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1 INTRODUCTION 

1.1 Optimization of complex energy systems 

Energy systems are getting more and more complex, 
and difficult to assess because of (i) the variability of 
the renewable power sources and of the demand, (ii) 
the resultant necessity of storage and (iii) the presence 
of different and new energy vectors. The modelling 
and simulation software Odyssey (Guinot 2013) ena-
bles the realization of techno-economic optimizations 
of such energy systems design and operation. How-
ever, many parameters used to simulate the systems 
are uncertain (e.g. static component performances or 
economic properties, but also time series of produc-
tion or load profiles) and it is necessary to evaluate 
the impact of these uncertainties on the design and 
operation arising from the optimization process to 
help decision-making about these systems. 

1.2 Problem statement 

Up to now techno economic studies carried out with 
Odyssey, as with most other similar simulation tools, 
have not taken into account uncertainties, but only 
have provided sensitivity analysis on uncertain key 
input parameters. Thus, the objective of our work is 
to develop a comprehensive approach to enhance the 
platform with capacities of uncertainty management, 
from the identification of the main sources of uncer-
tainty to results analysis and support to decision mak-
ing.  

We identified two main ways to account for the un-
certainty influence on the results of a techno-eco-
nomic optimization. The first one consists in optimiz-
ing the system taking into account the uncertain 
parameters so as to get results robust to the considered 
uncertainties. The second way consists in optimizing 
the system and then apply the uncertainties to evalu-
ate the sensitivity of this optimized design to uncer-
tainties; this paper presents an application of this sec-
ond one. In the first part, we will present a 4-step 
methodology for uncertainty assessment. In the sec-
ond part, we will present a representative example of 
energy system optimization, which allows dealing 
with problematic of competition between technolo-
gies, the problematic of energy storage in off-grid 
power-system and the optimization of this system de-
sign and operation without uncertainty. In the third 
part, we will apply our methodology on the described 
study case, showing how we modelled uncertainties 
on selected parameters and how to assess the sensitiv-
ity of results to these uncertainties. Finally, the fourth 
part will expose our conclusions and give directions 
for our future research work.  

2 PROPOSED METHODOLOGY 

The methodology of uncertainty treatment proposed 
and implemented in this work is based on the four-
steps approach described by de Rocquigny (de 
Rocquigny 2006a, b), schematized in Figure 1. This 
methodology is summarized below. 

ABSTRACT: For the optimization of renewable energy systems, uncertainties associated to technical and eco-
nomic parameters are scarcely taken into account, which may lead to a weak confidence in results. In this paper, 
we propose and investigate a 4-steps methodology for uncertainty sensitivity assessment, with the objective to 
improve confidence in the assessment results and to support decision-making process following techno-economic 
optimization of the design and the operation of an autonomous power system. The methodology is applied to off-
grid system including photovoltaic production, battery and hydrogen components (electrolyser, pressure storage and 
fuel cell). This energy system is modelled and optimized with Odyssey – a simulation software developed by CEA-
LITEN since 2010. We focus on static parametrical uncertainties, linked to the energy system parameters. 



Figure 1. Uncertainty analysis common framework. 

2.1 Model of the system 

For step A, we assume that the considered energy sys-
tem model is available and implemented in the soft-
ware Odyssey, used as a black box.  

The entries of this black box are technical and eco-
nomic parameters divided in two types: design varia-
bles and uncertain parameters. The uncertain param-
eters are arbitrarily decided by the decision-maker or 
by the software user. On the contrary, the design var-
iables can be set, and even optimized, like the optimi-
zation variables in Table 1. The next part will de-
scribe with precision the model of our case study. 

 The outputs of the black box are technical and eco-
nomic indicators, which assess the performances of 
the design of the system. These indicators will be de-
scribed later. 

2.2 Uncertainty modelling 

Regarding the quantification of sources of uncer-
tainty, at step B, we model the sources of uncertainty 
in a probabilistic framework, with probabilistic den-
sity laws. In this study, we assume that all the consid-
ered uncertainties are independent. 

 The three classical probabilistic laws are consid-
ered: uniform, beta and Weibull, detailed in Table 3, 
in paragraph 4.1 where the whole uncertainty model-
ling is applied to our study case. 

2.3 Uncertainty propagation 

At step C, the propagation of uncertainties allows us 
to see how the outputs of the model respond to the 
uncertainties: we achieved this by coupling a Monte 
Carlo launcher provided by the Uranie software (Bou-
loré 2012) and the executable Odyssey, as schema-
tized in Figure 2.  

 

Figure 2. Odyssey/ Uranie coupling. 

