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Université Paul Sabatier
118, route de Narbonne

31062 Toulouse cedex 9, France.
email: wael.mahboub@math.univ-toulouse.fr

M. A. Olalla Acosta∗

Departamento de Álgebra
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Abstract

In this paper we present a refined version of MacLane’s theory of key polynomials [16]–
[17], similar to those considered by M. Vaquié [24]–[27], and reminiscent of related objects
studied by Abhyankar and Moh (approximate roots [1], [2]) and T.C. Kuo [14], [15].

Let (K, ν0) be a valued field. Given a simple transcendental extension of valued fields
ι : K →֒ K(x) we associate to ι a countable well ordered set of polynomials of K[x] called key
polynomials. We define limit key polynomials and give an explicit description of them. We
show that the order type of the set of key polynomials is bounded by ω × ω. If char kν0 = 0
and rk ν0 = 1, the order type is bounded by ω + 1.

1 Introduction

Let ι : K →֒ K(x) be a simple transcendental extension of valued fields, where K is equipped
with a valuation ν0. That is, we assume given a valuation ν0 of K and its extension ν to
K(x). Let (Rν0 ,Mν0 , kν0) denote the valuation ring of ν0. The purpose of this paper is to
present a refined version of MacLane’s theory of key polynomials [16], [17], similar to those
considered by M. Vaquié [24]–[27], and reminiscent of related objects studied by Abhyankar and
Moh (approximate roots [1], [2]) and T.C. Kuo [14], [15]. Related questions were studied by Ron
Brown [5]–[6], Alexandru–Popescu–Zaharescu [3]–[4], S. K. Khanduja [9], [10], F.-V. Kuhlmann
[11] and Moyls [19].

∗Partally suported by MTM2016-75027-P and FEDER
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Precisely, we associate to ι a countable well ordered set

Q = {Qi}i∈Λ ⊂ K[x];

the Qi are called key polynomials. Key polynomials Qi that have no immediate predecessor
are called limit key polynomials. Let βi = ν(Qi). In the case when rk ν0 = 1 we give an
explicit description of the limit key polynomials. The first limit key polynomial can always be
chosen to be a p-polynomial in Kaplansky’s terminology (p-polynomials may be viewed as a
generalization of the Artin–Schreier polynomials). We also give an upper bound on the order
type of the set of key polynomials. Namely, we show that the order type of the set of key
polynomials is bounded by ω × ω, where ω stands for the first infinite ordinal. If char kν0 = 0
and rk ν0 = 1, the order type is bounded by ω + 1. If char kν0 = 0 and rk ν = 1, the set of key
polynomials has order type at most ω.

Let Γ0 (resp. Γ) denote the value group of ν0 (resp. ν). Let Γ̃ := Γ0 ⊗Z Q. In the special
case when rk ν0 = 1 we will fix an embedding Γ̃ →֒ R. In this sense, we will be able to talk
about the supremum of a certain subset of Γ̃ (the supremum can be either a real number or
infinity) or about a certain sequence of elements of Γ̃ tending to infinity.

The main application of the theory of key polynomials that we have in mind is proving
the local uniformization theorem for quasi-excellent noetherian schemes in positive and mixed
characteristic. In Chapter IV of his Ph.D. thesis ([22], Institut de Mathématiques de Toulouse,
2013) J.-C. San Saturnino reduced the local uniformization theorem in the case of positive
characteristic to the problem of the monomialization of the first limit key polynomial of a
certain explicitly defined simple field extension K →֒ K(x) assuming local uniformization in
lower dimensions (see [23], Theorem 6.5). In Chapter V he proved a similar reduction for local
uniformization in the case of mixed characteristic, but under some additional hypotheses.

Chapter 3 of the Ph.D. thesis of W. Mahboub (Institut de Mathématiques de Toulouse,
2013) develops the theory of key polynomials for valuations of arbitrary rank. Here we mostly
work with valuations of arbitrary rank but limit ourselves to the case rk ν0 = 1 towards the end
of the paper for some (but not all) of the finer results on the shape of limit key polynomials.

The particular importance of the case rk ν0 = 1 is witnessed by a recent theorem of
Novacoski–Spivakovsky that says that local uniformization along rank one valuations implies
local uniformization in its full generality [20]–[21].

The well ordered set Q = {Qi}i∈Λ of key polynomials of ν will be defined recursively in i.

Notation. We will use the notation N for the set of strictly positive integers and N0 for the set
of non-negative integers.

For an element ℓ ∈ Λ, we will denote by ℓ + 1 the immediate successor of ℓ in Λ. The
immediate predecessor of ℓ, when it exists, will be denoted by ℓ − 1. For a positive integer t,
ℓ+ t will denote the immediate successor of ℓ+(t−1). For an element ℓ ∈ Λ, the initial segment
{Qi}i<ℓ of the set of key polynomials will be denoted by Qℓ. For the rest of this paper, we let
p = char kν0 if char kν0 > 0 and p = 1 if char kν0 = 0. For an element β ∈ Γ ∪ Γ̃, let

Pβ = {y ∈ K(x) | ν(y) ≥ β } ∪ {0}
Pβ+ = {y ∈ K(x) | ν(y) > β } ∪ {0}.

Put Gν =
⊕

β∈Γ

Pβ

Pβ+
and Gν1 =

⊕

β∈Γ̃

Pβ

Pβ+
. We regard Gν and Gν1 as kν -algebras.

Let ∆x be an independent variable. For f ∈ K[x] and j ∈ N let ∂jf denote the
j-th formal derivative of f with respect to x. The polynomials ∂jf are, by definition, the
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coefficients appearing in the Taylor expansion of f : f(x+∆x) =
∑

j
∂jf∆xj. In papers on local

uniformization the formal derivatives ∂j are often denoted by 1
j!

∂j

∂xj ; this notation is regared as

one indivisible symbol; its parts such as 1
j! do not make sense on their own.

Details about formal derivatives can be found in [12], Chapter 24.10, starting on p. 701,
as well as in [13].

A set of key polynomials is said to be complete if for every β ∈ Γ the additive group

Pβ ∩K[x] is generated by the products of the form a
s∏

j=1
Q

γj
ij
, where a ∈ K, ij ∈ Λ and γj ∈ N,

contained in Pβ ∩K[x]. It is said to be Γ̃-complete if the above condition holds for all β ∈ Γ̃,
in other words, if for all β ∈ Γ̃ every polynomial f ∈ K[x] with ν(f) = β belongs to the additive

group generated by products of the form a
s∏

j=1
Q

γj
ij
, a ∈ K, such that

s∑

j=1
γjν(Qij ) + ν0(a) ≥ β.

Remark 1.1. If Q = {Qi}i∈Λ is a complete set of key polynomials, the data {Qi, ν(Qi)} com-
pletely determines the ideals Pβ for all β ∈ Γ, hence also all the ideals Pβ+, since Pβ+ =

⋃

β̃>β

Pβ̃ .

For an element y ∈ K(x) we have ν(y) = β if and only if y ∈ Pβ \Pβ+. Thus the valuation ν is
completely determined by the data {Qi, ν(Qi)}.

We will use the following multi-index notation: γ̄ℓ+1 = {γi}i≤ℓ, where the γi are non-
negative integers, all but finitely many of which are equal to 0, and

Q
γ̄ℓ+1

ℓ+1 =
∏

i≤ℓ

Qγi
i . (1.1)

An ℓ-standard monomial in Qℓ+1 is a product of the form

cγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1 , (1.2)

where cγ̄ℓ+1
∈ K and the multiindex γ̄ℓ+1 satisfies certain additional conditions to ensure a form

of uniqueness (see Definition 3.10). An ℓ-standard expansion is a finite sum of ℓ-standard
monomials. In §3 we will show that for any ℓ ∈ Λ and any f ∈ K[x] the element f admits an
ℓ-standard expansion

f =

sℓ∑

j=0

cjℓQ
j
ℓ, (1.3)

where each cjℓ is a Qℓ-free ℓ-standard expansion. We define the ℓ-truncation νℓ of ν by putting
νℓ(f) = min

0≤j≤sℓ
{ν(cjℓ) + jβℓ} for each f ∈ K[x]. By the axioms for valuations, we have

ν(f) ≥ νℓ(f) (1.4)

for all f ∈ K[x]. Then the statement that Q is a complete set of key polynomials can be
expressed as follows: for any f ∈ K[x] there exists ℓ ∈ Λ such that equality holds in (1.4); see
Remark 3.21 for details.

The paper is organized as follows. §2 is devoted to generalities on algebras, graded by
ordered semigroups. There we define the notion of the saturation G∗ of a graded algebra G
(Definition 2.3). We consider an extension G ⊂ G′ graded algebras and a homogeneous element
x ∈ G′. We study the condition that x be algebraic over G. We note that x is algebraic over
G if and only if it is integral over G∗. We show that if x is algebraic over G then the algebra
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G∗[x] is saturated (Lemma 2.6). Finally, we prove the simple but useful characterization of the

strict inequality ν

(
s∑

i=1
yi

)

> min
1≤i≤s

{ν(yi)} in terms of the natural images of the elements yi in

the graded algebra Gν .
In §3 we will construct a well ordered set Q of key polynomials and prove that this set is

complete.
We start our recursive construction of the Qi by putting Q1 := x. We fix an ordinal

ℓ < ω × ω and assume, inductively, that the key polynomials Qℓ+1 are already defined. We
will then define the next key polynomial Qℓ+1. Roughly speaking, Qℓ+1 will be defined to be
a lifting to K[x] of the monic minimal polynomial, satisfied by inνQℓ over the graded algebra
Gν0 [inνQℓ], where inνQℓ denotes the natural image of Qℓ in Gν . This gives rise to explicit
formulae describing each non-limit key polynomial in terms of the preceding key polynomials.

If at some point of the construction we arrive at the situation when νℓ(f) = ν(f) for all
f ∈ K[x], the algorithm stops: the resulting set Qℓ+1 of key polynomials is already complete
by Remark 3.21. In particular, this occurs whenever our algorithm produces a key polynomial
whose value does not lie in Γ̃. At this stage, starting with Qℓ we will have recursively constructed
a set of key polynomials {Qi}i<ℓ+ω of key polynomials of order type at most ℓ + ω. This will
already complete the construction of Q in the case when for all f ∈ K[x] there exists i ∈ N0

such that
ν(f) = νℓ+i(f). (1.5)

However, it may happen that for each i ∈ N there exists f ∈ K[x] satisfying ν(f) > νℓ+i(f) for
all i ∈ N0. The limit key polynomial Qℓ+ω is defined to be a monic such f of smallest degree.

This completes the recursive definition of the set {Qi} of key polynomials, Then we prove
the main property: they form a complete set of key polynomials (Theorem 3.35). As a Corollary
we will obtain that the images of the key polynomials in Gν generate the field of fractions of Gν

over the field of fractions of Gν0 .
The main goal of §§4–8 is to derive explicit formulae for limit key polynomials in terms

of the preceding key polynomials. For some (though not all) of the results of §5 and §§7–8 we
need to assume that rk ν0 = 1.

The breakdown of the contents among these remaining five section goes as follows.
§4 and §6 are auxiliary: there we develop certain technical tools (the integer numerical

character δi(f), i ∈ Λ, f ∈ K[x], and differential operators, respectively) to be used in §5 and
§§7–8.

In §4 we associate to each h ∈ K[x] and each ordinal i for which Qi is defined, a positive

integer numerical character δi(h) ≤
degx h
degx Qi

of the Newton polygon ∆i(h). We prove that δi(h)
is non-increasing with i, and hence must stabilize for i ≫ 0. We also show that the equality

δi(h) = δi+1(h)

imposes strong restrictions on h. The numerical character δi(h) helps analyze infinite ascending
sequences {Qi}i∈Λ in §5 and §§7–8.

In §6 we study the effect of differential operators ∂j on key polynomials and standard

expansions. Let j denote the element of N which maximizes the quantity
βi−ν(∂jQi)

j . We show
that j is of the form

j = pei for some ei ∈ N0. (1.6)

The non-negative integers ei, i ∈ Λ, are important numerical characters of the extension ι of
valued fields. Most importantly, given an ℓ-standard monomial cγ̄ℓ+1

Q
γ̄ℓ+1

ℓ+1 , we prove the equality

ν
(

∂pbcγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1

)

= νℓ

(

∂pbcγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1

)

,
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and we derive an explicit formula for the quantity ν
(

∂pbcγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1

)

, for integers b ≥ ei, and

under certain additional conditions. Also, for any ℓ-standard expansion f and an integer b ≥ ei,
we derive a formula for νℓ(∂pbf).

The importance of this type of explicit formulae can be explained as follows. The impor-
tance of differential operators for resolution of singularities is well known. One difficulty with
dealing with differential operators up to now has been the fact that they obey no simple trans-
formation law under blowing up. Since key polynomials become coordinates after blowing up,
the above formulae can be viewed as comparison results for derivatives of the defining equations
of a singularity before and after blowing up.

The main subject of study of §5 and §§7–8 are infinite sequences {Qℓ+t}t∈N of key poly-
nomials and the corresponding limit key polynomials Qℓ+ω.

In §5 we assume that the sequence {ν (Qℓ+t)}t∈N is bounded in Γ̃ (this situation is referred
to as Case 2b in §3). We also assume that rk ν0 = 1. We let δ denote the stable value of
δℓ+t(Qℓ+ω) for a sufficiently large positive integer t. We show that degxQℓ+ω = δ degxQℓ+t.

In §7 we use the results of §6 to show that the stable value δi(f) must be of the form
δi(f) = pe for some e ∈ N0.

Next, we assume that char kν = char K, that the sequence {ν (Qt)}t∈N is unbounded in Γ̃
(this is Case 2a of §3, where we take ℓ = 1)) and that degxQt = 1 for all t ∈ N. We show that
Qℓ+ω ∈ K

[
xδ
]
.

For the third main results of §7 we assume that rk ν0 = 1. Proposition 7.9 asserts that
if char kν = 0 then there are no limit key polynomials Qi such that βi ∈ Γ̃. By definition, we
have βi ∈ Γ̃ whenever i is not a maximal element of Λ. The set Λ contains a maximal element λ
if and only if it contains an element λ such that inνQλ is transcendental over kν [inνQλ], where
Qλ = {Qi}i<λ. This explains why Λ ≤ ω + 1 whenever rk ν0 = 1 and char kν = 0.

In §8 we assume that char kν = p > 0 and consider an ordinal ℓ+ω that does not have an
immediate predecessor. We assume that the key polynomials Qℓ+t and the limit key polynomial
Qℓ+ω are defined. We assume that rk ν0 = 1 and that we are in Case 2b, that is, the sequence
{ν (Qℓ+t)}t∈N is bounded in Γ̃. We prove that Qℓ+ω can be chosen in such a way that for some
t ∈ N the Qℓ+t-standard expansion of Qℓ+ω is weakly affine. This means, by definition, that,
letting i = ℓ+ t, we have

Qℓ+ω = Qpeℓ+ω

i +

eℓ+ω−1
∑

j=0

cpjiQ
pj

i + c0i, (1.7)

where c0il and cpji are Qi-free i-standard expansions.
The results of this paper are related to those contained in the paper [7] (see also [27]).

However, there are some important differences, which we now explain. We chose to rewrite the
whole theory from scratch for several reasons:

1. In [7] we work with an algebraic extension ι while for local uniformization we need to
consider purely transcendental extensions. We note that the case of algebraic extensions
can easily be reduced to that of transcendental ones using composition of valuations.
Indeed, let ι− : (K, ν0) →֒ (K(x), ν) be a simple algebraic extension of valued fields. Write

K(x) = K[X]
(f) , where f is the minimal polynomial of x over K. Let νf denote the (f)-

adic valuation of K[X] and put ν∗ := νf ◦ ν (the composition of νf with ν). Complete
sets {Qi}i∈Λ of key polynomials of the transcendental extension ι : (K, ν0) → (K(X), ν∗)
constructed in the present paper are very closely related to complete sets {Q−

i }i∈Λ−
of key

polynomials of the algebraic extension (K, ν0) → (K(x), ν), constructed in [7]. Namely,
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we have Λ = Λ− ∪ {Λ−} (extension by one element), Q−
i is the image of Qi under the

natural map K[X] → K(x) and QΛ−
= f . In other words, a complete set {Qi} of key

polynomials for ι can be obtained from that of ι− by lifting each key polynomial Q−
i to

K[X] and then adding one final key polynomial f . In this sense the theory presented here
can be viewed as a generalization of [7].

2. Our main interest in [7] was to classify all the possible extensions ν of a given ν0; in the
present paper we content ourselves with a fixed ν.

3. The crucial formulae for νℓ(∂pbf) were not made explicit in [7].

4. We take this opportunity to correct numerous mistakes which, unfortunately, made their
way into the paper [7]: an inaccuracy in the definition of complete set of key polynomials,
the failure to take into account the case of mixed characteristic, a mistake in the definition
of the numerical characters ei and many others which made the paper [7] unreadable.

5. In [7] we make a blanket assumption that rk ν0 = 1 whereas in the present paper ν0 is of
arbitrary rank except for some results about the precise form of limite key polynomials at
the end of the paper.

Acknowledgements. We thank Anna Blaszczok, Julie Decaup, Gérard Leloup and the referees
for many useful comments and suggestions and for pointing out errors in the earlier versions of
this paper.

2 Algebras graded by ordered semigroups

Graded algebras associated to valuations will play a crucial role in this paper. In this section,
we give some basic definitions and prove several easy results about graded algebras. Throughout
this paper, a “graded algebra” will mean “an algebra without zero divisors, graded by an ordered
semigroup”. As usual, for a graded algebra G, ord will denote the natural valuation of G, given
by the grading.

Let G =
⊕

α∈Γ

Gα be a graded algebra where Γ is an ordered abelian group.

Definition 2.1. An element x ∈ G is said to be homogeneous if there exists α ∈ Γ such that
x ∈ Gα.

For a homogeneous element x ∈ Gα ⊂ G we will write ord x = α.
Now let X be an independent variable and consider the ring G[X]. Fix a polynomial

f =
d∑

i=0
aiX

i ∈ G[x] such that ai is a homogeneous element of G for all i ∈ {0, . . . , d}. Fix an

element β ∈ Γ.

Definition 2.2. We say that f is quasi-homogeneous with w(X) = β if for all i, j ∈
{0, . . . , d} we have iβ + ord ai = jβ + ord aj. In this situation we will also say that β is
the weight assigned to X.

Definition 2.3. Let G be a graded algebra without zero divisors. The saturation of G, denoted
by G∗, is the graded algebra

G∗ =
{ g

h

∣
∣
∣ g, h ∈ G, h homogeneous, h 6= 0

}

.

G is said to be saturated if G = G∗.
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Of course, we have G∗ = (G∗)∗ for any graded algebra G, so that G∗ is always saturated.

Example 2.4. Let R be a ring and ν : R → Γ ∪ {∞} a valuation, centered at a prime ideal of
R. Let Φ = ν(R \ {0}). For each α ∈ Φ, consider the ideals

Iα : = {x ∈ R | ν(x) ≥ α} and

Iα+ : = {x ∈ R | ν(x) > α}.
(2.1)

Iα is called the ν-ideal of R of value α.
If α1 > α2 > . . . is an infinite descending sequence of elements of Φ then Iα1 $ Iα2 $ . . .

is an infinite ascending chain of ideals of R. Thus if R is noetherian then the ordered set ν(R)
contains no infinite descending sequences, that is, ν(R) is well ordered.

