.7 (2), inih has the form (4.10) for i = `+ t, as t runs
over N0, in particular, Si(h) = {0, pe, 2pe, . . . , vpe} and is independent of i. Thus pe is the same
as in Proposition 7.15. Hence h and b satisfy the hypotheses of Proposition 7.15. By Proposition
7.15 (3) and (4.10), g 6≡ 0 and, for t sufficiently large, we have

inνig = v inνi

(
dδ,i (∂biQi)

pe (Qi + zi)
δ−pe

)
.

In particular,

ν(g) > ν
(
dδ,i (∂biQi)

pe
)

+ δβ`+t − peβ`+t = ν
(
dδ,i (∂biQi)

pe
)

+ pe(v − 1)β`+t = νi(g)

(here is where we are using v > 1). Now, h was defined as h = Q`+ω, in other words, h is
assumed to have minimal degree among all the polynomials satisfying ν(h) > νi(h). This is a
contradiction. The Proposition is proved.

Remark 8.7. Let the notation be as in Proposition 8.6. Assume, in addition, that the sequence
{β`+t} is unbounded in Γ̃0. Then ν(h) /∈ Γ̃0.

Assume that char kν = char K,

` = 1 and αt = 1 for all t ∈ N. (8.30)

In particular, bt = 1 for all t ∈ N and b∞ = 1.
Let eω be the integer e of Proposition 8.6.
We have peω = δ. We claim that

h ∈ K
[
xδ
]

; (8.31)

in particular, for all strictly positive integers b′ < δ we have

∂b′h = 0. (8.32)

by Remark 7.1. We prove (8.31) by contradiction. Assume the contrary. Let e′ denote the

greatest non-negative integer such that h ∈ K
[
xp

e′
]
; by assumption, e′ < eω. Then h involves

at least one monomial xj such that j is of the form j = upe
′

where u is not divisible by p. We
have degx ∂pe′h < degx h, so there exists t0 ∈ N such that

νt0

(
∂pe′h

)
= ν

(
∂pe′h

)
. (8.33)

Take an integer t > t0. Let
∑

pe′+1 6 | j
cj,tQ

j
t denote the sum of all those monomials appearing in

the t-standard expansion of h whose exponent j is not divisible by pe
′+1. Note that by (8.30) we

have cj,t ∈ K for all pairs (j, t). By Remark 7.1, the operator ∂pe′ annihilates all the monomials

whose exponents are divisible by pe
′+1. Thus

∂pe′h = ∂pe′

 ∑
pe′+1 6 | j

cj,tQ
j
t

 =
∑

pe′+1 6 | j

cj,t

(
j

pe′

)
Qj−p

e′

t . (8.34)
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Formulas (8.33) and (8.34) imply that the t-standard expansion of h contains a monomial of the

form cpe′ ,tQ
pe
′

t and that for each j with pe
′+1 6 | j we have

νt0

(
cj,tQ

j
t

)
≥ ν

(
cpe′ ,tQ

pe
′

t

)
.

Hence

ν
(
cj,tQ

j
t

)
> ν

(
cpe′ ,tQ

pe
′

t

)
for all j with pe

′+1 6 | j and j > pe
′
. (8.35)

We obtain that for all t sufficiently large the t-standard expansion of h contains a monomial

of the form cpe′ ,tQ
pe
′

t and all the other monomials not divisible by Qp
e′+1

t have values strictly

greater than ν

(
cpe′ ,tQ

pe
′

t

)
.

Then for all t′ > t we have ν
(
cpe′ ,t

)
= ν

(
cpe′ ,t′

)
. Choosing t′ sufficiently large, we obtain

ν

(
cpe′ ,t′Q

pe
′

t′

)
< ν

(
cδ,t′Q

δ
t′
)
, which contradicts the definition of δ. This completes the proof of

(8.31) and (8.32).
In fact, by a similar argument this statement can be proved not only for h, but for any

polynomial satisfying the strict inequalities (8.1).

Remark 8.8. Keep the assumption that {β`+t} is unbounded in Γ̃0, as well as (8.30), but now
assume that char K = 0 and char kν = p > 0. By studying the coefficient of Qδ−1

t in the
t-standard expansion of h for different t, one can prove that δ = pe = 1.

Remark 8.9. It was pointed out to us by the referee that the result of Remark 8.7 was generalized
in [3], Theorem 4.11. For every valued field (K, ν) and every continuous family of iterated
augmentations on K[x] such that {β`+t} is unbounded, all the limit key polynomials of the
family belong to K

[
xδb∞

]
.

More precisely, Theorem 4.11 of [3] shows that m := δb∞ is the smallest positive integer
such that ∂mh 6= 0. In particular, if K is of characteristic zero, we have δ = 1 [3], Corollary
4.12. This also generalizes the statement of Remark 8.8.

Proposition 8.10. Keep the notation and assumptions stated in the beginning of this section.
Assume that δ = pe = 1 in the notation of (8.29) (this assumption holds automatically if
char kν = 0). Then the sequences

(νi(h))i (8.36)

and
(βi)i , (8.37)

where i runs over the set {`+ t | t ∈ N}, are unbounded in Γ̃0.