2.4 Sensitivity analysis 

Finally, at step C’, the sensitivity analysis permits to 
identify the uncertainties that have the strongest influ-
ence on the outputs of the model. This identification 
gives us the possibility to try to reduce the uncertainty 
of the most influent sources, in order to reduce the 
uncertainty of the outputs and facilitate decision mak-
ing (Borgonovo 2016). Among the different methods 
of sensitivity analysis, we chose the Morris method 
and the Sobol indexes computation, which are closely 
complementary. 

The Morris method (Morris 1991) allows first to 
classify the uncertain parameters in three categories: 

- the parameters with negligible effects, 
- the parameters with linear effect and without 

interaction, 
- the parameters with nonlinear effects and/or 

interactions (without distinction of these two 
effect types). 

This screening method presents the advantage to 
sort the uncertain parameters with a limited calcula-
tion cost. In fact, the Morris method requires N code 
computations, with: 

N = 𝑟 ∗ (𝑑 + 1)      (1) 

with: 

- 𝑟 ∈ ⟦4 ; 10⟧, 
- d: number of uncertain parameters. 

We used the Morris method to eliminate the uncer-
tain parameters with negligible effects on the output 
indicators, in order to calculate the Sobol indexes 
(Sobol 1993). This second part of the sensitivity anal-
ysis requires many more code computations, which 
explains why the Morris method is relevant to use be-
fore. Indeed, the calculation on the Sobol indexes re-
quired N code computations, with: 

N = 𝑛 ∗ (𝑑 + 2)     (2) 
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with: 

- n: size of the sample, 
- d: number of uncertain parameters. 

The Morris method and the Sobol indexes computa-
tion combination compose the sensitivity analysis 
step. 

3 MODELLING AND OPTIMIZATION OF THE 
SYSTEM WITHOUT UNCERTAINTY 

3.1 Case study description 

The case study investigated in this paper is a stand-
alone power system located in Nigeria and is shown 
on Figure 3. It includes: 

- an electrical load (Load), 
- a photovoltaic (PV) plant, 
- a bank of Lead-acid batteries, 
- a complete hydrogen chain made of: a PEM 

electrolyser, a pressurized tank to store the hy-
drogen and a PEM fuel cell. 

This example is representative of (i) the operating 
competition occurring between batteries and a hydro-
gen chain, (ii) the problematic of energy storage in 
off-grid power-system, and (iii) the PV over-sizing 
linked to the load satisfaction research. 

The implemented power management strategy is 
based on the on/off switches of the electrolyser (ELY) 
and the fuel cell (FC), as was originally developed by 
Ulleberg (Ulleberg 2004), and exploited on a similar 
case by Guinot et al. (Guinot et al. 2015). The opera-
tion depends on the state of charge (SOC) of the bat-
tery and on levels fixing switching operations the fuel 
cell and the electrolyser (FC+, FC-, ELY- and ELY-, 
i.e. the operation parameters) given in Figure 3. 

In this case study, the replacement of the compo-
nents is not considered. 

 

Figure 3. Architecture of the case study.

Figure 4. Power management strategy of hydrogen chain. 

3.2 Optimization criteria and variables 

The operation parameters are considered constant 
during the whole exploitation simulation. The optimi-
zation of the system operation consists in finding the 
best suited operation parameters to minimize both 
electrical cost and unsatisfied load, as for any other 
design parameters.  No distinction is made between 
plant and controller optimization problems, as it 
would have been necessary if the operation parame-
ters had been evolving according to the dynamic of 
the system (Fathy et al. 2001). However, in this study 
the operation are not optimized. 

We selected as optimization variables the five di-
mensioning variables shown in Table 1. 

 
Table 1. Optimization variables _______________________________________________ 
Variable       Units  Optimization borders                _________________  
             Minimum Maximum _______________________________________________ 
Number of Modules PV*   -    1        no 
Number of Battery Units**  -    1   150 
Number of electrolyze cells  -    5   no 
Fuel Cell Stack Max Power  W    1   no 
Volume of pressure tank   m3    1   no ______________________________________________ 
* Each module has a peak power of 1 kWp. 
** Each unit has a rated capacity of 10 kWh. 

Figure 5. Pareto front resulting from the optimization of the sys-
tem. 
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 Odyssey multicriteria optimization process uses a 
genetic algorithm in order to minimize the standard 
Levelized Electricity Cost (LEC) in €/MWh on the 
one hand and to minimize the unsatisfied load (UL) 
in %, i.e. the energy based percentage of unmet elec-
trical load, on the other hand. Therefore, two objec-
tive functions are in competition. It is often observed 
that lowering the load satisfaction, by reducing the 
storage system size for example, leads to a lower cost 
of the system and thus the cost of the produced elec-
tricity. While on the contrary, improving the satisfac-
tion of the load by oversizing the system tends to in-
crease the cost of the produced electricity.  