If I is an ideal in a noetherian ring R and ν a valuation of R, ν(I) will denote

min{ν(x) | x ∈ I}.

We now define certain natural graded algebras, associated to valuations. Let R, ν and Φ
be as above. For α ∈ Φ, let Iα and Iα+ be as in (2.1). We define

grνR =
⊕

α∈Φ

Iα
Iα+

.

The algebra grνR is an integral domain. For any element x ∈ R with ν(x) = α, we may consider
the natural image of x in Pα

Pα+
⊂ grνR. This image is a homogeneous element of grνR of degree

α, which we will denote by inνx. The grading induces an obvious valuation on grνR with values
in Φ; this valuation will be denoted by ord.

Next, suppose that (R,M, k) is a local domain and ν is a valuation with value group Γ,
centered at R. Let K denote the field of fractions of R. Let (Rν ,Mν , kν) denote the valuation
ring of ν. For α ∈ Γ, consider the following Rν-submodules of K:

Iα = {x ∈ K | ν(x) ≥ α},

Iα+ = {x ∈ K | ν(x) > α}.
(2.2)

We define

Gν =
⊕

α∈Γ

Iα

Iα+
.

Again, given x ∈ K, we may speak of the natural image of x in Gν , also denoted by inνx (since
grνR is naturally a graded subalgebra of Gν , there is no danger of confusion). Then ord is a
valuation of the common field of fractions of grνR and Gν , with values in Γ.

We have Gν = (grνR)∗; in particular, Gν is saturated.

Remark 2.5. Let G,G′ be two graded algebras without zero divisors, with G ⊂ G′. Let x be a
homogeneous element of G′, satisfying an algebraic dependence relation

a0x
α + a1x

α−1 + · · ·+ aα = 0 (2.3)

over G (here aj ∈ G for 0 ≤ j ≤ α). Without loss of generality, we may assume that the integer
α is the smallest possible.
Claim. Without loss of generality, we may further assume that (2.3) is homogeneous (that is,
all the aj are homogeneous and the quantity j ord x + ord aj is constant for 0 ≤ j ≤ α such
that aj 6= 0).
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Proof of Claim. Let µ := min
0≤j≤α

{j ord x+ord aj}. Then each aj can be written as a finite sum of

homogeneous elements of G, all of orders greater than or equal to µ− jord x. For j ∈ {0, . . . , α}
write aj = a0j + ãj, where ord a0j = µ − jord x and ãj is a sum of homogeneous elements of
G of orders strictly greater than µ − jord x (for some j it may happen that a0j = 0, but there
exist at least two different values of j for which a0j 6= 0). Now, x satisfies the equation

a00x
α + a10x

α−1 + · · ·+ a0α = 0. (2.4)

This proves the Claim. From now on we will always take the coefficients aj to be homogeneous
without mentioning it explicitly.

Dividing (2.3) by a0, we see that x satisfies a monic homogeneous relation over G∗ of
degree α and no algebraic relation of degree less than α. In other words, x is algebraic over G if
and only if it is integral over G∗; the conditions of being “algebraic over G∗” and “integral over
G∗” are one and the same thing (as usual, “integral” means “satisfying a monic polynomial”).

Let G ⊂ G′, x be as above and let G[x] denote the graded subalgebra of G′, generated by
x over G. By Remark 2.5, we may assume that x satisfies a homogeneous integral relation

xα + a1x
α−1 + · · ·+ aα = 0 (2.5)

over G∗ and no algebraic relations over G∗ of degree less than α.

Lemma 2.6. Every element of (G[x])∗ can be written uniquely as a polynomial in x with coef-
ficients in G∗, of degree strictly less than α.

Proof. Let y be a homogeneous element of G[x]. Since x is integral over G∗, so is y. Let

yγ + b1y
γ−1 + · · ·+ bγ = 0 (2.6)

with bj ∈ G∗, be an integral dependence relation of y over G∗, with bj homogeneous elements
of G∗, bγ 6= 0, such that jord y + ord bj is constant for all j such that bj 6= 0. By (2.6),

1

y
= −

1

bγ
(yγ−1 + b1y

γ−2 + · · · + bγ−1).

Thus, for any z ∈ G[x], we have
z

y
∈ G∗[x]. (2.7)

Since y was an arbitrary homogeneous element of G[x], we have proved that

(G[x])∗ = G∗[x].

Now, for every element y ∈ G∗[x] we can add a multiple of (2.5) to y so as to express y as a
polynomial in x of degree less than α. Moreover, this expression is unique because x does not
satisfy any algebraic relation over G∗ of degree less than α.

Notation. If ∆ ⊂ ∆′ are ordered semigroups and β is an element of ∆′, then ∆ : β will denote
the positive integer defined by

∆ : β = min{α ∈ N | αβ ∈ ∆}.

If the set on the right hand side is empty, we take ∆ : β = ∞.
(Note that β ∈ ∆ if and only if ∆ : β = 1).
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Lemma 2.7. Let G, G′ be as in Remark 2.5 and x a homogeneous element of G′. Assume
that the degree 0 part of G (that is, the subring of G consisting of all the elements of degree 0)
contains a field k and that G is generated as a k-algebra by homogeneous elements w1, . . . , wr.
Let

βj = ord wj , 1 ≤ j ≤ r,

and let ∆ denote the group ∆ = {ord y | y ∈ G∗} =

{
r∑

j=1
αjβj

∣
∣
∣
∣
∣
αj ∈ Z

}

. Assume that the

following two conditions hold:

(1) ∆ : (ord x) < ∞

(2) Let α̃ := ∆ : ord x. Let α1, . . . , αr ∈ Z be such that

α̃ ord x =

r∑

j=1

αjβj . (2.8)

Let y =
r∏

j=1
w

αj

j . Assume that the element

z :=
xα̃

y
∈ (G′)∗ (2.9)

is algebraic over k.

Then x is integral over G∗. An integral dependence relation of x over G∗ can be described as
follows. Let z be as in (2.9). Let Z be an independent variable and let

λ(Z) = Zd +

d−1∑

i=0

ciZ
i (2.10)

denote the minimal polynomial of z over k. Then x satisfies the integral dependence relation

xdα̃ +
d−1∑

i=0

ciy
d−ixiα̃ = 0. (2.11)

Conversely, suppose x is integral over G∗. Then (1) holds. Suppose, furthermore, that β1, . . . , βr
are Z-linearly independent. Then (2) also holds. In this case, (2.11) is the minimal polynomial
of x over G∗. In particular, the degree α of the minimal polynomial of x over G∗ is given by

α = dα̃. (2.12)

Proof. If (1) and (2) hold, x is integral over G∗ because it satisfies the integral dependence
relation (2.11) (this is verified immediately by substituting (2.9) for Z in (2.10) and multiplying
through by yd). In particular, if α denotes the degree of x over G∗, (2.11) shows that

α ≤ dα̃. (2.13)

Conversely, suppose x is integral over G∗. Then x satisfies a homogeneous integral relation of
the form (2.5). Since (2.5) is homogeneous, we have the equality

i ord x+ ord ai = j ord x+ ord aj for some i, j such that 0 ≤ i < j ≤ α.

9



Hence
(j − i)ord x = ord ai − ord aj . (2.14)

Now, ai
aj

∈ G∗ so that

ord ai − ord aj = ord
ai
aj

∈ ∆. (2.15)

Putting together (2.14) and (2.15), we obtain (1) of the Lemma.
Now, assume that β1, . . . , βr are Z-linearly independent. We wish to prove (2). Since

β1, . . . , βr are Z-linearly independent, all the monomials wγ1
1 . . . wγr

r , γj ∈ Z, have different values
with respect to ord. Since (2.5) is homogeneous with respect to ord, each ai must be a monomial
in the wj with (not necessarily positive) integer exponents. Also by the Z-linear independence
of β1, . . . , βr, the coefficients α1, . . . , αr in (2.8) are uniquely determined. Moreover, any relation
of the form

i ord x−
r∑

j=1

α′
jβj = 0, i ∈ N, α′

1, . . . , α
′
r ∈ Z (2.16)

is a positive integer multiple of the relation

α̃ ord x−
r∑

j=1

αjβj = 0. (2.17)

This proves that xi may appear in (2.5) only if α̃ | i; in particular, α̃ | α. Let d′ := α
α̃ . Let

0 ≤ i < d′. To find the coefficient aiα̃ in (2.5), note that

α ord x = d′ α̃ ord x = i α̃ ord x+ ord aiα̃,

so that
(d′ − i) α̃ ord x = ord aiα̃. (2.18)

Since aiα̃ is a monomial in w1, . . . , wr, (2.18) gives rise to a Z-linear dependence relation of the
form (2.16), which therefore must be equal to (2.17) multiplied by d′ − i. This determines the
monomial aiα̃ uniquely up to multiplication by an element of k: we must have aiα̃ = ciy

d′−i,
where ci ∈ k. Then z = xα̃

y satisfies the algebraic dependence relation

zd
′

+

d′−1∑

i=0

ciz
i = 0. (2.19)

This proves (2) of the Lemma. Now, we have shown that, under the hypothesis of linear
independence of the βj , if x has degree α over G∗ then α̃ | α and z satisfies a polynomial of
degree d′ = α

α̃ . Letting d denote the degree of z over k, as above, we obtain

d′ =
α

α̃
≥ d. (2.20)

Combining (2.20) with (2.13), we obtain (2.12); in particular, (2.11) is the minimal polynomial
of x over G. This completes the proof of Lemma 2.7.

Corollary 2.8. Let G, w1, . . . , wr and β1, . . . , βr be as in lemma 2.7. If β1, . . . , βr are Z-linearly
independent in ∆ then w1, . . . , wr are algebraically independent over k.
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Proof. Induction on r. For r = 1 there is nothing to prove. For the induction step, assume that
the Corollary is true for r = i. If wi+1 were algebraic over k[w1, . . . , wi], we would have

(β1, . . . , βi) : βi+1 < ∞ (2.21)

by lemma 2.7, applied to the graded algebra k[w1, . . . , wi] and the element wi+1. (2.21) contra-
dicts the linear independence of β1, . . . , βr, and we are done. Alternatively, the Corollary can be
proved by observing that by linear independence of β1, . . . , βr, all the monomials in w1, . . . , wr

have different degrees, thus any polynomial in w1, . . . , wr over k contains a unique monomial of
smallest degree. Hence it cannot vanish.

Definition 2.9. Let G be a graded algebra and xΛ := {xλ}λ∈Λ a collection of elements of G.
Let k be a field, contained in the degree 0 part of G. Let k[xΛ] denote the k-subalgebra of G,
generated by xΛ. We say that xΛ rationally generate G over k if G∗ = k[xΛ]

∗.

The following result is an immediate consequence of definitions:

Proposition 2.10. Let Gν be the graded algebra associated to a valuation ν : K → Γ, as above.

Consider a sum of the form y =
s∑

i=1
yi, with yi ∈ K. Let β = min

1≤i≤s
ν(yi) and

S = { i ∈ {1, . . . , n} | ν(yi) = β} .

The following two conditions are equivalent:

1. ν(y) = β

2.
∑

i∈S
inνyi 6= 0.

3 Construction of key polynomials and proof of completeness

Let K → K(x) be a simple transcendental field extension, ν a valuation of K(x) and ν0 the
restriction of ν to K. We will assume that

ν(x) > 0. (3.1)

Definition 3.1. A complete set of key polynomials for ν is a well ordered collection

Q = {Qi}i∈Λ

of elements of K[x] such that for each β ∈ Γ the additive group Pβ ∩ K[x] is generated by

products of the form a
s∏

j=1
Q

γj
ij
, a ∈ K, such that

s∑

j=1
γjν(Qij) + ν0(a) ≥ β. The collection

Q = {Qi}i∈Λ is said to be Γ̃-complete if for all β ∈ Γ̃ any polynomial f ∈ K[x] with ν(f) = β

belongs to the additive group generated by products of the form a
s∏

j=1
Q

γj
ij
, a ∈ K, such that

s∑

j=1
γjν(Qij) + ν0(a) ≥ β.

11



Note, in particular, that if Q is a complete set of key polynomials then their images
inνQi ∈ Gν rationally generate Gν over Gν0 ; if Q is a Γ̃-complete set of key polynomials then
their images inνQi ∈ Gν rationally generate Gν1 over Gν0 (see page 2 for the definition of Gν1).
We want to make the set Λ as small as possible, that is, to minimize the order type of Λ (it will
turn out that this order type is bounded above by ω × ω).

Our algorithm amounts to successively and explicitly constructing key polynomials until
the resulting set of key polynomials becomes complete for ν.

Take a polynomial h =
s∑

i=0
dix

i ∈ K[x], di ∈ K.

Definition 3.2. The first Newton polygon of h with respect to ν0 is the convex hull ∆1(h)

of the set
s⋃

i=0

(

(ν(di), i) +
(

Γ̃+ ×Q+

))

in Γ̃×Q.

To an element β1 ∈ Γ+, we associate the following valuation ν1 of K(x): for a polynomial

h =
s∑

i=0
dix

i, we put

ν1(h) = min {ν0(di) + iβ1 | 0 ≤ i ≤ s} .

Consider an element β1 ∈ Γ+.

Definition 3.3. We say that β1 determines a side of ∆1(h) if the set

S1(h) = { i ∈ {0, . . . , s} | ν0(di) + iβ1 = ν1(h)} .

has at least two elements.

Let β1 = ν(x). Then for any h ∈ K[x] we have

ν1(h) ≤ ν(h) (3.2)

by the axioms for valuations. We put Λ = {1}, Q1 = x and α1 = 1. If equality holds in (3.2)
for all h ∈ K[x], we stop here. The definition of key polynomials is complete. From now on,
assume that there exists a polynomial h ∈ K[x] such that ν1(h) < ν(h).

Proposition 3.4. Take a polynomial h =
s∑

i=0
dix

i ∈ K[x] such that

ν1(h) < ν(h). (3.3)

Then ∑

i∈S1(h)

inν0diinνx
i = 0.

Proof. We have
∑

i∈S1(h)

dix
i = h(x)−

∑

i∈{0,...,s}\S1(h)

dix
i,

hence

ν




∑

i∈S1(h)

dix
i



 > ν1(h).

Then
∑

i∈S1(h)

inν0diinνx
i = 0 in

Pν1(h)

Pν1(h)
+ ⊂ Gν by Proposition 2.10.
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Corollary 3.5. Take a polynomial h ∈ K[x] such that ν1(h) < ν(h). Then β1 determines a side
of ∆1(h).

Proof. If S1(h) consisted of a single element i, we would have ν(h) = ν(dix
i) = ν1(h), contra-

dicting the assumption.

Notation. Let X be a new variable. Take a polynomial h as above. We denote

in1h :=
∑

i∈S1(h)

inν0diX
i.

The polynomial in1h is quasi-homogeneous in Gν0 [X], where the weight assigned to X is
β1. Let

in1h = v

t∏

j=1

g
γj
j (3.4)

be the factorization of in1h into irreducible factors in Gν0 [X]. Here v ∈ Gν0 and the gj are
monic polynomials in Gν0 [X] (to be precise, we first factor in1h over the field of fractions of Gν0

and then observe that all the factors are quasi-homogeneous and therefore lie in Gν0 [X]).

Proposition 3.6. (1) The element inνx is integral over Gν0 .

(2) The minimal polynomial of inνx over Gν0 is one of the irreducible factors gj of (3.4).

Proof. Both (1) and (2) of the Proposition follow from the fact that inνx is a root of the
polynomial in1h (Proposition 3.4).

Note that Proposition 3.6 (1) implies that ν(x) ∈ Γ̃.

Now let g1 be the minimal polynomial of inνx over Gν0 . Let α2 = degX g1. Write

g1 =

α2∑

i=0

b̄iX
i,

where b̄α2 = 1. For each i, 0 ≤ i ≤ α2, choose a representative bi of b̄i in Rν0 (that is, an element

of Rν0 such that inν0bi = b̄i; in particular, we take bα2 = 1). Put Q2 =
α2∑

i=0
bix

i.

Definition 3.7. The elements Q1 := x and Q2 are called, respectively, the first and second

key polynomials of ν.

Remark 3.8. By convention, Q0 is not defined; our indexing starts at Q1.

Now, every element y of K[x] can be written uniquely as a finite sum of the form

y =
∑

0≤γ1<α2
0≤γ2

bγ1γ2Q
γ1
1 Qγ2

2 (3.5)

where bγ1γ2 ∈ K (this is proved by Euclidean division by the monic polynomial Q2). The
expression (3.5) is called the 2-standard expansion of y.

If ν(Q2) /∈ Γ̃, the algorithm stops here. From now on, assume that ν(Q2) ∈ Γ̃.
Take an ordinal number ℓ, 2 ≤ ℓ < ω×ω. Assume, inductively, that key polynomials Qℓ+1

and positive integers αℓ+1 = {αi}i≤ℓ are already constructed, that ν(Qi) ∈ Γ̃ for i ≤ ℓ and that
all but finitely many of the αi are equal to 1. We want to define the key polynomial Qℓ+1.

We will use the following multi-index notation: γ̄ℓ+1 = {γi}i≤ℓ, where all but finitely many

γi are equal to 0, Q
γ̄ℓ+1

ℓ+1 =
∏

i≤ℓ

Qγi
i . Let βi = ν(Qi).
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Definition 3.9. An index i < ℓ is said to be ℓ-essential if there exists a positive integer t such
that either i+ t = ℓ or i+ t < ℓ and αi+t > 1; otherwise i is called ℓ-inessential.

In other words, i is ℓ-inessential if and only if i+ ω ≤ ℓ and αi+t = 1 for all t ∈ N0.
Notation. For i < ℓ, let

i+ = i+ 1 if i is ℓ-essential

= i+ ω otherwise.

Definition 3.10. A multiindex γ̄ℓ+1 is said to be standard with respect to αℓ+1 if

0 ≤ γi < αi+ for i ≤ ℓ, (3.6)

and if i is ℓ0-inessential for some limit ordinal ℓ0 ≤ ℓ then the set {j < i + | j+ = i +
and γj 6= 0} has cardinality at most one. An ℓ-standard monomial in Qℓ+1 (resp. an ℓ-

standard monomial in inνQℓ+1) is a product of the form cγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1 , (resp. cγ̄ℓ+1
inνQ

γ̄ℓ+1

ℓ+1 )
where cγ̄ℓ+1

∈ K (resp. cγ̄ℓ+1
∈ Gν0) and the multiindex γ̄ℓ+1 is standard with respect to αℓ+1.

Keep the notation of Definition 3.10.

Definition 3.11. An ℓ-standard monomial cγ̄ℓ+1
Q

γ̄ℓ+1

ℓ+1 is said to be Qℓ-free if it does not involve
Qℓ, that is, if γℓ = 0.

