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Abstract

In this paper we present a refined version of MacLane’s theory of key polynomials [16]-
[17], similar to those considered by M. Vaquié [24]-[27], and reminiscent of related objects
studied by Abhyankar and Moh (approximate roots [1], [2]) and T.C. Kuo [14], [15].

Let (K, 1) be a valued field. Given a simple transcendental extension of valued fields
v K — K(z) we associate to ¢ a countable well ordered set of polynomials of K[z] called key
polynomials. We define limit key polynomials and give an explicit description of them. We
show that the order type of the set of key polynomials is bounded by w x w. If char k,, =0
and rk vg = 1, the order type is bounded by w + 1.

1 Introduction

Let ¢ : K — K(x) be a simple transcendental extension of valued fields, where K is equipped
with a valuation 1. That is, we assume given a valuation vy of K and its extension v to
K(x). Let (Ry,, My,,ky,) denote the valuation ring of vy. The purpose of this paper is to
present a refined version of MacLane’s theory of key polynomials [16], [17], similar to those
considered by M. Vaquié [24]-[27], and reminiscent of related objects studied by Abhyankar and
Moh (approximate roots [1], [2]) and T.C. Kuo [14], [15]. Related questions were studied by Ron
Brown [5]-[6], Alexandru-Popescu—Zaharescu [3]-[4], S. K. Khanduja [9], [10], F.-V. Kuhlmann
[11] and Moyls [19].

*Partally suported by MTM2016-75027-P and FEDER



Precisely, we associate to ¢ a countable well ordered set
Q = {Qi}ier C K[z];

the Q; are called key polynomials. Key polynomials ); that have no immediate predecessor
are called limit key polynomials. Let §; = v(Q;). In the case when rk 1y = 1 we give an
explicit description of the limit key polynomials. The first limit key polynomial can always be
chosen to be a p-polynomial in Kaplansky’s terminology (p-polynomials may be viewed as a
generalization of the Artin—Schreier polynomials). We also give an upper bound on the order
type of the set of key polynomials. Namely, we show that the order type of the set of key
polynomials is bounded by w x w, where w stands for the first infinite ordinal. If char k,, =0
and rk vy = 1, the order type is bounded by w + 1. If char k,, = 0 and rk v = 1, the set of key
polynomials has order type at most w.

Let Ty (resp. I') denote the value group of vy (resp. v). Let [ :=Ty®z Q. In the special
case when 1k 1y = 1 we will fix an embedding T’ < R. In this sense, we will be able to talk
about the supremum of a certain subset of I' (the supremum can be either a real number or
infinity) or about a certain sequence of elements of I tending to infinity.

The main application of the theory of key polynomials that we have in mind is proving
the local uniformization theorem for quasi-excellent noetherian schemes in positive and mixed
characteristic. In Chapter IV of his Ph.D. thesis ([22], Institut de Mathématiques de Toulouse,
2013) J.-C. San Saturnino reduced the local uniformization theorem in the case of positive
characteristic to the problem of the monomialization of the first limit key polynomial of a
certain explicitly defined simple field extension K < K(z) assuming local uniformization in
lower dimensions (see [23], Theorem 6.5). In Chapter V he proved a similar reduction for local
uniformization in the case of mixed characteristic, but under some additional hypotheses.

Chapter 3 of the Ph.D. thesis of W. Mahboub (Institut de Mathématiques de Toulouse,
2013) develops the theory of key polynomials for valuations of arbitrary rank. Here we mostly
work with valuations of arbitrary rank but limit ourselves to the case rk vy = 1 towards the end
of the paper for some (but not all) of the finer results on the shape of limit key polynomials.

The particular importance of the case rk 1y = 1 is witnessed by a recent theorem of
Novacoski-Spivakovsky that says that local uniformization along rank one valuations implies
local uniformization in its full generality [20]-[21].

The well ordered set Q = {Q; }iea of key polynomials of v will be defined recursively in i.

Notation. We will use the notation N for the set of strictly positive integers and Ny for the set
of non-negative integers.

For an element ¢ € A, we will denote by ¢+ 1 the immediate successor of ¢ in A. The
immediate predecessor of ¢, when it exists, will be denoted by £ — 1. For a positive integer ¢,
¢+t will denote the immediate successor of /+ (¢t —1). For an element ¢ € A, the initial segment
{Q;}i<v of the set of key polynomials will be denoted by Q. For the rest of this paper, we let
p = char k,, if char k,, > 0 and p = 1 if char k,, = 0. For an element 8 € TUT, let

Py ={yecK() [v(y)>B}U{0}
Pgy ={ye K(z) |v(y) > B}U{0}

Put G, = P 57‘: and G,, = @ Pp—;i. We regard G, and G,, as k,-algebras.
per ger

Let Az be an independent variable. For f € Klz] and j € N let 9;f denote the
j-th formal derivative of f with respect to . The polynomials 9;f are, by definition, the



coefficients appearing in the Taylor expansion of f: f(z+ Az) =Y 9;fAz’. In papers on local
J
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one indivisible symbol; its parts such as % do not make sense on their own.

uniformization the formal derivatives 0; are often denoted by this notation is regared as

Details about formal derivatives can be found in [12], Chapter 24.10, starting on p. 701,
as well as in [13].

A set of key polynomials is said to be complete if for every 8 € I' the additive group
Ps N K[xz] is generated by the products of the form a Hl Q;/jj, where a € K, i; € A and v; € N,

J:
contained in Pz N K[z]. It is~said to be I'-complete if the above condition holds for all 5 € T,
in other words, if for all 5 € T" every polynomial f € K|x] with v(f) = [ belongs to the additive
group generated by products of the form a [] Q;/jj, a € K, such that ) v;v(Q;;) +vo(a) > B.
j=1 j=1
Remark 1.1. If Q = {Q;}iea is a complete set of key polynomials, the data {Q;,v(Q;)} com-
pletely determines the ideals Pg for all 8 € T', hence also all the ideals Pg,, since Pg, = J P i
B>p

For an element y € K (x) we have v(y) = 3 if and only if y € Pg\ Pg4. Thus the valuation v is
completely determined by the data {Q;,v(Q;)}.

We will use the following multi-index notation: 4,11 = {7i}i<¢, where the ~; are non-
negative integers, all but finitely many of which are equal to 0, and

Qi =[] (1.1)

i<l

An (-standard monomial in Q1 is a product of the form

Cyoqa Q%—Jrllv (1.2)

where c5,, , € K and the multiindex 7y satisfies certain additional conditions to ensure a form
of uniqueness (see Definition 3.10). An /-standard expansion is a finite sum of /-standard
monomials. In §3 we will show that for any ¢ € A and any f € K|z| the element f admits an
{-standard expansion

= cu@, (1.3)
j=0

where each cjy is a QQ-free (-standard expansion. We define the /-truncation v, of v by putting
v(f) = 0<mi<n {v(cje) + jpPe} for each f € K[z]. By the axioms for valuations, we have
<j<sy

v(f) = ve(f) (1.4)

for all f € K[z]. Then the statement that Q is a complete set of key polynomials can be
expressed as follows: for any f € K[z] there exists £ € A such that equality holds in (1.4); see
Remark 3.21 for details.

The paper is organized as follows. §2 is devoted to generalities on algebras, graded by
ordered semigroups. There we define the notion of the saturation G* of a graded algebra G
(Definition 2.3). We consider an extension G C G’ graded algebras and a homogeneous element
x € G'. We study the condition that x be algebraic over G. We note that z is algebraic over
G if and only if it is integral over G*. We show that if x is algebraic over G then the algebra



G*[z] is saturated (Lemma 2.6). Finally, we prove the simple but useful characterization of the

S
strict inequality v <Z yi) > mg {v(yi)} in terms of the natural images of the elements y; in
~ <s

; 1<i
the graded algebra G,,.

In §3 we will construct a well ordered set Q of key polynomials and prove that this set is
complete.

We start our recursive construction of the (); by putting ;1 := z. We fix an ordinal
! < w X w and assume, inductively, that the key polynomials Q.1 are already defined. We
will then define the next key polynomial Q1. Roughly speaking, (Qy11 will be defined to be
a lifting to K[z] of the monic minimal polynomial, satisfied by in,Q, over the graded algebra
G, [In,Qy|, where in,Qy denotes the natural image of @y in G,. This gives rise to explicit
formulae describing each non-limit key polynomial in terms of the preceding key polynomials.

If at some point of the construction we arrive at the situation when vy(f) = v(f) for all
f € Klz], the algorithm stops: the resulting set Q,,; of key polynomials is already complete
by Remark 3.21. In particular, this occurs whenever our algorithm produces a key polynomial
whose value does not lie in I'. At this stage, starting with Q; we will have recursively constructed
a set of key polynomials {Q;};<¢+. of key polynomials of order type at most ¢ + w. This will
already complete the construction of Q in the case when for all f € K[x] there exists i € Ny
such that

v(f) = veni(f). (1.5)
However, it may happen that for each ¢ € N there exists f € K|z| satisfying v(f) > vpy;(f) for
all i € Ng. The limit key polynomial (), is defined to be a monic such f of smallest degree.

This completes the recursive definition of the set {Q;} of key polynomials, Then we prove
the main property: they form a complete set of key polynomials (Theorem 3.35). As a Corollary
we will obtain that the images of the key polynomials in GG, generate the field of fractions of G,
over the field of fractions of G,,.

The main goal of §§4-8 is to derive explicit formulae for limit key polynomials in terms
of the preceding key polynomials. For some (though not all) of the results of §5 and §§7-8 we
need to assume that rk vy = 1.

The breakdown of the contents among these remaining five section goes as follows.

§4 and §6 are auxiliary: there we develop certain technical tools (the integer numerical
character 0;(f), i € A, f € K[z|, and differential operators, respectively) to be used in §5 and
§67-8.

In §4 we associate to each h € K[z] and each ordinal i for which @; is defined, a positive
integer numerical character 0;(h) < d(iegizgi of the Newton polygon A;(h). We prove that d;(h)
is non-increasing with ¢, and hence must stabilize for i > 0. We also show that the equality

6i(h) = div1(h)
imposes strong restrictions on h. The numerical character d;(h) helps analyze infinite ascending

sequences {Q;}ica in §5 and §§7-8.
In §6 we study the effect of differential operators 9; on key polynomials and standard

expansions. Let j denote the element of N which maximizes the quantity w We show
that j is of the form
j=p“ for some e; € Ny. (1.6)

The non-negative integers e;, ¢ € A, are important numerical characters of the extension ¢ of
valued fields. Most importantly, given an f-standard monomial ¢5, Q“', we prove the equality

/+1 >
Ve+1\ _ B Ye+1
v (8pbcw+1Q£+1 ) =W (apbc'YéJrl Q.4 ) )

4



and we derive an explicit formula for the quantity v <8pb0:m +1QZi+11>v for integers b > e;, and

under certain additional conditions. Also, for any /-standard expansion f and an integer b > e;,
we derive a formula for (0, f).

The importance of this type of explicit formulae can be explained as follows. The impor-
tance of differential operators for resolution of singularities is well known. One difficulty with
dealing with differential operators up to now has been the fact that they obey no simple trans-
formation law under blowing up. Since key polynomials become coordinates after blowing up,
the above formulae can be viewed as comparison results for derivatives of the defining equations
of a singularity before and after blowing up.

The main subject of study of §5 and §§7-8 are infinite sequences {Q1¢}ten of key poly-
nomials and the corresponding limit key polynomials Q.

In §5 we assume that the sequence {v (Qs1)},cy is bounded in ' (this situation is referred
to as Case 2b in §3). We also assume that rk vy = 1. We let § denote the stable value of
0041 (Qp1y) for a sufficiently large positive integer . We show that deg, Qi = d deg, Qpi¢.

In §7 we use the results of §6 to show that the stable value ¢;(f) must be of the form
0i(f) = p° for some e € Ny.

Next, we assume that char k, = char K, that the sequence {v (Qy)},cy is unbounded in r
(this is Case 2a of §3, where we take ¢ = 1)) and that deg, Q; = 1 for all ¢t € N. We show that
QZ-‘rw €K [5176] .

For the third main results of §7 we assume that rk vy = 1. Proposition 7.9 asserts that
if char k, = 0 then there are no limit key polynomials @Q; such that 3; € T'. By definition, we
have 3; € T whenever i is not a maximal element of A. The set A contains a maximal element \
if and only if it contains an element A such that in, Q) is transcendental over k,[in,Q)], where
Q) = {Qi}i<r. This explains why A < w + 1 whenever rk vy = 1 and char k, = 0.

In §8 we assume that char k, = p > 0 and consider an ordinal ¢+ w that does not have an
immediate predecessor. We assume that the key polynomials Qg4; and the limit key polynomial
Qo1 are defined. We assume that rk vy = 1 and that we are in Case 2b, that is, the sequence
{v (Qe44) b1y is bounded in I'. We prove that Q4 can be chosen in such a way that for some
t € N the Qgi4-standard expansion of @y, is weakly affine. This means, by definition, that,
letting ¢ = £ + t, we have

€[+W—l
€l+w J
Qurw=0Q0 " + Z CpiiQ5 + cois (1.7)

J=0

where cp;; and cp;; are Q;-free i-standard expansions.

The results of this paper are related to those contained in the paper [7] (see also [27]).
However, there are some important differences, which we now explain. We chose to rewrite the
whole theory from scratch for several reasons:

1. In [7] we work with an algebraic extension ¢ while for local uniformization we need to
consider purely transcendental extensions. We note that the case of algebraic extensions
can easily be reduced to that of transcendental ones using composition of valuations.
Indeed, let ¢ : (K,vy) < (K(x),v) be a simple algebraic extension of valued fields. Write
K(z) = %, where f is the minimal polynomial of x over K. Let vy denote the (f)-
adic valuation of K[X] and put v* := vy o v (the composition of vy with v). Complete
sets {Q;}ien of key polynomials of the transcendental extension ¢ : (K,vp) — (K(X),v*)
constructed in the present paper are very closely related to complete sets {Q; }iea_ of key
polynomials of the algebraic extension (K,1y) — (K (x),v), constructed in [7]. Namely,



we have A = A_ U {A_} (extension by one element), Q; is the image of @); under the
natural map K[X] — K(z) and Qx_ = f. In other words, a complete set {Q;} of key
polynomials for ¢ can be obtained from that of +_ by lifting each key polynomial Q;  to
K[X] and then adding one final key polynomial f. In this sense the theory presented here

can be viewed as a generalization of [7].

2. Our main interest in [7] was to classify all the possible extensions v of a given 1p; in the
present paper we content ourselves with a fixed v.

3. The crucial formulae for v,(d,»f) were not made explicit in [7].

4. We take this opportunity to correct numerous mistakes which, unfortunately, made their
way into the paper [7]: an inaccuracy in the definition of complete set of key polynomials,
the failure to take into account the case of mixed characteristic, a mistake in the definition
of the numerical characters e; and many others which made the paper [7] unreadable.

5. In [7] we make a blanket assumption that rk vy = 1 whereas in the present paper vy is of
arbitrary rank except for some results about the precise form of limite key polynomials at
the end of the paper.

Acknowledgements. We thank Anna Blaszczok, Julie Decaup, Gérard Leloup and the referees
for many useful comments and suggestions and for pointing out errors in the earlier versions of
this paper.

2 Algebras graded by ordered semigroups

Graded algebras associated to valuations will play a crucial role in this paper. In this section,
we give some basic definitions and prove several easy results about graded algebras. Throughout
this paper, a “graded algebra” will mean “an algebra without zero divisors, graded by an ordered
semigroup”. As usual, for a graded algebra G, ord will denote the natural valuation of G, given
by the grading.

Let G = € G, be a graded algebra where I' is an ordered abelian group.
aecl’

Definition 2.1. An element x € G is said to be homogeneous if there exists a € ' such that
z € Gy.

For a homogeneous element « € G, C G we will write ord = = «a.
Now let X be an independent variable and consider the ring G[X]. Fix a polynomial

d .

f=> a;X" € G[z] such that a; is a homogeneous element of G for all i € {0,...,d}. Fix an
i=0

element 8 €T

Definition 2.2. We say that f is quasi-homogeneous with w(X) = g if for all ,5 €
{0,...,d} we have i + ord a; = jfB + ord a;. In this situation we will also say that 3 is
the weight assigned to X.