Proof. Proposition 4.7 (2) implies that νi(h) = βi + ν(d1,i) and that ν(d1,i) is independent of i.
Thus to show that the sequence (8.36) is unbounded in Γ̃0 it is sufficient to show that (8.37) is
unbounded in Γ̃0.

Moreover, to prove that (8.37) is unbounded, it is sufficient to show that the set ν(T ) itself
is unbounded in Γ̃0 (where T = {Q` + w | w ∈ K[x], degx(w) < ᾱ` }).

To prove the unboundedness of ν(T ), we will start with the (not necessarily complete) set

of key polynomials Q`+1 and will define a new set of key polynomials Q`+1 ∪
{
Q̃`+t

∣∣∣ t ∈ N
}

with Q̃`+t ∈ T and the sequence ν
(
Q̃`+t

)
unbounded in Γ̃0.
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First, let d∗1,` ∈ K[x] denote a polynomial such that inνd
∗
1,`inνd1,` = 1 in Gν . According to

Lemma 2.6 we may choose d∗1,` to be of degree strictly less than degxQ` = degxQ`+t. We have

ν`

(
d∗1,`

)
= ν

(
d∗1,`

)
by Proposition 3.32, hence νi

(
d∗1,`

)
= ν

(
d∗1,`

)
for all i ≥ ` by Proposition

3.39 (2).
Indeed, by Lemma 3.47 applied with s = 2 the graded algebra G<ᾱ` is closed under

multiplication. Hence in`(d
∗
1,`h) = in`d

∗
1,`in`h and δi(d

∗
1,`h) = 1 for all i of the form `+ t, t ∈ N.

Thus multiplying h by d∗1,` does not change the problem in the sense that

ν
(
d∗1,`h

)
> νi

(
d∗1,`h

)
for all i

(the new polynomial d∗1,`h may no longer have minimal degree with respect to this property, but
we will not use the minimality of degree in the rest of the proof). Therefore we may assume
that

inνd1,i = inid1,i = 1 for all i of the form `+ t, t ∈ N. (8.38)

We will now construct polynomials Q̃`+t = Q`+wt such that degxwt < degxQ` and the sequence(
ν
(
Q̃`+t

))
t

is strictly increasing and unbounded in Γ̃0.

We have degQ̄` in`h = δ = 1, so

in`h = in` (Q` + d0,`) . (8.39)

In view of (8.1), we have d0,` 6= 0 and

ν(Q`) < ν (Q` + d0,`) , (8.40)

hence
inνQ` = −inνd0,`. (8.41)

We have Q` + d0,` ∈ T . Put
w1 := d0,`

and Q̃`+1 = Q` + w1. From now till the end of the proof, for every object X pertaining to the
key polynomials Qi let us use the notation X̃ for the analogous object pertaining to the key
polynomials Q̃i that we are about to construct.

Let A denote the Z-subalgebra of K[x] generated by x and the finitely many coefficients
of the polynomial Q`. The ring A is noetherian. We have Q̃`+1 ∈ A. Let

h =

s∑̀
j=0

d̃j,`+1Q̃
j
`+1 (8.42)

be the (` + 1)-standard expansion with respect to Q̃`+1. Since δ = 1, we have ν
(
dj,`Q

j
`

)
> β`

whenever j > 1. Hence ν
(
d̃j,`+1Q̃

j
`+1

)
> β̃`+1 whenever j > 1. The expression (8.42) contains

the term Q̃`+1 (with coefficient equal to 1 modulo terms of strictly positive value).
Since the set ν(T ) does not have a maximal element, there exists i = ` + t, t ∈ N, such

that
νi(h) = βi > β̃`+1 ≥ ν̃`+1(h). (8.43)

Combining (8.43) with (8.1), we obtain ν(h) > ν̃`+1(h).

62



We now iterate the procedure with Q` replaced by Q̃`+1. Precisely, assume that w1, . . . , wt
and Q̃`+q = Q` + wq ∈ A, q ∈ {1, . . . , t} are already constructed,

ν(h) > ν̃`+1(h) (8.44)

and δ̃`+t = d̃1,`+t = 1. By Proposition 4.7 (2), applied to the newly constructed set

Q`+1

⋃{
Q̃`+q

}
q∈{1,...,t}

of key polynomials, we have

in`+th = in`+tQ̃`+t + inν d̃0,`+t. (8.45)

Note that (8.44) and (8.45) imply that d̃0,`+t 6= 0. We now define

wt+1 := wt + d̃0,`+t

and Q̃`+t+1 = Q̃` + wt+1. We have Q̃`+t+1 ∈ A.
This completes the recursive construction. Notice that all the elements wt and Q̃`+t lie in

the noetherian ring A. Localizing A at the prime ideal A ∩Mν , we may further assume that A
is a local noetherian ring.

Lemma 8.11. Let µ be a rank one valuation, centered in a local noetherian domain (R,M, k)
(that is, non-negative on R and strictly positive on M). Let

Φ = µ(R \ {0}) ⊂ Γ̃0.

Then Φ contains no infinite strictly increasing bounded sequences.

Proof. An infinite ascending sequence α1 < α2 < . . . in Φ, bounded above by an element β ∈ Φ,
would give rise to an infinite descending chain of ideals in R

Iβ
, where Iβ denotes the µ-ideal of R

of value β. Thus it is sufficient to prove that R
Iβ

has finite length.