Definition 3.12. An ℓ-standard expansion of an element g ∈ K[x] is an expression of the form

g =
s∑

j=0
cjQ

j
ℓ , where each cjQ

j
ℓ is an ℓ-standard monomial. A Qℓ-free ℓ-standard expansion

is a finite sum of Qℓ-free ℓ-standard monomials.
For an element G ∈ Gν , an expression of the form G =

∑

γ̄
c̄γ̄ inνQ

γ̄
ℓ+1, where each c̄γ̄ ∈ Gν0

and each Q
γ̄
ℓ+1 is an ℓ-standard monomial, will be called an ℓ-standard expansion of G.

Remark 3.13. We note that a Qℓ-free ℓ-standard expansion is not just an i-standard expansion
for some i < ℓ. Namely, if ℓ is not a limit ordinal, it is required, in addition, that the exponent
of the last appearing key polynomial be bounded.

Remark 3.14. For an element g ∈ K[x], let g =
s∑

j=0
cjQ

j
ℓ be its ℓ-standard expansion. Then each

cj is a Qℓ-free ℓ-standard expansion.

Proposition 3.15. Let i be an ordinal and t a positive integer. Assume that i + t + 1 ≤ ℓ, so
that the key polynomials Qi+t+1 are defined, and that αi = · · · = αi+t = 1. Then any (i + t)-
standard expansion does not involve any Qq with i ≤ q < i+ t. In particular, a Qi-free istandard
expansion is the same thing as a Qi+t-free (i+ t)-standard expansion.

Proof. (3.6) implies that for i ≤ q ≤ i + t, Qq cannot appear in an (i + t)-standard expansion
with a positive exponent.

We will frequently use this fact in the sequel without mentioning it explicitly.

Definition 3.16. Let
∑

γ̄
c̄γ̄ inνQ

γ̄
ℓ+1 be an ℓ-standard expansion, where c̄γ̄ ∈ Gν0 . A lifting of

∑

γ̄
c̄γ̄ inνQ

γ̄
ℓ+1 to K[x] is an ℓ-standard expansion

∑

γ̄
cγ̄Q

γ̄
ℓ+1, where cγ̄ is a representative of c̄γ̄

in K.
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Definition 3.17. Assume that char kν = p > 0. An ℓ-standard expansion
∑

j
cjQ

j
ℓ is said to be

weakly affine if cj = 0 whenever j > 0 and j is not of the form pe for some e ∈ N0.

Assume, inductively, that for each ordinal i ≤ ℓ, every element h of K[x] admits an
i-standard expansion. Furthermore, assume that for each i ≤ ℓ and each i0 with

i = i0+, (3.7)

the i-th key polynomial Qi admits an i0-standard expansion, having the following additional
properties.

If i has an immediate predecessor i− 1, the (i− 1)-standard expansion of Qi has the form

Qi = Qαi

i−1 +

αi−1∑

j=0




∑

γ̄i−1

cjiγ̄i−1Q
γ̄i−1

i−1



Qj
i−1, (3.8)

where:
(1) each cjiγ̄i−1Q

γ̄i−1

i−1 is an (i− 1)-standard monomial
(2) the quantity ν0

(
cjiγ̄i−1

)
+ jβi−1 +

∑

q<i−1
γqβq is constant for all the monomials

(

cjiγ̄i−1Q
γ̄i−1

i−1

)

Qj
i−1

appearing on the right hand side of (3.8)
(3) the equation

inνQ
αi

i−1 +

αi−1∑

j=0




∑

γ̄i−1

inν0cjiγ̄i−1 inνQ
γ̄i−1

i−1



 inνQ
j
i−1 = 0 (3.9)

is the minimal algebraic relation satisfied by inνQi−1 over Gν0 [inνQi−1]
∗.

Finally, if i does not have an immediate predecessor then for each i0 satisfying (3.7), the
i0-standard expansion

Qi =

αi∑

j=0

cji0Q
j
i0

(3.10)

satisfies
ν (Qi) > min

0≤j≤αi

{

ν
(

cji0Q
j
i0

)}

. (3.11)

Moreover, the polynomial Qi is monic of the smallest degree among those satisfying (3.11) for
all i0 as in (3.7).

Remark 3.18. In §8 we will show, assuming that rk ν0 = 1 and the set {ν(Qi0}i=i0+ is bounded
in Γ̃, that we can choose i0 and Qi so that Qi is a weakly affine monic i0-standard expansion of
degree αi = pei for a certain integer ei. Moreover, there exists a positive element β̄i ∈ R such
that

β̄i > βq for all q < i, (3.12)

βi ≥ αiβ̄i and (3.13)

pjβ̄i + ν
(
cpji0

)
= αiβ̄i for 0 ≤ j ≤ αi. (3.14)
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Definition 3.19. A well-ordered set of polynomials {Qi} of order type at most ω×ω satisfying
(3.8)—(3.11) is said to be a set of key polynomials. An element of the set is called a key

polynomial.

If i ∈ N0, we assume, inductively, that the i-standard expansion is unique. For a general i,

if h =
si∑

j=0
djiQ

j
i is an i-standard expansion of h (where h ∈ K[x]), we assume that the elements

dji ∈ K[x] are uniquely determined by h, but their i-standard expansions need not be. For
example, if i is a limit ordinal, dji admits an i0-standard expansion for each i0 < i such that
i = i0+, but there are countably many choices of i0 for which such an i0-standard expansion is
a Qi0-free i0-standard expansion in the sense of Definition 3.12.

Proposition 3.20. (1) The polynomial Qi is monic in x; we have

degxQi ≥
∏

j≤i

αj . (3.15)

(2) Let z be an Qi-free i-standard expansion. Then

degx z < degx Qi. (3.16)

Proof. (3.15) and (3.16) are proved simultaneously by transfinite induction on i, using (3.8),
(3.10) and (3.6) repeatedly to calculate and bound the degree in x of any standard monomial
(recall that by assumption all but finitely many of the αi are equal to 1).

For each ordinal i ≤ ℓ we define a valuation νi of K(x) as follows. Given an i-standard

expansion h =
si∑

j=0
djiQ

j
i , put

νi(h) = min
0≤j≤si

{jβi + ν(dji)}. (3.17)

The valuation νi will be called the i-truncation of ν. Note that even though the i-standard
expansions elements dji are not, in general, unique, the elements dji ∈ K[x] themselves are
unique by Euclidean division, so νi is well defined. That νi is, in fact, a valuation, rather than
a pseudo-valuation, follows from the definition of standard expansion, particularly, from the
minimality of degxQi, stipulated in (3.9) and (3.11). We always have

νi(h) ≤ ν(h). (3.18)

Remark 3.21. The set Q is a complete set of key polynomials if and only if for each polyno-
mial f ∈ K[x] there exists an ordinal ℓ such that ν(f) = νℓ(f). Indeed, assume that such
an ordinal always exists. Take any β ∈ Γ, and let f ∈ Pβ ∩ K[x]. Put β′ = ν(f) and let ℓ

be such that β′ = ν(f) = νℓ(f). Write f =
sℓ∑

j=0
cjℓQ

j
ℓ, where each cjℓQ

j
ℓ ∈ Pβ′∩K[x] ⊂ Pβ∩K[x].

Conversely, take f ∈ K[x]. Let β = ν(f). Write f as a finite sum of the form f =
∑

γ
cγQ

γ ,

cγ ∈ K, with ν (cγQ
γ) ≥ β for all γ such that cγ 6= 0. Let ℓ denote the greatest ordinal such

that Qℓ appears in one of the monomials cγQ
γ . Then

β = ν(f) ≥ νℓ(f) ≥ min
γ

{νℓ (cγQ
γ)} = min

γ
{ν (cγQ

γ)} ≥ β.
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For b ∈ N0, let ∂b denote the b-th formal derivative with respect to x. For all b ∈ N, we
have

νi0(∂bQi) = ν(∂bQi) (3.19)

(where the notation is as in (3.7)–(3.11)).

Proposition 3.22. For a pair of ordinals i0 < i ≤ ℓ such that i = i0+ we have

νi0(Qi) < βi.

Proof. To prove the Proposition, we distinguish the cases when i does or does not admit an
immediate predecessor. If i admits an immediate predecessor then i0 = i − 1. In this case
the result follows from (3.8) and (3.9). If i does not have an immediate predecessor then the
Proposition is nothing but (3.11).

The rest of this section is devoted to the definition of Qℓ+1. Take an element h ∈ K[x]
and let

h =

sℓ∑

j=0

djℓQ
j
ℓ (3.20)

be an ℓ-standard expansion of h, where each djℓ is a Qℓ-free standard expansion.

Definition 3.23. The ℓ-th Newton polygon of h with respect to ν is the convex hull ∆ℓ(h) of

the set
sℓ⋃

j=0

(

(ν(djℓ), j) +
(

Γ̃+ ×Q+

))

in Γ̃×Q.

Consider the valuation νℓ, defined in (3.17). If equality holds in (3.18) for i = ℓ and for
all h ∈ K[x], put Λ = ℓ+1 and stop. In this case, the definition of key polynomials is complete.
From now on, assume that strict inequality holds in (3.18) for some h ∈ K[x].

Let Q̄ℓ be a new variable and let h be as above. Let β∗ be a non-negative element of Γ.
We denote

Sℓ(β
∗, h) := {j ∈ {0, . . . , sℓ} | jβ∗ + ν(djℓ) = νℓ(h)} .

Definition 3.24. We say that β∗ determines a side of ∆ℓ(h) if the set #Sℓ(β
∗, h) has at least

two elements.

Notation:

Sℓ(h) : = Sℓ(βℓ, h). (3.21)

inℓh : =
∑

j∈Sℓ(h)

inνdjℓQ̄
j
ℓ ; (3.22)

The polynomial inℓh is quasi-homogeneous in G
[
inνQℓ, Q̄ℓ

]
, where the weight assigned to

Q̄ℓ is βℓ.

Take a polynomial h such that

νℓ(h) < ν(h). (3.23)

Proposition 3.25. We have
∑

j∈Sℓ(h)

inν

(

djℓQ
j
ℓ

)

= 0 in
Pνℓ(h)

Pνℓ(h)+
⊂ Gν .
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Proof. This follows immediately from (3.23), the fact that

∑

j∈Sℓ(h)

djℓQ
j
ℓ = h−

∑

j∈{0,...,s}\Sℓ(h)

djℓQ
j
ℓ

and Proposition 2.10.

Corollary 3.26. The element βℓ determines a side of ∆ℓ(h).

Proof. Suppose not. Then the ℓ-standard expansion of h contains a unique monomial djℓQ
j
ℓ of

minimal value, so ν(h) = ν(djℓQ
j
ℓ) = νℓ(h), contradicting (3.23). Corollary 3.26 is proved.

Let

inℓh = vℓ

t∏

j=1

g
γjℓ
jℓ (3.24)

be the factorization of inℓh into (monic) irreducible factors in Gν0 [inνQℓ]
[
Q̄ℓ

]
(to be precise,

we first factor inℓh over the field of fractions of Gν0 [inνQℓ] and then observe that all the factors
are quasi-homogeneous and therefore lie in Gν0 [inνQℓ]

[
Q̄ℓ

]
).

Corollary 3.27. The element inνQℓ is integral over Gν0 [inνQℓ]. Its minimal polynomial over
Gν0 [inνQℓ] is one of the irreducible factors gjℓ of (3.24).

Let αℓ+1 denote the degree of inνQℓ over Gν0 [inνQℓ]. Renumbering the factors in (3.24),
if necessary, we may assume that g1ℓ is the minimal polynomial of inνQℓ over Gν0 [inνQℓ], so
that

αℓ+1 = degQ̄ℓ
g1l. (3.25)

Write

g1ℓ = Q̄
αℓ+1

ℓ +

αℓ+1−1
∑

j=0

(
∑

γ̄ℓ

c̄ℓ+1,jγ̄ℓinνQ
γ̄ℓ
ℓ

)

Q̄j
ℓ , (3.26)

Let X be a new variable, and consider a lifting of g1ℓ of (3.26) to K[X], that is, the
polynomial

Xαℓ+1 +
αℓ+1−1∑

j=0

(

∑

γ̄ℓ

cℓ+1,jγ̄ℓQ
γ̄ℓ
ℓ

)

Xj .

Define the (ℓ+ 1)-st key polynomial of ν to be

Qℓ+1 = Q
αℓ+1

ℓ +

αℓ+1−1
∑

j=0

(
∑

γ̄ℓ

cℓ+1,jγ̄ℓQ
γ̄ℓ
ℓ

)

Qj
ℓ. (3.27)

In the special case when αℓ+1 = 1, some additional conditions must be imposed on the poly-
nomial Qℓ+1 (3.27). In fact, in this case we will define several consecutive key polynomials at
the same time. We will now explain what these additional conditions are, after making some
general remarks.

Remark 3.28. We claim that Qℓ+1 is an irreducible polynomial in x. Indeed, consider a factor-
ization Qℓ+1 = fg in K[x]. Passing to the natural images of Qℓ+1, f and g in

Gν0 [inνQℓ]
[
Q̄ℓ

]
⊂ Gνℓ ,

18



we obtain g1ℓ = inℓf inℓg. Since g1ℓ is an irreducible polynomial in Q̄ℓ by definition, we have, up
to interchanging f and g,

degQ̄ℓ
inℓg = αℓ+1. (3.28)

Then
degx f ≥ αℓ+1 degxQℓ. (3.29)

Since g1ℓ has the form (3.26), we must have equality in (3.29) and degx g = 0. Thus g ∈ K; this
completes the proof of the irreducibility of Qℓ+1 in K[x].

Proposition 3.29. Take an element h of K[x] and an ordinal i ≤ ℓ. Assume that one of the
following conditions holds:

(1)
ν(h) < βi (3.30)

and h admits an i-standard expansion

h =
s∑

j=0

cjQ
j
i , (3.31)

such that
ν(cj) ≥ 0 for all j. (3.32)

(2) degx h < degxQi+1.

Then ν(h) = νi(h).

Proof. Let (3.31) be an i-standard expansion of h, where in case (1) we assume that (3.32) holds.
By definition of standard expansion, each cj in (3.31) is a Qi-free standard expansion. Then
νi(cj) = ν(cj) for 0 ≤ j ≤ s.

(1) By (3.30) and (3.32),

ν
(

cjQ
j
i

)

= ν(cj) + jβi > ν(h) for j > 0. (3.33)

This implies that ν(h) = ν(c0) and ν(c0) < ν(cj) + jβi = νi(cj) + jβi for all j > 0. Thus
in the sum (3.31) the νi-value (resp. the ν-value) νi(c0) = ν(c0) of c0 is strictly smaller
than the νi-values (resp. the ν-values) νi(cjQ

j
i ) = ν(cjQ

j
i ) of all the other terms. It is well

known and follows easily from the definition of valuation that in this situation we have
νi(h) = νi(c0) = ν(c0) = ν(h), as desired.

(2) Let Si(h) be as in (3.21). Since the degree of inνQi over Gν0 [inνQi]
∗ is αi+1 by (3.9), we

see, using the assumption on degx h, that
s∑

j=0
inνcj inνQ

j
i 6= 0 in Gν . The result now follows

from Proposition 2.10.

We will now describe the additional conditions we impose on the polynomial Qℓ+1 (3.27)
in the case when αℓ+1 = 1. Assume that αℓ+1 = 1. In what follows, we will consider ℓ-standard
expansions of the form

Q′ = Qℓ + zℓ + · · ·+ zi, (3.34)

where each zj is a homogeneous Qℓ-free standard expansion, such that

βℓ = ν(zℓ) < ν(zℓ+1) < · · · < ν(zi). (3.35)
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Remark 3.30. Note that by (3.16), we have degx zq < degxQℓ for all q.

Let T denote the set of all the ℓ-standard expansions of the form (3.34), where each
zj is a homogeneous Qℓ-free ℓ-standard expansion, such that the inequalities (3.35) hold and
ν(zi) < ν(Q′).

We impose the following partial ordering on T . Given an element

Q′ = Qℓ + zℓ + · · · + zi ∈ T

with i > ℓ, we declare its immediate predecessor in T to be the element Qℓ + zℓ + · · · + zi−1.
By definition, our partial ordering is the coarsest one among those in which Qℓ + zℓ + · · ·+ zi−1

precedes Qℓ + zℓ + · · ·+ zi for all the elements Q′ as above.

Remark 3.31. Take an element Q′ := Qℓ + zℓ + · · ·+ zi ∈ T . For each ordinal j with ℓ ≤ j ≤ i,
we have

inν(Qℓ + zℓ + · · · + zj−1) = −inνzj; (3.36)

in particular, ν(Qℓ + zℓ + · · ·+ zj−1) = ν(zj).

Proposition 3.32. Consider two elements

Q′ = Qℓ + z′ℓ + · · ·+ z′i′ , Q
′′ = Qℓ + z′′ℓ + · · ·+ z′′i′′ ∈ T.

Assume that
ν(Q′) < ν(Q′′).

Then there exists a standard expansion

Q′′′ := Qℓ + z′ℓ + · · ·+ z′i′ + zi′+1 + · · ·+ zi′′′ ∈ T

such that Q′′′ > Q′ with respect to the partial ordering on standard expansions defined above and
Q′′′ = Q′′ (here by the equality Q′′′ = Q′′ we mean equality as elements of K[x], regardless of
the standard expansion (3.34)).

Proof. Let w = Q′′ −Q′. We have

ν(w) = ν(Q′) < ν(Q′′).

Since deg w < degQℓ, the ℓ-standard expansion of w does not involve Qℓ. Let

w = zi′+1 + · · · + zi′′′ with ν(zi′+1) < · · · < ν(zi′′′) (3.37)

be the ℓ-standard expansion of w, where zi′+1, . . . , zi′′′ are homogeneous ℓ-standard expansions,
not involving Qℓ. Put

Q′′′ = Qℓ + z′ℓ + · · ·+ z′i′ + zi′+1 + · · · + zi′′′ .

To prove that Q′′′ > Q′ we still have to prove that ν(z′i′) < ν(zi′+1). By definition of Q′ we have
ν(z′i′) < ν(Q′), by definition of w we have ν(Q′) = ν(w) and by the properties of a valuation we
have ν(w) = ν(zi′+1).
Clearly

Q′′′ = Q′′

and the Proposition follows immediately.
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To define Qℓ+1 in the special case when

αℓ+1 = 1, (3.38)

consider two cases:
Case 1. The set T contains a maximal element. Let Q′ = Qℓ + zℓ + zℓ+1 + · · · + zs−1 be such
a maximal element, where each zi is a homogeneous Qℓ-free standard expansion, and s is an
ordinal of the form s = ℓ+ t, t ∈ N0. Define

Qi = Qℓ + zℓ + · · · + zi−1 for ℓ+ 1 ≤ i ≤ s.

Case 2. The set T does not contain a maximal element. In this case, Proposition 3.32 shows
that there exists an infinite sequence zℓ, zℓ+1, . . . of homogeneous Qℓ-free ℓ-standard expansions,
such that for each t ∈ N0 we have

Qℓ + zℓ + · · · + zℓ+t ∈ T (3.39)

and lim
t→∞

ν(Qℓ + zℓ + · · · + zℓ+t) = β̄; pick and fix one such sequence. Define αℓ+t = 1 and

Qℓ+t = Qℓ + zℓ + zℓ+1 + · · ·+ zℓ+t−1 for t ∈ N0.