Definition 2.3. Let G be a graded algebra without zero divisors. The saturation of G, denoted
by G*, is the graded algebra

G* = {% ‘ g,h € G, h homogeneous, h # 0} .

G is said to be saturated if G = G*.



Of course, we have G* = (G*)* for any graded algebra G, so that G* is always saturated.

Example 2.4. Let R be a ring and v : R — I'U {co} a valuation, centered at a prime ideal of
R. Let ® = v(R\ {0}). For each a € @, consider the ideals

In:={x € R|v(z)>a} and

2.1
Int :={x € R |v(z) > a}. 21)

1, is called the v-ideal of R of value a.
If y > ap > ... is an infinite descending sequence of elements of ® then I, G In, & ...

is an infinite ascending chain of ideals of R. Thus if R is noetherian then the ordered set v(R)
contains no infinite descending sequences, that is, ¥(R) is well ordered.
If I is an ideal in a noetherian ring R and v a valuation of R, v(I) will denote

min{v(z) | z € I'}.

We now define certain natural graded algebras, associated to valuations. Let R, v and &
be as above. For a € @, let I, and I,4 be as in (2.1). We define

gr, R = @ II—O;

The algebra gr, R is an integral domain. For any element 2 € R with v(z) = «, we may consider
the natural image of = in Iﬁ: = C gr, R. This image is a homogeneous element of gr, R of degree
o, which we will denote by in,z. The grading induces an obvious valuation on gr, R with values
in ®; this valuation will be denoted by ord.

Next, suppose that (R, M, k) is a local domain and v is a valuation with value group T,
centered at R. Let K denote the field of fractions of R. Let (R,, M,,k,) denote the valuation

ring of v. For a € T, consider the following R,-submodules of K:

I,={ze€ K |v(z) >a},

Iny ={z € K |v(z) > a}. (2.2)

We define

Again, given z € K, we may speak of the natural image of x in G, also denoted by in,x (since
gr, R is naturally a graded subalgebra of G,, there is no danger of confusion). Then ord is a
valuation of the common field of fractions of gr, R and G,, with values in I.

We have G, = (gr,R)*; in particular, G, is saturated.

Remark 2.5. Let G, G’ be two graded algebras without zero divisors, with G C G’. Let = be a
homogeneous element of G’, satisfying an algebraic dependence relation

apz® 4+ a1zt 4+ 4 ay =0 (2.3)

over G (here a; € G for 0 < j < o). Without loss of generality, we may assume that the integer
« is the smallest possible.

Claim. Without loss of generality, we may further assume that (2.3) is homogeneous (that is,
all the a; are homogeneous and the quantity j ord x + ord a; is constant for 0 < j < a such
that a; # 0).



Proof of Claim. Let p := OI<1f1j1<a {j ord x+ord a;}. Then each a; can be written as a finite sum of
IS«

homogeneous elements of G, all of orders greater than or equal to p— jord z. For j € {0,...,a}
write a; = ag; + a;, where ord ap; = ¢ — jord x and a; is a sum of homogeneous elements of
G of orders strictly greater than p — jord x (for some j it may happen that ag; = 0, but there
exist at least two different values of j for which ag; # 0). Now, z satisfies the equation

agox® + aloﬂja_l + -+ apq = 0. (2.4)

This proves the Claim. From now on we will always take the coefficients a; to be homogeneous
without mentioning it explicitly.

Dividing (2.3) by ag, we see that x satisfies a monic homogeneous relation over G* of

degree o and no algebraic relation of degree less than «. In other words, x is algebraic over G if

and only if it is integral over G*; the conditions of being “algebraic over G*” and “integral over
G*” are one and the same thing (as usual, “integral” means “satisfying a monic polynomial”).

Let G C G', x be as above and let G[x] denote the graded subalgebra of G’ generated by
x over GG. By Remark 2.5, we may assume that x satisfies a homogeneous integral relation

2+ apr 4t an =0 (2.5)
over G* and no algebraic relations over G* of degree less than a.

Lemma 2.6. Every element of (G[z])* can be written uniquely as a polynomial in x with coef-
ficients in G*, of degree strictly less than c.

Proof. Let y be a homogeneous element of G[z]|. Since z is integral over G*, so is y. Let
Y by b, =0 (2.6)

with b; € G*, be an integral dependence relation of y over G*, with b; homogeneous elements
of G*, by # 0, such that jord y + ord b; is constant for all j such that b; # 0. By (2.6),

1 1, - _
PR AL ARt )
v

Thus, for any z € G[z], we have

LGl (2.7)

Since y was an arbitrary homogeneous element of G[x], we have proved that
(Glz])" = G"[x].

Now, for every element y € G*[z] we can add a multiple of (2.5) to y so as to express y as a
polynomial in x of degree less than «. Moreover, this expression is unique because x does not
satisfy any algebraic relation over G* of degree less than a. O

Notation. If A C A’ are ordered semigroups and £ is an element of A’, then A : 3 will denote
the positive integer defined by

A:p=min{a € N| af € A}.

If the set on the right hand side is empty, we take A : = cc.
(Note that f € Aif and only if A: g =1).



Lemma 2.7. Let G, G’ be as in Remark 2.5 and x a homogeneous element of G'. Assume
that the degree 0 part of G (that is, the subring of G consisting of all the elements of degree 0)
contains a field k and that G is generated as a k-algebra by homogeneous elements w1, ..., w,.
Let

Bj=ord wj, 1<j<r,

T

and let A denote the group A = {ord y | y € G*} = { > a;f;

J=1

aj € Z}. Assume that the
following two conditions hold:

(1) A (ord z) < o0

(2) Let &:= A :ord z. Let ay,...,ap € Z be such that

aord z = Zajﬁj. (2.8)

J=1

r .
Lety =[] w?’. Assume that the element

7=1

l

€ (G"* (2.9)

x
zi=—
Y
1$ algebraic over k.

Then x is integral over G*. An integral dependence relation of x over G* can be described as
follows. Let z be as in (2.9). Let Z be an independent variable and let

d—1
N2)=2"+) 7 (2.10)
i=0
denote the minimal polynomial of z over k. Then x satisfies the integral dependence relation
~ d_l . .~
v 4 Z ey iz = 0. (2.11)
i=0

Conversely, suppose x is integral over G*. Then (1) holds. Suppose, furthermore, that 81, ...,y
are Z-linearly independent. Then (2) also holds. In this case, (2.11) is the minimal polynomial
of © over G*. In particular, the degree o of the minimal polynomial of x over G* is given by

o = da. (2.12)

Proof. 1f (1) and (2) hold, x is integral over G* because it satisfies the integral dependence
relation (2.11) (this is verified immediately by substituting (2.9) for Z in (2.10) and multiplying
through by y%). In particular, if o denotes the degree of x over G*, (2.11) shows that

o < da. (2.13)

Conversely, suppose x is integral over G*. Then z satisfies a homogeneous integral relation of
the form (2.5). Since (2.5) is homogeneous, we have the equality

i ord x + ord a; = j ord x + ord a; for some 4, j such that 0 <i < j < .



Hence
(j —i)ord x = ord a; — ord a;. (2.14)
Now, g—; € G* so that
a
ord a; — ord a; = ord— € A. (2.15)
a;
Putting together (2.14) and (2.15), we obtain (1) of the Lemma.

Now, assume that f1,...,[, are Z-linearly independent. We wish to prove (2). Since
Bi,..., B are Z-linearly independent, all the monomials w]" ... w;", v; € Z, have different values
with respect to ord. Since (2.5) is homogeneous with respect to ord, each a; must be a monomial
in the w; with (not necessarily positive) integer exponents. Also by the Z-linear independence

of B1,..., B, the coefficients aq, ..., a;, in (2.8) are uniquely determined. Moreover, any relation
of the form

iorda:—Za;ﬂj:O, i€N, of,...,a, €Z (2.16)
j=1

is a positive integer multiple of the relation

T
& ord x — Zajﬁj =0. (2.17)
j=1
This proves that x° may appear in (2.5) only if & | 4; in particular, & | a. Let d' := S. Let
0 <i<d. To find the coefficient a;5 in (2.5), note that
aordz=d aord x =i & ord x + ord a4,
so that
(d —1i) & ord x = ord a;g. (2.18)
Since a;g is a monomial in wy, ..., w,, (2.18) gives rise to a Z-linear dependence relation of the

form (2.16), which therefore must be equal to (2.17) multiplied by d’ — 4. This determlnes the
monomial a;5 uniquely up to multiplication by an element of k: we must have a;5 = ciy®

where ¢; € k. Then z = % satisfies the algebraic dependence relation

d-1

A+ e =0 (2.19)
=0

This proves (2) of the Lemma. Now, we have shown that, under the hypothesis of linear
independence of the f;, if x has degree a over G* then & | o and z satisfies a polynomial of
degree d' = £. Letting d denote the degree of z over k, as above, we obtain

d=—=>d. (2.20)

ol e}

Combining (2.20) with (2.13), we obtain (2.12); in particular, (2.11) is the minimal polynomial
of x over GG. This completes the proof of Lemma 2.7. O

Corollary 2.8. Let G, wy,...,w, and B,..., 5, be as in lemma 2.7. If B1,..., B, are Z-linearly
independent in A then wi,...,w, are algebraically independent over k.
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Proof. Induction on r. For r = 1 there is nothing to prove. For the induction step, assume that
the Corollary is true for r = 4. If w;;1 were algebraic over k[wy,...,w;], we would have

(Brs--y Bi) : Bis1 <00 (2.21)

by lemma 2.7, applied to the graded algebra k[wq,...,w;] and the element w;1. (2.21) contra-
dicts the linear independence of 31, ..., 3,, and we are done. Alternatively, the Corollary can be
proved by observing that by linear independence of 5y, ..., 8, all the monomials in wy, ..., w,
have different degrees, thus any polynomial in w1, ..., w, over k contains a unique monomial of
smallest degree. Hence it cannot vanish. O

Definition 2.9. Let G be a graded algebra and xp := {x)} e a collection of elements of G.
Let k be a field, contained in the degree 0 part of G. Let k[x,] denote the k-subalgebra of G,
generated by xx. We say that xz, rationally generate G over k if G* = k[z]*.

The following result is an immediate consequence of definitions:

Proposition 2.10. Let G, be the graded algebra associated to a valuation v : K — I', as above.
S

Consider a sum of the formy = > y;, withy; € K. Let § = 1I£1.i<1a v(y;) and
i=1 1SS

S={ic{l,...,n} [ v(y) =B}

The following two conditions are equivalent:

1. v(y)=p
2. > inyy; # 0.
€S

3 Construction of key polynomials and proof of completeness

Let K — K(x) be a simple transcendental field extension, v a valuation of K(x) and vy the
restriction of v to K. We will assume that

v(z) > 0. (3.1)
Definition 3.1. A complete set of key polynomials for v is a well ordered collection
Q ={Qi}iea

of elements of K[x] such that for each § € I' the additive group Pg N K|xz] is generated by

S

products of the form a [] Q;Yj_j, a € K, such that ) vv(Q;;) + vo(a) > B. The collection
j=1 j=1
Q = {Qi}iea is said to be I'-complete if for all 8 € I' any polynomial f € K[x] with v(f) =0
belongs to the additive group generated by products of the form a [] sz_j , a € K, such that
j=1

Slvjw@j) +1o(a) > B.
pa

11



Note, in particular, that if Q is a complete set of key polynomials then their images
in,@; € G, rationally generate G, over G,; if Q is a [-complete set of key polynomials then
their images in, Q); € G, rationally generate G,, over G, (see page 2 for the definition of G,,).
We want to make the set A as small as possible, that is, to minimize the order type of A (it will
turn out that this order type is bounded above by w x w).

Our algorithm amounts to successively and explicitly constructing key polynomials until
the resulting set of key polynomials becomes complete for v.

S

Take a polynomial h = Y d;x' € K|x], d; € K.
i=0

Definition 3.2. The first Newton polygon of h with respect to v is the convex hull Aq(h)
of the set J <(1/(di),z') + <f‘+ X Q+)> inT x Q.
=0

To an element 31 € I';, we associate the following valuation 14 of K (x): for a polynomial

h =Y d;x', we put
i=0
vi(h) =min{wvy(d;) +i61 | 0<i<s}.
Consider an element 3 € I'y.

Definition 3.3. We say that 5; determines a side of A;(h) if the set
Si(h) ={ie{0,...,s} | voldi) +iB1 =v1(h)}.
has at least two elements.
Let 81 = v(x). Then for any h € K|[z]| we have

vi(h) < v(h) (3.2)

by the axioms for valuations. We put A = {1}, @1 = = and a7 = 1. If equality holds in (3.2)
for all h € K|[x], we stop here. The definition of key polynomials is complete. From now on,
assume that there exists a polynomial h € K|x] such that vi(h) < v(h).

S .
Proposition 3.4. Take a polynomial h = ) d;z* € K|x] such that

i=0
vi(h) < v(h). (3.3)

Then '

Z in,,d;in,x" = 0.

1€51(h)
Proof. We have
Z diz' = h(zx) — Z diz’,
i€S1(h) 1€{0,...,s}\S1(h)
hence
v Z diz’ | > vi(h).

1€51(h)

Then Y in,d;in,z® =0 in PP”l(h)Jr C G, by Proposition 2.10. O
€Sy (h) v1(h)
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Corollary 3.5. Take a polynomial h € K|[x] such that v1(h) < v(h). Then By determines a side
of Ay(h).
Proof. If S1(h) consisted of a single element 4, we would have v(h) = v(d;z*) = v1(h), contra-

dicting the assumption. O

Notation. Let X be a new variable. Take a polynomial h as above. We denote
ingh= Y iny,dX".
1€51(h)

The polynomial injh is quasi-homogeneous in G,,[X], where the weight assigned to X is
ﬁl. Let

¢
inth =v H g;j (3.4)
j=1

be the factorization of in;h into irreducible factors in G,,[X]. Here v € G, and the g; are
monic polynomials in G,,[X] (to be precise, we first factor injh over the field of fractions of G,
and then observe that all the factors are quasi-homogeneous and therefore lie in G, [X]).

Proposition 3.6. (1) The element in,x is integral over G, .

(2) The minimal polynomial of in,x over Gy, is one of the irreducible factors g; of (3.4).
Proof. Both (1) and (2) of the Proposition follow from the fact that in,z is a root of the
polynomial in;h (Proposition 3.4). O

Note that Proposition 3.6 (1) implies that v(z) € T.

Now let g; be the minimal polynomial of in,x over G,,. Let ay = degy g1. Write

where EQQ = 1. For each i, 0 < i < aw, choose a representative b; of b; in R,, (that is, an element

_ Qa2 i
of Ry, such that in, b; = b;; in particular, we take by, = 1). Put Q2 = > bjz".
i=0

Definition 3.7. The elements )1 := x and Q5 are called, respectively, the first and second
key polynomials of v.

Remark 3.8. By convention, Qg is not defined; our indexing starts at Q).

Now, every element y of K[x] can be written uniquely as a finite sum of the form

y= Y bunQ'Q¥ (3.5)
0<y1<a2
0<72
where b,,4, € K (this is proved by Euclidean division by the monic polynomial @2). The
expression (3.5) is called the 2-standard expansion of y.

If v(Qs) ¢ T, the algorithm stops here. From now on, assume that v(Qs) € I.

Take an ordinal number /, 2 < ¢ < w x w. Assume, inductively, that key polynomials Qg1
and positive integers o1 = {a;}i</ are already constructed, that v(Q;) € [ for i < ¢ and that
all but finitely many of the «; are equal to 1. We want to define the key polynomial Qyy.

We will use the following multi-index notation: .41 = {7 }i<¢, where all but finitely many

i are equal to 0, szfll =1 Q] Let B; = v(Q).
i<t

13



Definition 3.9. An index ¢ < /£ is said to be f-essential if there exists a positive integer ¢ such
that either i +t = /¢ or i +t < ¢ and «a;4+, > 1; otherwise 7 is called ¢-inessential.