Let ε := µ(M) ≡ min(Φ \ {0}). Since µ is of rank one, there exists n ∈ N such that
β ≤ nε. Then Mn ⊂ Iβ, so that there is a surjective map R

Mn � R
Iβ

. Thus R
Iβ

has finite length,

as desired.

Coming back to the proof of the Proposition, let H = {a ∈ A | ν(a) /∈ Γ̃0} and

M = {a ∈ A | ν(a) > 0}.

Applying Lemma 8.11 to the local noetherian ring AM
HAM

and using the fact that the sequence βi

is strictly increasing with i, we obtain that {βi} is unbounded in Γ̃0, as desired.

Remark 8.12. Take a polynomial g ∈ K[x] such that ν`+t(g) < ν(g) for all t ∈ N, not necessarily
of the smallest degree. Let δ := δ(g) denote the stable value of δ`+t(g) for t ∈ N sufficiently
large. Assume that pe = 1 in the notation of (8.29) (in other words, either char kν = 0 or
char kν = p > 0 and p 6 | δ). For i = `+ t with t sufficiently large we have νi(g) = ν(dδ,i) + δβi
with ν(dδ,i) independent of i. Thus νi(g) is unbounded in Γ̃0.
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9 Limit key polynomials in the case of fields of positive (equi-)
characteristic

In this section, we assume that char kν = char K = p > 0. We assume that we have a set of
key polynomials {Qi}i∈Λ such that Λ contains at least one limit ordinal. Let ` + ω ∈ Λ be a
limit ordinal. Assume that the sequence {ν(Q`+t)}t∈N is bounded in Γ̃0. The main result of this
section, Proposition 9.2, says that the polynomial Q`+ω can be chosen in such a way that there
exist i0 = `+ t0 ∈ Λ, t0 ∈ N (so that i0+ = `+ω), such that the i0-standard expansion of Q`+ω
is weakly affine.

Remark 9.1. If ` = 0 and degxQt = 1 for all t ∈ N, this result was proved by I. Kaplansky. In
Kaplansky’s terminology x is a limit of a pseudo-convergent sequence {ρj}j of algebraic type in
K, and Q`+ω is a monic polynomial of minimal degree, not fixing the values of {ρj}j (see [15],
Lemma 10, page 311). In the special case ` = 0 and degxQt = 1 for all t ∈ N, the polynomial
Q`+ω is an additive polynomial plus a constant. Kaplansky later called such polynomials “p-
polynomials”.

Let the notation be as in §5.2. Write δ = pe0 with e0 ∈ N (we know that δ is a power of p
by Proposition 8.6).

For a technical reason that will become apparent later, we will assume (without loss of
generality) that ` is not a limit ordinal.

Recall the definition of β̄:

β̄ = sup {ν (Q`+t) | t ∈ N} .

Proposition 9.2. The polynomial Q`+ω can be chosen in such a way that there exists i ∈

{` + t}t∈N0 such that the i-standard expansion Q`+ω =
δ∑
j=0

cj,iQ
j
i of Q`+ω is weakly affine and

monic of degree pe0 in Qi, with

β̄ ≤ 1

pe0
ν (Q`+ω) (9.1)

and
ν(cj,i) = (pe0 − j) β̄ whenever j > 0 and cj,i 6= 0. (9.2)

Proof. Let f = Q`+ω be a limit key polynomial; we have

ν(f) > ν`+t(f) for all t ∈ N. (9.3)

The idea is to gradually modify the polynomial f until we arrive at a limit key polynomial g
satisfying the conclusion of the Proposition.

For i = `+ t, t ∈ N, let

f =

δ∑
j=0

aj,iQ
j
i (9.4)

denote an i-standard expansion of f . By Proposition 5.3, the polynomial f is of degree δ degxQ`.
In particular, we have aδ,i = 1.

Choose i0 ≥ ` sufficiently large so that

βi0 − α`β`−1 > 2pe0(β̄ − βi0). (9.5)
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Before plunging into technical details, let us try to informally outline the strategy of the proof.
Let (γ, l) be the coordinate system on the plane where the Newton polygon ∆i(f) lives. Con-
clusion (9.2) of the Proposition says that for each monomial aj,iQ

j
i , j > 0, appearing in (9.4)

the pair (ν(cj,i), j) lies on the “critical line” γ + lβ̄ = pe0 β̄. Assume that for a certain i ≥ i0
the i-standard expansion (9.4) does not satisfy the conclusion of the Proposition. This means
that at least one of the monomials aj,iQ

j
i , j > 0, appearing in (9.4), has one of the following

properties:
(a) the point (ν(aj,i), j) lies strictly above the critical line γ + lβ̄ = pe0 β̄
(b) the point (ν(aj,i), j) lies strictly below the critical line
(c) the point (ν(aj,i), j) lies on the critical line and j is not a power of p.

In general, momomials aj,iQ
j
i lying strictly above the critical line cannot be immediately

discarded, because they could give rise to monomials on or below the critical line in the (i+ 1)-
standard expansion of f after the substitution Qi = Qi+1 − zi. However, this problem does

not occur if ν
(
aj,iQ

j
i

)
is sufficiently large, that is, if our monomial lies far enough above the

critical line (this fact, as well as the precise meaning of “sufficiently large”, is explained in the
Remark below). Such monomials are called i-superfluous. We define a monomial to be bad if it
is not i-superfluous and satisfies one the conditions (a)-(c) above. We analyze all three types of
bad monomials and show, after three lemmas, that all of the bad monomials disappear for some
i < `+ ω sufficiently large.