The simultaneous optimization of design and oper-
ation parameters allows to take maximum benefit 
from each optimized design. 

The multicriteria algorithm used in this work is the 
Strength Pareto Evolutionary Algorithm 2 (Zitzler et 
al. 2001). 

3.3 Optimization results 

Due to the competition between both optimization 
criteria LEC and UL, the optimization results take the 
shape of a Pareto front as on Figure 5. On this Pareto 
front, four different design points were selected cor-
responding to different indicators values (LEC and 
UL). We selected the point according to the UL and 
we defined four different cases named from their UL 
value and with the designs given in Table 2. 

Table 2. Optimized study cases design and indicators __________________________________________________ 
Case           0   01   05    1 __________________________________________________ 
Number of Modules PV (-)   735  735  660  600 
Number of Battery Units (-)   146  145  135  138 
Number of electrolysis cells (-)  8   5   5   5 
Fuel Cell Stack Max Power (W) 43,500 10,500 5000    5000 
Volume of pressure tank (m3)  31   16   3.5  3.5 __________________________________________________ 
Unsatisfied load (%)    0   0.1  0.5  1 
LEC (€/MWh)      404.9  336.1  295.5  280.2 
Unused Primary Production (%) 39.2 39.7  33.1  26.8 __________________________________________________ 

 

The resulting cost distribution for the four selected 
cases given in Figure 6 illustrate the relative im-
portance of the component costs within the overall 
system cost. We noticed that the component influenc-
ing the most the price was the PV array, which con-
tributes for more than the half of it, in every case, fol-
lowed by the battery bank (electrical storage). The 
fuel cell has a significant part in the price only in the 
case 0, which is intuitive regarding to the maximal 
power of the fuel cell stack (Table 2). 

This part describes the way we identified and se-
lected the optimal system designs without uncertainty 
consideration. In the following, we will investigate 
the influence of uncertainties on the selected cases 
(optimized without uncertainties) and through them 
on the Pareto front. In fact, these four cases show sim-
ilar cost distributions and thereby, it is interesting to 
observe if applying uncertainties may modify the 
comparison between them. As we optimized operat-
ing parameters, it will however not be possible to 
check whether operating parameters may counter-bal-
ance the effect of uncertainties on the design or not.  

4 APPLICATION OF THE PROPOSED 
METHODOLOGY TO THE CASE STUDY 

4.1 Uncertainty Modelling  

In this paper, we decid to focus on static parametrical 
uncertainties, linked to the energy system parameters. 
We have identified 25 parameters sources of uncer-
tainty, all with an epistemic nature. In fact, the param-
eters of components that are not completely mature 
(such as the electrolyser and the fuel cell) are not well 
known. Moreover, even the mature components do 
not have parameters with perfectly known values. 

An extensive literature research has been carried 
out to identify existing, validated or accepted uncer-
tainty probabilistic models for components of energy 
systems. Table 3 summarizes the different uncertain 
characteristics of the system components considered 
in the study, with their associated probability distri-
bution, and with the reference for the chosen uncer-
tainty model. Uniform probability distributions have 
been associated to the uncertain characteristics of the 

Case 0 Case 01 

  
Case 05 Case 1 

  
      

 
  PV Array  Fuel Cell Stack 

       

 
  Electrical Storage Bank  H2 Tank 

      

 
  Electrolyser Stack   

 
Figure 6. Cost distributions for the 4 different cases. 

       

55%

19%

3%

19%

4%

66%

22%

2%
6% 4%

68%

24%

2%

3%
3%

65%

26%

3%
3% 3%



innovative components (in order to report the equi-
probability between the possible values) and to the 
uncertain parameters of mature components when no 
other “better” (e.g. from expert judgements) distribu-
tion is available. 

There are too many uncertain parameters to be de-
scribed exhaustively, but the following subsections 
will focus on three particularity types. 

4.1.1 Uncertain parameters modelled by polynomial 
models 

Three uncertain parameters, i.e. the cell voltage of the 
electrolyser, the efficiency of the fuel cell and the 
CAPEX of the hydrogen pressure tank are modelled 
by polynomials, respectively functions of the current 
density in the electrolyser, the pressure (P/Pnominal) 
of the fuel cell and the volume of the hydrogen pres-
sure tank. We assumed that only the constant coeffi-
cient was uncertain, thus generating an area of possi-
ble values instead of a curve. 