In other words, i is f-inessential if and only if i + w < ¢ and ;44 = 1 for all ¢t € Ny.
Notation. For i < £, let

+=4i+1 if 7 is l-essential

=itw otherwise.
Definition 3.10. A multiindex 4y4; is said to be standard with respect to ay, if
0 <~ <a fori </, (3.6)

and if i is fp-inessential for some limit ordinal ¢y < ¢ then the set {j < i+ | j+ = i+
and v; # 0} has cardinality at most one. An /(-standard monomial in Qi (resp. an (-
standard monomial in in, Q1) is a product of the form ¢, +1QZi+11, (resp. ¢z, +1iHVQZﬁ_+11)
where ¢5,,, € K (resp. cx, 1 € Gy,) and the multiindex 744, is standard with respect to ay4q.

Keep the notation of Definition 3.10.

Definition 3.11. An {-standard monomial ¢, , ijll is said to be Q-free if it does not involve

Qy, that is, if v, = 0.

Definition 3.12. An /-standard expansion of an element g € K [z] is an expression of the form
S

g=>, chz, where each chz is an f-standard monomial. A Q,-free (-standard expansion

Jj=0
is a finite sum of @Qy-free f-standard monomials.

For an element G € G, an expression of the form G = 3" &5in, Q) 41> Where each ¢5 € Gy,
B v
and each Q] 41 Is an f-standard monomial, will be called an {-standard expansion of G.

Remark 3.13. We note that a Q)y-free /-standard expansion is not just an i-standard expansion
for some i < ¢. Namely, if £ is not a limit ordinal, it is required, in addition, that the exponent
of the last appearing key polynomial be bounded.

S .
Remark 3.14. For an element g € K|z], let g = Y ¢;Q) be its {-standard expansion. Then each

Jj=0
¢; is a Qp-free f-standard expansion.

Proposition 3.15. Let ¢ be an ordinal and t a positive integer. Assume that i+t +1 < ¥, so
that the key polynomials Q;y441 are defined, and that a; = -+ = a1y = 1. Then any (i + t)-
standard expansion does not involve any Qq with i < g < i+t. In particular, a Q;-free istandard
expansion is the same thing as a Qit¢-free (i + t)-standard expansion.

Proof. (3.6) implies that for i < g <i+t, Q, cannot appear in an (i + t)-standard expansion
with a positive exponent. O

We will frequently use this fact in the sequel without mentioning it explicitly.
Definition 3.16. Let Za—,inyQLl be an f-standard expansion, where ¢y € G,,. A lifting of
;?/

— . ’_y . . '?/ . . —
Zcﬁ—,lnsz 41 to K[z] is an (-standard expansion ZC:/QZ .1, Where c5 is a representative of ¢5
3 3

in K.
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Definition 3.17. Assume that char k, = p > 0. An ¢-standard expansion ) | chg is said to be
J
weakly affine if ¢; = 0 whenever j > 0 and j is not of the form p® for some e € Ny.

Assume, inductively, that for each ordinal i < ¢, every element h of K[z] admits an
i-standard expansion. Furthermore, assume that for each 7 < ¢ and each iy with

1= 19+, (3.7)

the i-th key polynomial @; admits an ip-standard expansion, having the following additional
properties.
If ¢ has an immediate predecessor i — 1, the (i — 1)-standard expansion of @); has the form

a;—1
_ oo i1 |
Qi =Qy + E E Ciims 1 Q! 1 (3.8)
Jj=0 \¥i-1

where: )
(1) each cji= ,Q/"5" is an (i — 1)-standard monomial

(2) the quantity vo (cji5,_,) + jBi—1 + Y. "¢ is constant for all the monomials
q<i—1

o Yi—1 i
(CJVYi—l i—1> i—1

appearing on the right hand side of (3.8)
(3) the equation

a;—1
in, Q7 + Z Z iny,cjis 0, Q) | in,@L ;=0 (3.9)
7=0 \¥i-1

is the minimal algebraic relation satisfied by in,Q;_1 over G, [in, Q;_1]*.
Finally, if ¢ does not have an immediate predecessor then for each i satisfying (3.7), the
ig-standard expansion

Qi = Z Cjiong (3.10)
§=0
satisfies '
. 3 . ()J
v(Qi) > oin {V (cﬂOQZ-O)} . (3.11)

Moreover, the polynomial @); is monic of the smallest degree among those satisfying (3.11) for
all ip as in (3.7).

Remark 3.18. In §8 we will show, assuming that rk 1y = 1 and the set {v(Q;, }i=i,+ is bounded
in I, that we can choose ip and @; so that @; is a weakly affine monic ip-standard expansion of
degree «; = p® for a certain integer e;. Moreover, there exists a positive element 5; € R such
that

Bi > By for all ¢ < 1, (3.12)
Bi > a;f; and (3.13)
P Bi+v (i) = iffy for 0<j <oy (3.14)
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Definition 3.19. A well-ordered set of polynomials {@Q;} of order type at most w x w satisfying
(3.8)—(3.11) is said to be a set of key polynomials. An element of the set is called a key
polynomial.

If 7 € Ny, we assume, inductively, that the i-standard expansion is unique. For a general 7,
Si .
if h =73 dj;Q! is an i-standard expansion of h (where h € K|[z]), we assume that the elements
=0

‘]:
dji € Klx] are uniquely determined by h, but their i-standard expansions need not be. For

example, if ¢ is a limit ordinal, d;; admits an ip-standard expansion for each ig < ¢ such that
i = 19+, but there are countably many choices of iy for which such an iy-standard expansion is
a @Qj,-free ip-standard expansion in the sense of Definition 3.12.

Proposition 3.20. (1) The polynomial Q; is monic in x; we have

deg, Qi > [ ey (3.15)

J<i
(2) Let z be an Q;-free i-standard expansion. Then

deg, z < deg, Q;. (3.16)

Proof. (3.15) and (3.16) are proved simultaneously by transfinite induction on 7, using (3.8),
(3.10) and (3.6) repeatedly to calculate and bound the degree in x of any standard monomial
(recall that by assumption all but finitely many of the «; are equal to 1). O

For each ordinal i < ¢ we define a valuation v; of K(z) as follows. Given an i-standard

Sg .
expansion h = ) dinﬁ, put
§=0

(k) = min {56 +v(d;)}. (3.17)

The valuation v; will be called the i-truncation of v. Note that even though the i-standard
expansions elements d;; are not, in general, unique, the elements dj; € K[z] themselves are
unique by Fuclidean division, so v; is well defined. That v; is, in fact, a valuation, rather than
a pseudo-valuation, follows from the definition of standard expansion, particularly, from the
minimality of deg, Q;, stipulated in (3.9) and (3.11). We always have

v;(h) < v(h). (3.18)

Remark 3.21. The set Q is a complete set of key polynomials if and only if for each polyno-
mial f € K[x] there exists an ordinal ¢ such that v(f) = vy(f). Indeed, assume that such
an ordinal always exists. Take any § € I', and let f € PgN K[z]. Put 8/ = v(f) and let £

Sy . .
be such that 8" = v(f) = v(f). Write f = Y ¢;sQ;, where each ¢;,Q; € PgNK|[z] C PgNK]z].
§=0

Conversely, take f € K[z]. Let § = v(f). Write f as a finite sum of the form f =3 ¢,Q7,
g

cy € K, with v (¢4Q?) > 3 for all v such that ¢, # 0. Let ¢ denote the greatest ordinal such
that Q¢ appears in one of the monomials ¢,Q". Then

B =v(f) 2 v(f) 2 min v (¢,Q")} = min{v (c,Q7)} 2 5.
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For b € Ny, let 0, denote the b-th formal derivative with respect to x. For all b € N, we
have

Vig (0pQ:) = v(0pQs) (3.19)
(where the notation is as in (3.7)—(3.11)).

Proposition 3.22. For a pair of ordinals ig < i < £ such that i = ig+ we have
Vio (Qs) < Bi.

Proof. To prove the Proposition, we distinguish the cases when i does or does not admit an
immediate predecessor. If i admits an immediate predecessor then ig = ¢ — 1. In this case
the result follows from (3.8) and (3.9). If ¢ does not have an immediate predecessor then the
Proposition is nothing but (3.11). O

The rest of this section is devoted to the definition of Q1. Take an element h € K|x]
and let

S¢
h=>_dQ (3.20)
§=0
be an f-standard expansion of h, where each d; is a @Qy-free standard expansion.

Definition 3.23. The ¢-th Newton polygon of h with respect to v is the convex hull Ay(h) of
Se ~ ~
the set | ((I/(djg),j) + <F+ X Q+)) inI' x Q.

=0

Consider the valuation vy, defined in (3.17). If equality holds in (3.18) for ¢ = ¢ and for
all h € K[z], put A = ¢+ 1 and stop. In this case, the definition of key polynomials is complete.
From now on, assume that strict inequality holds in (3.18) for some h € K|x].

Let Q be a new variable and let h be as above. Let 8* be a non-negative element of T'.
We denote

Se(B*,h) :==1{j €{0,...,s¢} | jB* +v(dje) = ve(h)} .

Definition 3.24. We say that §* determines a side of Ay(h) if the set #5,(8*, h) has at least
two elements.

Notation:
Se(h) : = Se(Be, h). (3.21)
ingh:= Y inyd;QJ; (3.22)
J€Se(h)

B The polynomial ingh is quasi-homogeneous in G [iang, Qg], where the weight assigned to
Qe is Pe.
Take a polynomial h such that

ve(h) < v(h). (3.23)

; P
Proposition 3.25. We have > in, (dng%) =0 in % C G,.
JE€Se(h) b
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Proof. This follows immediately from (3.23), the fact that
Yo dQi=h— > duQ
JESe(h) 7€{0,,s\Se(h)
and Proposition 2.10. O
Corollary 3.26. The element 5y determines a side of Ay(h).

Proof. Suppose not. Then the f-standard expansion of h contains a unique monomial dng; of
minimal value, so v(h) = v(d;Q)) = v¢(h), contradicting (3.23). Corollary 3.26 is proved. O

Let

t
ingh = vy H g]f (3.24)
j=1

be the factorization of ingh into (monic) irreducible factors in G, [in, Q¢ [Q¢] (to be precise,
we first factor ingh over the field of fractions of G, [in, Q] and then observe that all the factors
are quasi-homogeneous and therefore lie in Gy, [in, Q/] [Qg] ).

Corollary 3.27. The element in,Qy is integral over G,,[in, Q). Its minimal polynomial over
Gy, [in, Qy] is one of the irreducible factors gje of (3.24).

Let ayyq denote the degree of in,Q, over G, [in, Q]. Renumbering the factors in (3.24),
if necessary, we may assume that gy, is the minimal polynomial of in,Q over G, [in,Qy|, so
that

ary1 = degg, gu- (3.25)
Write
Cl{(+1—1 B D
ge=Q" + ) <Z Ce+1,j»—wianZ‘> A (3.26)
j=0 Ve

Let X be a new variable, and consider a lifting of g1, of (3.26) to K[X], that is, the

polynomial

Oée+1—1 _ .
Xort 4 5 | Cerrm Q) X7

Jj=0 e
Define the (¢ + 1)-st key polynomial of v to be
app1—1 B '
Q=+ 3 (z c@+1,j:,zczzf) o 527
j=0 e

In the special case when ayy; = 1, some additional conditions must be imposed on the poly-
nomial Q41 (3.27). In fact, in this case we will define several consecutive key polynomials at
the same time. We will now explain what these additional conditions are, after making some
general remarks.

Remark 3.28. We claim that (Qg41 is an irreducible polynomial in z. Indeed, consider a factor-
ization Qpi1 = fg in K[z]. Passing to the natural images of Qy41, f and g in

GV() [inl/QZ] [QZ] C Gl/p
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we obtain g1, = ing fingg. Since gy is an irreducible polynomial in Q, by definition, we have, up
to interchanging f and g,
degp, ingg = avy1. (3.28)
Then
deg, f > aypy1 deg, Q. (3.29)
Since g1 has the form (3.26), we must have equality in (3.29) and deg, g = 0. Thus g € K; this
completes the proof of the irreducibility of Q11 in Klz].

Proposition 3.29. Take an element h of K|x] and an ordinal i < {. Assume that one of the
following conditions holds:

(1)

v(h) < B; (3.30)
and h admits an i-standard expansion
h=>¢Ql, (3.31)
j=0
such that
v(cj) >0 for all j. (3.32)

(2) degz h < dega} Qi-i-l-
Then v(h) = v;(h).
Proof. Let (3.31) be an i-standard expansion of h, where in case (1) we assume that (3.32) holds.

By definition of standard expansion, each ¢; in (3.31) is a @Q;-free standard expansion. Then
vi(cj) = v(cj) for 0 < j <s.

(1) By (3.30) and (3.32),
v <chg) = v(c;) +jBi > v(h) for j > 0. (3.33)

This implies that v(h) = v(cg) and v(co) < v(¢;) + 7B = vi(cj) + jB; for all j > 0. Thus
in the sum (3.31) the v;-value (resp. the v-value) v;(co) = v(co) of cp is strictly smaller
than the v;-values (resp. the v-values) v;(c;Q!) = v(c;Q?) of all the other terms. It is well
known and follows easily from the definition of valuation that in this situation we have

vi(h) = vi(co) = v(cg) = v(h), as desired.

(2) Let S;(h) be as in (3.21). Since the degree of in,Q); over G, [in, Q;]* is a;+1 by (3.9), we
see, using the assumption on deg, h, that i in,,cjin,,Qg # 0in G,. The result now follows
from Proposition 2.10. =

O
We will now describe the additional conditions we impose on the polynomial Q41 (3.27)
in the case when ayy1 = 1. Assume that ayr; = 1. In what follows, we will consider ¢-standard

expansions of the form
Q=Qr+z2+ - +z, (3.34)

where each z; is a homogeneous @/-free standard expansion, such that

Be=v(z) <v(zeqr) <--- <v(z). (3.35)
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Remark 3.30. Note that by (3.16), we have deg, z, < deg, @, for all g.

Let T denote the set of all the /-standard expansions of the form (3.34), where each
z;j is a homogeneous Q-free (-standard expansion, such that the inequalities (3.35) hold and

v(z) <v(Q).

We impose the following partial ordering on 7. Given an element
Q=Q+z+ +zeT

with ¢ > ¢, we declare its immediate predecessor in 1" to be the element Qy + zp + - - - + z;_1.
By definition, our partial ordering is the coarsest one among those in which Q;+ zp+--- 4+ z;_1
precedes Qp + zy + -+ - + z; for all the elements Q" as above.

Remark 3.31. Take an element Q' := Qg+ z¢+ -+ + z; € T. For each ordinal j with ¢ < j <1,
we have
in, (Qe+ze+ -+ 2j—1) = —inyzy; (3.36)

in particular, v(Qe+ z¢ + - - + zj—1) = v(2;).
Proposition 3.32. Consider two elements
Q=Q+z+ +2,Q"=Qu+ 2+ + 20 €T.

Assume that
v(Q") <v(@Q").
Then there exists a standard expansion

Q" =Qu+zx+ - +zp+zp+--+zmeT

such that Q" > Q" with respect to the partial ordering on standard expansions defined above and
Q" = Q" (here by the equality Q" = Q" we mean equality as elements of K|x], regardless of
the standard expansion (3.34)).

Proof. Let w = Q" — @Q'. We have
v(w) = (@) < v(Q").
Since deg w < deg Qy, the f-standard expansion of w does not involve Q. Let
W= Zyp1 + - 4z with v(zpq) < - < v(zpm) (3.37)

be the (-standard expansion of w, where 211, ..., zy» are homogeneous (-standard expansions,
not involving Q. Put

Q”/:QZ+Z2+"'+z£’+zi’+1+"'+zi”’-

To prove that Q" > Q' we still have to prove that v(z,) < v(zy4+1). By definition of Q" we have
v(2l,) < v(Q'), by definition of w we have v(Q') = v(w) and by the properties of a valuation we
have v(w) = v(zy41).
Clearly

Q/// — Q//

and the Proposition follows immediately. O
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To define Qg+ in the special case when
aprq =1, (3.38)

consider two cases:

Case 1. The set T contains a maximal element. Let Q' = Qp + 27 + 2p41 + -+ + 25_1 be such
a maximal element, where each z; is a homogeneous ),-free standard expansion, and s is an
ordinal of the form s = £+ t, t € Ny. Define

Qi=Qe+z+- -+ 21 for f +1<4<s.