In the rest of the proof of the Proposition we will consider ordinals i satisfying

`+ ω > i ≥ i0.

Definition 9.3. Take an ordinal i, i0 ≤ i < ` + ω. A polynomial g ∈ K[x] is said to be
i-superfluous if

νi(g) ≥ pe0 β̄ + (pe0 − j)
(
β̄ − βi

)
. (9.6)

Let i′ be an ordinal such that i ≤ i′ < ` + ω. Take an integer j, 1 ≤ j < pe0 . The monomial
aj,i′Q

j
i′ is said to be i-superfluous if it is i-superfluous viewed as an element of K[x].

The set of all i-superfluous polynomials wil be denoted by SUPi.

Remark 9.4. A monomial aj,i′Q
j
i′ is i-superfluous if and only if

ν(aj,i′) + jβ̄ ≥ 2pe0 β̄ − pe0βi. (9.7)

In particular,
SUPi ⊂ SUPi+1. (9.8)

Remark 9.5. Let i, i′ be as above. Consider an i-superfluous monomial aj,iQ
j
i appearing in the

i-expansion of f . By Proposition 3.39 (2), we have νi′
(
aj,iQ

j
i

)
= ν

(
aj,iQ

j
i

)
. Hence

νi′
(
aj,iQ

j
i

)
≥ 2pe0 β̄ − pe0βi + jβi − jβ̄ > pe0 β̄ > pe0βi′ = νi′(f). (9.9)

Then ini′
(
f − aj,iQji

)
= ini′f and

νi′
(
f − aj,iQji

)
< ν

(
f − aj,iQji

)
.

Thus replacing f by f − aj,iQji does not affect the condition (9.3); f − aj,iQji is still a limit key
polynomial with index `+ ω.
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For most of the proof of the Proposition we will work with non-superfluous monomials.
At the end of the proof we will modify the polynomial f by subtracting all the superfluous
monomials from it.

Next, we will compare the Qi-expansions of f for different i.

Definition 9.6. Take an i ≥ i0. Let

f =
δ∑
j=0

aj,iQ
j
i (9.10)

be the Qi-expansion of f and let aj,iQ
j
i be a monomial appearing in this expansion. We say that

aj,iQ
j
i is bad if it is not i-superfluous and at least one of the following three conditions holds:

(1)
ν(aj,i) < (pe0 − j)β̄ (9.11)

(2) j is not a power of p

(3)
ν(aj,i) > (pe0 − j)β̄. (9.12)

In view of Remark 9.5, to arrive at an i-standard expansion (9.10) satisfying the conclusion
of Proposition 9.2 it is sufficient to show that it contains no bad monomials, in which case, after
subtracting all the i-superfluous monomials from f , there will be nothing more to do.

Take i ≥ i0. Assume that the Qi-expansion of f contains at least one bad monomial. Let
j(i) denote the greatest j ∈ {1, ..., pe0−1} such that the monomial aj,iQ

j
i is bad. Let j•(i) denote

the element j ∈ {1, ..., pe0−1} which minimizes the pair (ν(aj,i)+ jβi,−j) in the lexicographical

ordering among all the elements of {1, ..., pe0 − 1} such that the monomial aj,iQ
j
i is bad.

To finish the proof of Proposition 9.2, we will first prove the following three Lemmas.

Lemma 9.7. Assume that the Qi+1-expansion of f contains at least one bad monomial. We
have

j(i+ 1) ≤ j(i) (9.13)

and
j•(i+ 1) ≤ j•(i). (9.14)

If j ∈ {j(i), j•(i)} then
inνaj,i+1 = inνaj,i. (9.15)

Lemma 9.8. If j ∈ {j(i), j•(i)} then (9.11) does not hold.

Lemma 9.9. If j = j(i) then (9.12) holds.

After proving the three lemmas, we will show that increasing i either eliminates the last
bad monomial or strictly decreases j(i). At that point the proof of Proposition 9.2 will be
finished by induction on j(i).

Before embarking on the proofs, we make a general remark on comparing the Qi- and the
Qi+1-expansions of f that will be used in these proofs.
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Remark 9.10. We want to compare the Qi- and the Qi+1-expansions of f . To do that, write

f =
δ∑

j′=0

aj′,i(Qi+1 − zi)j
′
. (9.16)

Consider an integer j′ of the form j′ = pe
′
, e′ ∈ {1, . . . , e0 − 1}. Then

aj′,i(Qi+1 − zi)j
′

= aj′,iQ
pe
′

i+1 − aj′,iz
pe
′

i . (9.17)