Note that (3.35) and Remark 3.31 imply that the sequence {ν(Qℓ+zℓ+ · · ·+zℓ+t)}t∈N0 is strictly
increasing.

For future reference, it will be convenient to distinguish two subcases of Case 2:
Case 2a. The sequence {βℓ+t}t∈N0 is unbounded in Γ̃.
Case 2b. The set {ν(Q′) | Q′ ∈ T} has a least upper bound (but no maximum) in Γ̃.

Now as we have defined the key polynomial Qℓ+1, for every polynomial h ∈ K[x] we can
define the (ℓ + 1)-standard expansion of h. Indeed, fix a polynomial h ∈ K[x]. By iterated
Euclidean division by Qℓ+1 we can write

h =

s∑

j=0

cjQ
j
ℓ+1

where each cj is a polynomial of degree strictly less than degree of Qℓ+1. To be precise, we
first divide h by Qℓ+1 and call the remainder c0, then divide the quotient of that division by
Qℓ+1 and call the remainder c1, and so on, until we obtain a quotient of degree strictly less than
degxQℓ+1; we call that quotient cs and stop.

Now, by the induction hypotheses, for each j, we can write the ℓ-standard expansion of
cj . Since degx cj < degxQℓ+1, by Proposition 3.29 we have νℓ(cj) = ν(cj). Thus each cj is a
Qℓ+1-free standard expansion.

If αℓ+1 > 1, we construct the polynomial Qℓ+2 from Qℓ+2 in the same way as we already
constructed Qℓ+1 from Qℓ+1. If αℓ+1 = 1 and we are in case 1, then we construct the polynomial
Qℓ+s+1 from Qℓ+s+1 in the same way as we already constructed Qℓ+1 from Qℓ+1. Finally, if
αℓ+1 = 1 and we are in case 2 then the set {Qℓ+t}t∈N0 is already constructed. Therefore, by
recursion on t, we have constructed the set {Qℓ+t}t∈N0 .

If for some t ∈ N0 we obtain
ν(Qℓ+t) /∈ Γ̃, (3.40)
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put Λ = ℓ+ t+1 and stop (this cannot happen if we fall in case 2). Later in this section we will
show that Qℓ+t+1 is a complete set of key polynomials for ν.

Assume that
ν(Qℓ+t) ∈ Γ̃ for all t ∈ N0. (3.41)

We denote the set Qℓ ∪ {Qℓ+t}t∈N of key polynomials by Qℓ+ω.
If Qℓ+ω is a complete set of key polynomials, stop. The definition of the key polynomials

{Qi}i is complete.
Assume that Qℓ+ω is not complete. Then there exists a monic polynomial h such that

νℓ+t(h) < ν(h) (3.42)

for all t ∈ N. In this case, define Qℓ+ω to be a smallest degree monic polynomial h satisfying
(3.42).

Remark 3.33. The inequality (3.42) implies that

degxQℓ+ω ≥ degxQℓ = degxQℓ+t for all t ∈ N. (3.43)

Moreover,
ν(Qℓ+ω) > ν(Qℓ+t) (3.44)

by Proposition 3.29 (1) and (3.42).
If the inequality in (3.43) was an equality, we could put zℓ+ω = Qℓ+ω−Qℓ. We would then

have Qℓ+ω = Qℓ + zℓ+ω ∈ T , which, together with (3.44), contradicts the definition of {Qℓ+t}.
Thus, degxQℓ+ω > degxQℓ = degxQℓ+t, t ∈ N.

Remark 3.34. By Remark 3.33 we have αℓ+ω > 1. Hence after constructing at most an infinite
sequence of limit key polynomials, we obtain a set of key polynomials with unbounded degrees.
Such a set of key polynomials is complete by Proposition 3.29 (2).

We iterate the above recursive procedure for constructing key polynomials until we obtain
either a complete set of key polynomials or a key polynomial whose value does not lie in Γ̃.
We will show in a moment that in the latter case the resulting set of key polynomials is also
complete. The construction of key polynomials stops here. By Remark 3.34 our construction
stops before reaching the ordinal ω× ω. In §7 we will study further properties of Qℓ+ω. Among
other things, we will show (Propositions 7.6 and 7.9 and Remark 7.7) that:

(a) if char kν = 0 and rk ν0 = 1 then our constrution gives a complete set of key polyno-
mials of order type at most {Qi}i∈N

⋃
{Qω}

(b) if, in addition, rk ν = 1 then the construction produces a sequence of key polynomials
that may be finite or infinite.

Theorem 3.35. The well ordered set Q := {Qi}i∈Λ constructed above is a complete set of key
polynomials. In other words, for any element β ∈ Γ the Rν-module Pβ ∩K[x] is generated as
an additive group by all the monomials in the Qi of value β or higher, multiplied by elements of
K. In particular, we have

⊕

β∈Γ

Pβ

Pβ+
= Gν0 [inνQ]∗.

Proof. We argue by contradiction. First, assume that Λ does not contain a maximal element.
If {Qi}i∈Λ is not complete then Λ < ω × ω by Remark 3.34. Then, according to the above
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prescription, our construction could not have stopped at Q and would have produced a further
key polynomial QΛ. This is a contradiction. Hence Q is complete.

Next, assume that Λ contains a maximal element λ. If Q is not complete then our
construction must have stopped because

βλ /∈ Γ̃. (3.45)

Take an element h ∈ K[x]. Let h =
s∑

j=0
cjλQ

j
λ be the λ-standard expansion of h. By (3.45) we

have
νλ(h) = νλ

(
cµλQ

µ
λ

)
= ν

(
cµλQ

µ
λ

)
= ν(h).

This proves that Q is a complete set of key polynomials, contradicting the assumption. Theorem
3.35 is proved.

Proposition 3.36. If (3.41) holds and the sequence {βℓ+t}t∈N0 is cofinal in Γ̃, then the set
Qℓ+ω of key polynomials defined above is Γ̃-complete. In other words, for any element β ∈ Γ̃+

any polynomial f ∈ K[x] with ν(f) = β belongs to the additive subgroup of Pβ ∩K[x] generated
by all the monomials in the Qi of value β or higher, multiplied by elements of K.

Proof. To prove Proposition 3.36, it is sufficient to show that for every positive β ∈ Γ̃+ and
every h ∈ K[x] such that ν(h) = β, h belongs to the Rν-submodule of K[x] generated by all the
monomials cQγ̄ such that ν (cQγ̄) ≥ β.

Take an element h ∈ K[x]. Since the sequence {βℓ+t}t∈N0 is cofinal in Γ̃, there exists i of
the form i = ℓ+ t, t ∈ N0, such that

βi > ν(h). (3.46)

Let

h =

si∑

j=0

cjQ
j
i (3.47)

be the i-standard expansion of h. Without loss of generality, we may assume that, writing

h =
s∑

j=0
djx

j , we have

ν0(dj) ≥ 0 for all j (3.48)

(otherwise, multiply h by a suitable element ofK). Then the i-standard expansion (3.47) satisfies
the hypotheses of Proposition 3.29 (1). Now, Proposition 3.29 says that

νi(h) = ν(h).

This means, by definition, that h can be written as a sum of monomials in Qi+1 of value at
least ν(h), hence it belongs to the ideal generated by all such monomials. This completes the
proof.

Remark 3.37. The proof of Theorem 3.35 (together with Proposition 3.29 (2)) shows that:
(1) if (3.41) holds and

#{αℓ+t | αℓ+t > 1} = ∞, (3.49)

then Qℓ+ω is a complete set of key polynomials and
(2) if Qℓ+ω is Γ̃-complete then

Qℓ+ω ∪ {Qℓ+ω}
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is a complete set of key polynomials.
Moreover, we will see below (at the end of §7) that if rk ν0 = 1,

char kν = 0. (3.50)

and Qℓ+ω is not a complete set of key polynomials then the sequence {βℓ+t}t∈N0 is cofinal in Γ̃.

In the next five sections we introduce the numerical character δi(h) and study the effect
of differential operators o the Qi in order to give a more precise description of the form of limit
key polynomials in the case when rk ν0 = 1.

4 The numerical character δi(h)

Let i be an ordinal such that Qi is defined, and h an element of K[x]. Recall the definition of
ini(h) ((3.21)–(3.22)). In this section we define the numerical character δi(h), which will play a
crucial role in the rest of the paper. We prove that δi(h) does not increase with i. We also show
that the equality δi(h) = δi+1(h) imposes strong restrictions on inih.

Let h =
si∑

j=0
djiQ

j
i be an i-standard expansion of h, where each dji is a Qi-free i-standard

expansion. The main definition of this section is: let

δi(h) = degQ̄i
inih = max Si(h) (4.1)

in the notation of (3.21)–(3.22).

Definition 4.1. The vertex
(
ν
(
dδi(h),i

)
, δi(h)

)
of the Newton polygon ∆i(h) is called the piv-

otal vertex of ∆i(h).

Let
ν+i (h) = min

{

ν
(

djiQ
j
i

) ∣
∣
∣ δi(h) < j ≤ si

}

(4.2)

and
S′
i(h) =

{

j ∈ {δi(h) + 1, . . . , si}
∣
∣
∣ ν
(

djiQ
j
i

)

= ν+i (h)
}

.

If the set on the right hand side of (4.2) is empty, we adopt the convention that ν+i (h) = ∞.
We have δi(h) > 0 whenever νi(h) < ν(h).

Take an ordinal i such that Qi and Qi+1 are defined. The fact that Qi+1 is defined means
that there exists a polynomial h ∈ K[x] such that νi(h) < ν(h) (if νi(h) = ν(h) for all h ∈ K[x],
the algorithm stops at Qi). Take a polynomial h such that νi(h) < ν(h). Consider the i-th
Newton polygon of h. Let Si(h) be as in (3.21).

The next Proposition shows that δi(h) is non-increasing with i and that the equality
δi+1(h) = δi(h) imposes strong restrictions on inih.

Proposition 4.2. (1) We have
αi+1δi+1(h) ≤ δi(h). (4.3)

(2) If δi+1(h) = δi(h) then

inih = inνdδi(h),i
(
Q̄i + inνzi

)δi(h) , (4.4)

where zi is some Qi-free standard expansion, and ini+1h contains a monomial of the form

inνdδi(h),iQ̄
δi(h)
i+1 ; in particular,

inνdδi(h),i = inνdδi(h),i+1. (4.5)
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(3) If δi+1(h) = δi(h), then for all j > δi(h) we have

ν
(

dj,i+1Q
j
i+1

)

− νi+1(h) ≥ ν+i (h)− νi(h) (4.6)

Proof. We start with three Lemmas. First, consider the (i+ 1)-standard expansion of h:

h =

s∑

j=0

dj,i+1Q
j
i+1, (4.7)

where the dj,i+1 are Qi+1-free standard expansions.

Lemma 4.3. (1) We have

νi(h) = min
0≤j≤s

νi

(

dj,i+1Q
j
i+1

)

= min
0≤j≤s

{ν(dj,i+1) + jαi+1βi}.

(2) Let

Si,i+1 =
{

j ∈ {0, . . . , s}
∣
∣
∣ νi

(

dj,i+1Q
j
i+1

)

= νi(h)
}

and j0 = max Si,i+1. Then δi(h) = αi+1j0 + δi(dj0,i+1).

Proof. (1) Provisionally, let

µ = min
0≤j≤s

νi

(

dj,i+1Q
j
i+1

)

= min
0≤j≤s

{ν(dj,i+1) + jαi+1βi},

S′
i,i+1 =

{

j ∈ {0, . . . , s}
∣
∣
∣ νi

(

dj,i+1Q
j
i+1

)

= µ
}

,

j′ = max S′
i,i+1 and δ′ = αi+1j

′ + δi(dj′,i+1). We want to show that µ = νi(h), S
′
i,i+1 = Si,i+1,

j′ = j0 and δi(h) = δ′.
Let h̄ =

∑

j∈S′

i,i+1

dj,i+1Q
j
i+1. Then νi(h− h̄) > µ, so to prove that νi(h) = µ it is sufficient

to prove that νi(h̄) = µ.

Write dj′,i+1 = d′t,iQ
t
i + · · ·+ d′δi(dj′,i+1)

Q
δi(dj′,i+1)

i + · · ·+ d′0,i.

Write Qi+1 = Q
αi+1

i + y.

Now dj′,i+1Q
j′

i+1 =
(

d′t,iQ
t
i + · · · + d′δi(dj′,i+1)

Q
δi(dj′ ,i+1)

i + · · ·+ d′0,i

) (
Q

αi+1

i + y
)j′

. All the terms

of the form d′s,iQ
s
i

(
j′

m

)
Q

αi+1m
i yj

′−m with s > δi(dj′,i+1) satisfy:

νi

(

d′s,iQ
s
i

(
j′

m

)

Q
αi+1m
i yj

′−m

)

≥ νi
(
d′s,iQ

s
i

)
+ νi

(

Q
αi+1m
i yj

′−m
)

> νi

(

d′δi(dj′ ,i+1)
Q

δi(dj′ ,i+1)

i

)

+ νi

(

Q
αi+1m
i yj

′−m
)

= νi

(

d′δi(dj′ ,i+1)
Q

δi(dj′ ,i+1)

i

)

+ νi

(

Qj′

i

)

= νi

(

d′δi(dj′ ,i+1)
Q

δi(dj′ ,i+1)+αi+1j′

i

)

.

Now for (s = δi(dj′,i+1) and m 6= j′) and for s < δi(dj′,i+1) we have

degx d
′
s,iQ

s
i

(
j′

m

)

Q
αi+1m
i yj

′−m < degx d
′
δi(dj′,i+1)

Q
δi(dj′ ,i+1)+αi+1j′

i .
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We have proved that the i-standard expansions of dj′,i+1Q
j′

i+1 contains an i-standard mono-

mial of the form dQδ′
i , such that νi

(

dQδ′
i

)

= νi

(

dj′,i+1Q
j′

i+1

)

.

All the i-standard monomials appearing in the i-standard expansion of dj,i+1Q
j
i+1 for j < j′,

have degree in x stricly less than degx dQ
δ′
i . Therefore dQδ′

i appears also in the i-standard
expansion of h̄. Thus

νi
(
h̄
)
≤ νi

(

dQδ′
i

)

= νi

(

dj′,i+1Q
j′

i+1

)

= µ,

so νi(h) ≤ µ. The opposite inequality is trivial and (1) is proved. (2) follows immediately from
this.

Lemma 4.4. Consider two terms of the form dQj
i+1 and d′Qj′

i+1 (where j, j′ ∈ N0 and d and d′

are Qi-free i-standard expansions. Assume that

νi

(

dQj
i+1

)

≤ νi

(

d′Qj′

i+1

)

(4.8)

and
ν
(

dQj
i+1

)

≥ ν
(

d′Qj′

i+1

)

. (4.9)

Then j ≥ j′. If at least one of the inequalities (4.8), (4.9) is strict then j > j′.

Proof. Subtract (4.8) from (4.9) and use the definition of νi and the facts that

νi(Qi+1) = αi+1βi < βi+1,

νi(d) = ν(d) and νi(d
′) = ν(d′).

In the notation of Lemma 4.3, let θi+1(h) = min Si,i+1.

Definition 4.5. The vertex (ν(dθi+1(h),i+1), θi+1(h)) is called the characteristic vertex of
∆i+1(h).

Let

inih = inνdδi

t∏

j=1

g
γji
ji (4.10)

be the factorization of inih into (monic) irreducible factors in Gν0 [inνQi]
[
Q̄i

]
, where δ = δi(h)

and g1i is the minimal polynomial of inνQi over Gν0 [inνQi].

Lemma 4.6. We have
γ1i = θi+1(h) (4.11)

(in particular, dγ1i,i+1 6= 0) and

inνdθi+1(h),i+1 = inνdδi

t∏

j=2

g
γji
ji (inνQi). (4.12)

Proof. Write

h =
∑

q∈Si,i+1

dq,i+1Q
q
i+1 +

∑

q∈{0,...,s}\Si,i+1

dq,i+1Q
q
i+1.

By Lemma 4.3,

inih =
∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1. (4.13)
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By definition of θi+1(h), iniQ
θi+1(h)
i+1 is the highest power of iniQi+1 dividing

∑

q∈Si,i+1

inidq,i+1iniQ
q
i+1.

Also by definition, we have
iniQi+1 = g1i. (4.14)

Now (4.11) follows from (4.13). Also from (4.13), we see that inνdθi+1(h),i+1 is obtained by

substituting inνQi into
inih

iniQ
γ1i
i+1

, and (4.12) follows.

Now, apply Lemma 4.4 to the monomials dθi+1(h),i+1Q
θi+1(h)
i+1 and dδi+1(h),i+1Q

δi+1(h)
i+1 . We

have
ν
(

dδi+1(h),i+1Q
δi+1(h)
i+1

)

≤ ν
(

dθi+1(h),i+1Q
θi+1(h)
i+1

)

(4.15)

by definition of δi+1 and

νi

(

dθi+1(h),i+1Q
θi+1(h)
i+1

)

= νi(h) ≤ νi

(

dδi+1(h),i+1Q
δi+1(h)
i+1

)

(4.16)

by Lemma 4.3, so the hypotheses of Lemma 4.4 are satisfied. By Lemma 4.4

θi+1(h) ≥ δi+1(h). (4.17)

Since
αi+1θi+1(h) = αi+1γ1i ≤ degQ̄i

inih = δi(h) (4.18)

by Lemma 4.6 and (4.10), (1) of the Proposition follows.
(2). Assume that δi+1(h) = δi(h). Then the above two monomials coincide and

αi+1 = 1. (4.19)

Furthermore, we have equality in (4.18), so inih = inνdδi(h),ig
δi(h)
1i . Combined with (4.19), this

proves (4.4).
The equality (4.5) follows from (4.12) and the fact that θi+1(h) = δi+1(h).

(3). Assume that δi+1(h) = δi(h). Fix an integer j > δi(h). For j′ < j, monomials of the

form dj′iQ
j′

i contribute nothing to dj,i+1Q
j
i+1; in other words, the coefficient dj,i+1 is completely

determined by
si∑

j′=j

dj′iQ
j′

i .

Fix an integer j′ ∈ {j, . . . , si}. Write

dj′iQ
j′

i = dj′i (Qi+1 − zi)
j′ = dj′i

j′
∑

k=0

(
j′

k

)

(−1)kQk
i+1z

j′−k
i , (4.20)

where zi is an Qi-free i-standard expansion. Again, the terms on the right hand side of (4.20)
with k > j contribute nothing to dj,i+1Q

j
i+1. For k ≤ j, let dj′ki denote the coefficient of Qj

i+1

in the (i+1)-standard expansion of dj′iQ
k
i+1z

j′−k
i . To prove (3), it is sufficient to prove that for

all j′ ∈ {j, . . . , si} and all k ∈ {0, . . . , j} we have

ν
(

dj′kiQ
j
i+1

)

− νi+1(h) ≥ ν+i (h) − νi(h). (4.21)
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To prove (4.21), we start out by noting that νi

(

dj′iQ
k
i+1z

j′−k
i

)

≤ νi

(

dj′kiQ
j
i+1

)

, so

ν
(
dj′ki

)
= νi

(
dj′ki

)
≥ (j′ − j)βi + ν

(
dj′i
)
. (4.22)

Hence ν
(

dj′kiQ
j
i+1

)

− νi+1(h) = ν
(
dj′ki

)
− ν (dδ,i+1) + (j − δ)βi+1 ≥ (j′ − j)βi + ν

(
dj′i
)
−

ν (dδ,i+1) + (j − δ)βi = ν
(

dj′iQ
j′

i

)

− ν
(
dδiQ

δ
i

)
≥ ν+i (h)− νi(h), as desired.