Case 2. The set T does not contain a maximal element. In this case, Proposition 3.32 shows
that there exists an infinite sequence zy, zp11, ... of homogeneous Q-free f-standard expansions,
such that for each t € Ny we have

Qetze+- -tz €T (3.39)

and tlim v(Qe+ 20+ -+ + zo4y) = B; pick and fix one such sequence. Define ay,; = 1 and
— 00

Quit=Qr+zo+2e41+ -+ 20441 for t € Ny.

Note that (3.35) and Remark 3.31 imply that the sequence {v(Qp+z¢+- - -+ 2p4¢) }ren, is strictly
increasing.
For future reference, it will be convenient to distinguish two subcases of Case 2:
Case 2a. The sequence {S¢4¢}en, is unbounded in r.
Case 2b. The set {¢(Q') | Q' € T} has a least upper bound (but no maximum) in T.

Now as we have defined the key polynomial Qg 1, for every polynomial h € K[z] we can
define the (¢ + 1)-standard expansion of h. Indeed, fix a polynomial h € K[z]. By iterated
Euclidean division by Q11 we can write

S
_ NI
h = E :CJQZ—H
=0

where each c¢; is a polynomial of degree strictly less than degree of Qyy1. To be precise, we
first divide h by Qi1 and call the remainder ¢y, then divide the quotient of that division by
Q¢+1 and call the remainder ¢, and so on, until we obtain a quotient of degree strictly less than
deg, Q¢+1; we call that quotient ¢ and stop.

Now, by the induction hypotheses, for each j, we can write the f-standard expansion of
¢j. Since deg, ¢; < deg, Q+1, by Proposition 3.29 we have vy(cj) = v(c¢j). Thus each ¢; is a
Q¢+1-free standard expansion.

If app1 > 1, we construct the polynomial QQy1o from Qo in the same way as we already
constructed Q11 from Qpyq. If apy1 = 1 and we are in case 1, then we construct the polynomial
Q1511 from Qpygyq in the same way as we already constructed Qi1 from Qgyq. Finally, if
ay+1 = 1 and we are in case 2 then the set {Q4¢}ien, is already constructed. Therefore, by
recursion on ¢, we have constructed the set {Quis }en,-

If for some t € Ny we obtain .
V(Qer) ¢ T, (3.40)
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put A = /+t+ 1 and stop (this cannot happen if we fall in case 2). Later in this section we will
show that Qgy¢11 is a complete set of key polynomials for v.

Assume that .
v(Quye) €T for all t € Ny. (3.41)

We denote the set Qp U {Q+¢ }en of key polynomials by Q.

If Quyw is a complete set of key polynomials, stop. The definition of the key polynomials
{Qi}i is complete.

Assume that Q. is not complete. Then there exists a monic polynomial h such that

vere(h) < v(h) (3.42)

for all t € N. In this case, define QQy1., to be a smallest degree monic polynomial h satisfying
(3.42).

Remark 3.33. The inequality (3.42) implies that
deg, Qo1+, > deg, Q¢ = deg, Qp4¢ for all t € N. (3.43)

Moreover,
V(Qrtw) > V(Qrit) (3.44)

by Proposition 3.29 (1) and (3.42).

If the inequality in (3.43) was an equality, we could put zp1, = Qpiw — Qr. We would then
have Q1 = Qv + 214w € T, which, together with (3.44), contradicts the definition of {Q1¢}.
Thus, deg, Q1w > deg, Qv = deg, Qpyt, t € N.

Remark 3.34. By Remark 3.33 we have ayy,, > 1. Hence after constructing at most an infinite
sequence of limit key polynomials, we obtain a set of key polynomials with unbounded degrees.
Such a set of key polynomials is complete by Proposition 3.29 (2).

We iterate the above recursive procedure for constructing key polynomials until we obtain
either a complete set of key polynomials or a key polynomial whose value does not lie in T
We will show in a moment that in the latter case the resulting set of key polynomials is also
complete. The construction of key polynomials stops here. By Remark 3.34 our construction
stops before reaching the ordinal w x w. In §7 we will study further properties of Q.. Among
other things, we will show (Propositions 7.6 and 7.9 and Remark 7.7) that:

(a) if char k, = 0 and rk g = 1 then our constrution gives a complete set of key polyno-
mials of order type at most {Q; }ien J{Quw}

(b) if, in addition, rk v = 1 then the construction produces a sequence of key polynomials
that may be finite or infinite.

Theorem 3.35. The well ordered set Q := {Q;}ica constructed above is a complete set of key
polynomials. In other words, for any element B € T' the R,-module Pg N K[z]| is generated as
an additive group by all the monomials in the QQ; of value 3 or higher, multiplied by elements of
K. In particular, we have
P . N
@ P—ﬁ = Gy, [In, Q"

Ber B+

Proof. We argue by contradiction. First, assume that A does not contain a maximal element.
If {Q;}iea is not complete then A < w X w by Remark 3.34. Then, according to the above
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prescription, our construction could not have stopped at Q and would have produced a further
key polynomial Q. This is a contradiction. Hence Q is complete.

Next, assume that A contains a maximal element A. If Q is not complete then our
construction must have stopped because

Br gl (3.45)

Take an element h € K[z]|. Let h = chQi be the A-standard expansion of h. By (3.45) we
j=0
vA(h) = vy (cin@%) = v (cin@h) = v(h).

This proves that Q is a complete set of key polynomials, contradicting the assumption. Theorem
3.35 is proved. O

have

Proposition 3.36. If (3.41) holds and the sequence {Byittien, is cofinal in T, then the set
Qutw of key polynomials defined above is L-complete. In other words, for any element f3 € f+
any polynomial f € K|x] with v(f) = /5 belongs to the additive subgroup of Pz N K|x] generated
by all the monomials in the Q; of value B or higher, multiplied by elements of K.

Proof. To prove Proposition 3.36, it is sufficient to show that for every positive 5 € f+ and
every h € K|[x] such that v(h) = 3, h belongs to the R,-submodule of K[z]| generated by all the
monomials ¢Q7 such that v (cQ7) > 3.

Take an element h € KJz]|. Since the sequence {B8y4¢}en, is cofinal in T, there exists i of
the form ¢ = £+ t, t € Ny, such that

Bi > v(h). (3.46)
Let .
h = Z Cng (347)
=0

be the i-standard expansion of h. Without loss of generality, we may assume that, writing

h =Y djx’, we have
j=0
vo(d;) >0 for all j (3.48)
(otherwise, multiply A by a suitable element of K). Then the i-standard expansion (3.47) satisfies
the hypotheses of Proposition 3.29 (1). Now, Proposition 3.29 says that

This means, by definition, that kA can be written as a sum of monomials in Q;+; of value at
least v(h), hence it belongs to the ideal generated by all such monomials. This completes the
proof. O

Remark 3.37. The proof of Theorem 3.35 (together with Proposition 3.29 (2)) shows that:
(1) if (3.41) holds and
#H#{oqt | apyr > 1} = o0, (3.49)

then Q4 is a complete set of key polynomials and
(2) if Qg4 is I'-complete then

Qé-i-w U {Qé-i-w}
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is a complete set of key polynomials.
Moreover, we will see below (at the end of §7) that if rk vy =1,

char k, = 0. (3.50)

and Qg4 is not a complete set of key polynomials then the sequence {B¢1¢}ien, is cofinal in I.

In the next five sections we introduce the numerical character ¢;(h) and study the effect
of differential operators o the (); in order to give a more precise description of the form of limit
key polynomials in the case when rk 1y = 1.

4 The numerical character J;(h)

Let i be an ordinal such that @); is defined, and h an element of K[z]. Recall the definition of
in;(h) ((3.21)—(3.22)). In this section we define the numerical character 6;(h), which will play a
crucial role in the rest of the paper. We prove that d;(h) does not increase with i. We also show
that the equality §;(h) = d;+1(h) imposes strong restrictions on in;h.
Let h = i: deQg be an i-standard expansion of h, where each dj; is a Q;-free i-standard
=0

‘]_
expansion. The main definition of this section is: let

di(h) = degg, in;h = max S;(h) (4.1)
in the notation of (3.21)—(3.22).

Definition 4.1. The vertex (l/ (déi(h)J) ,52-(11)) of the Newton polygon A;(h) is called the piv-
otal vertex of A;(h).

Le
t vit(h) = min{y (dﬂQz> ‘ di(h) <j < Si} (4.2)
and

SI(h) = {j e {0i(h) +1,...,8 ( v (din{) = vt (h) }

If the set on the right hand side of (4.2) is empty, we adopt the convention that v;'(h) = oo.
We have 0;(h) > 0 whenever v;(h) < v(h).

Take an ordinal ¢ such that @; and Q; 11 are defined. The fact that ;11 is defined means
that there exists a polynomial h € K|x] such that v;(h) < v(h) (if v;(h) = v(h) for all h € K|x],
the algorithm stops at @;). Take a polynomial h such that v;(h) < v(h). Consider the i-th
Newton polygon of h. Let S;(h) be as in (3.21).

The next Proposition shows that 0;(h) is non-increasing with ¢ and that the equality
di+1(h) = 6;(h) imposes strong restrictions on in;h.

Proposition 4.2. (1) We have
a,-+16,-+1(h) < 52(}1) (43)

(2) If 524_1(]1) = 5Z(h) then
inih = inyd6i(h)’i (Qz + inyzi)éi(h) 5 (44)
where z; is some Q;-free standard expansion, and in;1h contains a monomial of the form
inyd(gi(h%i@%? ) ;in particular,
in,ds, (n), = s, (h),is1- (4.5)
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(3) If di+1(h) = d;(h), then for all j > 0;(h) we have
v (4.01Q1) = visa (k) = v (h) — wih) (4.6)

Proof. We start with three Lemmas. First, consider the (i + 1)-standard expansion of h:

h = Z djin1Qly 1, (4.7)

Jj=0
where the d; ;11 are ();41-free standard expansions.

Lemma 4.3. (1) We have

vi(h) = Ogljigs Vi ( J2+1Q7,+1) = OI<nm {v( ]H—l) + jaiy1Bi}-
(2) Let
Si,i+1 = {j € {O, C ,S} ‘ v; <dj7i+1Qg+1> = Vl(h)}
and jo = max S;ir1. Then 6;(h) = aip1jo + 6i(djg,iv1)-

Proof. (1) Provisionally, let

n= OI<I1]1H Vi < yz—HQH_l) = 0%12 {V( j2+1) +]az+lﬁz}

it = {j €{0,...,s} ‘ v (dj,i-i-ng_H) = M}7
=max S;;,; and ' = a;15" + di(djri41). We want to show that u = v;(h), S}, 1 = Sii+1,
j () q 5 (h) =4 ) ~
Let h= Y dji+1Q),,. Then v;(h —h) > p, so to prove that v;(h) = p it is sufficient
jesl i+1

to prove that v;(h) = pu.
Write dj 41 = dj ,Q + -+ + d, (d H)Q

Write Qi1 = Q' + .
Now dj’,i—l—ng-/}-l = <dz/t QL4+ df;.(d , _H)in(dﬂ’iﬂ) + 4 df) Z) (QO”+1 + y) All the terms

) i\jl )

of the form d’&iQf (ir;) Q?i“myj’_m with s > 8;(dj ;1) satisfy:

i (d;r
( l+1)+ “+d67i.

< MQS< )Q‘“*l’”yﬂ‘ >>vz( Qi) v (@)
vty @) 1 (e m)
o (@) (@)
=i (dy @)

Now for (s = 6;(djs ;41) and m # j') and for s < §;(dj ;1) we have

Q6 (d]/ 1+1)+a1+1]
1+1)

deg, d, Qs< >Q‘““myf"m < deg, dj,(q,
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We have proved that the i-standard expansions of djr7i+1Qg;1 contains an ¢-standard mono-
mial of the form de/, such that v; (de/> =y (dj’,i+1Qg;1)-

All the i-standard monomials appearing in the i-standard expansion of dj,i+1Qg 4 forj < 7',

have degree in « stricly less than deg, de’. Therefore de/ appears also in the i-standard
expansion of h. Thus

vi (h) < (dQ?/> = (dj',i+1Qg;1> =,

so v;(h) < p. The opposite inequality is trivial and (1) is proved. (2) follows immediately from
this. O

Lemma 4.4. Consider two terms of the form ngH and d’Qg;l (where j, 7" € Ng and d and d’
are Q;-free i-standard expansions. Assume that

vi (414, ) <vi (2L (4.8)
and ‘ y

v (dQl,) = v (dQL,). (4.9)
Then j > j'. If at least one of the inequalities (4.8), (4.9) is strict then j > j'.

Proof. Subtract (4.8) from (4.9) and use the definition of v; and the facts that

vi(Qiy1) = aip1Bi < Biy1,
vi(d) = v(d) and v;(d") = v(d'). O
In the notation of Lemma 4.3, let 6;11(h) = min S; ;1.

Definition 4.5. The vertex (v(d,,,(n),i+1),0i+1(h)) is called the characteristic vertex of
Aiyi(h).
Let

t
ingh = inyds; [ 957" (4.10)
j=1

be the factorization of in;h into (monic) irreducible factors in Gy, [in,Q;] [Q;], where § = 6;(h)
and g¢p; is the minimal polynomial of in,Q); over G,, [in, Q;].

Lemma 4.6. We have

Y1i = Oiy1(h) (4.11)
(in particular, d,, i+1 7# 0) and
t
inydy,, ()1 = inuds; [ [ 977 (in, Qi) (4.12)
j=2

Proof. Write
h = Z dgiv1QF + Z dg,is1Q7, .

qES; it1 q€{0,...,5}\S4,i+1

By Lemma 4.3,
inih == Z inidq7i+1iniQ;}+1. (413)

qE€Si,it1
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By definition of ;41 (h), szsz ") is the highest power of in;Q;11 dividing

. . q
g lnidq,i-i-llniQH_l'

qES; it1
Also by definition, we have
n;Qit1 = gui- (4.14)
Now (4.11) follows from (4.13). Also from (4.13), we see that in,dg,.  (n)i4+1 is obtained by
substituting in, Q; into —2_ and (4.12) follows. O

T1i 0
1niQi+11

Now, apply Lemma 4.4 to the monomials dy, ¢ ,+1Ql+1 ) and s, \(h ,+1Ql_f11 . We
have

it+1(h i+v1(h)
<d52+1(h 2+1QZ-:11( )> <v (Cl@i+1 z+1Q,++11( ) (4.15)

by definition of §;;; and

Vi (Clei+1 z+1Q,f11 ) =vi(h) <y <d5l+1(h z+1QZf11(h)) (4.16)
by Lemma 4.3, so the hypotheses of Lemma 4.4 are satisfied. By Lemma 4.4
Oiv1(h) > dir1(h). (4.17)
Since
ai+10i11(h) = aip1710 < degg, injh = 0;(h) (4.18)

by Lemma 4.6 and (4.10), (1) of the Proposition follows.
(2). Assume that §;11(h) = d;(h). Then the above two monomials coincide and

A1 = 1. (419)

Furthermore, we have equality in (4.18), so in;h = inud5i(h)7igf§(h). Combined with (4.19), this
proves (4.4).
The equality (4.5) follows from (4.12) and the fact that 6;11(h) = d;1+1(h).