In general, the right hand side of (9.17) need not be a Qi+1-expansion, since degx aj′,iz
pe
′

i

may be quite large, even as large or larger than degxQ
pe
′

i+1. However, the Qi+1-expansion of

aj′,i(Qi+1 − zi)p
e′

is obtained from it by Euclidean division by Qi+1, as follows. Write

aj′,iz
pe
′

i = Qi+1g + r
(
aj′,iz

j′

i

)
with degx r

(
aj′,iz

j′

i

)
< degxQi+1 (here r

(
aj′,iz

j′

i

)
is the remainder of the Euclidean division

of aj′,iz
j′

i by Qi+1). By Lemma 3.47 and Corollary 3.42 we have

ν`−1

(
aj′,iz

pe
′

i

)
= ν

(
aj′,iz

pe
′

i

)
= νi+1

(
aj′,iz

pe
′

i

)
,

and

νi+1(Qi+1g)− ν
(
aj′,iz

pe
′

i

)
≥ βi+1 − α`β`−1. (9.18)

Hence νi+1(Qi+1g)− (βi+1−α`β`−1) ≥ ν
(
aj′,iz

pe
′

i

)
≥ pe0βi. Thus Qj

′

i+1− r
(
aj′,iz

j′

i

)
is a Qi+1-

expansion and νi+1

(
aj′,iz

j′

i − r
(
aj′,iz

j′

i

))
≥ pe0βi + (βi+1−α`β`−1), and hence, using (9.5), we

have
aj′,iz

j′

i − r
(
aj′,iz

j′

i

)
∈ SUPi+1. (9.19)

Exactly the same analysis can be carried out for every j′ ∈ {1, . . . , pe0−1}, regardless of whether
j′ is a power of p, but the notation is simpler in the p-power case which is enough for our
purposes.

Notation. For j ∈ {0, . . . , δ − 1} write

Supj,i(f) = {s ∈ {j + 1, . . . , δ}} | as,iQsi is i-superfluous}

and
NSj,i(f) = {j + 1, . . . , δ} \ Supi(f).

Proof of Lemma 9.7. Let j = j(i). Since j is the greatest element of NS0,i satisfying one of the
conditions (1)–(3) of Definition 9.6, every j′ ∈ NSj,i is a power of p and satisfies

ν(aj′,i) = (pe0 − j′)β̄. (9.20)

We want to analyze the monomial aj,i+1Q
j
i+1 in the Qi+1-expansion of f .
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Now, terms in (9.16) with j′ < j or j′ ∈ Supj,i do not affect either inνaj,i+1 or inνaj,i. We
claim that the same is true of the terms with j′ ∈ NSj,i. Indeed, take a j′ ∈ NSj,i. As explained
in the beginning of the proof of this Lemma, j′ is a power of p. Write j′ = pe

′
.

By Remark 9.10 (specifically, (9.18)), (9.5) and the fact that aj,iQ
j
i is not i-superfluous,

all the monomials dQsi+1, s > 0, appearing in the Qi+1-expansion of aj′,iz
pe
′

i satisfy

ν
(
dQsi+1

)
> ν(aj,i) + jβi+1.

In particular, if such a monomial is of the form dQji+1, with degx d < ᾱi+1, we have ν(d) > ν(aj,i).
This proves that (9.15) holds for j = j(i).

The fact that all the new monomials with strictly positive exponents arising from the
Euclidean division of

aj′,iz
pe
′

i , j′ > j,

are (i+ 1)-superfluous also shows that no bad monomials aj′′,i+1Q
j′′

i+1 with j′′ > j appear in the
Qi+1-expansion of f . This proves (9.13).

The proof of the Lemma in the case j = j•(i) is very similar to that of j = j(i), except for
the following minor change. We can no longer assert that j′ is a power of p. On the other hand,
j′ satisfies ν(aj′,i) + j′βi > νi(f), which allows us to use similar arguments as in the j = j(i)
case. This completes the proof of Lemma 9.7.

Proof of Lemma 9.8. We argue by contradiction. Suppose that j = j(i) and that (9.11) holds
for this j. (9.11) can be rewritten as ν(aj,i) + jβ̄ < pe0 β̄. Combining this with (9.15) we obtain
that (9.11) holds with i replaced by i+ 1 and

ν(aj,i+1) + jβ̄ < 2pe0 β̄ − pe0βi+1, (9.21)

so the monomial aj,i+1Q
j
i+1 is also bad and j(i + 1) = j(i) in view of (9.13). By induction on

i′ ≥ i we see that j(i′) is independent of i′, so the Qi′-expansion of f contains a monomial aj,i′Q
j
i′

with
ν
(
aj,i′Q

j
i′

)
= ν(aj,i′) + jβi′ = ν(aj,i) + jβi′ < ν(aj,i) + jβ̄.

Then pe0βi′ = νi′(fi′) < ν(aj,i) + jβ̄ < pe0 β̄ for all i′ ≥ i, where the equality holds because

pe0 = δ ∈ Si′(f).

Therefore the least upper bound of {βi′}i≤i′<`+ω is bounded above by 1
pe0 (ν(aj,i)+jβ̄) and hence

is strictly less than β̄. This contradicts the definition of β̄.
The proof in the case j = j•(i) is similar to that with j = j(i) and we omit it.

Proof of Lemma 9.9. We argue by contradiction. Assume that j = j(i) and that (9.12) does
not hold. In view of Lemma 9.8 this implies that

ν(aj,i) + jβ̄ = pe0 β̄. (9.22)

Then, by definition of j(i), j is not a power of p. Write j = peu, u ≥ 2 and p 6 | u, and

Qi+1 = Qi + zi.