This completes the proof of the Proposition.

Remark 4.7. One way of interpreting Lemma 4.4, together with the inequalities (4.15)–(4.17)
is that the characteristic vertex (ν(dθi+1(h),i+1), θi+1(h)) of ∆i+1(h) always lies above its pivotal
vertex (ν(dδi+1(h),i+1), δi+1(h)).

Now, assume that Qℓ+1 is defined for a certain ordinal number ℓ and that ω iterations of
the algorithm of §3 produce an infinite sequence {Qℓ+t}t∈N0 .

Corollary 4.8 (of Proposition 4.2). Assume that the set {t ∈ N | αℓ+t > 1} is infinite. Then
the set Qℓ+ω of key polynomials constructed in §3 is complete.

Proof. Take any element h ∈ K[x]. It is sufficient to show that νi(h) = ν(h) for some i of the
form ℓ+ t, t ∈ N. Proposition 4.2 (1) says that

δi+1(h) < δi(h) (4.23)

whenever δi(h) > 0 and αi+1 > 1. Since the set {t ∈ N | αℓ+t > 1} is infinite, and the inequality
cannot occur infinitely many times, we have δi(h) = 0 for some i = ℓ+ t, t ∈ N. Then inih does
not involve Q̄i, hence νi(h) = ν(h).

5 If rk ν0 = 1 and Case 2b holds then degQℓ
Qℓ+ω = δ(Qℓ+ω)

Let ℓ be an ordinal such that Qℓ+t, t ∈ N0, and Qℓ+ω are defined. To simplify the notation, in
this section we will denote Qℓ+ω by f . Then

degQℓ
f ≥ δℓ(f). (5.1)

By Proposition 4.2 and Corollary 4.8, there exists t0 ∈ N0 such that

αℓ+t = 1 and δℓ+t(f) = δℓ+t0(f) for all t ≥ t0. (5.2)

Let δ(f) denote the stable value δℓ+t(f) for large t. The inequality (5.1) implies that

degQℓ
f ≥ δ(f). (5.3)

Assume that rk ν0 = 1 and Case 2b of §3 holds. The main result of this section says that under
these assumptions equality holds in (5.3).

Let
β̄ = sup {ν (Qℓ+t) | t ∈ N} .

(here we allow the possibility β̄ = ∞, which means that the set {ν (Q′) | Q′ ∈ T} is unbounded
in Γ̃). Saying that we are in Case 2b amounts to saying that β̄ ∈ R, that is, β̄ < ∞.

Below, in Proposition 7.6, we will show that δ(f) is of the form δ(f) = pe0 for some
e0 ∈ N0. Together with Remark 3.33 this will prove that, under the assumptions of this section,
we have char kν > 0 and e0 > 0.

Replacing ℓ by ℓ+ s for a suitable positive integer s, we may assume that αℓ+t = 1 for all
strictly positive t. In what follows, the index i will run over the set {ℓ+ t}t∈N0 . Let δ = δ(f).
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Lemma 5.1. Take polynomials h, g ∈ K[x] such that degx h,degx g < degxQi. Let

hg = uQi + c

be the Eucledian division of hg by Qi. Then ν(c) = ν(hg) < ν(uQi).

Proof. We have νℓ(f) = ν(h) and νℓ(g) = ν(g), so νℓ(hg) = ν(hg) = νi(hg). Using Lemma 4.3
we obtain min{ν(c), νi(uQi)} = νi(hg) = νℓ(hg) = min{ν(c), νℓ(uQi)}. Since

νi(uQi) > νℓ(uQi),

we see that ν(c) = νi(hg) = νℓ(hg) = ν(hg) < νi(uQi) = ν(uQi), as desired.

Proposition 5.2. For each
i ∈ {ℓ+ t}t∈N0

we have
degx f = δ degxQi (5.4)

and

β̄ ≤
1

δ
ν (f) . (5.5)

Proof. The inequality (5.5) is equivalent to saying that

ν (f) > δν (Qℓ + zℓ + · · ·+ zℓ+t) (5.6)

for all t ∈ N0. This follows from Remark 3.33 (cf. (3.44)). The main point is to prove (5.4).
For i of the form ℓ+ t, t ∈ N, let

f =

ni∑

j=0

ajiQ
j
i (5.7)

be the i-standard expansion of f .
Since αi = 1 for all i, all the i-standard expansions of f have the same degree nℓ in Qi.
Let

θ(i) = min{ν+i (f)− νi(f), βi − βℓ}; (5.8)

we have θ(i) > 0.
By (4.6) the quantity ν+i (f)− νi(f) is increasing with i and hence so is θ(i). Taking into

account the fact that β̄ = lim
i→∞

βi, we have, for i sufficiently large,

ν(aδi) + δβ̄ − νi(f) = δ(β̄ − βi) < θ(i). (5.9)

By choosing ℓ1 > ℓ sufficiently large, we may assume that (5.9) holds for i ≥ ℓ1.
Let a∗ ∈ K[x] denote a polynomial such that

inνa
∗inνaδℓ = 1 (5.10)

in Gν . According to Lemma 2.6 we may choose a∗ to be of degree strictly less than degxQℓ;
this condition determines inνa

∗ uniquely. Note that

inνaδℓ = inνaδi for all i ≥ ℓ (5.11)
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by Proposition 4.2 (2).
By Proposition 4.2 (2), for all i ≥ ℓ we have

inif = inνaδi(Q̄i + inνzi)
δ,

hence in view of (5.10)–(5.11) we have ini(a
∗f) = (Q̄i + inνzi)

δ . In particular,

ν(a∗f) > νi(a
∗f) for all i. (5.12)

We claim that multiplying by a∗ does not affect δ.
Indeed, applying Lemma 5.1 to the pairs of polynomials

(h, g) = (aδi, a
∗)

and
(h, g) = (dδ−1,i, a

∗),

we see that after multiplying f by a∗ and applying Euclidean division by Qi to obtain the i-
standard expansion of a∗f , only the remainders in the Euclidean division contribute to inia

∗f .
In partcular, δi(a

∗f) = δ for all i ≥ ℓ.

Thus, replacing f by a∗f , we may assume that inνaδi = 1 for all i.

Next, write aδi = 1 + a†i with

ν
(

a†i

)

≥ βi − βℓ > 0 (5.13)

Write
f = f̄ + f̃ ,

where

f̄ = Qδ
ℓ1 +

δ−1∑

j=0

ajℓ1Q
j
ℓ1

and

f̃ = a†ℓ1Q
δ
ℓ1 +

nℓ∑

j=δ+1

ajℓ1Q
j
ℓ1
.

(5.9) implies that for all j with δ < j ≤ nℓ and all i ≥ ℓ1, we have

νi

(

ajℓ1Q
j
ℓ1

)

≥ νℓ1

(

ajℓ1Q
j
ℓ1

)

≥ ν+ℓ1(f) > δβ̄ > δβi = νi(f).

From (5.9) and (5.13) , we see that

νi

(

a†ℓ1Q
δ
ℓ1

)

≥ νℓ1

(

a†ℓ1Q
δ
ℓ1

)

= νℓ1

(

a†ℓ1

)

+ δβℓ1 ≥ βℓ1 − βℓ + δβℓ1 ≥ θ(ℓ1) + δβℓ1 > δβ̄ > νi(f).

Hence, for all i, ν
(

f̃
)

≥ νi

(

f̃
)

> νi
(
f̄
)
which implies that inif = inif̄ and so νi (f) = νi

(
f̄
)
<

ν
(
f̄
)
. Since f was chosen of minimal degree with respect to the latter property, we must have

degx f = degx = δ degxQℓ.
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6 Key polynomials and differential operators

This section is devoted to proving some basic results about the effect of differential operators
on key polynomials. Here and below, for a non-negative integer b, ∂b will denote the differential
operator 1

b!
∂b

∂xb . Given an ℓ-standard expansion h, we are interested in proving lower bounds
on (and, in some cases, exact formulae for) the quantities ν(∂bh) and νℓ(∂bh) and the elements
inν∂bh and inℓ∂bh. In particular, we will give sufficient conditions for the element ∂bh to be
non-zero.

Take an ordinal i ≤ ℓ and assume that the key polynomials Qi+1 are defined. Let bi denote

the smallest positive integer which maximizes the quantity
βi−ν(∂biQi)

bi
(later in this section, we

will show that bi is necessarily of the form pei , for some ei ∈ N0 and, in particular, that bi = 1
if char kν = 0).

Let h be any element of K[x]. One of our main tasks in this section is studying the quan-
tities ν (∂bh) and νi (∂bh). We use the following convention for binomial coefficients: if s < t, the
binomial coefficient

(s
t

)
is considered to be 0. We may view the binomial coefficients as elements

of K via the natural map Z → K.

Notation:

Let p be as defined in the Introduction. If p > 1, for an integer a we shall denote by ν(p)(a)
the p-adic value of a, that is, the greatest power of p which divides a. If p = 1, we adopt the
convention ν(p)(a) = 1 for all non-zero a and ν(p)(0) = ∞.

Proposition 6.1. Take an element h ∈ K[x].

(1) For all b ∈ N0 we have

νi(h) − νi (∂bh) ≤
b

bi
(βi − ν(∂biQi)) . (6.1)

(2) Let h =
s∑

j=0
djiQ

j
i be the i-standard expansion of h. Assume that

{

j ∈ {0, . . . , s}
∣
∣
∣ ν
(

djiQ
j
i

)

= νi(h)
}

6= {0}

(in particular, we have s > 0). Let djiQ
j
i denote the term in the i-standard expansion of

h which minimizes the triple
(

νi

(

djiQ
j
i

)

, ν(p)(j), j
)

in the lexicographical ordering. Let

e = ν(p)(j) and b(i, h) = bip
e. Then equality holds in (6.1) for b = b(i, h).

Remark 6.2. Let i0 = i − 1 if i admits an immediate predecessor and let i0 be as in (3.10)
otherwise. For all b ∈ N we have

ν(∂bQi) = νi0(∂bQi); (6.2)

this holds by Proposition 3.29 (2). In particular ν(∂biQi) = νi0(∂biQi). Thus replacing ν(∂biQi)
by νi0(∂biQi) in (6.1) gives rise to an equivalent inequality. Also, νi (∂bh) ≤ ν (∂bh), so replacing
νi (∂bh) by ν (∂bh) in (6.1) gives rise to a true, but an a priori weaker inequality.

Proof of Proposition 6.1. We prove Proposition 6.1 by transfinite induction. For i = 1 we have
bi = 1 and the result is obvious. Assume that i > 1 and that the result is known for all the
ordinals strictly smaller than i.

31



Lemma 6.3. Consider a pair of ordinals i′, i′′ such that i′ < i′′ ≤ i. Then

βi′ − ν(∂bi′Qi′)

bi′
<

βi′′ − ν(∂bi′′Qi′′)

bi′′
. (6.3)

Proof. By transfinite induction on the ordinal i′′ − i′, we may assume that i′′ = i′+, and that
Qi′′ admits an i′-standard expansion of the form (3.8) or (3.10), depending on whether or
not i′′ is a limit ordinal. Moreover, we may assume that for every positive integer b̃ we have
ν(∂b̃Qi′′) = νi′(∂b̃Qi′′).

By definition of bi′′ , it is sufficient to prove that there exists a strictly positive integer b̃
such that (6.3) holds with bi′′ replaced by b̃.

We take b̃ := b (i′, Qi′′). We have:

βi′′ − ν(∂b̃Qi′′) > νi′(Qi′′)− ν(∂b̃Qi′′) = νi′(Qi′′)− νi′(∂b̃Qi′′) =

=
b̃

bi′
(βi′ − ν(∂bi′Qi′)).

Here the first inequality is given by Proposition 3.22 (1), the first equality by Remark 6.2 and
the second equality by Proposition 6.1 (2) applied to i′ < i, which we are allowed to use by the
induction assumption. This completes the proof of the Lemma.

To prove Proposition 6.1 (1), it is sufficient to prove it for each i-standard monomial
appearing in the i-standard expansion of h. Indeed, assume that the result is true for each
i-standard monomial djiQ

j
i appearing in the i-standard expansion of h. This means that for

each j we have

ν
(

∂bdjiQ
j
i

)

≥ ν
(

djiQ
j
i

)

−
b

bi
(βi − ν (∂biQi)) .

Thus νi(∂bh) ≥ min
j

ν
(

∂bdjiQ
j
i

)

≥ min
j

ν
(

djiQ
j
i

)

− b
bi
(βi − ν (∂biQi)) = νi(h)−

b
bi
(βi − ν (∂biQi)).

Let Q
γ̄i+1

i+1 be such an i-standard monomial. Let γ̄i+1 = (γj | j ≤ i) and write

Q
γ̄i+1

i+1 = Q
γ̄i
i Qγi

i .

We want to expand ∂bQ
γ̄i+1

i+1 in terms of products of the form Qγi−q
i

(
∂j0Q

γ̄i
i

) q∏

t=1
(∂jtQi), where

q ≤ γi and j0 + j1 + · · ·+ jq = b. Each such product appears in the sum with a certain positive
integer coefficient that we will now compute explicitly.

To do that, we first prove some general formulae about formal derivatives of products and
powers of polynomials.

Lemma 6.4. For any two polynomials A and B and any positive integer b, we have

∂b(AB) =
b∑

j=0

(∂jA)(∂b−jB). (6.4)

Proof. Let m = deg A and n = deg B. By definition, formal derivatives are the coefficients in
Taylor expansions:

A(X + Y ) =

m∑

i=0

∂iA(X)Y i and B(X + Y ) =

n∑

i=0

∂iB(X)Y i.
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We obtain

AB(X + Y ) = A(X + Y )B(X + Y ) =
m+n∑

b=0





b∑

j=0

∂jA(X)∂b−jB(X)



Y b.

Since the coefficients in the Taylor expansion are uniquely determined, this proves (6.4).

For positive integers a1, . . . , aq and an integer n ≥ q, we define the multiplicities n1, . . . , nk

of a1, . . . , aq as follows. Let n1 be the number of appearances of the smallest element of
{a1, . . . , aq} in the sequence a1, . . . , aq. Let n2 the number of appearances of the second smallest
element, and so on until nk, which is, by definition, the number of appearances of the largest
element.

Notation. Let Cn(a1, . . . , aq) =
n!

(n−q)!·n1!·····nk!
.

Lemma 6.5. For any polynomial B and any positive integers b and n we have

∂b(B
n) =

∑

j1+···+jq=b
1≤q≤n

Cn(j1, . . . , jq)B
n−q

q
∏

t=1

(∂jtB) , (6.5)

Proof. Let m = deg B. We have

B(X + Y )n =

(
m∑

i=0

∂iB(X)Y i

)n

=

mn∑

b=0




∑

j1+···+jn=b

n∏

t=1

∂jtB(X)



Y i, (6.6)

where the jt run over non-negative integers.

For each product appearing in parentheses on the right hand side of (6.6), let

q = # {t ∈ {1, . . . n} | jt 6= 0} .

Then we can rewrite (6.6) as

B(X + Y )n =

mn∑

b=0




∑

j1+···+jq=b

Bn−q
q
∏

t=1

∂jtB(X)



 Y b, (6.7)

where the jt run over strictly positive integers. Now we have to count how often the same product

Bn−q
q∏

t=1
∂jtB(X) appears in the second sum on the right hand side. How many distinct n-tuples

can we obtain from the numbers j1, . . . , jn? If all the jt are distinct and q ≤ 1, then the number
is n!. But if some of the jt’s are equal, then permuting them only among themselves does
not produce new tuples. Similarly, if q ≥ 2, permuting the (n − q) factors in Bn−q among
themselves does produce new tuples. Let the numbers n1, . . . , nk be the multiplicities of the

numbers j1, . . . , jn, defined above. Then the number of appearances of Bn−q
q∏

t=1
∂jtB(X) is

n!

(n− q)! · n1! · · · · · nk!
= Cn(j1, . . . , jq). (6.8)

This completes the proof.
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Lemma 6.6. For any two polynomials A and B and any positive integers b and n, we have

∂b(AB
n) =

∑

j0+j1+···+jq=b
q≤n

Cn(j1, . . . , jq)B
n−q (∂j0A)

q
∏

t=1

(∂jtB) , (6.9)

Proof. By Lemma 6.4, we have ∂b(AB
n) =

b∑

j0=0
(∂jA)(∂b−jB

n). Now Lemma 6.6 follows from

Lemma 6.5.

Coming back to the proof of Proposition 6.1 (1), we have

∂bQ
γ̄i+1

i+1 =
∑

j0+j1+···+jq=b
q≤γi

Cγi(j1, . . . jq)Q
γi−q
i

(
∂j0Q

γ̄i
i

)
q
∏

t=1

(∂jtQi) , (6.10)

where 0 < j1 ≤ · · · ≤ jq, by Lemma 6.6.
By Proposition 3.29 (2), we have

νi(∂jtQi) = ν(∂jtQi).

We have

βi − νi(∂jtQi) = βi − ν(∂jtQi) ≤
jt
bi
(βi − ν(∂biQi)) (6.11)

by Remark 6.2 and definition of bi. Further,

νi
(
Q

γ̄i
i

)
− νi

(
∂j0Q

γ̄i
i

)
= νi0

(
Q

γ̄i
i

)
− νi0

(
∂j0Q

γ̄i
i

)
≤

j0
bi
(βi − ν(∂biQi)), (6.12)

where i0 is sufficiently large with i0+ = i, the equality holds because Qi does not appear in Q
γ̄i
i

and by Remark 6.2, and the inequality by the induction assumption and in view of Lemma 6.3.
Note that the last inequality in (6.12) is strict whenever j0 > 0. Adding the inequalities (6.11)
for 1 ≤ t ≤ q and (6.12), we obtain:

νi

(

Q
γ̄i+1

i+1

)

− νi

(

Qγi−q
i

(
∂j0Q

γ̄i
i

)
q
∏

t=1

(∂jtQi)

)

≤

≤
j0 + j1 + · · ·+ jq

bi
(βi − ν(∂biQi)) =

b

bi
(βi − ν(∂biQi)).

(6.13)

By (6.10), (6.13) and since ν is non-negative on N (in particular, ν(Cγi(j1, . . . , jq)) ≥ 0), we
have

νi

(

Q
γ̄i+1

i+1

)

− νi

(

∂bQ
γ̄i+1

i+1

)

≤

≤ νi

(

Q
γ̄i+1

i+1

)

− min
(j0,...,jq)

{

νi

(

Qγi−q
i

(
∂j0Q

γ̄i
i

)
q
∏

t=1

(∂jtQi)

)}

≤
b

bi
(βi − ν(∂biQi)),

(6.14)

as desired. Proposition 6.1 (1) is proved.