(3). Assume that 6;41(h) = 6;(h). Fix an integer j > 0;(h). For j' < j, monomials of the
form d;: ZQ contribute nothmg to dj;, Z+1QZ 415 in other words, the coefficient d; ;1 is completely

determined by z dj ZQ
J'=j
Fix an integer j' € {j,...,s;}. Write

-/

J '/
j zQ ] "i (Qz—l—l - Zz = d]/z Z < > H_lZ] _k, (4.20)
=0

where z; is an Q;-free i-standard expansion. Again, the terms on the right hand side of (4.20)
with k& > j contribute nothing to d;;+1Q? i1 For k < j, let djig; denote the coefficient of @’ i1

in the (i + 1)-standard expansion of d;: QF "1z] . To prove (3), it is sufficient to prove that for
all /€ {j,...,s;} and all k € {0,...,j} we have
v (Ayni@sr ) = i () = v () = (), (4.21)

27



To prove (4.21), we start out by noting that v; (dj/iQszfl_k) <y <dj’kng+1), S0
v (dji) = vi (dyri) = (7" = 5)Bi + v (dyrs) - (4.22)

Hence v <dj’kng+1) —vig1(h) = v (dje;) — v (dsip1) + (G — 6)Bigr = (7 — 5)Bi + v (djri) —

v(dsiv1) +(J—0)Bi=v <dj’ng,) — v (d5siQ?) > v} (h) — vi(h), as desired.
This completes the proof of the Proposition. O

Remark 4.7. One way of interpreting Lemma 4.4, together with the inequalities (4.15)—(4.17)
is that the characteristic vertex (v(dy, ., (),i+1); 0i+1(h)) of Aip1(h) always lies above its pivotal
vertex (v(ds, ., (h),i+1)> 0i+1(h)).

Now, assume that Q41 is defined for a certain ordinal number ¢ and that w iterations of
the algorithm of §3 produce an infinite sequence {Qy+ }en,-

Corollary 4.8 (of Proposition 4.2). Assume that the set {t € N | ayyy > 1} is infinite. Then
the set Quiw of key polynomials constructed in §3 is complete.

Proof. Take any element h € K[z]. It is sufficient to show that v;(h) = v(h) for some i of the
form ¢ +t, t € N. Proposition 4.2 (1) says that

52'4_1(]1) < 51(]1) (4.23)

whenever 0;(h) > 0 and ;41 > 1. Since the set {t € N | apy; > 1} is infinite, and the inequality
cannot occur infinitely many times, we have d;(h) = 0 for some i = £+¢, ¢ € N. Then in;h does
not involve );, hence v;(h) = v(h). O

5 Ifrk vy =1 and Case 2b holds then degg, Qi = (Qr1w)

Let ¢ be an ordinal such that Qpy, t € Ny, and Qg4 are defined. To simplify the notation, in
this section we will denote Qp1, by f. Then

degg, f = de(f)- (5.1)
By Proposition 4.2 and Corollary 4.8, there exists ¢y € Ny such that
apre =1 and dppi(f) = ppey (f) for all t > t. (5.2)
Let §(f) denote the stable value dp44(f) for large t. The inequality (5.1) implies that

degg, f = 5(f). (5.3)

Assume that rk g = 1 and Case 2b of §3 holds. The main result of this section says that under
these assumptions equality holds in (5.3).
Let

p=sup{v(Quy) | t € N}.

(here we allow the possibility 3 = oo, which means that the set {v (Q’) | Q" € T'} is unbounded
in f) Saying that we are in Case 2b amounts to saying that 3 € R, that is, 3 < oco.

Below, in Proposition 7.6, we will show that §(f) is of the form §(f) = p for some
eo € Ng. Together with Remark 3.33 this will prove that, under the assumptions of this section,
we have char k, > 0 and ey > 0.

Replacing ¢ by ¢ + s for a suitable positive integer s, we may assume that oy = 1 for all
strictly positive ¢. In what follows, the index i will run over the set {¢ + t}icn,. Let 6 = (f).
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Lemma 5.1. Take polynomials h,g € K|[z] such that deg, h,deg, g < deg, Q;. Let
hg = uQ; + ¢
be the Eucledian division of hg by Q;. Then v(c) = v(hg) < v(u@;).
Proof. We have vy(f) = v(h) and v4(g) = v(g), so vy(hg) = v(hg) = vi(hg). Using Lemma 4.3
we obtain min{v(c), v;(uQ;)} = vi(hg) = ve(hg) = min{v(c), v, (u@;)}. Since
vi(uQi) > ve(uQ;),
we see that v(c) = v;i(hg) = ve(hg) = v(hg) < v;(uQ;) = v(uQ;), as desired. O

Proposition 5.2. For each
i € {0+ then,

we have
deg, f = 5 deg, Q; (5.4)

and 1
B < SV(f) . (5.5)
Proof. The inequality (5.5) is equivalent to saying that
v(f) > 0w (Qe+z+ -+ 2e44) (5.6)

for all ¢ € Ny. This follows from Remark 3.33 (cf. (3.44)). The main point is to prove (5.4).
For 7 of the form ¢+ ¢, t € N, let

= Z a;iQ! (5.7)
=0

be the i-standard expansion of f.
Since «; = 1 for all 7, all the i-standard expansions of f have the same degree n, in Q;.
Let

0(i) = min{v; (f) — vi(f), B — Be}; (5.8)

we have 0(z) > 0.
By (4.6) the quantity v (f) — vi(f) is increasing with i and hence so is (7). Taking into
account the fact that § = lim §;, we have, for ¢ sufficiently large,
1— 00

viag) + 08 — vi(f) = 6(B — Bi) < 0(i). (5.9)

By choosing ¢; > ¢ sufficiently large, we may assume that (5.9) holds for i > /1.
Let a* € K|x] denote a polynomial such that

in,a*ingasy = 1 (5.10)

in G,. According to Lemma 2.6 we may choose a* to be of degree strictly less than deg, Q;
this condition determines in,a* uniquely. Note that

inyasy = inyag; for alli > £ (5.11)
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by Proposition 4.2 (2).
By Proposition 4.2 (2), for all i > ¢ we have

in;f = in,ag5(Q; + in,z)°,
hence in view of (5.10)-(5.11) we have in;(a* f) = (Q; + in,2;)°. In particular,
v(a*f) > vi(a™f) for all i. (5.12)

We claim that multiplying by a* does not affect ¢.
Indeed, applying Lemma 5.1 to the pairs of polynomials

(h, ) = (asi, a”)

and

(h, g9) = (ds—1,i,a"),
we see that after multiplying f by a* and applying Euclidean division by Q; to obtain the i-
standard expansion of a* f, only the remainders in the Euclidean division contribute to in;a* f.
In partcular, d;(a*f) = 6 for all i > ¢.

Thus, replacing f by a* f, we may assume that in,ags; = 1 for all i.

Next, write as; = 1 + a;-f with

v (a}) > B — B> 0 (5.13)

Write o
f=r+1

where

~ 6—1 ‘

f = le + Z ajél %1

=0

and

nye
N PN J
f_athl + Z aﬂlQél‘
j=0+1

(5.9) implies that for all j with 6 < j < ny and all i > ¢;, we have
vi (05, @3,) 2 e, (050, Q1, ) = v (f) > 08 > 08 = wi().
From (5.9) and (5.13) , we see that
vi (af, Q) = v, (af,@1,) = vy (al,) +08u, = Bry = Bu+ 8By, = 0(81) + 08, > 68 > 1i(f).

Hence, for all 7, v (f) > v (f) > v (f) which implies that in; f = in; f and so v; (f) = v; (f) <

v ( ﬂ Since f was chosen of minimal degree with respect to the latter property, we must have
dega} f - dega} =0 dega} QZ' U
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6 Key polynomials and differential operators

This section is devoted to proving some basic results about the effect of differential operators
on key polynomials. Here and below, for a non-negative integer b, 9, will denote the differential
operator %66—;. Given an f-standard expansion h, we are interested in proving lower bounds
on (and, in some cases, exact formulae for) the quantities v(9yh) and vy(Jyh) and the elements
in,Oph and ingOph. In particular, we will give sufficient conditions for the element Oyh to be
non-zero.

Take an ordinal ¢ < ¢ and assume that the key polynomials Q; 1 are defined. Let b; denote
the smallest positive integer which maximizes the quantity w (later in this section, we
will show that b; is necessarily of the form p®, for some e; € Ny Zand, in particular, that b; = 1
if char k, = 0).

Let h be any element of K[x]. One of our main tasks in this section is studying the quan-
tities v (Oph) and v; (Oph). We use the following convention for binomial coefficients: if s < ¢, the
binomial coefficient (f) is considered to be 0. We may view the binomial coefficients as elements

of K via the natural map Z — K.

Notation:

Let p be as defined in the Introduction. If p > 1, for an integer a we shall denote by V(f”)(a)
the p-adic value of a, that is, the greatest power of p which divides a. If p = 1, we adopt the
convention v(P)(a) = 1 for all non-zero a and v (0) = co.

Proposition 6.1. Take an element h € K|z].

(1) For all b € Ny we have

| o

vi(h) = vi (Oph) < 5~ (Bi — v(0,Q4)) - (6.1)

S

)

(2) Let h = Zoding be the i-standard expansion of h. Assume that
‘7:

{iefo,....5} ( v (4:Q]) = () } # {0}

(in particular, we have s > 0). Let dj,-Qg denote the term in the i-standard expansion of
h which minimizes the triple (1/,- (dj,-Qg) P (j),j) in the lexicographical ordering. Let
e =vP)(j) and b(i, h) = bjp®. Then equality holds in (6.1) for b= b(i, h).

Remark 6.2. Let igp = i — 1 if 4 admits an immediate predecessor and let iy be as in (3.10)
otherwise. For all b € N we have

v(0pQi) = vig(0pQi); (6.2)
this holds by Proposition 3.29 (2). In particular v(0, Qi) = vi, (0, Q:). Thus replacing v(0y,Q;)
by v, (0p,Q;) in (6.1) gives rise to an equivalent inequality. Also, v; (9ph) < v (9yh), so replacing
v; (Oph) by v (0ph) in (6.1) gives rise to a true, but an a priori weaker inequality.

Proof of Proposition 6.1. We prove Proposition 6.1 by transfinite induction. For ¢ = 1 we have
b; = 1 and the result is obvious. Assume that ¢ > 1 and that the result is known for all the
ordinals strictly smaller than .
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Lemma 6.3. Consider a pair of ordinals i',i" such that 1" < i” <1i. Then

By —v(0, Qi) B —v(By, Qi)
b'/ < b'” )

(6.3)

Proof. By transfinite induction on the ordinal i — i/, we may assume that i = 7'+, and that
Qi» admits an #'-standard expansion of the form (3.8) or (3.10), depending on whether or
not i” is a limit ordinal. Moreover, we may assume that for every positive integer b we have
V(aBQZ‘H) = Vyy (85@111)

By definition of by, it is sufficient to prove that there exists a strictly positive integer b
such that (6.3) holds with by replaced by b.

We take b := b (i, Q). We have:

Bin — v(95Qir) > v (Qin) — v(05Qin) = vin(Qir) — v (05Qin) =

L 50— vion, 00

Here the first inequality is given by Proposition 3.22 (1), the first equality by Remark 6.2 and
the second equality by Proposition 6.1 (2) applied to ¢’ < 4, which we are allowed to use by the
induction assumption. This completes the proof of the Lemma. O

To prove Proposition 6.1 (1), it is sufficient to prove it for each i-standard monomial
appearing in the i-standard expansion of h. Indeed, assume that the result is true for each
i-standard monomial d;;Q] appearing in the i-standard expansion of h. This means that for
each j we have

v (81)(1]‘@'@?) >v <d]zQz) - bE (Bi —v (8131@@)) .

Thus v;(9ph) > miny (%%Qf) = miny < ng]) 2 (B = v (05,Qi)) = vi(h)— £ (Bi — v (95, Qi)
Let QVZ+1 be such an i-standard monomial. Let 7,41 = (; | j < i) and write
Q’Y:rll — Q'Vz Q%

We want to expand 0Jj j_fll in terms of products of the form Q}*"? (9, Q%) H (05,Qi), where

q <7 and jo + j1 + -+ j; = b. Each such product appears in the sum w1th a certaln positive
integer coefficient that we will now compute explicitly.

To do that, we first prove some general formulae about formal derivatives of products and
powers of polynomials.

Lemma 6.4. For any two polynomials A and B and any positive integer b, we have

b
=> (9;4)(9,;B (6.4)
7=0

Proof. Let m = deg A and n = deg B. By definition, formal derivatives are the coefficients in
Taylor expansions:

AX4Y)=> 0AX)Y" and B(X +Y) = ZOB
=0
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We obtain

m+n b
AB(X +Y) = AX +Y)B(X +Y) =Y | Y 9A(X)d—;B(X) | Y.
b=0 \ j=0
Since the coefficients in the Taylor expansion are uniquely determined, this proves (6.4). O
For positive integers a1, ..., a, and an integer n > ¢, we define the multiplicities ny, ..., ng
of ai,...,aq as follows. Let n; be the number of appearances of the smallest element of
{a1,...,a,} in the sequence ay, ..., a,. Let ng the number of appearances of the second smallest

element, and so on until ny, which is, by definition, the number of appearances of the largest
element.

Notation. Let Cy(a1,...,aq) = n—'

Lemma 6.5. For any polynomial B and any positive integers b and n we have

q
(B = > Culjr,---.Jg)B" "] (9,,B), (6.5)
Jite+iq=b t=1
1<g<n
Proof. Let m = deg B. We have

mn

B(X +Y) = (i aiB(X)YZ) => > ﬁﬁth(X) Y?, (6.6)
i=0

b=0 \Jjit++in=bi=1

where the j; run over non-negative integers.

For each product appearing in parentheses on the right hand side of (6.6), let

g=#{te{l,...n} [j: #0}.

Then we can rewrite (6.6) as

mn q
B(X+Y)" =) > B"]]9,B(X)|Y" (6.7)
b=0 \ji+-+jq=b t=1

where the j; run over strictly positive integers. Now we have to count how often the same product
q
B~ 1] 0;,B(X) appears in the second sum on the right hand side. How many distinct n-tuples
t=1

can we obtain from the numbers ji,..., 7,7 If all the j; are distinct and ¢ < 1, then the number
is n!. But if some of the j;’s are equal, then permuting them only among themselves does
not produce new tuples. Similarly, if ¢ > 2, permuting the (n — ¢) factors in B"~¢ among
themselves does produce new tuples. Let the numbers nq,...,n; be the multiplicities of the

q
numbers ji, ..., jn, defined above. Then the number of appearances of B"~9 [] 0;, B(X) is
t=1

| = Crn(j1s---,7q)- (6.8)

This completes the proof. O
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Lemma 6.6. For any two polynomials A and B and any positive integers b and n, we have

q
WABY) = > Culji,-..dg) B 0,4 [ 9.B), (6.9)
j()+j1+<~~~+jq:b t=1
qsn

b
Proof. By Lemma 6.4, we have 0,(AB™) = ) (0;A4)(0y—;B™). Now Lemma 6.6 follows from
Jjo=0

Lemma 6.5. U

Coming back to the proof of Proposition 6.1 (1), we have

q
WQLE = D0 Oyl d)Q (0,90 [T @500 (6.10)
Jo+ji+-+ig=b t=1
<

where 0 < j; < --- < j4, by Lemma 6.6.
By Proposition 3.29 (2), we have

vi(05,Qi) = v(05,Qi).

We have
Bi — Vi(athi) = i — (8JtQ )

by Remark 6.2 and definition of b;. Further,

(ﬁi — (0, Qi) (6.11)

gw

Vi (Q?Z) — Vi (8J'0Q?) = Vig (sz) — Vig ( JOQ%) < (Bz —v(0h,Qi)), (6.12)

&=

where i is sufficiently large with ig+ = 4, the equality holds because (); does not appear in Q?i
and by Remark 6.2, and the inequality by the induction assumption and in view of Lemma 6.3.
Note that the last inequality in (6.12) is strict whenever jo > 0. Adding the inequalities (6.11)
for 1 <t < ¢ and (6.12), we obtain:

) q
Vi (QZiT) — Vi <Q§” (20Q7) [ ] (9@ )
t=1

<j0+j1+"'+jq
< b,

(6.13)

(Bi —v(05,Qi)) = —(Bi — v(9p,Qi))-

S‘I@

By (6.10), (6.13) and since v is non-negative on N (in particular, v(C,,(j1,...,Jq)) = 0), we
have

i (Q?iT) — (5bQ?ff) <

q
<vi Qi) - i, { (Qé” aan Lo )}

as desired. Proposition 6.1 (1) is proved.