Lemma 9.8, applied to j•(i), implies that

ν(aj′,i) + j′β̄ ≥ pe0 β̄ for all j′ ∈ {1, . . . , pe0}. (9.23)
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Let b = peb∞. Arguing as in the proof of Lemma 9.7, we can show that j(i) and ν(aj,i) remain
unchanged as i increases. Moreover, after suitably increasing ` and i, we may assume that
b` = bi = b∞ (by Proposition 8.1) and degxQ` = degxQi. Let us denote the common value of
degxQ` and degxQi by ᾱ∞. By Corollary 8.4 there is at most one value of i = `+ t, t ∈ N, for
which #Ii,max > 1. Hence, increasing ` and i, we may assume, in addition, that

Ii′,max = {b∞} for all i′ ≥ `. (9.24)

Finally, increasing ` and i again, if necessary, and using (9.24), we may assume that

βi − β` > δb∞(β̄ − βi). (9.25)

We continue to use the notation of (9.10) for the i-expansion of fi.
For each polynomial a with

degx a < degxQi (9.26)

by Proposition 3.32 (applied separately to i and then to i replaced by ` and using the fact that
neither ` nor i are limit ordinals), we have ν`(a) = νi(a) = ν(a). For each b′ ∈ N and each i′,
` < i′ < `+ ω, we have

ν(∂b′a) = ν`(∂b′a) ≥ ν(a)− b′

b∞
(β` − ν(∂b∞Q`)) =

=ν(a)− b′

b∞
(βi′ − ν(∂b∞Qi′)) +

b′

b∞
(βi′ − β`) >

>ν(a)− b′

b∞
(βi′ − ν(∂b∞Qi′)) +

2pe0b′

b∞
(β̄ − βi′)

(9.27)

by Proposition 7.2.

Remark 9.11. For i′ = `+ t′, t′ ∈ N (the integer t′ is strictly positive here), we trivially have

ν (∂b∞Qi′) = ν (Qi′)− (βi′ − ν (∂b∞Qi′)) . (9.28)

Combining this with (9.27), applied to a = z` + · · ·+ zi′−1 and b′ = b∞, we obtain

ν(∂b∞Qi′) = ν(∂b∞Q`). (9.29)

In particular, the quantity ν (∂b∞Q`+t′) is independent of t′ ∈ N.

Remark 9.12. By (9.24), for all i′ > ` and all b′ ∈ {1, . . . , b} \ {b∞} we have

βi′ − ν(∂b∞Qi′)

b∞
>
βi′ − ν(∂b′Qi′)

b′
. (9.30)

Assume that
βi′ − ν(∂b∞Qi′)

b∞
− βi′ − ν(∂b′Qi′)

b′
<

1

b∞
(βi′ − β`). (9.31)

Combining this with (9.27), applied to a = z` + · · ·+ zi′−1, we obtain

ν(∂b′Qi′) = ν(∂b′Q`). (9.32)

In particular, the quantity ν (∂b′Qi′) is the same for all those i′ that satisfy (9.31). In this way,
we have generalized Remark 9.11 from the case of the pair (b∞, i

′) to the case of every pair
(b′, i′) satisfying (9.31).
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By Lemma 7.7, for all s, t′ ∈ N, letting i′ = `+ t′, we have

∂b
(
as,i′Q

s
i′
)

=
∑

0≤q≤s
j0+···+jq=b
0<j1≤···≤jq

Cs(j1, . . . , jq)Q
s−q
i′
(
∂j0as,i′

) q∏
t=1

(∂jtQi′) , (9.33)

so

∂bf =

δ∑
s=0

∑
0≤q≤s

j0+···+jq=b
0<j1≤···≤jq

(
Cs(j1, . . . , jq)Q

s−q
i′
(
∂j0as,i′

) q∏
t=1

(∂jtQi′)

)
. (9.34)

Remark 9.13. (1) Consider an integer s ∈ {1, . . . , j − 1} ∪ Supj,i′ . We have

ν
(
aj,i′Q

j
i′

)
< ν

(
as,i′Q

s
i′
)
. (9.35)

Indeed, (9.35) holds for s ∈ {1, . . . , j − 1} by (9.22)–(9.23), with i replaced by i′, since βi′ < β̄.
It holds for s ∈ Supj,i′ since, by (9.9) (with i replaced by i′), each i′-superfluous monomial has
value strictly greater than

pe0 β̄ > ν
(
aj,i′Q

j
i′

)
.

(2) By definition of j = j(i) = j(i′), every s ∈ NSj,i′(f) is of the form s = pe
′
. Since s > j, we

have
e′ > e.

By (7.12), we have Cs(j1, . . . , jq) = 0 unless j0 = 0, q = s = pe
′

(in particular, s ≤ b) and
j1 = · · · = jq = b

pe′
.

(3) By (1) and (2), for every non-zero term Cs(j1, . . . , jq)Q
s−q
i′
(
∂j0as,i′

) q∏
t=1

(∂jtQi′) on the right

hand side of (9.34), at least one of the following three conditions holds:
(a)i′ (9.35)
(b)i′ s = pe

′
, where pe < pe

′ ≤ b and

{j0, j1, . . . , jq} =
(
0,

b

pe′
, . . . ,

b

pe′︸ ︷︷ ︸
pe′

)

(c)i′ j0 > 0 (this condition holds whenever s = 0)
(d)i′ s = upe = j and

{j0, j1, . . . , jq} =

(
0, b∞, . . . , b∞︸ ︷︷ ︸

pe

)
.