4.1.2 Uncertain parameters of the photovoltaic pan-
els 

No technical parameter of the photovoltaic panels 
was considered as uncertain in this paper. This is due 
to the fact that the solar production is defined directly 
by a time series data representing the electrical pro-
duction, not considered as uncertain in this paper. 

4.2  Uncertainty propagation through Odyssey 

The immediate effect of the uncertainties are ob-
served thanks to the Monte Carlo approach using the 
Odyssey model. Then the dispersions of the indica-
tors (LEC and unmet load) are analysed. They are not 
the same for these two indicators and they depend on 
the case, i.e. on the design of the system. A realization 
of all the uncertain parameters is sampled, and based 
on this realization the system is simulated using its 
Odyssey model to propagate the uncertainty on the 
model output performance indicators (UL and LEC). 
This simulation is iterated for 300 Monte Carlo his-
tory. The results are given in Figure 7. 

 

Table 3. Uncertain parameters and associated prob-
ability distributions (Uniform, Beta or Weibull) 
__________________________________________________ 
Component 
Parameter    Law      Reference 

Unit __________________________________________________ 
PV 
CAPEX     β [α = 1.8;     IRENA (2016) 
 €/Wp      β = 6; 

Min = 0.374; 
Max = 3.165] 

OPEX     U [2; 10]    i.d.* 
 % CAPEX __________________________________________________ 
Battery bank 
CAPEX     β [α = 1.31;   Battke et al. 2013 

€/Wh      β = 3.5;  
Min = 0.102; 
Max = 0.354] 

OPEX     U [2; 10]    i.d.* 
% CAPEX 

Capacity loss    U [1.4E-5; 4.2E-5] Riffonneau et al. 2007 
Wh/h 

Self-discharge   U [3.75E-5; 1.4E-4] IRENA 2017 
W 

Charge efficiency β [α = 1; β = 4;  Battke et al. 2013 
-       Min = 0.8;  

Max = 0.9] 
Discharge efficiency β [α = 1; β = 4;  Battke et al. 2013 

-       Min = 0.8; 
Max = 0.9] __________________________________________________ 

Electrolyser 
CAPEX     U [6.5; 13.1]   i.d.* 
 €/W 
OPEX     U [2; 10]    i.d.* 

% CAPEX  
Degradation    U [0.4; 15]    Bertuccioli et al. 2014 
 µV/h 
Cell voltage**  U [1.39; 1.54]   i.d.* __________________________________________________ 
FC 
CAPEX     U [2.2; 8]    i.d.* 
 €/W 
OPEX     U [2; 10]    i.d.* 

% CAPEX  
Degradation   U [0.45; 1.35]   Kurtz et al. 2015 

µ%/h 
Efficiency**   U [0.30; 0.34]   FutureE Fuel Cell 
              Solutions GmbH __________________________________________________ 
H2 tank  
CAPEX**    U [18,055; 28,239] i.d.* 
OPEX     U [2; 10]    i.d.* 

% CAPEX __________________________________________________ 

* internal data 
** see 4.1.1 

  



Figure 7. LEC and UL indicators for the four selected design 
configurations with uncertainties. 

 

We observe the relative dispersion of the LEC and 
the unmet load, calculated by the ratio of the standard 
deviation and the average (Fig. 8). The relative dis-
persion of the unmet load decreases significantly 
from case 0 to case 1, i.e. inversely to the nominal 
unmet load characteristic of the design. While the rel-
ative dispersion of the LEC increases slowly from 
case 0 to case 1, i.e. also inversely to the nominal LEC 
characteristic of the design. 

4.3 Sensitivity assessment 

After propagating uncertainties, the sensitivity analy-
sis described below aims to identify the most influent 
uncertain parameters on the output variance. 

4.3.1 Application of Morris method 

The Morris method permits us to select those uncer-
tain parameters that have a non negligible influence 
on the output indicator (marked with + in the Table 
4). Both for the LEC and the UL, whatever the design 
configuration, the method eliminates the same param-
eters.  

 
Figure 8. Relative dispersion of LEC and UL for the four study 
cases. 

However, the eliminated parameters are not the 
same for LEC and the UL. Indeed, the UL is decorre-
lated from the economic parameters, so we do not 
keep them for the Sobol indexes calculation. On the 
contrary, the LEC is not influenced only by economic 
parameters, since it depends also on the electricity 
production. For the Sobol indexes calculation related 
to the LEC, we also keep the more influent technical 
parameters based on the Morris method. 