(6.14)
(B — (0, Q1))

S‘I@

Now let the notation be as in Proposition 6.1 (2). To prove this part, we first show that
replacing v;(0ph) by v ((&,Z.Q‘?e) ding_pe) gives equality in (6.1).
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Indeed, we have v;(h)—v ((3,QY") dQi ™" ) = vi(h) = (p*vs(9h, Q) + v(dyi) + (G = PI(Q) =
Pr(Q:) — P (05,Q0) = - (B; — vi(96,Q:)) = £ (B; — vi(b,Q1)).
Therefore by part (1) of the Proposition, v;(9yh) must be at least equal to
(o))
and it is sufficient to prove that the i-standard expansion of Jyh contains a term of the form
ng_pe with v(d) = v ((&,Z.Q‘?e)dji> and all the other terms d’Qg, satisfy either j/ # j — p® or
vi(dQ]) > vi(dQ™).

We proceed by considering all the terms of the form Q?jfll that appear in the ¢-standard

expansion of h.

. q
First, consider such a monomial appearing in d;;Q}. Write b = " j;, where ¢ = p® and

) t=1
j: = b; for all t. For each Q;-free standard monomial Q;’i, appearing in dj;, the corresponding

term in (6.10) is (Zfe)Qg_peQ?i (85, Q:)P", by (6.8). Put d = (Ife)Q?i (8, Q:)P". Hence

v(d) =v ((&,Z.Q‘?e)dji> .

Now for any other choice of jg, j1, ..., j: such that ¢ = p® we would have either jj # 0 or at least

one t such that j; < b;, therefore such terms satisfy strict inequality in (1) since they satisfy

strict equality in (6.12) or in (6.11) and hence their valuation is strictly greater than v;(dQ7™" )
Therefore we have the equality

(5 Q)) — vilOudss @) = 7 (B — v(3h)Q0). (6.15)

Now assume Q?fll is such that v (Q?ff) > v (ding ) By (6.1) we have

v (QE) — v (0Q1) < 2 (8 — v(3h)Q))
Qi) v (aQiy) <y

and using (6.15) we find that v <8b :’fll) > v (ng—pe).

Yi+1

Now consider terms Q" that appear in an expression d;,;(){" such that

v(QLy) =i (4:@) .
It is sufficient to show that for j/ = m — g = j — p° such terms satisfy the strict inequality in
(6.1), so in view of (6.15) we deduce that their valuation is strictly greater than v; <ng P e).

Take one such term. We have two cases. If m > j then for i/ =m —q =7 — p° , we must
have g > p®, so for any choice of jg, ji,-..,J: we must have at jy # 0 or at least one ¢ such that
jt < b;. Therefore such terms satisfy the strict inequality in (6.1) since they satisfy the strict
inequality in (6.12) or (6.11).

If m < j then m = up® with s > e and hence if m — ¢ = j — p® than ¢ = n.p® so n must

be positive so ¢ > p©, so for any choice of jg, ji,...,j: we must have at jo # 0 or at least one ¢t
such that j; < b;, therefore such terms satisfy strict inequality in (1) by (6.12) and (6.11). O
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Remark 6.7. Let

(6.16)

Ii,ma:c = {52 € N0 b, A

B — v(0,,Q:)  Bi — v(9;,Qi) }

By deﬁnitions,~we have b; = min I; ;u4,. Of course, Proposition 6.1 holds equally well with
b replaced by b;. Similarly, Lemma 6.3 holds if the pair (b, b;) is replaced by (b, byr) with
bi’ € N: bi” € Ii”,max-

Corollary 6.8. For each ordinal i < ¢, each b; € I; max s of the form b; = p% for some & € Ny.
In particular, b; = p® for some e; € Ny. In the special case when char k, = 0 we have p = 1
and so Ij ez = {bi} = {1}.

Proof. Write b; = p%u, where p f wif char k, = p > 0, and p® = 1 if char k, = 0. We want to
prove that u = 1. We argue by contradiction. Assume that u > 1. We claim that we can write

b
<bj> Z?l;i =0y o 8{,//, (6.17)
where b, 0" are strictly positive integers such that

V40" = (6.18)

OF

Indeed, we can take b’ = p% and b’ = p®(u—1). Now, by Remark 6.11 below, p does not divide

and

(Zf) and therefore its natural image in K is non-zero and its value is 0 (as usual, we view (2}') as
an element of K via the natural map N — K).

Let i9g = i — 1 if ¢ admits an immediate predecessor and let iy be as in (3.10) otherwise.
We have

Bi = v(05,Qi) = (Bi — v(9y Qi) + (Vig (O Qi) — iy (05, Qi) (6.20)
by (6.2). By (6.17), we have 9; Q; = %ab/(abucgi). Hence

v O Q) v (0,0:) < - (- v (3, Q0)) < & (3-v (3,0))  ©2)

by (6.19), Proposition 6.1 (1) and Lemma 6.3. From (6.20)—(6.21) we obtain

Z_'> (85— v(@5,Q0)) = Z—” (5~ v05,20)

7 7

Bi — v(0w Qi) > (1 -

which contradicts the fact that b; € I; mas- Corollary 6.8 is proved. O

Next, we investigate further the case of equality in (6.1). We give a necessary condition
on h and b for the equality to hold in (6.1) and prove that this condition is sufficient under some
additional assumptions. Finally, we derive a formula for in;h in the case when this criterion for
equality in (6.1) holds. We start with the case when h is a single i-standard monomial.

36



Proposition 6.9. Consider an i-standard monomial h = Qt'. Write

i+1 -
bi = p“ and (6.22)
vi = pu, where p fu if p > 1. (6.23)
(1) If equality holds in (6.1) then
P b, (6.24)

(2) We have the following partial converse to (1). Assume that (6.24) holds and that
either b=p°t% or I;mar = {bi}. (6.25)

Then equality holds in (6.1) if and only if

v <<b/p?j+el_>> — 0. (6.26)

(3) Assume that (6.24)-(6.26) hold. Then

n;0,Q,L T = b/pete in; (Q"Q; 7 (95,Q:i)% ) (6.27)

in particular, 8bQ?f11 £ 0.

Remark 6.10. If b = p®*¢i holds in Proposition 6.9 (2) then # =1 and (b/pﬁ‘+ei) = u, so (6.26)
holds automatically in this case.

Proof of Proposition 6.9. We go through the proof of Proposition 6.1 and analyze the case of
equality at each step. We start with a general remark about binomial coefficients in positive

and mixed characteristic.
v (C)) =0 (6.28)

Remark 6.11. If char k, = 0, we have
for any non-negative integers j < ~; this implies that v(C(j1,...,Jjq)) = 0 for any g¢-tuple
(J1,---+Jq) as in (6.10). If char k, = p > 0, the following is a well known characterization
of the equality (6.28). Let v = ko + pk1 + -+ + p°ks and j = to + pty + -+ + p’ts, with
ko,... ks, to,...,ts € {0,1,...,p—1}, denote the respective p-adic expansions of v and j (where
we allow one of the (s + 1)-tuples (ko,...,ks) and (tg,...,ts) to end in zeroes). Then (6.28)
holds if and only if

kj >t; forall j€{0,...,s}. (6.29)

We recall the proof for the reader’s convenience. For a positive integer n, let v®)(n!)
denotes the p-adic value of n!. If n = ng+ pni + - - - + p°ny is the p-adic expansion of n, we have

2 s
p°—1 p®—1
p_1n2+ +p_1

VPl (nl) =ny +

Let v —j =1lo+ply + - - - + p°l5 be the p-adic expansion of v — j.
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First, suppose that (6.29) holds. Then k; = t; 4+ [; for all j. We have

v () =k + Btk + -+ Bk, (6.30)
vOGY =t + By o+ B, (6.31)
V(=) =1+ z;fT—lllQ oo+ 22, (6.32)

Thus v®) (y!) = v®)(51) + v®)((y — j)!) and (6.28) holds.
Conversely, assume that (6.29) is not true. Let

(j07j0+17”’7j1_17j1) (633)

be a maximal subsequence of (1,...,s) consisting of consecutive integers such that k; # t; 4 (;
for jo < j < j1. Then k’jo = tjo—l—ljo—p, k‘j = tj—l-lj—p—l-l for jo < 7 < 71 and kjl = tj1+lj1+1-
Thus the total contribution of (6.33) to v®)(y1) — v®)(j1) — LP)((y — j)!) is

. i—1 .

P 1 J1 ' plo— 1 . .

1 > (p]—l)—pp_l =j1—Jjo=1
Jj=Jjo+1

The quantity v®) (1) — v®)(j1) — v®)((y — j)!) is obtained by summing the contributions of all
the subsequences of the form (6.33), hence it is strictly positive, as desired.
Below, we will be particularly interested in the following special cases of (6.29):

(1) 1f
vy=pu withp fu (6.34)
then (6.28) implies that p© | j.

(2) We have the following partial converse to (1): if 7 is as in (6.34) and j = p® then (6.29)
holds. Indeed, we have t, =1, t; = 0 for j # e and k. > 1. In this case

<’Y> _ <peu> _ pu(pu—1)... (pu—p°+1)

; . P = u mod m,
J p p-:

since pu — j = p® — j mod m,, for all j.
This is the main situation in which Proposition 6.9 will be applied in this paper.
Lemma 6.12. (1) The inequality in (6.11) is strict unless ji € Ij maq-
(2) Let ~y; and b; be as in (6.22)-(6.23). Assume that jo =0, and

jt S Ii,mam fOT 1<t< q. (635)
If
v(C(j1,---,7q)) =0 (6.36)
then
P b (6.37)

(3) Let the assumptions be as in (2) and assume, in addition, that b = p®*¢. Then (6.36)
holds if and only if ¢ = p® and j1 = --- = j, = b;.
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Proof. (1) is immediate from definitions.
(2) Let {p,...,p%} C I mag with
e, <cp <cg <<y (6.38)

denote the set of distinct natural numbers appearing among {ji,...,j} (cf. (6.35) and
Corollary 6.8). For 1 <j </, let aj = #{t € {l,...,q} | j: <p9}; let ag =0. Then

Z i —aj_1)p (6.39)

j=1
Assume that (6.36) holds. By (6.8) and Remark 6.11 (1), we have
p°la; forl<j</. (6.40)
(6.38)—(6.40) imply (6.37), as desired.
(3) Assume, in addition, that b = p®*¢.

“Only if”. From (6.38)—(6.40), we see that £ = 1 and a; = p°; the result follows immedi-
ately.

“If”. By assumptions, we have { =1 = ¢ and a; = p°. By (6.8) and Remark 6.11 (2), we
have

O(]l,,]q):C(bZ,,bl):<fh>:u mod my
——

and the result follows.

]
We can now finish the proof of Proposition 6.9.
By (6.12) and Lemma 6.12 (1), the inequality in (6.13) is strict unless jo = 0, and
jt € [i,ma:c' (641)

Hence, by Lemma 6.12 (2), the first inequality in (6.14) is strict unless jo = 0 and p®*¢ | b.
This proves (1) of the Proposition.

(2) Assume that (6.24) holds. If b = p®*¢ by Lemma 6.12 (3) there is exactly one term
on the right hand side of (6.10) for which equality holds in (6.13), namely, the term with g = p°

and j1 = -+ = jg = b;. If I; jpae = {b;}, then by Lemma 6.12 (1) there is at most one term
on the right hand side of (6.10) for which equality holds in (6.13); if such a term exists, it is
the term with ¢ = —Z_ and j; = --- = j, = b;. Moreover, this term satisfies equality in (6.13) if

and only if v(C'(b;,...,b;)) =v ((b%z)) =v ((b/p3+ei)) = 0. In either case, there is at most one

b/b;
term on the right hand side of (10.4) for which equality holds in (6.13), and there is exactly one

such term if and only if v <(b /pZ+ei)> = 0. This proves (2).
(3) of the Proposition follows from (2) and (6.10). O

In the notation of Proposition 6.9, assume that (6.24) holds. Let
v = ko +pk1 + - + p°ks,
with ko, ..., ks € {0,1,...,p—1}, denote the p-adic expansion of ~;. Take integer s’ € {0,...,s},
kK, €{0,...,kg}. Let b= (ko +pky+ -+ kg1 + K, )b
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Corollary 6.13. Equality holds in (6.1) for the generalized monomial h = j_fll The element

iniﬁbQ?_ﬁl is given by the formula (6.27).

Proof. Repeated application of Proposition 6.9 (2) and (3), first k¢ times with b replaced by 1,
then k; times with b replaced by p, and so on. O

S .
Let h = Y d;;Q} be an i-standard expansion. Let S; = S;(h), where the notation is
5=0

as in (3.21). Write in;h = ) iny (ding). Write b; = p, as above. Let e be the greatest
JES;

non-negative integer such that for all j € S; we have p€ | j.

Proposition 6.14. (1) If equality holds in (6.1) then

e+e;

P b. (6.42)

(2) Assume that
b= petes. (6.43)

Then equality holds in (6.1). In particular, we have dyh # 0.
(3) Assume that (6.43) holds. Let Sy = {j € S; | p™' does not divide j} Then
in;Oph = Z in; ((i) d;; Q1" (abz—@i)f) ,
L p
]esbz

Proof. (1), (2) and (3) of Proposition 6.14 follow, respectively, from (1), (2) and (3) of Propo-
sition 6.9. [

Corollary 6.15. In the notation of Proposition 6.14, we have
hi K [xpe“i“] . (6.44)
Proof. Take b as in (6.43). Now the result follows from Proposition 6.14 (2). O

Let the notation be as in Proposition 6.14.

Proposition 6.16. Toke an element j € S;. Write j = p®u, where
if chark,=p>0 then p fu.

Assume that

pt | 5 forall§' € S;, 5 <. (6.45)
Let u =ty +tip+ -+ tsp® be the p-adic expansion of u. Then
vi(Ojp;h) = vi(h) — 3 (Bi — v (0, Qi)), (6.46)
in;0jp,h = H ty! | dji (in,-(‘)biQ,-)j + terms involving in;Q;. (6.47)
q=1

For any j' # j we have
vi(h) = vi@w;h) _ vi(h) — vi(Bjp, 1)
J! - J
and the inequality is strict whenever j' & S; or j' < j.

: (6.48)
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Proof. By (6.45) and Proposition 6.9 (1), terms of the form dj/ng, with
j € Sig <

S .
satisfy strict inequality in (6.1) with b = jb;. Thus replacing h by > d;;,Q] does not change the
J'=j
problem. Now apply Proposition 6.14 repeatedly tg + t1 + - - - + t5 times. By (2) of Proposition
6.14,

vi (O, (5:Q7) ) = vi (43:Q7 ) = (B = v(8,Q0)) (6.49)
and
vi(Ojp,h) = vi(h) — j(Bi — v(0,Qi)), (6.50)

this proves (6.46). (6.47) follows from Proposition 6.14 (3), by induction on u. Finally, the last
statement of the Proposition follows from Proposition 6.14 (1) and (3), by induction on w. O

Remark 6.17. Here is an alternative, more explicit explanation of (6.47). Take j' € {j,...,s}
and apply (6.10) to one of the generalized monomials appearing in dj/,-le (we take v; = j' and
b = jb; in (6.10)), in order to decide which values of j' and which decompositions jo+---+j; = b
contribute to in;Oph.

If either j' > j, ¢ # j, jo # 0 or j; # b; for some t € {1,...,j} then, by definition of b;,
the corresponding term in (6.10) is either divisible by @; or has v;-value strictly greater than
v; (ding) — j(Bi — v(0p,;Qi)). This proves (6.47).

Let Y ¢uiQ7 denote the i-standard expansion of Ojp;h. The above considerations prove
q

that cg; coincides with the coefficient of Q? in the i-standard expansion of dj; (O, Qi)j modulo
an element of higher v;-value. In particular, cg; # 0 and

v(co) = vilcor). (6.51)
We have
vleor) = vil@n ) = vi (9, (4:@]) ) = v (4 Q1) = (B = (@, Q). (6:52)
Corollary 6.18. We have

vi(h) = Ogljigs{%(ajbih) +3(Bi — v(0,Qi))} (6.53)

and the minimum in (6.53) is attained for all j € S;, satisfying (6.45).