Claim. There exists a strictly increasing infinite sequence (tr)r∈N ⊂ N and s ∈
∞⋂
r=1

Sj,ir (where

ir = i + tr) such that, for all r ∈ N, the term Cj(b∞, . . . , b∞︸ ︷︷ ︸
pe

)aj,irQ
j−pe
ir

(∂b∞Qir)
pe has strictly

smaller value than all the other terms in the sum on the right hand side of (9.34).
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Proof of Claim. We have Cj(b∞, . . . , b∞︸ ︷︷ ︸
pe

) = j!
pe! = (upe)!

pe! = u, so ν(Cj(b∞, . . . , b∞︸ ︷︷ ︸
pe

)) = 0. Hence,

for all i′ of the form i′ = i+ t′, t′ ∈ N, we have

ν

Cj(b∞, . . . , b∞︸ ︷︷ ︸
pe

)aj,i′Q
j−pe
i′ (∂b∞Qi′)

pe

 = ν
(
aj,i′Q

j
i′

)
− pe (βi′ − ν (∂b∞Qi′)) (9.36)

(recall that ν
(
aj,i′

)
and ν (∂b∞Qi′) are independent of i′).

First, let us prove that all the terms on the right hand side of (9.34) satisfying (a)i′ or

(c)i′ have values strictly greater than ν
(
aj,i′Q

j
i′

)
− pe (βi′ − ν (∂b∞Qi′)).

Consider a non-zero term Cs(j1, . . . , jq)Q
s−q
i′
(
∂j0as,i′

) q∏
t=1

(∂jtQi′) appearing on the right

hand side of (9.34). For all positive integers s and b′, we have

ν (∂b′Q
s
i′) ≥ ν (Qsi′)−

b′

b∞
(βi′ − ν (∂b∞Qi′)) . (9.37)

by Proposition 7.2 (1). Combining this with (9.27), we obtain

ν

(
Qs−qi′

(
∂j0as,i′

) q∏
t=1

(∂jtQi′)

)
= (s− q)βi′ + ν

(
∂j0as,i′

)
+

q∑
t=1

ν (∂jtQi′) ≥

≥ ν
(
as,i′Q

s
i′
)
− j0
b∞

(βi′ − ν(∂b∞Qi′)) +
j0
b∞

(βi′ − β`)−
q∑
t=1

jt
b∞

(βi′ − ν(∂b∞Qi′)) =

= ν
(
as,i′Q

s
i′
)
− pe(βi′ − ν(∂b∞Qi)) +

j0
b∞

(βi′ − β`).

(9.38)

If (9.35) holds, we obtain

ν

(
Qs−qi′

(
∂j0as,i′

) q∏
t=1

(∂jtQi′)

)
> νi

(
aj,′iQ

j
i′

)
− pe (βi′ − ν (∂b∞Qi′)) . (9.39)

If (c)i′ is satisfied, that is, j0 > 0, (9.39) holds again. This shows that in order to prove the
Claim it is sufficient to restrict attention to the terms on the right hand side of (9.34) satisfying
(b)i′ .

Next, choose a strictly increasing sequence (tr)r∈N ⊂ N such that for each s ∈ {j+1, . . . , δ}
one of the following conditions holds for all r ∈ N:

(1) s ∈ Sj,ir and (9.31) holds with i′ = ir
(2) either s ∈ Supj,ir or (9.31) does not hold with i′ = ir

We obtain a decomposition {j + 1, . . . , δ} = J1
∐
J2, where (1) holds for s ∈ J1 and (2)

holds for s ∈ J2. We have j ∈ J1; in particular, J1 6= ∅. The set J2 is non-empty since it contains
all the non-powers of p in the set {j + 1, . . . , δ}.

We will now show that for s ∈ J2 and r � 0 the strict inequality (9.39) holds with
i′ = ir. For s ∈ Supj,ir this has already been shown (and does not require r to be large).
Assume that s ∈ Sj,ir and (9.31) does not hold with i′ = ir. Consider a non-zero term

Cs(j1, . . . , jq)Q
s−q
ir

(∂j0as,ir)
q∏
t=1

(∂jtQir) appearing on the right hand side of (9.34). This term
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satisfies condition (b)ir (in particular, it is the uniqe term with the given s). Using the notation
of (b)ir , we have

ν

as,ir (∂ b

pe
′
Qir

)pe′ = ν (as,ir) + pe
′
ν

(
∂ b

pe
′
Qir

)
=

= ν
(
as,irQ

s
ir

)
− pe′

(
βir − ν

(
∂ b

pe
′
Qir

))
.

(9.40)

Further, by (9.22) and (9.23), applied to ir instead of i, we have

ν
(
aj,irQ

j
ir

)
− ν

(
as,irQ

s
ir

)
≤ (s− j)(β̄ − βir) < δ(β̄ − βir). (9.41)

Combining (9.25), the negation of (9.31) and (9.40)–(9.41), we obtain

ν

as,ir (∂ b

pe
′
Qir

)pe′ ≥ ν (as,irQsir)− pe(βir − ν(∂b∞Qi)) + pe (βir − β`) ≥

≥ ν
(
aj,irQ

j
ir

)
− pe(βir − ν(∂b∞Qi)) + pe (βir − β`)− δb

(
β̄ − βir

)
>

> ν
(
aj,irQ

j
ir

)
− pe(βir − ν(∂b∞Qir)) = ν

(
Qj−p

e

ir
aj,ir (∂b∞Qir)

pe
)
.