Table 4. Morris method results __________________________________________________ 
Component 
Parameter    Unit     LEC    Unmet load __________________________________________________ 
PV 
CAPEX     €/Wp     +      - 
OPEX     % CAPEX   +      - __________________________________________________ 
Battery bank 
CAPEX     €/Wh     +      - 
OPEX     % CAPEX   +      - 
Capacity loss    Wh/h     +      + 
Self-discharge   W      +      + 
Charge efficiency -      -      +   
Discharge efficiency -      +      +   __________________________________________________ 
Electrolyser 
CAPEX     €/W     +      - 
OPEX     % CAPEX   +      - 
Degradation    µV/h     -      + 
Cell voltage   V      -      + __________________________________________________ 
FC 
CAPEX     €/W     +      - 
OPEX     % CAPEX   +      - 
Degradation   µ%/h     -      + 
Efficiency    -      -      + __________________________________________________ 
H2 tank  
CAPEX     €/m3     +      - 
OPEX     % CAPEX   +      - 

__________________________________________ 

4.3.2 Analysis with Sobol indexes 

The Sobol indexes give with precision the contribu-
tions of the variance of one output indicator due to the 
considered parameters.  

4.3.2.1 Unmet load  

Considering the unmet load variance, the Sobol in-
dexes represented in the Figure 9 indicate that the 
most influencing uncertain parameter, whatever the 
case, is the capacity loss of the battery, followed by 
the discharge efficiency of the battery. The im-
portance of these two parameters, linked to the battery 
bank shows the major role played by this component 
in the load satisfaction. The discharge efficiency is 
much more influent than the charge efficiency, be-
cause the PV panel installation is oversized and there-
fore the solar production is in excess, limiting the role 
of the charge efficiency. The charge efficiency takes 
a bigger importance only in case 05 and case 1 (re-
sponsible of respectively 3 and 5% of the unmet load 
variance) where the PV panel installation size is  
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Figure 9. Normalized Sobol indexes (total order) for the four 

different cases, related to the unmet load. 

 

The ascendancy of the battery on the hydrogen 

chain is due to the design and the control of those. The 

powers delivered by the battery on one side and by 

the hydrogen chain (i.e. by the fuel cell) on the other 

side illustrate that the hydrogen chain supplies a neg-

ligible electric power, even in the case 0, in which the 

fuel cell has the biggest design, i.e. in which the hy-

drogen  chain production is the most favorable (Fig. 

10). 

 

Figure 10. Powers supplied by the hydrogen chain and the bat-

tery bank in the case 0. 
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Figure 11. Normalized Sobol indexes (total order) for the four 

different cases, related to the LEC. 

4.3.2.2 Levelized Electricity Cost 

The Sobol indexes indicate that whatever the case, the 
most influent uncertain parameter on the LEC vari-
ance is the PV CAPEX, far before the PV OPEX and 
to a lower degree the battery bank CAPEX. 

We notice that the hydrogen chain plays a signifi-
cant role in the unmet load variance only in the case 
0, i.e. with its largest design: 26% of the total cost in 
its integrality and 19% for the fuel cell (Fig. 6). 

We can observe that if the Sobol index of a given 
parameter is linked to the cost weight of the corre-
sponding component (studied in Section 2), there is 
however no direct proportional relation, because of 
the influence of the probability distribution of the in-
put parameters values. For instance, the battery bank 
that plays an important role in the system cost (be-
tween 19% and 26%) has a relatively small impact 
(inferior than 8%) on the LEC variance. While the PV 
panel installation, which is the main contributor to the 
system cost, but no more than 68%, represents 
(CAPEX and OPEX unified) the overwhelmingly 
part (between 88% and 94%) of the LEC variance 
cause.  
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5 CONCLUSIONS AND FUTURE RESEARCH 
WORK 

In this paper, we investigated a comprehensive 4-
steps methodology to evaluate the impact of uncer-
tainties, in order to improve the confidence in the as-
sessment results of a complex autonomous power sys-
tem modelled and optimized with Odyssey. We first 
chose to optimize the system before considering the 
uncertainties that were considered uncertainties as in-
dependent. 

The results of the uncertainty propagation and of 
the sensitivity analysis teach us that the most influ-
encing uncertain parameters are linked to the design 
of the system and in our case study are: 

- the capacity loss followed by the discharge ef-
ficiency of the battery for the unmet load, 

- the PV CAPEX followed by the PV OPEX and 
the battery CAPEX for the LEC. 

There are several interesting points that still have 
to be thoroughly investigated. We want to investigate 
now (i) the incidence of the choice of the probabilistic 
distributions associated to the uncertain parameters, 
(ii) the inclusion of the uncertainty relative to time se-
ries, (iii) the optimization of operation parameters as 
a way to counter-balance uncertainties on the design 
of the system, and mainly (iv) the optimization taking 
directly into consideration the uncertainties. 
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