7 Infinite sequences of key polynomials

In this section, we assume that Q41 is defined for a certain ordinal number ¢ and that w
iterations of the algorithm of §3 produce an infinite sequence {Q4+}en,; in particular, we have
ayyy = 1 for t > 0. Take an element h € K|[z]|. Proposition 4.2 (1) implies that d,1¢(h) stabilizes
for ¢ sufficiently large. Let 6(h) denote this stable value of dp4+(h). For a positive integer ¢, we
have

6e4t(h) =0 = v(h) = vpi(h) = Opse+1(h) = 0.

Thus saying that v(h) = vp1(h) for all ¢ sufficiently large is equivalent to saying that d,4(h) =0
for all ¢ sufficiently large.
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Assume that there exists h € K[x] such that
v(h) > vppe(h)  forallt e N (7.1)

(in other words, dp4¢(h) > 0 for all ¢ € N and the key polynomial @/, is defined); put h = Q-
One of the three main results of this section says that d(h) has the form p® for some e € Ny
(in particular, §(h) = 1 if char k, = 0). To prove this, we use differential operators and their
properties derived in §6 on differential operators.

The second main result of this section is the statement that if

rk vg = 1. (7.2)

and if either char k, =0 or p [ d(h) then the sequences {Bs1¢}ien and vy (h) are unbounded
inT (this is precisely Case 2a of Section 3); in particular, the set Q4. of key polynomials is
I-complete by Proposition 3.36. Finally, in Remark 7.7 (without the hypothesis (7.2)) we take
¢ =1 and assume that oy, = 1 for all t € N and that the sequence {f;}tcn is unbounded in T,
that is, we are in Case 2a. We show that h € K [m‘;].

Replacing ¢ by ¢+t for a sufficiently large ¢, we may assume that ay; = 1 for all (strictly)
positive integers ¢t. Below the ordinal ¢ will run over the set {¢ +¢ | t € Nyo}. By definition, for
all such 7 we have

Qit1 = Qi + z;, (7.3)
where z; is a homogeneous Q-free standard expansion of value f; (cf. Proposition 3.15). By

Proposition 3.20 (2), we have
deg, z; < deg, Q;. (7.4)

Finally,
in,Q; = —inyz; (7.5)

by (3.36).
As before, let

h = Z ;i Q)
§=0

be an i-standard expansion of h for ¢ > ¢, where each dj; is a Q-free standard expansion. Note
that since ay4y = 1 for t € Ny, we have

(677 (67
deg, Qi = [Ty = [ oy = des, @
j=2

j=2
and so q h q h
o €gy B g, _
S [rooeen Il e S o)

Proposition 7.1. For each i of the form i =0+, t € N, we have b;11 < b;.
Proof. Write Q;11 = Q; + z;, as above.

Lemma 7.2. For any b € N we have

Bi — v(0bzi) - Bi — v(0p, Q)
b b; ’

If, in addition, b > b;, then

Biv1 — v(Opzi) - Biv1 — v(0, Qi)

: 5 . (7.8)
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Proof. Let 7' denote the smallest ordinal such that

vi(zi) = v(z); (7.9)

S0 )
by Proposition 3.29 (2) and (7.4), i’ <i. Let z; = > ¢;#Q?, be the '-standard expansion of z;.
j=0
By Lemma 6.3 we have

Bi — V(abin’) < Bir — V(abi, Qi)

. 1
b, by (7.10)
Combining (7.10) with (6.1), we obtain
() — (s - — (0, Qy - 0,
143 (ZZ) vV (abzz) < B V( b, Q ) < B V(asz )’ (711)
b by b;
which gives the inequality (7.7). If b > b;, (7.8) follows immediately by adding the inequality
5i+2—5i < ﬁi+gi_ﬁi to (7.7). ]
Corollary 7.3. We have
u(@bizi) > V(alel) = V(abiQH_l). (7.12)
Proof. The inequality in (7.12) is a special case of (7.7) when b = b;. The equality in (7.12)
follows immediately from the inequality. O

To prove Proposition 7.1, we argue by contradiction. Suppose that
bz’—i—l > bi. (713)
Letting b = b;+1 in Lemma 7.2, we obtain

Biv1 — v(Op, 1 2i) - Biv1 — v(0y, Qi)

. 14
bi+1 b; (7:14)
We have 5 5
bit1 b;
by definition of b;. Combining (7.15) with (7.13), we obtain
iv1 — V(O Qi i1 — Qi
bi+1 b;
We can rewrite (7.14) and (7.16) as
. b;
mln{l/(@bi+1 Ql)v V(abi+1zi)} > 5@'—1—1 - b—i'_l (Bi-i-l - V(aszl)) . (717)
Since O, , Qi1 = Ob,,, Qi + Ob,,, 2i, (7.17) shows that
b;
V(O Qiv1) > Biv1 — b; (Big1 — v(0y, Q1)) ,
which contradicts the definition of b; 1. This completes the proof of Proposition 7.1. O

Corollary 7.4. Keep the above notation. Assume that biy1 = b;. Then Iii1 maz = {bit1}-
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Proof. Take an integer

b > bi—i—l =b;. (718)
Then
b b;
By definition of b;, we have
5-v(0Q) _ B~ v(0,Q) a0
b b;
Adding up (7.19) and (7.20) and using Corollary 7.12, we obtain
Biv1 —v(0Qiv1) _ Bivr — V(O Qit1)
< )
b biy1
80 b & Ii1 maz- This proves the Corollary. O

Recall that §(h) denotes the stable value of d,.+(h) for all sufficiently large integers t. Set
d :=0(h). Write 6 = p®u, where if p > 1 then p } u.
If char k, = 0, equations (3.24) and (4.4) imply that ds_; , # 0 and

ds—_14
6 dsp

g1e = Q¢ + in, (7.21)

If char k, = p > 0 then, according to Proposition 4.2 (2) and using the notation of (3.21), we
see that for i = ¢ +t, t € Ny,

§ —p° e Si(h) (7.22)
(in particular, ds_pe ; # 0) and that
. 11 §—pe,i p°
iZi =\ ——— . 2
s = () (7.23)

We have vy = in,ds, and (3.24) rewrites as
ingh = in,dseg3,. (7.24)

Next, we prove a comparison result which expresses the coefficients dj; in terms of dj, for
6 —p® < j <6, modulo terms of sufficiently high value.

Proposition 7.5. Take ordinals i and ¢1 such that { < {1 < i < {+w. Assume that
dit1(h) = d¢(h) = 0. (7.25)

We have

d&' = d511 mod sz( (7.26)

dsgy )+min{vy (h) v, (h),Be, —Be}

Proof. By definitions, we have Q); = Q¢, +2¢, +- - -+2z;—1. For simplicity, write z := 2y, +-- -+ 2;_1.
We will compare the f;-standard expansion of h with the i-standard one. To this end, we
substitute Q; = @y, + 2 into the i-standard expansion of h. We obtain

h=3 diQ] = dji(Qu +2). (7.27)
j=0 §=0
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6—1 .
First note that deg, > dj; (Qe, +2)) < ddeg, Q;. Hence ds e, is completely determined by
§=0

dsisdsi1,iy-- -, ds;i- Next, by (4.22) in the proof of Proposition 4.2 (3) note that for
0<j<s;—9¢
the coefficient ds;;, is a sum of terms of the form d;ge, with j' > j 4 § satisfying

1% (dj/kgl) = I/g1 (dj/kgl) 2 (j/ — j — 5)5@1 + v (djlfl) .

Hence
Vi, <d5+j,iQ?+]> > v, (), (7.28)

so for 0 < j < 's; — J the terms d5+jviQ?+j in (7.27) contribute nothing to

dot, - m0d P, () g5, ) rmin{u: (h)-vey ()6 Be} (7.29)

Therefore, the only term on the left hand side of (7.27) that affect the element (7.29) is
déi(Qh + Z)(S'

We have 5

S\ s
d5iQ) = ds; » (j) Q) 72,

j=0

For j < 6, the coefficient of le in the ¢;-standard expansion of dg2’ contributes to dse,. Let
us denote this coefficient by d;-. We have

and
I/g(d(gi) = V(d(gi).

By Lemma 4.3 (1), the quantity v4(ds;2?) is the minimum of the vy-values of the summands
appearing in the £;-standard expansion of dg;z7. Thus

1% (d&zj) =v (d(;izj) <y (d; §1> .
Hence
v (€@, ) = ve (4@Q%,) +3 (B — B0 = v (dsiz?) +§ By — B) = v (dsi) + 2452, — B
This shows that V(d;-) > v(dsi) + J (Bey, — Be) > v(dsi) + (Be, — Be), so for j > 0 the term d;le

does not affect the element (7.29). This completes the proof.
O

Proposition 7.6. The integer 6 is of the form § = p° for some e € Ny (in particular, 6 = 1
whenever char k, =0).
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Proof. We give a proof by contradiction. Write
0 =p“,  where if char k, = p > 0 then p [ wv. (7.30)

Suppose that v > 1. By Proposition 7.1, the sequence {b;} is non-increasing with ¢ and hence
stabilizes for t sufficiently large. Let b, denote the stable value of b;. Write by = p>. Let
b = pte>= and let g = dyh. By Proposition 4.2 (2), in;h has the form (4.4) for i = ¢ + ¢, as
t runs over Ny, in particular, p® is the same as in Proposition 6.14. Hence h and b satisfy the
hypotheses of Proposition 6.14. By Proposition 6.14 (3) and (4.4), g # 0 and, for ¢ sufficiently

€

large we have in;g = v in, (d(si@biQi)pe (Ql + inyzi)é_p . In particular,

v(g) > v ((d5i0n Q)" ) + 0Bee =P Bess = v ((d5:00, Q") + 1 (v = )Bese = vilg)

(here is where we are using v > 1), which contradicts the fact that A has minimal degree among
all the polynomials satisfying v(h) > v;(h). O

Remark 7.7. Let the notation be as in Proposition 7.6. Assume, in addition, that the sequence
{Bys+t} is unbounded in T'. Then v(h) ¢ T.
Assume that char k, = char K,

¢{=1and ay =1 forallteN. (7.31)
In particular, by = 1 for all t € N and by, = 1.
We have «a,, = deg, h. Let e, be the integer e of Proposition 7.6 and put &, = I‘fé“;.
We have b = p® = §. We claim that
heK [:176} ; (7.32)
in particular, for all ¥ < § we have
Oyh = 0. (7.33)

Clearly (7.32) implies (7.33). We prove (7.32) by contradiction. Assume the contrary. Let e’
denote the greatest non-negative integer such that h € K |2 ]; by assumption, ¢’ < e,. Then
deg, 8p6/h < deg, h, so there exists ty € N such that

Ut <8pe/ h> =v <8pe/ h> . (7.34)

Take an integer ¢ > to. Let ) cth{ denote the sum of all those monomials appearing in
P+t |/
the t-standard expansion of A whose exponent j is not divisible by p¢ 1. The operator ape,

annihilates all the monomials whose exponents are divisible by p¢ 1. Thus

, j o
Berh = 0, Z i@l | = Z cjt <pe,>Qg v (7.35)
Pt |/ P Vj
Formulas (7.34) and (7.35) imply that the ¢-standard expansion of h contains a monomial of the

form ¢, QY “ and that for each j with p® ' fj we have

Vi, (C]tQ'g) > v <Cpe/7th ) .
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Then for each j with pett fjand j > p¢ we have v, (cth{) > <cpe/ the ) Hence

v (cthg) > v (cpe/iQfe > for all j with p¢ ! [ jand j > e (7.36)

We obtain that for all ¢ sufficiently large the t-standard expansion of h contains a monomial

e’ e,+1
of the form cper’th and all the other monomials not divisible by Q¥ have values strictly
greater than v <cper’th >

Then for all ¢ > t we have v (Cpel7 t) =v <cpe/ ’ t,). Choosing t’ sufficiently large, we obtain

/

v cpefvt,Qf,e <v (C&tl Q?,), which contradicts the definition of 4. This completes the proof of

(7.32) and (7.33).
In fact, by a similar argument this statement can be proved not only for h, but for any
polynomial satisfying the strict inequalities (7.1)).

Remark 7.8. Keep the assumption that {84} is unbounded in T, as well as (7.31), but now
assume that char K = 0 and char k, = p > 0. By studying the coefficient of Qf_l in the
t-standard expansion of A for different ¢, one can prove that 6 = p® = 1. A detailed proof of this
will appear in a subsequent paper.

From now till the end of the paper, assume that rk 1y = 1.

Proposition 7.9. Keep the notation and assumptions stated in the beinning of this section.
Assume that § = p® = 1 in the notation of (7.30) (this assumption holds automatically if
char k, =0). Then the sequences

{vi(h)} (7.37)

and

{Bi}i, (7.38)

where i runs over the set {4+t | t € N}, are unbounded in T.

Proof. Proposition 4.2 (2) implies that v;(h) = ; + v(dy;) and that v(dy;) is independent of i.
Thus to show that the sequence (7.37) is unbounded in T it is sufficient to show that (7.38) is
unbounded in T.

Moreover, to prove that (7.38) is unbounded, it is sufficient to show that the set v(T") itself
is unbounded in T.

To prove the unboundedness of v(7'), let £1 = £+ 1. Let dj, € K[z] denote a polynomial
such that in,dj, inydi, =1in G,. According to Lemma 2.6 we may choose di,, to be of degree
strictly less than deg, Q = deg, Q¢,; this condition determines dj, uniquely. We have that
dig die, — 1 is divisible by Qp, in K[z]. We have vy(dj, ) = v(dj, ) by Proposition 3.29 (2),
hence v;(d}, ) = v(dj,,) for all i > £. We claim that after multiplying h by dj, we still have
6i(diy h) =1for i = ¢+t with t € N sufficiently large.

Indeed, applying Lemma 5.1 to the pairs (h,g) = (dig,dj,,) and (h,g) = (doe,,d7y,),
we see that after multiplying h by dj, and applying Euclidean division by @, to obtain the
{1-standard expansion of dig h, only the remainders in the Euclidean division contribute to
ing, dj, h. In particular, 6;(dy, h) =1 for all i > £.
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Thus multiplying h by dj, does not change the problem. Therefore we may assume that
in,dy; = in;dy; = 1 for all 4 of the form ¢+ ¢, t € N. (7.39)

Clearly, the result of the Proposition does not depend on the choice of zp,; and Q1+ which was
made in §3. We will now modify our choice of 2y, and Qpy; in such a way as to make the
unboundedness v(T') obvious.

In view of (7.39) and Proposition 4.2 (2), we have

ing, h = ing, (Qe, + 2¢,) = ing, (Qe, + doe,) - (7.40)
Comparing the right and the left hand side of (7.40), we obtain
ing, zg, = inylldogl. (7.41)
In particular, (7.41) shows that dgps, # 0 and

V(Qe,) <v(Qe + dog,) - (7.42)
By (7.42), Qu, + doe, € T. Replace zp, by do,, in other words, put
zZp = dogl.

and Qui2 = Qp, + dor,. We now iterate the procedure. Precisely, assume that zp41,... 2.4+ and
Q; for i </ +t+ 1 are already constructed. By Proposition 4.2 (2) and (7.39) we have

ing41h = ingy i 1Qerey1 + g1 204441 (7.43)

Note that (7.43) implies that dg ¢4+ # 0. We now redefine
2oyl 2= do,ett

and Qui412 = Qrytr1 + Zoge41-

This completes the recursive construction. Notice that all the elements zpy; and Qg lie
in a fixed noetherian ring A, namely, the Z-subalgebra of K|z], generated by x and the finitely
many coefficients of the polynomial Q.

Lemma 7.10. Let p1 be a rank one valuation with value group contained in T, centered in a
local noetherian domain (R, M, k) (that is, non-negative on R and strictly positive on M ). Let

® = p(R\{0}) C T
Then ® contains no infinite bounded sequences.