(9.42)

This shows that to prove the Claim it is sufficient to restrict attention to the terms

Cs(j1, . . . , jq)Q
s−q
ir

(∂j0as,ir)
q∏
t=1

(∂jtQir) appearing on the right hand side of (9.34) such that

s ∈ J1.
Consider one such term. It must satisfy condition (b)ir , so it is completely determined

by s and we can write it as as,ir

(
∂ b

pe
′
Qir

)pe′
. By (9.31), Remark 9.12 applies to ∂ b

pe
′
Qir , in

other words, ν

(
∂ b

pe
′
Qir

)
does not depend on r ∈ N. Therefore, ν

as,ir (∂ b

pe
′
Qir

)pe′ is

independent of r.
We will use the formulae (9.40) and (9.41) which are valid for all s ∈ {0, . . . , δ}. Let us

take the limit as r tends to ∞ separately of each summand on the right hand side of (9.40). By

(9.41), we have lim
r→∞

ν
(
aj,irQ

j
ir

)
≤ lim

r→∞
ν
(
as,irQ

s
ir

)
. Applying (9.30) with i′ = ir for each r ∈ N

and passing to the limit as r goes to infinity, we obtain

lim
r→∞

pe (βir − ν (∂b∞Qir)) ≥ lim
r→∞

pe
′
(
βir − ν

(
∂ b

pe
′
Qir

))
.

Thus

ν

as,ir (∂ b

pe
′
Qir

)pe′ = lim
r→∞

ν

as,ir (∂ b

pe
′
Qir

)pe′ =

= lim
r→∞

(
ν
(
as,irQ

s
ir

)
− pe′

(
βir − ν

(
∂ b

pe
′
Qir

)))
≥

≥ lim
r→∞

(
ν
(
aj,irQ

j
ir

)
− pe(βir − ν(∂b∞Qir))

)
= lim

r→∞
ν
(
Qj−p

e

ir
aj,ir (∂b∞Qir)

pe
)
.

(9.43)
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Since ν

as,ir (∂ b

pe
′
Qir

)pe′ is independent of r and ν
(
Qj−p

e

ir
aj,ir (∂b∞Qir)

pe
)

is a strictly

increasing linear function of r, we have ν

as,ir (∂ b

pe
′
Qir

)pe′ > ν
(
Qj−p

e

ir
aj,ir (∂b∞Qir)

pe
)

for

all r ∈ N.
This completes the proof of the Claim.

By the Claim, for all r ∈ N we have ν(∂bf) = ν
(
Qj−p

e

ir
aj,ir (∂b∞Qir)

pe
)

with the left hand

side independent of r and the right hand side — a strictly increasing linear function of r, which
gives the desired contradiction. This completes the proof of Lemma 9.9.

Let j = j(i). By Lemma 9.9 the inequality (9.12) holds for j.
By Lemma 9.7 (cf. (9.15)), inνaj,i is independent of i ≥ i0.
Since β̄ − βi can be made arbitrarily small as i → i0+ = ` + ω, by (9.12), taking i1

sufficiently large, we can ensure that

ν (aj,i) + jβ̄ ≥ 2pe0 β̄ − pe0βi1 . (9.44)

Take the smallest i1 satisfying (9.44). By the minimality of i1, Lemma 9.7 (specifically, (9.15))
and induction on i′, i ≤ i′ < i1, we see that the monomial aj,i′Q

j
i′ remains bad for i ≤ i′ < i1

and that
ν (aj,i) = ν (aj,i1) . (9.45)

From (9.44)–(9.45) we obtain

ν (aj,i1) + jβ̄ ≥ 2pe0 β̄ − pe0βi1 . (9.46)

Thus the monomial aj,i1Q
j
i1

is i1-superfluous. Therefore

j(i1) < j(i′) for all i′ < i1. (9.47)

Since the strict inequality (9.47) can occur for at most finitely many values of i1, there exists
i2 < `+ ω such that f containing no bad monomials. Let Q`+ω be equal to f minus the sum of
all the i2-superfluous monomials of f . Now, Q`+ω is monic of degree pe0ᾱi and satisfies (9.1). It
contains no i2-superfluous or bad monomials, hence it satisfies (9.2); in particular, it is weakly
affine. The polynomial Q`+ω satisfies (9.3) and so is a limit key polynomial by Remark 9.5. This
completes the proof of Proposition 9.2.

Remark 9.14. The property that the i2-standard expansion of Q`+ω is weakly affine is not
preserved when we pass from i2 to some other ordinal i2 + t, t ∈ N. However, the above results
show that for all i′ of the form i′ = i + t, t ∈ N0, Q`+ω is a sum of a weakly affine expansion
in Qi′ all of whose monomials aj,i′Q

j
i′ for j > 0 lie on the critical line ν(aj,i′) = (pe0 − j)β̄

and another i′-standard expansion of degree strictly less than pe0ᾱ`, all of whose monomials are
i′-superfluous.
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