Now let the notation be as in Proposition 6.1 (2). To prove this part, we first show that

replacing νi(∂bh) by ν
((

∂biQ
pe

i

)

djiQ
j−pe

i

)

gives equality in (6.1).
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Indeed, we have νi(h)−ν
((

∂biQ
pe

i

)

djiQ
j−pe

i

)

= νi(h)−(peνi(∂biQi) + ν(dji) + (j − pe)ν(Qi)) =

peν(Qi)− peν(∂biQi) =
bipe

bi
(βi − νi(∂biQi)) =

b
bi
(βi − νi(∂biQi)).

Therefore by part (1) of the Proposition, νi(∂bh) must be at least equal to

ν
((

∂biQ
pe

i

)

djiQ
j−pe

i

)

and it is sufficient to prove that the i-standard expansion of ∂bh contains a term of the form

dQj−pe

i with ν(d) = ν
(

(∂biQ
pe

i )dji

)

and all the other terms d′Qj′

i satisfy either j′ 6= j − pe or

νi(d
′Qj′

i ) > νi(dQ
j−pe

i ).

We proceed by considering all the terms of the form Q
γ̄i+1

i+1 that appear in the i-standard
expansion of h.

First, consider such a monomial appearing in djiQ
j
i . Write b =

q∑

t=1
jt, where q = pe and

jt = bi for all t. For each Qi-free standard monomial Qγ̄i
i , appearing in dji, the corresponding

term in (6.10) is
(
j
pe

)
Qj−pe

i Q
γ̄i
i (∂biQi)

pe , by (6.8). Put d =
(
j
pe

)
Q

γ̄i
i (∂biQi)

pe . Hence

ν(d) = ν
(

(∂biQ
pe

i )dji

)

.

Now for any other choice of j0, j1, . . . , jt such that q = pe we would have either j0 6= 0 or at least
one t such that jt < bi, therefore such terms satisfy strict inequality in (1) since they satisfy
strict equality in (6.12) or in (6.11) and hence their valuation is strictly greater than νi(dQ

j−pe

i ).
Therefore we have the equality

νi(djiQ
j
i )− νi(∂bdjiQ

j
i ) =

b

bi
(βi − ν(∂bi)Qi). (6.15)

Now assume Q
γ̄i+1

i+1 is such that ν
(

Q
γ̄i+1

i+1

)

> νi

(

djiQ
j
i

)

. By (6.1) we have

ν
(

Q
γ̄i+1

i+1

)

− ν
(

∂bQ
γ̄i+1

i+1

)

≤
b

bi
(βi − ν(∂bi)Qi)

and using (6.15) we find that ν
(

∂bQ
γ̄i+1

i+1

)

> νi

(

dQj−pe

i

)

.

Now consider terms Q
γ̄i+1

i+1 that appear in an expression dmiQ
m
i such that

ν
(

Q
γ̄i+1

i+1

)

= νi

(

djiQ
j
i

)

.

It is sufficient to show that for j′ = m − q = j − pe such terms satisfy the strict inequality in

(6.1), so in view of (6.15) we deduce that their valuation is strictly greater than νi

(

dQj−pe

i

)

.

Take one such term. We have two cases. If m > j then for j′ = m− q = j − pe , we must
have q > pe, so for any choice of j0, j1, . . . , jt we must have at j0 6= 0 or at least one t such that
jt < bi. Therefore such terms satisfy the strict inequality in (6.1) since they satisfy the strict
inequality in (6.12) or (6.11).

If m < j then m = ups with s > e and hence if m− q = j − pe than q = n.pe so n must
be positive so q > pe, so for any choice of j0, j1, . . . , jt we must have at j0 6= 0 or at least one t
such that jt < bi, therefore such terms satisfy strict inequality in (1) by (6.12) and (6.11).
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Remark 6.7. Let

Ii,max =

{

b̃i ∈ N0

∣
∣
∣
∣
∣

βi − ν(∂biQi)

bi
=

βi − ν(∂b̃iQi)

b̃i

}

. (6.16)

By definitions, we have bi = min Ii,max. Of course, Proposition 6.1 holds equally well with
bi replaced by b̃i. Similarly, Lemma 6.3 holds if the pair (bi′ , bi′′) is replaced by (b̃i′ , b̃i′′) with
b̃i′ ∈ N, b̃i′′ ∈ Ii′′,max.

Corollary 6.8. For each ordinal i ≤ ℓ, each b̃i ∈ Ii,max is of the form b̃i = pẽi for some ẽi ∈ N0.
In particular, bi = pei for some ei ∈ N0. In the special case when char kν = 0 we have p = 1
and so Ii,max = {bi} = {1}.

Proof. Write b̃i = pẽiu, where p 6 | u if char kν = p > 0, and pẽi = 1 if char kν = 0. We want to
prove that u = 1. We argue by contradiction. Assume that u > 1. We claim that we can write

(
b̃i
b′

)

∂b̃i = ∂b′ ◦ ∂b′′ , (6.17)

where b′, b′′ are strictly positive integers such that

b′ + b′′ = b̃i (6.18)

and

ν

((
b̃i
b′

))

= 0 (6.19)

Indeed, we can take b′ = pẽi and b′′ = pẽi(u− 1). Now, by Remark 6.11 below, p does not divide
(b̃i
b′

)
and therefore its natural image in K is non-zero and its value is 0 (as usual, we view

(b̃i
b′

)
as

an element of K via the natural map N → K).

Let i0 = i − 1 if i admits an immediate predecessor and let i0 be as in (3.10) otherwise.
We have

βi − ν(∂b̃iQi) = (βi − ν(∂b′′Qi)) + (νi0(∂b′′Qi)− νi0(∂b̃iQi)) (6.20)

by (6.2). By (6.17), we have ∂b̃iQi =
b′!b′′!
b̃i!

∂b′(∂b′′Qi). Hence

νi0 (∂b′′Qi)− νi0

(

∂b̃iQi

)

≤
b′

bi0

(

βi0 − ν
(

∂b̃i0
Qi0

))

<
b′

b̃i

(

βi − ν
(

∂b̃iQi

))

(6.21)

by (6.19), Proposition 6.1 (1) and Lemma 6.3. From (6.20)–(6.21) we obtain

βi − ν(∂b′′Qi) >

(

1−
b′

b̃i

)(

βi − ν(∂b̃iQi)
)

=
b′′

b̃i

(

βi − ν(∂b̃iQi)
)

which contradicts the fact that b̃i ∈ Ii,max. Corollary 6.8 is proved.

Next, we investigate further the case of equality in (6.1). We give a necessary condition
on h and b for the equality to hold in (6.1) and prove that this condition is sufficient under some
additional assumptions. Finally, we derive a formula for inih in the case when this criterion for
equality in (6.1) holds. We start with the case when h is a single i-standard monomial.
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Proposition 6.9. Consider an i-standard monomial h = Q
γ̄i+1

i+1 . Write

bi = pei and (6.22)

γi = peu, where p 6 | u if p > 1. (6.23)

(1) If equality holds in (6.1) then
pe+ei

∣
∣ b. (6.24)

(2) We have the following partial converse to (1). Assume that (6.24) holds and that

either b = pe+ei or Ii,max = {bi}. (6.25)

Then equality holds in (6.1) if and only if

ν

((
u

b/pe+ei

))

= 0. (6.26)

(3) Assume that (6.24)–(6.26) hold. Then

ini∂bQ
γ̄i+1

i+1 =

(
u

b/pe+ei

)

ini

(

Q
γ̄i
i Q

γi−
b
bi

i (∂biQi)
b
bi

)

; (6.27)

in particular, ∂bQ
γ̄i+1

i+1 6≡ 0.

Remark 6.10. If b = pe+ei holds in Proposition 6.9 (2) then b
pe+ei

= 1 and
(

u
b/pe+ei

)
= u, so (6.26)

holds automatically in this case.

Proof of Proposition 6.9. We go through the proof of Proposition 6.1 and analyze the case of
equality at each step. We start with a general remark about binomial coefficients in positive
and mixed characteristic.

Remark 6.11. If char kν = 0, we have

ν

((
γ

j

))

= 0 (6.28)

for any non-negative integers j ≤ γ; this implies that ν(C(j1, . . . , jq)) = 0 for any q-tuple
(j1, . . . , jq) as in (6.10). If char kν = p > 0, the following is a well known characterization
of the equality (6.28). Let γ = k0 + pk1 + · · · + psks and j = t0 + pt1 + · · · + psts, with
k0, . . . , ks, t0, . . . , ts ∈ {0, 1, . . . , p−1}, denote the respective p-adic expansions of γ and j (where
we allow one of the (s + 1)-tuples (k0, . . . , ks) and (t0, . . . , ts) to end in zeroes). Then (6.28)
holds if and only if

kj ≥ tj for all j ∈ {0, . . . , s}. (6.29)

We recall the proof for the reader’s convenience. For a positive integer n, let ν(p)(n!)
denotes the p-adic value of n!. If n = n0+ pn1+ · · ·+ psns is the p-adic expansion of n, we have

ν(p)(n!) = n1 +
p2 − 1

p− 1
n2 + · · ·+

ps − 1

p− 1
ns.

Let γ − j = l0 + pl1 + · · · + psls be the p-adic expansion of γ − j.
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First, suppose that (6.29) holds. Then kj = tj + lj for all j. We have

ν(p)(γ!) = k1 +
p2−1
p−1 k2 + · · ·+ ps−1

p−1 ks, (6.30)

ν(p)(j!) = t1 +
p2−1
p−1 t2 + · · · + ps−1

p−1 ts, (6.31)

ν(p)((γ − j)!) = l1 +
p2−1
p−1 l2 + · · ·+ ps−1

p−1 ls (6.32)

Thus ν(p)(γ!) = ν(p)(j!) + ν(p)((γ − j)!) and (6.28) holds.
Conversely, assume that (6.29) is not true. Let

(j0, j0 + 1, . . . , j1 − 1, j1) (6.33)

be a maximal subsequence of (1, . . . , s) consisting of consecutive integers such that kj 6= tj + lj
for j0 ≤ j ≤ j1. Then kj0 = tj0 + lj0 −p, kj = tj+ lj−p+1 for j0 < j < j1 and kj1 = tj1 + lj1 +1.
Thus the total contribution of (6.33) to ν(p)(γ!)− ν(p)(j!) − ν(p)((γ − j)!) is

pj1 − 1

p− 1
−

j1−1
∑

j=j0+1

(pj − 1)− p
pj0 − 1

p− 1
= j1 − j0 ≥ 1.

The quantity ν(p)(γ!)− ν(p)(j!)− ν(p)((γ − j)!) is obtained by summing the contributions of all
the subsequences of the form (6.33), hence it is strictly positive, as desired.

Below, we will be particularly interested in the following special cases of (6.29):

(1) If
γ = peu with p 6 | u (6.34)

then (6.28) implies that pe | j.

(2) We have the following partial converse to (1): if γ is as in (6.34) and j = pe then (6.29)
holds. Indeed, we have te = 1, tj = 0 for j 6= e and ke ≥ 1. In this case

(
γ

j

)

=

(
peu

pe

)

=
peu(peu− 1) . . . (peu− pe + 1)

pe!
= u mod mν

since peu− j = pe − j mod mν for all j.

This is the main situation in which Proposition 6.9 will be applied in this paper.

Lemma 6.12. (1) The inequality in (6.11) is strict unless jt ∈ Ii,max.

(2) Let γi and bi be as in (6.22)–(6.23). Assume that j0 = 0, and

jt ∈ Ii,max for 1 ≤ t ≤ q. (6.35)

If
ν(C(j1, . . . , jq)) = 0 (6.36)

then
pe+ei

∣
∣ b. (6.37)

(3) Let the assumptions be as in (2) and assume, in addition, that b = pe+ei. Then (6.36)
holds if and only if q = pe and j1 = · · · = jq = bi.
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Proof. (1) is immediate from definitions.

(2) Let {pc1 , . . . , pcℓ} ⊂ Ii,max with

ei ≤ c1 < c2 < · · · < cℓ (6.38)

denote the set of distinct natural numbers appearing among {j1, . . . , jq} (cf. (6.35) and
Corollary 6.8). For 1 ≤ j ≤ ℓ, let aj = #{t ∈ {1, . . . , q} | jt ≤ pcj}; let a0 = 0. Then

b =

ℓ∑

j=1

(aj − aj−1)p
cj . (6.39)

Assume that (6.36) holds. By (6.8) and Remark 6.11 (1), we have

pe | aj for 1 ≤ j ≤ ℓ. (6.40)

(6.38)–(6.40) imply (6.37), as desired.

(3) Assume, in addition, that b = pe+ei.

“Only if”. From (6.38)–(6.40), we see that ℓ = 1 and a1 = pe; the result follows immedi-
ately.

“If”. By assumptions, we have ℓ = 1 = q and a1 = pe. By (6.8) and Remark 6.11 (2), we
have

C(j1, . . . , jq) = C(bi, . . . , bi
︸ ︷︷ ︸

pe

) =

(
γi
pe

)

= u mod mν

and the result follows.

We can now finish the proof of Proposition 6.9.
By (6.12) and Lemma 6.12 (1), the inequality in (6.13) is strict unless j0 = 0, and

jt ∈ Ii,max. (6.41)

Hence, by Lemma 6.12 (2), the first inequality in (6.14) is strict unless j0 = 0 and pe+ei | b.
This proves (1) of the Proposition.

(2) Assume that (6.24) holds. If b = pe+ei , by Lemma 6.12 (3) there is exactly one term
on the right hand side of (6.10) for which equality holds in (6.13), namely, the term with q = pe

and j1 = · · · = jq = bi. If Ii,max = {bi}, then by Lemma 6.12 (1) there is at most one term
on the right hand side of (6.10) for which equality holds in (6.13); if such a term exists, it is
the term with q = b

bi
and j1 = · · · = jq = bi. Moreover, this term satisfies equality in (6.13) if

and only if ν(C(bi, . . . , bi
︸ ︷︷ ︸

b/bi

)) = ν
(( γi

b/bi

))

= ν
(( u

b/pe+ei

))

= 0. In either case, there is at most one

term on the right hand side of (10.4) for which equality holds in (6.13), and there is exactly one

such term if and only if ν
((

u
b/pe+ei

))

= 0. This proves (2).

(3) of the Proposition follows from (2) and (6.10).

In the notation of Proposition 6.9, assume that (6.24) holds. Let

γi = k0 + pk1 + · · ·+ psks,

with k0, . . . , ks ∈ {0, 1, . . . , p−1}, denote the p-adic expansion of γi. Take integer s
′ ∈ {0, . . . , s},

k′s′ ∈ {0, . . . , ks′}. Let b = (k0 + pk1 + · · · + ps
′−1ks′−1 + ps

′

k′s′)bi.
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Corollary 6.13. Equality holds in (6.1) for the generalized monomial h = Q
γ̄i+1

i+1 . The element

ini∂bQ
γ̄i+1

i+1 is given by the formula (6.27).

Proof. Repeated application of Proposition 6.9 (2) and (3), first k0 times with b replaced by 1,
then k1 times with b replaced by p, and so on.

Let h =
s∑

j=0
djiQ

j
i be an i-standard expansion. Let Si = Si(h), where the notation is

as in (3.21). Write inih =
∑

j∈Si

ini

(

djiQ
j
i

)

. Write bi = pei , as above. Let e be the greatest

non-negative integer such that for all j ∈ Si we have pe | j.

Proposition 6.14. (1) If equality holds in (6.1) then

pe+ei
∣
∣ b. (6.42)

(2) Assume that
b = pe+ei . (6.43)

Then equality holds in (6.1). In particular, we have ∂bh 6≡ 0.

(3) Assume that (6.43) holds. Let Sbi =
{
j ∈ Si

∣
∣ pe+1 does not divide j

}
Then

ini∂bh =
∑

j∈Sbi

ini

((
j

pe

)

djiQ
j−pe

i (∂biQi)
pe
)

.

Proof. (1), (2) and (3) of Proposition 6.14 follow, respectively, from (1), (2) and (3) of Propo-
sition 6.9.

Corollary 6.15. In the notation of Proposition 6.14, we have

h /∈ K
[

xp
e+ei+1

]

. (6.44)

Proof. Take b as in (6.43). Now the result follows from Proposition 6.14 (2).

Let the notation be as in Proposition 6.14.

Proposition 6.16. Take an element j ∈ Si. Write j = peu, where

if char kν = p > 0 then p 6 | u.

Assume that
pe+1

∣
∣ j′ for all j′ ∈ Si, j

′ < j. (6.45)

Let u = t0 + t1p+ · · ·+ tsp
s be the p-adic expansion of u. Then

νi(∂jbih) = νi(h)− j(βi − ν(∂biQi)), (6.46)

ini∂jbih =





s∏

q=1

tq!



 dji (ini∂biQi)
j + terms involving iniQi. (6.47)

For any j′ 6= j we have
νi(h)− νi(∂j′bih)

j′
≤

νi(h) − νi(∂jbih)

j
, (6.48)

and the inequality is strict whenever j′ /∈ Si or j′ < j.
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Proof. By (6.45) and Proposition 6.9 (1), terms of the form dj′iQ
j′

i with

j′ ∈ Si, j
′ < j

satisfy strict inequality in (6.1) with b = jbi. Thus replacing h by
s∑

j′=j

dj′iQ
j′

i does not change the

problem. Now apply Proposition 6.14 repeatedly t0 + t1 + · · ·+ ts times. By (2) of Proposition
6.14,

νi

(

∂jbi

(

djiQ
j
i

))

= νi

(

djiQ
j
i

)

− j(βi − ν(∂biQi)) (6.49)

and
νi(∂jbih) = νi(h)− j(βi − ν(∂biQi)), (6.50)

this proves (6.46). (6.47) follows from Proposition 6.14 (3), by induction on u. Finally, the last
statement of the Proposition follows from Proposition 6.14 (1) and (3), by induction on u.

Remark 6.17. Here is an alternative, more explicit explanation of (6.47). Take j′ ∈ {j, . . . , s}

and apply (6.10) to one of the generalized monomials appearing in dj′iQ
j′

i (we take γi = j′ and
b = jbi in (6.10)), in order to decide which values of j′ and which decompositions j0+ · · ·+jq = b
contribute to ini∂bh.

If either j′ > j, q 6= j, j0 6= 0 or jt 6= bi for some t ∈ {1, . . . , j} then, by definition of bi,
the corresponding term in (6.10) is either divisible by Qi or has νi-value strictly greater than

νi

(

djiQ
j
i

)

− j(βi − ν(∂biQi)). This proves (6.47).

Let
∑

q
cqiQ

q
i denote the i-standard expansion of ∂jbih. The above considerations prove

that c0i coincides with the coefficient of Q0
i in the i-standard expansion of dji (∂biQi)

j modulo
an element of higher νi-value. In particular, c0i 6= 0 and

ν(c0i) = νi(c0i). (6.51)

We have

ν(c0i) = νi(∂jbih) = νi

(

∂jbi

(

djiQ
j
i

))

= νi

(

djiQ
j
i

)

− j(βi − ν(∂biQi)). (6.52)

Corollary 6.18. We have

νi(h) = min
0≤j≤s

{νi(∂jbih) + j(βi − ν(∂biQi))} (6.53)

and the minimum in (6.53) is attained for all j ∈ Si, satisfying (6.45).