Proof. An infinite ascending sequence a1 < g < ... in ®, bounded above by an element 5 € P,
would give rise to an infinite descending chain of ideals in %, where Ig denotes the p-ideal of R
of value 8. Thus it is sufficient to prove that % has finite length.

Let 0 := p(M) = min(® \ {0}). Since p is of rank one, there exists n € N such that
B < nd. Then M™ C Ig, so that there is a surjective map % —» %. Thus % has finite length,
as desired. O

48



Coming back to the proof of the Proposition, let H = {a € A | v(a) ¢ '} and

M={a€A|v(a)>0}.

Applying Lemma 7.10 to the local noetherian ring ;A”]’M and using the fact that the sequence ;

is strictly increasing with ¢, we obtain that {f;} is unbounded in T, as desired. O

Remark 7.11. Take a polynomial g € K|x] such that v,4.(g) < v(g) for all ¢ € N, not necessarily
of the smallest degree. Let 0 := d§(g) denote the stable value of §;44+(h) fort € N sufficiently
large. Assume that p® = 1 in the notation of (7.30) (in other words, either char k, = 0 or
char k, =p>0and p [J). For i =/ 4+t with t sufficiently large we have v;(g) = v(ds;) + I5;
with v(ds; independent of i. Thus v;(g)) is unbounded in T\

8 Key polynomials indexed by limit ordinals

In this section, we assume that char k, = char K = p > 0. We assume that we have a set of
key polynomials {Q;}ica such that A contains at least one limit ordinal. Let £+ w € A be a
limit ordinal. Assume that the sequence {v(Qpy¢)}sen is bounded in T’ (in other words, we are
in Case 2b of §3). The main result of this section, Proposition 8.2, says that the polynomial
Q@+, can be chosen in such a way that there exist ig = £ 41ty € A, t9 € N (so that ig+ = { +w),
such that the ip-standard expansion of Qg is weakly affine.

Remark 8.1. If deg, Q;,++ = 1 for all ¢ € N, this result was proved by I. Kaplansky. In Ka-
plansky’s terminology x is a limit of a pseudo-convergent sequence {p};<) of algebraic type in
K, and Q4 is a monic polynomial of minimal degree, not fixing the values of {p};<x. See [8],
Lemma 10, page 311.

Let the notation be as in §5.

Proposition 8.2. The polynomial Qgy, can be chosen in such a way that there exist i €
{€+t}ien, such that the i-standard expansion of Quy., is weakly affine and monic of degree p©
m Q;, with

= 1

B < IEV (Qe+w) - (8.1)
Proof. Let f a limit key polynomial with index ¢ 4 w, that is, a monic polynomial of smallest

degree such that
v(f) > vepe(f) forallt e N (8.2)

The idea is to gradually modify the polynomial f until we arrive at g = Q. satisfying the
conclusion of the Proposition.

[ .
Fori=(+t,t € N,let f = > a;;Q! denote the i-standard expansion of f. By Proposition
j=0
5.2, the polynomial f is of degree 6 deg, (Qy. In other words, we have ags; = 1.

Write § = p with eg € N. Choose i > ¢; sufficiently large so that

Bio — ceBe—1 > 2p(B — Biy). (8.3)

Remark 8.3. Assume that there exist i > ig and j, 1 < 7 < p®, such that
v(aji) + B = 2p°°B — pB;.
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Then for each ¢/ > i we have
Vyr (%’i@{) =v (%’z’Q?) > 208 — B + jBi — jB > p°°B > p°° By
Hence iny/ <f - aing) = iny f and
Vyr (f - ain{) <v (f - ain{) .

Thus replacing f by f — aing does not affect the condition (8.2); f — ajZQg is still a limit key
polynomial with index ¢ + w.

Definition 8.4. Take an ¢ > ig. Consider an i-standard expansion (5.7) of f and let ainé be
a monomial appearing in this expansion. We say that ain§ is bad if

v(aj;) +jB < 2p®B — p®B;. (8.4)
and at least one of the following three conditions holds:

(1)

v(azi) < (p® —j)B (8.5)
(2) j is not a power of p

3)

v(az) > (p® —7)B. (8.6)

In view of Remark 8.3, to say that the i-standard expansion (5.7) satisfies the conclusion
of Proposition 8.2 it is sufficient to show that it contains no bad monomials, in which case there
is nothing more to do. Assume that there exists at least one bad monomial. Let j(i) denote the
greatest j € {1,...,p? — 1} such that the monomial ajZQ; is bad. Let j*(i) denote the element
j € {1,...,p° — 1} which minimizes the pair (v(a;;) + jfB;, —j) in the lexicographical ordering
among all the elements of {1,...,p® — 1} such that the monomial ain§ is bad.

Take ¢ > ig. To finish the proof of Proposition 8.2, we will first prove the following three
Lemmas:

Lemma 8.5. We have

Ji+1) < (i) (8.7)
and
JoE+1) <j%3). (8.8)
Ifj €{4(@),5°(@@)} then
in,,ajﬂ-_,_l == in,,aji. (89)

Lemma 8.6. If j € {j(i),j*(i)} then (8.5) does not hold.
Lemma 8.7. If j = j(i) then (8.6) holds.

According to Lemmas 8.6 and 8.7, if j = j(4) then (8.6) must hold. In that case, we will
prove that increasing i, if necessary, and replacing f by f— ain§- preserves the strict inequalities
(8.2) for all ¢ and either eliminates the last bad monomial or strictly decreases j(7).

At that point the proof of Proposition 8.2 will be finished by induction on j(i).
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Proof of Lemma 8.5. First, suppose j = j(i). Since j is the greatest element of {1,...,p? — 1}
satisfying (8.4), and one of the conditions (1)-(3) of Definition 8.4, any j' € {j +1,...,p% — 1}
satisfying (8.4) is a power of p and

v(aji) = (p™ — j')B. (8.10)

We want to analyze the monomial aMHQg 4 in the (74 1)-standard expansion of f. To do that,
write

5
f= Z aji(Qiyr — 2i) . (8.11)
/=0

Now, terms in (8.11) with j/ < j do not affect the statement of the Lemma. We claim that the
same is true of the terms with 5/ > j. Indeed, take a

jJelj+1,...,8}

Write j/ = p¢. Then

aji(Qiv1 — 2z = aj'iinl —ajzl . (8.12)
In general, the right hand side of (8.12) need not be an (i 4+ 1)-standard expansion, since
deg, aji; 2! . may be quite large, even as large or larger than deg, inl. However, the (i + 1)-
standard expansion of a;,;(Qi+1 — zi)pE, is obtained from it by iterating Fuclidean division by

!

Qi+1. The first Euclidean division we perform consists of writing ajrizf "= Qi+19 + h with
deg, h < deg, Q;+1. We have

/ / /
p° ) _ p° ) _ p°
Vp_1 (aj/,-zi > =V (aj/,-zi > = Vi4+1 (aj/,-zi s

ve-1(h) = v(h) = vita(h)
and
Vir1(Qir19) — ve—1(Qiv19) > Vig1(Qit1) — ve—1(Qiv1) = Biy1 — aeBi—1.

Hence vj+1(Qit19) — (Bix1 — aefBe—1) > Vit1 (ajrizfe > = vit1(h) > p®pB;. This implies that

all the new monomials appearing after all the subsequent Euclidean divisions have v;i-value
greater than or equal to p®f3; + (Bix1 — agfr—1), and hence, in view of (8.3)-(8.4), strictly
greater than v(aj;) + jBi+1. In particular, if such a new monomial is of the form d@’ 41, With d
and Q;41-free standard expansion, we have v(d) > v(aj;). This proves that the passage to an
(¢ + 1)-standard expansion does not affect in,aj;, and (8.9) holds for j = j(i).

The fact that all the new monomials arising from iterated Euclidean divisions of

!

ajri (Qiy1 — )", i’ >,
have v;1-value greater than or equal to
P Bi + (Bir1 — awuPe-1),

together with (8.3)—(8.4) also shows that after the passage to the (7 + 1)-standard expansion,

no new bad monomials a;r Z+1Qz 41 are produced with j' > j (the monomial aj, ,+1Q2 41 May or
may not be bad). This proves (8.7).

ol



The proof of the Lemma in the case j = j°(7) is very similar to that of j = j(7), except for
the following minor change. We can no longer assert that j’ is a power of p. On the other hand,
J' satisfies v(aj;) + j'B; > vi(f), which allows us to use similar arguments as in the j = j(i)
case. This completes the proof of Lemma 8.5. O

Proof of Lemma 8.6. We give a proof by contradiction. Suppose that j = j (7) and that (8.5)
holds for this j. (8.5) can be rewritten as v(aj;) + j5 < p®B. Combining this with (8.9) we
obtain that (8.5) holds with i replaced by i + 1,

v(ajiv1) +JB < 2p°°B — p®Bisa. (8.13)
so the monomial aj,i+1Qg+1 is also bad and j(i + 1) = j(¢). By induction on ¢’ > i we see that
j(i") is independent of ', so the i’-standard expansion of f contains a monomial ajing, with

v (%’i/@?r) = v(ajy) + By = viaj;) + jBy < v(aj) + jB.

Then p® By = v (f) < v(aj)+j B < pcp for all i/, hence the least upper bound of 3; is bounded
above by Z%V(aji) + j and hence is strictly less than §. This contradicts the definition of 3.
The proof in the case j = 7°(7) is similar to that with j = j(¢) and we omit it. O

Proof of Lemma 8.7. We argue by contradiction. Assume that j = j(i) and that (8.6) does not
hold. In view of Lemma 8.6 this implies that

v(aji) + jB = p™B. (8.14)
Then, by definition of j(i), j is not a power of p. Write j = p°u, v > 2 and p } u, and
Qit1 = Qi + 2.
Lemma 8.6, applied to j°(i), implies that
v(aj;)+ j'B > p®p for all j € {1,...,p%}. (8.15)

Let b = p°bs,. Arguing as in the proof of Lemma 8.5, we can show that j(i) remains unchanged
as i increases. Take ¢ sufficiently large so that

vi(Opf) = v(sf)- (8.16)

Moreover, after suitably increasing ¢ and i, we may assume that b, = b; = b, deg, Q¢ = deg, Q;
and ¢ < i. By Corollary 7.4 there is at most one value of ¢ = £ +t, t € N, for which #1; ;0 > 1.
Hence we may assume, in addition, that I; ;,q, = {b;}. Finally, we will assume that

Bi — Be > 2b;p® (B — B;). (8.17)

~ J
Let f =) asi41Q7,, be the (i + 1)-standard expansion of f and let f = > as;11Q7, ;.
s =0

S
Claim. We have S, ;41 (f) N{1,...,7—1} # 0, that is, S; i1 (f) contains an element j" such
that 1 < j' < j.
Proof of Claim. We argue by contradiction. Assume that there is no such j’, that is,

{7} = Siaer (F) \ {0}, (8.18)
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We will now show that
0¢S;iit1(0pf) (8.19)

which will contradict (8.16).
First of all, for each polynomial a with

deg, a < deg, Q; (8.20)

and each b € N we have

b b
vi(Oya) = ve(Oya) > vi(a) — b—é(ﬁz = (0, Qi) > vi(a) — F(ﬁi — (0, Qi) (8.21)
by Proposition 6.1. Next, for any positive integers s and b, consider dy (QF). We have

S S b,
vi(Qy Q) = vi(QF) — (B = (95, Q5))- (8:22)
by Proposition 6.1. Moreover, consider the case b =band s = j in (8.22). Then, by Proposition
6.9, equality holds in (8.22) since (Ife) = u # 0. Proposition 6.9 (3) says that

in;0,Q) = u in; <Q§"Pe(abiQi)Pe) . (8.23)

Next, for any positive integers s and b’ and a polynomial a satisfying (8.20), consider dy (aQ, ;).

Again, we have
/

(O aQi) > vi(0Qir) — (B~ v(30,Q0) (824)

by Proposition 6.1. Note that, together with (8.17) and (8.18) this implies that

vi(Oh(as:41Q511)) > vilaj i1 QL) — p°(Bi — v(05,Qi))  for s # j. (8.25)

b/
By the generalized Leibnitz rule, we have Oy (as,+1Q5 1) = > (alas,prl@b/_l@f“).

Letting b’ = b, s = j, a = a; 11, using the equality in (8.22) and the strict inequality (8.21)
for both a;;11 and z;, we see that all the terms coming from the differentiation of a;;11 and z;

are negligible, so that v; <8b(aj,i+1Qg+l> =y (aj,i+1Qg+1> —p° (B — v (0p;Q;)) and (comparing
with (8.23)),

in; (ab (aj7i+1Qg'+1>> = uin; (Qg;{’e (abiQi)pj . (8.26)

Combining (8.25) with (8.26) we see that S; ;+1(9f) = {j —p°}. This proves (8.19), which gives
the desired contradiction. This completes the proof of the Claim.

Now, let j/ be as in the Claim. Then v(aj i41) + 5’ By11 < v(aji41) + jBi+1 and

viaj i) +5'8 < vlaji) + 5B,

which contradicts (8.14) and (8.15).
This completes the proof of Lemma 8.7. O
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Let j = j(i). By Lemmas 8.6 and 8.7 the inequality (8.6) holds for j.

By Lemma 8.5 (8.9), in,aj; is independent of i.

Since 3 — B can be made arbitrarily small as t — oo, by (8.6), taking 4; sufficiently large,
we can ensure that

v (%z‘@fl) > 23 — p B, . (8.27)

Take the smallest 4; satisfying (8.27). By the minimality of iy, Lemma 8.5 (8.9) and induction
on ¢, i <4’ < iy, we see that the monomial a;i@Q’, remains bad for i <4 < iy and that

v (aji) =V (ajil) . (828)

From (8.27)—(8.28) we obtain
v <aji1Qfl> > 2B — p ;. (8.29)

Replace f by f — ajingl; Remark 8.3 says that strict inequality (8.2) is satisfied with f replaced

by f — a; ngl. This procedure strictly decreases the integer j(i). Hence after finitely many
repetitions of this procedure we obtain a polynomial f containing no bad monomials. The non-
existence of bad monomials is preserved as we pass from i to i+1. Thus, by choosing ¢ sufficiently
large, we may assume that f contains no bad monomials; we will make this assumption from
now on.
If Quy = f satisfies the conclusion of Proposition 8.2 there is nothing more to prove.
Otherwise, there exists j € {1,...,p® — 1} such that

v(aji) + 38 > 2p°B — p™B;. (8.30)
Let A denote the set of all such j. Replace f by f— > aing . Remark 8.3 says that strict
jeA

inequality (8.2) is satisfied for this new f. In this way, we obtain a polynomial f such that
Q1w = f satisfies the conclusion of Proposition 8.2. This completes the proof of Proposition

8.2. O
Remark 8.8. For i > ig let S; = {j e{l,...,p} | aji # 0 and v(aj;) = (p© —j)B}. Write
1) . 3 .
[ = aiQl = 3 a;i(Qit1 — z)’. Opening the parentheses on the right hand side of this
j=0 j=0

formula, we can derive information about the coefficients a; ;1 in the (i41)-standard expansion
of f. Namely, the absence of bad monomials in the i-standard expansion and the inequality
v(aj;)+jB > 2p® 3 —p®B; ensures that the terms aj;(Qi+1 — ;)7 with j ¢ S; contribute nothing
to Si11. For j € S; the terms aji(Qiv1 — 2;)7 may contribute to ajr7i+1Qg;_1 for 7/ > j. However,
the inequality (7.12) implies that this contribution has value strictly greater than (p® — j')0.
Hence the sets

S = { je {1,...,pe°}‘ aji # 0 and v(aj) = (p®° —j)B}
and {in,aj;| j € S} are independent of i for i > iy.

Remark 8.9. We do not claim that the property that f is a weakly affine expansion in @Q; is
preserved when we pass from ¢ to some other ordinal i + ¢, ¢ € N. However, the above results
show that for any ¢ > i of the form i = ¢ +1¢, t € Ng, f is a sum of a weakly affine expansion
in @y all of whose monomials a;i@?, for j > 0 lie on the critical line v(aj;) = (p® — j)B and
another standard expansion of degree strictly less than p in @Q);, all of whose monomials have
value greater than or equal to 2p® 3 — p® Sy
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