7 Infinite sequences of key polynomials

In this section, we assume that Qℓ+1 is defined for a certain ordinal number ℓ and that ω
iterations of the algorithm of §3 produce an infinite sequence {Qℓ+t}t∈N0 ; in particular, we have
αℓ+t = 1 for t ≫ 0. Take an element h ∈ K[x]. Proposition 4.2 (1) implies that δℓ+t(h) stabilizes
for t sufficiently large. Let δ(h) denote this stable value of δℓ+t(h). For a positive integer t, we
have

δℓ+t(h) = 0 =⇒ ν(h) = νℓ+t(h) =⇒ δℓ+t+1(h) = 0.

Thus saying that ν(h) = νℓ+t(h) for all t sufficiently large is equivalent to saying that δℓ+t(h) = 0
for all t sufficiently large.
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Assume that there exists h ∈ K[x] such that

ν(h) > νℓ+t(h) for all t ∈ N (7.1)

(in other words, δℓ+t(h) > 0 for all t ∈ N and the key polynomial Qℓ+ω is defined); put h = Qℓ+ω.
One of the three main results of this section says that δ(h) has the form pe for some e ∈ N0

(in particular, δ(h) = 1 if char kν = 0). To prove this, we use differential operators and their
properties derived in §6 on differential operators.

The second main result of this section is the statement that if

rk ν0 = 1. (7.2)

and if either char kν = 0 or p 6 | δ(h) then the sequences {βℓ+t}t∈N and νℓ+t(h) are unbounded
in Γ̃ (this is precisely Case 2a of Section 3); in particular, the set Qℓ+ω of key polynomials is
Γ̃-complete by Proposition 3.36. Finally, in Remark 7.7 (without the hypothesis (7.2)) we take
ℓ = 1 and assume that αt = 1 for all t ∈ N and that the sequence {βt}t∈N is unbounded in Γ̃,
that is, we are in Case 2a. We show that h ∈ K

[
xδ
]
.

Replacing ℓ by ℓ+ t for a sufficiently large t, we may assume that αℓ+t = 1 for all (strictly)
positive integers t. Below the ordinal i will run over the set {ℓ+ t | t ∈ N0}. By definition, for
all such i we have

Qi+1 = Qi + zi, (7.3)

where zi is a homogeneous Qℓ-free standard expansion of value βi (cf. Proposition 3.15). By
Proposition 3.20 (2), we have

degx zi < degxQi. (7.4)

Finally,
inνQi = −inνzi (7.5)

by (3.36).
As before, let

h =

si∑

j=0

djiQ
j
i

be an i-standard expansion of h for i ≥ ℓ, where each dji is a Qℓ-free standard expansion. Note
that since αℓ+t = 1 for t ∈ N0, we have

degx Qi =

αi∏

j=2

αj =

αℓ∏

j=2

αj = degxQℓ

and so

si =

[
degx h

degxQi

]

=

[
degx h

degxQℓ

]

= sℓ. (7.6)

Proposition 7.1. For each i of the form i = ℓ+ t, t ∈ N, we have bi+1 ≤ bi.

Proof. Write Qi+1 = Qi + zi, as above.

Lemma 7.2. For any b ∈ N we have

βi − ν(∂bzi)

b
<

βi − ν(∂biQi)

bi
. (7.7)

If, in addition, b ≥ bi, then

βi+1 − ν(∂bzi)

b
<

βi+1 − ν(∂biQi)

bi
. (7.8)
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Proof. Let i′ denote the smallest ordinal such that

νi′(zi) = ν(zi); (7.9)

by Proposition 3.29 (2) and (7.4), i′ < i. Let zi =
si′∑

j=0
cji′Q

j
i′ be the i′-standard expansion of zi.

By Lemma 6.3 we have
βi − ν(∂biQi)

bi
>

βi′ − ν(∂bi′Qi′)

bi′
. (7.10)

Combining (7.10) with (6.1), we obtain

νi′(zi)− νi′(∂bzi)

b
≤

βi′ − ν(∂bi′Qi′)

bi′
<

βi − ν(∂biQi)

bi
, (7.11)

which gives the inequality (7.7). If b ≥ bi, (7.8) follows immediately by adding the inequality
βi+1−βi

b ≤ βi+1−βi

bi
to (7.7).

Corollary 7.3. We have
ν(∂bizi) > ν(∂biQi) = ν(∂biQi+1). (7.12)

Proof. The inequality in (7.12) is a special case of (7.7) when b = bi. The equality in (7.12)
follows immediately from the inequality.

To prove Proposition 7.1, we argue by contradiction. Suppose that

bi+1 > bi. (7.13)

Letting b = bi+1 in Lemma 7.2, we obtain

βi+1 − ν(∂bi+1
zi)

bi+1
<

βi+1 − ν(∂biQi)

bi
. (7.14)

We have
βi − ν(∂bi+1

Qi)

bi+1
≤

βi − ν(∂biQi)

bi
(7.15)

by definition of bi. Combining (7.15) with (7.13), we obtain

βi+1 − ν(∂bi+1
Qi)

bi+1
<

βi+1 − ν(∂biQi)

bi
. (7.16)

We can rewrite (7.14) and (7.16) as

min{ν(∂bi+1
Qi), ν(∂bi+1

zi)} > βi+1 −
bi+1

bi
(βi+1 − ν(∂biQi)) . (7.17)

Since ∂bi+1
Qi+1 = ∂bi+1

Qi + ∂bi+1
zi, (7.17) shows that

ν(∂bi+1
Qi+1) > βi+1 −

bi+1

bi
(βi+1 − ν(∂biQi)) ,

which contradicts the definition of bi+1. This completes the proof of Proposition 7.1.

Corollary 7.4. Keep the above notation. Assume that bi+1 = bi. Then Ii+1,max = {bi+1}.
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Proof. Take an integer
b > bi+1 = bi. (7.18)

Then
βi+1 − βi

b
<

βi+1 − βi
bi

. (7.19)

By definition of bi, we have
βi − ν(∂bQi)

b
≤

βi − ν(∂biQi)

bi
. (7.20)

Adding up (7.19) and (7.20) and using Corollary 7.12, we obtain

βi+1 − ν(∂bQi+1)

b
<

βi+1 − ν(∂bi+1
Qi+1)

bi+1
,

so b /∈ Ii+1,max. This proves the Corollary.

Recall that δ(h) denotes the stable value of δℓ+t(h) for all sufficiently large integers t. Set
δ := δ(h). Write δ = peu, where if p > 1 then p 6 | u.

If char kν = 0, equations (3.24) and (4.4) imply that dδ−1,ℓ 6= 0 and

g1ℓ = Q̄ℓ + inν
dδ−1,ℓ

δ dδℓ
. (7.21)

If char kν = p > 0 then, according to Proposition 4.2 (2) and using the notation of (3.21), we
see that for i = ℓ+ t, t ∈ N0,

δ − pe ∈ Si(h) (7.22)

(in particular, dδ−pe,i 6= 0) and that

inizi =

(
inidδ−pe,i

u inidδi

) 1
pe

. (7.23)

We have vℓ = inνdδℓ and (3.24) rewrites as

inℓh = inνdδℓg
δ
1ℓ. (7.24)

Next, we prove a comparison result which expresses the coefficients dji in terms of djℓ for
δ − pe ≤ j ≤ δ, modulo terms of sufficiently high value.

Proposition 7.5. Take ordinals i and ℓ1 such that ℓ < ℓ1 < i < ℓ+ ω. Assume that

δi+1(h) = δℓ(h) = δ. (7.25)

We have
dδi ≡ dδl1 mod Pν(dδℓ1 )+min{ν+

ℓ1
(h)−νℓ1(h),βℓ1

−βℓ}
, (7.26)

Proof. By definitions, we have Qi = Qℓ1+zℓ1+· · ·+zi−1. For simplicity, write z := zℓ1+· · ·+zi−1.
We will compare the ℓ1-standard expansion of h with the i-standard one. To this end, we
substitute Qi = Qℓ1 + z into the i-standard expansion of h. We obtain

h =

si∑

j=0

djiQ
j
i =

si∑

j=0

dji(Qℓ1 + z)j . (7.27)
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First note that degx
δ−1∑

j=0
dji (Qℓ1 + z)j < δ degxQi. Hence dδ,ℓ1 is completely determined by

dδ,i, dδ+1,i, . . . , dsii. Next, by (4.22) in the proof of Proposition 4.2 (3) note that for

0 < j ≤ si − δ

the coefficient dδ+j,i is a sum of terms of the form dj′kℓ1 with j′ ≥ j + δ satisfying

ν
(
dj′kℓ1

)
= νℓ1

(
dj′kℓ1

)
≥ (j′ − j − δ)βℓ1 + ν

(
dj′ℓ1

)
.

Hence
νℓ1

(

dδ+j,iQ
δ+j
i

)

≥ ν+ℓ1(h), (7.28)

so for 0 < j ≤ si − δ the terms dδ+j,iQ
δ+j
i in (7.27) contribute nothing to

dδℓ1 mod P(νℓ1 (h)−δβℓ1
)+min{ν+

ℓ1
(h)−νℓ1 (h),βi−βℓ}

. (7.29)

Therefore, the only term on the left hand side of (7.27) that affect the element (7.29) is
dδi(Qℓ1 + z)δ .

We have

dδiQ
δ
i = dδi

δ∑

j=0

(
δ

j

)

Qδ−j
ℓ1

zj .

For j < δ, the coefficient of Qj
ℓ1

in the ℓ1-standard expansion of dδiz
j contributes to dδℓ1 . Let

us denote this coefficient by d′j . We have

νℓ(z) = ν(z)

and
νℓ(dδi) = ν(dδi).

By Lemma 4.3 (1), the quantity νℓ(dδiz
j) is the minimum of the νℓ-values of the summands

appearing in the ℓ1-standard expansion of dδiz
j . Thus

νℓ
(
dδiz

j
)
= ν

(
dδiz

j
)
≤ νℓ

(

d′jQ
j
ℓ1

)

.

Hence

ν
(

d′jQ
j
ℓ1

)

= νℓ

(

d′jQ
j
ℓ1

)

+ j (βℓ1 − βℓ) ≥ ν
(
dδiz

j
)
+ j (βℓ1 − βℓ) = ν (dδi) + 2jβℓ1 − jβℓ.

This shows that ν(d′j) ≥ ν(dδi) + j (βℓ1 − βℓ) ≥ ν(dδi) + (βℓ1 − βℓ), so for j > 0 the term d′jQ
j
ℓ1

does not affect the element (7.29). This completes the proof.

Proposition 7.6. The integer δ is of the form δ = pe for some e ∈ N0 (in particular, δ = 1
whenever char kν = 0).
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Proof. We give a proof by contradiction. Write

δ = pev, where if char kν = p > 0 then p 6 | v. (7.30)

Suppose that v > 1. By Proposition 7.1, the sequence {bi} is non-increasing with t and hence
stabilizes for t sufficiently large. Let b∞ denote the stable value of bi. Write b∞ = pe∞. Let
b = pe+e∞ and let g = ∂bh. By Proposition 4.2 (2), inih has the form (4.4) for i = ℓ + t, as
t runs over N0, in particular, pe is the same as in Proposition 6.14. Hence h and b satisfy the
hypotheses of Proposition 6.14. By Proposition 6.14 (3) and (4.4), g 6≡ 0 and, for t sufficiently

large we have inig = v inν (dδi∂biQi)
pe (Q̄i + inνzi

)δ−pe
. In particular,

ν(g) > ν
(

(dδi∂biQi)
pe
)

+ δβℓ+t − peβℓ+t = ν
(

(dδi∂biQi)
pe
)

+ pe(v − 1)βℓ+t = νi(g)

(here is where we are using v > 1), which contradicts the fact that h has minimal degree among
all the polynomials satisfying ν(h) > νi(h).

Remark 7.7. Let the notation be as in Proposition 7.6. Assume, in addition, that the sequence
{βℓ+t} is unbounded in Γ̃. Then ν(h) /∈ Γ̃.

Assume that char kν = char K,

ℓ = 1 and αt = 1 for all t ∈ N. (7.31)

In particular, bt = 1 for all t ∈ N and b∞ = 1.
We have αω = degx h. Let eω be the integer e of Proposition 7.6 and put α̃ω = αω

peω .
We have b = peω = δ. We claim that

h ∈ K
[

xδ
]

; (7.32)

in particular, for all b′ < δ we have
∂b′h = 0. (7.33)

Clearly (7.32) implies (7.33). We prove (7.32) by contradiction. Assume the contrary. Let e′

denote the greatest non-negative integer such that h ∈ K
[

xp
e′
]

; by assumption, e′ < eω. Then

degx ∂pe′h < degx h, so there exists t0 ∈ N such that

νt0

(

∂pe′h
)

= ν
(

∂pe′h
)

. (7.34)

Take an integer t > t0. Let
∑

pe′+1 6| j

cjtQ
j
t denote the sum of all those monomials appearing in

the t-standard expansion of h whose exponent j is not divisible by pe
′+1. The operator ∂pe′

annihilates all the monomials whose exponents are divisible by pe
′+1. Thus

∂pe′h = ∂pe′




∑

pe′+1 6| j

cjtQ
j
t



 =
∑

pe′+1 6| j

cjt

(
j

pe′

)

Qj−pe
′

t . (7.35)

Formulas (7.34) and (7.35) imply that the t-standard expansion of h contains a monomial of the

form cpe′ ,tQ
pe

′

t and that for each j with pe
′+1 6 | j we have

νt0

(

cjtQ
j
t

)

≥ ν

(

cpe′ ,tQ
pe

′

t

)

.
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Then for each j with pe
′+1 6 | j and j > pe

′

we have νt

(

cjtQ
j
t

)

> νt

(

cpe′ ,tQ
pe

′

t

)

. Hence

ν
(

cjtQ
j
t

)

> ν

(

cpe′ ,tQ
pe

′

t

)

for all j with pe
′+1 6 | j and j > pe

′

. (7.36)

We obtain that for all t sufficiently large the t-standard expansion of h contains a monomial

of the form cpe′ ,tQ
pe

′

t and all the other monomials not divisible by Qpe
′+1

t have values strictly

greater than ν

(

cpe′ ,tQ
pe

′

t

)

.

Then for all t′ > t we have ν
(

cpe′ ,t

)

= ν
(

cpe′ ,t′
)

. Choosing t′ sufficiently large, we obtain

ν

(

cpe′ ,t′Q
pe

′

t′

)

< ν
(
cδ,t′Q

δ
t′
)
, which contradicts the definition of δ. This completes the proof of

(7.32) and (7.33).
In fact, by a similar argument this statement can be proved not only for h, but for any

polynomial satisfying the strict inequalities (7.1)).

Remark 7.8. Keep the assumption that {βℓ+t} is unbounded in Γ̃, as well as (7.31), but now
assume that char K = 0 and char kν = p > 0. By studying the coefficient of Qδ−1

t in the
t-standard expansion of h for different t, one can prove that δ = pe = 1. A detailed proof of this
will appear in a subsequent paper.

From now till the end of the paper, assume that rk ν0 = 1.

Proposition 7.9. Keep the notation and assumptions stated in the beinning of this section.
Assume that δ = pe = 1 in the notation of (7.30) (this assumption holds automatically if
char kν = 0). Then the sequences

{νi(h)} (7.37)

and
{βi}i, (7.38)

where i runs over the set {ℓ+ t | t ∈ N}, are unbounded in Γ̃.

Proof. Proposition 4.2 (2) implies that νi(h) = βi + ν(d1i) and that ν(d1i) is independent of i.
Thus to show that the sequence (7.37) is unbounded in Γ̃ it is sufficient to show that (7.38) is
unbounded in Γ̃.

Moreover, to prove that (7.38) is unbounded, it is sufficient to show that the set ν(T ) itself
is unbounded in Γ̃.

To prove the unboundedness of ν(T ), let ℓ1 = ℓ+ 1. Let d∗1ℓ1 ∈ K[x] denote a polynomial
such that inνd

∗
1ℓ1

inνd1ℓ1 = 1 in Gν . According to Lemma 2.6 we may choose d∗1ℓ1 to be of degree
strictly less than degxQℓ = degxQℓ1 ; this condition determines d∗1ℓ1 uniquely. We have that
d∗1ℓ1d1ℓ1 − 1 is divisible by Qℓ1 in K[x]. We have νℓ(d

∗
1ℓ1

) = ν(d∗1ℓ1) by Proposition 3.29 (2),
hence νi(d

∗
1ℓ1

) = ν(d∗1ℓ1) for all i ≥ ℓ. We claim that after multiplying h by d∗1ℓ1 we still have
δi(d

∗
1ℓ1

h) = 1 for i = ℓ+ t with t ∈ N sufficiently large.
Indeed, applying Lemma 5.1 to the pairs (h, g) = (d1ℓ1 , d

∗
1ℓ1

) and (h, g) = (d0ℓ1 , d
∗
1ℓ1

),
we see that after multiplying h by d∗1ℓ1 and applying Euclidean division by Qℓ1 to obtain the
ℓ1-standard expansion of d∗1ℓ1h, only the remainders in the Euclidean division contribute to
inℓ1d

∗
1ℓ1

h. In particular, δi(d
∗
1ℓ1

h) = 1 for all i ≥ ℓ.
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Thus multiplying h by d∗1ℓ1 does not change the problem. Therefore we may assume that

inνd1i = inid1i = 1 for all i of the form ℓ+ t, t ∈ N. (7.39)

Clearly, the result of the Proposition does not depend on the choice of zℓ+t and Qℓ+t which was
made in §3. We will now modify our choice of zℓ+t and Qℓ+t in such a way as to make the
unboundedness ν(T ) obvious.

In view of (7.39) and Proposition 4.2 (2), we have

inℓ1h = inℓ1 (Qℓ1 + zℓ1) = inℓ1 (Qℓ1 + d0ℓ1) . (7.40)

Comparing the right and the left hand side of (7.40), we obtain

inℓ1zℓ1 = inνℓ1d0ℓ1 . (7.41)

In particular, (7.41) shows that d0ℓ1 6= 0 and

ν(Qℓ1) < ν (Qℓ1 + d0ℓ1) . (7.42)

By (7.42), Qℓ1 + d0ℓ1 ∈ T . Replace zℓ1 by d0ℓ1 , in other words, put

zℓ1 := d0ℓ1 .

and Qℓ+2 = Qℓ1 + d0ℓ1 . We now iterate the procedure. Precisely, assume that zℓ+1, . . . zℓ+t and
Qi for i ≤ ℓ+ t+ 1 are already constructed. By Proposition 4.2 (2) and (7.39) we have

inℓ+t+1h = inℓ+t+1Qℓ+t+1 + inℓ+t+1zℓ+t+1. (7.43)

Note that (7.43) implies that d0,ℓ+t 6= 0. We now redefine

zℓ+t+1 := d0,ℓ+t

and Qℓ+t+2 = Qℓ+t+1 + zℓ+t+1.
This completes the recursive construction. Notice that all the elements zℓ+t and Qℓ+t lie

in a fixed noetherian ring A, namely, the Z-subalgebra of K[x], generated by x and the finitely
many coefficients of the polynomial Qℓ.

Lemma 7.10. Let µ be a rank one valuation with value group contained in Γ̃, centered in a
local noetherian domain (R,M, k) (that is, non-negative on R and strictly positive on M). Let

Φ = µ(R \ {0}) ⊂ Γ̃.

Then Φ contains no infinite bounded sequences.

Proof. An infinite ascending sequence α1 < α2 < . . . in Φ, bounded above by an element β ∈ Φ,
would give rise to an infinite descending chain of ideals in R

Iβ
, where Iβ denotes the µ-ideal of R

of value β. Thus it is sufficient to prove that R
Iβ

has finite length.

Let δ := µ(M) ≡ min(Φ \ {0}). Since µ is of rank one, there exists n ∈ N such that
β ≤ nδ. Then Mn ⊂ Iβ, so that there is a surjective map R

Mn ։
R
Iβ
. Thus R

Iβ
has finite length,

as desired.
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Coming back to the proof of the Proposition, let H = {a ∈ A | ν(a) /∈ Γ̃} and

M = {a ∈ A | ν(a) > 0}.

Applying Lemma 7.10 to the local noetherian ring AM

HAM
and using the fact that the sequence βi

is strictly increasing with i, we obtain that {βi} is unbounded in Γ̃, as desired.

Remark 7.11. Take a polynomial g ∈ K[x] such that νℓ+t(g) < ν(g) for all t ∈ N, not necessarily
of the smallest degree. Let δ := δ(g) denote the stable value of δℓ+t(h) fort ∈ N sufficiently
large. Assume that pe = 1 in the notation of (7.30) (in other words, either char kν = 0 or
char kν = p > 0 and p 6 | δ). For i = ℓ+ t with t sufficiently large we have νi(g) = ν(dδi) + δβi
with ν(dδi independent of i. Thus νi(g)) is unbounded in Γ̃.

8 Key polynomials indexed by limit ordinals

In this section, we assume that char kν = char K = p > 0. We assume that we have a set of
key polynomials {Qi}i∈Λ such that Λ contains at least one limit ordinal. Let ℓ + ω ∈ Λ be a
limit ordinal. Assume that the sequence {ν(Qℓ+t)}t∈N is bounded in Γ̃ (in other words, we are
in Case 2b of §3). The main result of this section, Proposition 8.2, says that the polynomial
Qℓ+ω can be chosen in such a way that there exist i0 = ℓ+ t0 ∈ Λ, t0 ∈ N (so that i0+ = ℓ+ω),
such that the i0-standard expansion of Qℓ+ω is weakly affine.

Remark 8.1. If degx Qi0+t = 1 for all t ∈ N, this result was proved by I. Kaplansky. In Ka-
plansky’s terminology x is a limit of a pseudo-convergent sequence {ρ}j<λ of algebraic type in
K, and Qℓ+ω is a monic polynomial of minimal degree, not fixing the values of {ρ}j<λ. See [8],
Lemma 10, page 311.

Let the notation be as in §5.

Proposition 8.2. The polynomial Qℓ+ω can be chosen in such a way that there exist i ∈
{ℓ+ t}t∈N0 such that the i-standard expansion of Qℓ+ω is weakly affine and monic of degree pe0

in Qi, with

β̄ ≤
1

pe0
ν (Qℓ+ω) . (8.1)

Proof. Let f a limit key polynomial with index ℓ + ω, that is, a monic polynomial of smallest
degree such that

ν(f) > νℓ+t(f) for all t ∈ N. (8.2)

The idea is to gradually modify the polynomial f until we arrive at g = Qℓ+ω satisfying the
conclusion of the Proposition.

For i = ℓ+t, t ∈ N, let f =
δ∑

j=0
ajiQ

j
i denote the i-standard expansion of f . By Proposition

5.2, the polynomial f is of degree δ degxQℓ. In other words, we have aδi = 1.
Write δ = pe0 with e0 ∈ N. Choose i0 ≥ ℓ1 sufficiently large so that

βi0 − αℓβℓ−1 > 2pe0(β̄ − βi0). (8.3)

Remark 8.3. Assume that there exist i ≥ i0 and j, 1 ≤ j < pe0 , such that

ν(aji) + jβ̄ ≥ 2pe0β̄ − pe0βi.
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Then for each i′ ≥ i we have

νi′
(

ajiQ
j
i

)

= ν
(

ajiQ
j
i

)

> 2pe0 β̄ − pe0βi + jβi − jβ̄ > pe0β̄ > pe0βi′ .

Hence ini′
(

f − ajiQ
j
i

)

= ini′f and

νi′
(

f − ajiQ
j
i

)

< ν
(

f − ajiQ
j
i

)

.

Thus replacing f by f − ajiQ
j
i does not affect the condition (8.2); f − ajiQ

j
i is still a limit key

polynomial with index ℓ+ ω.

Definition 8.4. Take an i ≥ i0. Consider an i-standard expansion (5.7) of f and let ajiQ
i
j be

a monomial appearing in this expansion. We say that ajiQ
i
j is bad if

ν(aji) + jβ̄ < 2pe0β̄ − pe0βi. (8.4)

and at least one of the following three conditions holds:

(1)
ν(aji) < (pe0 − j)β̄ (8.5)

(2) j is not a power of p

(3)
ν(aji) > (pe0 − j)β̄. (8.6)

In view of Remark 8.3, to say that the i-standard expansion (5.7) satisfies the conclusion
of Proposition 8.2 it is sufficient to show that it contains no bad monomials, in which case there
is nothing more to do. Assume that there exists at least one bad monomial. Let j(i) denote the
greatest j ∈ {1, ..., pe0 − 1} such that the monomial ajiQ

i
j is bad. Let j•(i) denote the element

j ∈ {1, ..., pe0 − 1} which minimizes the pair (ν(aji) + jβi,−j) in the lexicographical ordering
among all the elements of {1, ..., pe0 − 1} such that the monomial ajiQ

i
j is bad.

Take i ≥ i0. To finish the proof of Proposition 8.2, we will first prove the following three
Lemmas:

Lemma 8.5. We have
j(i+ 1) ≤ j(i) (8.7)

and
j•(i+ 1) ≤ j•(i). (8.8)

If j ∈ {j(i), j•(i)} then
inνaj,i+1 = inνaji. (8.9)

Lemma 8.6. If j ∈ {j(i), j•(i)} then (8.5) does not hold.

Lemma 8.7. If j = j(i) then (8.6) holds.

According to Lemmas 8.6 and 8.7, if j = j(i) then (8.6) must hold. In that case, we will
prove that increasing i, if necessary, and replacing f by f−ajiQ

i
j preserves the strict inequalities

(8.2) for all t and either eliminates the last bad monomial or strictly decreases j(i).
At that point the proof of Proposition 8.2 will be finished by induction on j(i).
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Proof of Lemma 8.5. First, suppose j = j(i). Since j is the greatest element of {1, ..., pe0 − 1}
satisfying (8.4), and one of the conditions (1)–(3) of Definition 8.4, any j′ ∈ {j +1, . . . , pe0 − 1}
satisfying (8.4) is a power of p and

ν(aj′i) = (pe0 − j′)β̄. (8.10)

We want to analyze the monomial aj,i+1Q
j
i+1 in the (i+1)-standard expansion of f . To do that,

write

f =
δ∑

j′=0

aj′i(Qi+1 − zi)
j′ . (8.11)

Now, terms in (8.11) with j′ < j do not affect the statement of the Lemma. We claim that the
same is true of the terms with j′ > j. Indeed, take a

j′ ∈ {j + 1, . . . , δ}.

Write j′ = pe
′

. Then

aj′i(Qi+1 − zi)
j′ = aj′iQ

pe
′

i+1 − aj′iz
pe

′

i . (8.12)

In general, the right hand side of (8.12) need not be an (i + 1)-standard expansion, since

degx aj′iz
pe

′

i may be quite large, even as large or larger than degxQ
pe

′

i+1. However, the (i + 1)-

standard expansion of aj′i(Qi+1 − zi)
pe

′

is obtained from it by iterating Euclidean division by

Qi+1. The first Euclidean division we perform consists of writing aj′iz
pe

′

i = Qi+1g + h with
degx h < degxQi+1. We have

νℓ−1

(

aj′iz
pe

′

i

)

= ν

(

aj′iz
pe

′

i

)

= νi+1

(

aj′iz
pe

′

i

)

,

νℓ−1(h) = ν(h) = νi+1(h)

and
νi+1(Qi+1g)− νℓ−1(Qi+1g) ≥ νi+1(Qi+1)− νℓ−1(Qi+1) = βi+1 − αℓβℓ−1.

Hence νi+1(Qi+1g) − (βi+1 − αℓβℓ−1) ≥ νi+1

(

aj′iz
pe

′

i

)

= νi+1(h) ≥ pe0βi. This implies that

all the new monomials appearing after all the subsequent Euclidean divisions have νi+1-value
greater than or equal to pe0βi + (βi+1 − αℓβℓ−1), and hence, in view of (8.3)-(8.4), strictly
greater than ν(aji) + jβi+1. In particular, if such a new monomial is of the form dQj

i+1, with d
and Qi+1-free standard expansion, we have ν(d) > ν(aji). This proves that the passage to an
(i+ 1)-standard expansion does not affect inνaji, and (8.9) holds for j = j(i).

The fact that all the new monomials arising from iterated Euclidean divisions of

aj′i (Qi+1 − zi)
pe

′

, j′ > j,

have νi+1-value greater than or equal to

pe0βi + (βi+1 − αℓβℓ−1),

together with (8.3)–(8.4) also shows that after the passage to the (i + 1)-standard expansion,

no new bad monomials aj′,i+1Q
j′

i+1 are produced with j′ > j (the monomial aj,i+1Q
j
i+1 may or

may not be bad). This proves (8.7).
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The proof of the Lemma in the case j = j•(i) is very similar to that of j = j(i), except for
the following minor change. We can no longer assert that j′ is a power of p. On the other hand,
j′ satisfies ν(aj′i) + j′βi > νi(f), which allows us to use similar arguments as in the j = j(i)
case. This completes the proof of Lemma 8.5.

Proof of Lemma 8.6. We give a proof by contradiction. Suppose that j = j(i) and that (8.5)
holds for this j. (8.5) can be rewritten as ν(aji) + jβ̄ < pe0β̄. Combining this with (8.9) we
obtain that (8.5) holds with i replaced by i+ 1,

ν(aj,i+1) + jβ̄ < 2pe0β̄ − pe0βi+1. (8.13)

so the monomial aj,i+1Q
j
i+1 is also bad and j(i + 1) = j(i). By induction on i′ ≥ i we see that

j(i′) is independent of i′, so the i′-standard expansion of f contains a monomial aji′Q
j
i′ with

ν
(

aji′Q
j
i′

)

= ν(aji′) + jβi′ = ν(aji) + jβi′ < ν(aji) + jβ̄.

Then pe0βi′ = νi′(f) < ν(aji)+jβ̄ < pe0β̄ for all i′, hence the least upper bound of βi′ is bounded
above by 1

pe0 ν(aji) + jβ̄ and hence is strictly less than β̄. This contradicts the definition of β̄.
The proof in the case j = j•(i) is similar to that with j = j(i) and we omit it.

Proof of Lemma 8.7. We argue by contradiction. Assume that j = j(i) and that (8.6) does not
hold. In view of Lemma 8.6 this implies that

ν(aji) + jβ̄ = pe0 β̄. (8.14)

Then, by definition of j(i), j is not a power of p. Write j = peu, u ≥ 2 and p 6 | u, and

Qi+1 = Qi + zi.

Lemma 8.6, applied to j•(i), implies that

ν(aj′i) + j′β̄ ≥ pe0 β̄ for all j′ ∈ {1, . . . , pe0}. (8.15)

Let b = peb∞. Arguing as in the proof of Lemma 8.5, we can show that j(i) remains unchanged
as i increases. Take i sufficiently large so that

νi(∂bf) = ν(∂bf). (8.16)

Moreover, after suitably increasing ℓ and i, we may assume that bℓ = bi = b∞, degxQℓ = degxQi

and ℓ < i. By Corollary 7.4 there is at most one value of i = ℓ+ t, t ∈ N, for which #Ii,max > 1.
Hence we may assume, in addition, that Ii,max = {bi}. Finally, we will assume that

βi − βℓ ≥ 2bip
e0(β̄ − βi). (8.17)

Let f =
∑

s
as,i+1Q

s
i+1 be the (i+ 1)-standard expansion of f and let f̃ =

j∑

s=0
as,i+1Q

s
i+1.

Claim. We have Si,i+1

(

f̃
)

∩ {1, . . . , j − 1} 6= ∅, that is, Si,i+1

(

f̃
)

contains an element j′ such

that 1 ≤ j′ < j.

Proof of Claim. We argue by contradiction. Assume that there is no such j′, that is,

{j} = Si,i+1

(

f̃
)

\ {0}. (8.18)
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We will now show that
0 /∈ Si,i+1(∂bf) (8.19)

which will contradict (8.16).
First of all, for each polynomial a with

degx a < degxQi (8.20)

and each b′ ∈ N we have

νi(∂b′a) = νℓ(∂b′a) ≥ νℓ(a)−
b′

bℓ
(βℓ − ν(∂bℓQi)) > νi(a)−

b′

bi
(βi − ν(∂biQi)) (8.21)

by Proposition 6.1. Next, for any positive integers s and b′, consider ∂b′(Q
s
i ). We have

νi(∂b′Q
s
i ) ≥ νi(Q

s
i )−

b′

bi
(βi − ν(∂biQi)). (8.22)

by Proposition 6.1. Moreover, consider the case b′ = b and s = j in (8.22). Then, by Proposition
6.9, equality holds in (8.22) since

( j
pe

)
= u 6= 0. Proposition 6.9 (3) says that

ini∂bQ
j
i = u ini

(

Qj−pe

i (∂biQi)
pe
)

. (8.23)

Next, for any positive integers s and b′ and a polynomial a satisfying (8.20), consider ∂b′(aQ
s
i+1).

Again, we have

νi(∂b′aQ
s
i+1) ≥ νi(aQ

s
i+1)−

b′

bi
(βi − ν(∂biQi)) (8.24)

by Proposition 6.1. Note that, together with (8.17) and (8.18) this implies that

νi(∂b(as,i+1Q
s
i+1)) > νi(aj,i+1Q

j
i+1)− pe(βi − ν(∂biQi)) for s 6= j.. (8.25)

By the generalized Leibnitz rule, we have ∂b′(as,i+1Q
s
i+1) =

b′∑

l=0

(
∂las,i+1∂b′−lQ

s
i+1

)
.

Letting b′ = b, s = j, a = aj,i+1, using the equality in (8.22) and the strict inequality (8.21)
for both aj,i+1 and zi, we see that all the terms coming from the differentiation of aj,i+1 and zi

are negligible, so that νi

(

∂b(aj,i+1Q
j
i+1

)

= νi

(

aj,i+1Q
j
i+1

)

− pe (βi − ν (∂biQi)) and (comparing

with (8.23)),

ini

(

∂b

(

aj,i+1Q
j
i+1

))

= uini

(

Qj−pe

i+1 (∂biQi)
pe
)

. (8.26)

Combining (8.25) with (8.26) we see that Si,i+1(∂bf) = {j−pe}. This proves (8.19), which gives
the desired contradiction. This completes the proof of the Claim.

Now, let j′ be as in the Claim. Then ν(aj′,i′+1) + j′βi′+1 ≤ ν(aj,i′+1) + jβi′+1 and

ν(aj′,i′+1) + j′β̄ < ν(aj,i′+1) + jβ̄,

which contradicts (8.14) and (8.15).
This completes the proof of Lemma 8.7.
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Let j = j(i). By Lemmas 8.6 and 8.7 the inequality (8.6) holds for j.
By Lemma 8.5 (8.9), inνaji is independent of i.
Since β̄−βi′ can be made arbitrarily small as t → ∞, by (8.6), taking i1 sufficiently large,

we can ensure that
ν
(

ajiQ
j
i1

)

> 2pe0 β̄ − pe0βi1 . (8.27)

Take the smallest i1 satisfying (8.27). By the minimality of i1, Lemma 8.5 (8.9) and induction
on i′, i ≤ i′ ≤ i1, we see that the monomial aji′Q

j
i′ remains bad for i ≤ i′ < i1 and that

ν (aji) = ν (aji1) . (8.28)

From (8.27)–(8.28) we obtain

ν
(

aji1Q
j
i1

)

> 2pe0β̄ − pe0βi1 . (8.29)

Replace f by f−aji1Q
j
i1
; Remark 8.3 says that strict inequality (8.2) is satisfied with f replaced

by f − ai1jQ
j
i1
. This procedure strictly decreases the integer j(i). Hence after finitely many

repetitions of this procedure we obtain a polynomial f containing no bad monomials. The non-
existence of bad monomials is preserved as we pass from i to i+1. Thus, by choosing i sufficiently
large, we may assume that f contains no bad monomials; we will make this assumption from
now on.

If Qℓ+ω = f satisfies the conclusion of Proposition 8.2 there is nothing more to prove.
Otherwise, there exists j ∈ {1, . . . , pe − 1} such that

ν(aji) + jβ̄ > 2pe0β̄ − pe0βi. (8.30)

Let A denote the set of all such j. Replace f by f −
∑

j∈A
ajiQ

j
i . Remark 8.3 says that strict

inequality (8.2) is satisfied for this new f . In this way, we obtain a polynomial f such that
Qℓ+ω = f satisfies the conclusion of Proposition 8.2. This completes the proof of Proposition
8.2.

Remark 8.8. For i ≥ i0 let S̃i =
{
j ∈ {1, . . . , pe0}

∣
∣ aji 6= 0 and ν(aji) = (pe0 − j)β̄

}
. Write

f =
δ∑

j=0
ajiQ

j
i =

δ∑

j=0
aji(Qi+1 − zi)

j . Opening the parentheses on the right hand side of this

formula, we can derive information about the coefficients aj,i+1 in the (i+1)-standard expansion
of f . Namely, the absence of bad monomials in the i-standard expansion and the inequality
ν(aji)+ jβ̄ ≥ 2pe0 β̄−pe0βi ensures that the terms aji(Qi+1−zi)

j with j /∈ S̃i contribute nothing

to S̃i+1. For j ∈ S̃i the terms aji(Qi+1 − zi)
j may contribute to aj′,i+1Q

j′

i+1 for j′ > j. However,
the inequality (7.12) implies that this contribution has value strictly greater than (pe0 − j′)β̄.
Hence the sets

S :=
{
j ∈ {1, ..., pe0}

∣
∣ aji 6= 0 and ν(aji) = (pe0 − j)β̄

}

and { inνaji| j ∈ S} are independent of i for i ≥ i0.

Remark 8.9. We do not claim that the property that f is a weakly affine expansion in Qi is
preserved when we pass from i to some other ordinal ii + t, t ∈ N. However, the above results
show that for any i′ ≥ i of the form i′ = ℓ + t, t ∈ N0, f is a sum of a weakly affine expansion
in Qi′ all of whose monomials aji′Q

j
i′ for j > 0 lie on the critical line ν(aji) = (pe0 − j)β̄ and

another standard expansion of degree strictly less than pe0 in Qi, all of whose monomials have
value greater than or equal to 2pe0 β̄ − pe0βi′ .
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