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Estimation of Myocardial Strain and Contraction Phase from
Cine MRI using Variational Data Assimilation

Viateur Tuyisenge, Laurent Sarry, Thomas Corpetti, Elisabeth Innorta-Coupez, Lemlih Ouchchane, and Lucie Cassagnes

Abstract—This paper presents a new method to estimate left ventricle
deformations using variational data assimilation that combines image
observations from cine MRI and a dynamic evolution model of the
heart. The main contribution of the model is that it embeds parameters
modeling the contraction / relaxation process. It estimates myocardial
motion and contraction parameters simultaneously, providing accurate
complementary information for diagnosis. The method was applied to
synthetic datasets with known ground truth motion and to 47 patients
MRI datasets acquired at three slice locations (base, mid-ventricle and
apex). Radial and circumferential strain components were compared to
those obtained with a reference tag tracking software, exhibiting good
agreement with intraclass correlation coefficients (ICC) above 0.8. Results
were also evaluated against wall motion score indices used to assess
cardiac kinetics in clinical practice. The assimilation process overcame
issues caused by temporal artifacts as a result of the dynamic model,
compared to using the observation term alone. Moreover we found that
the new dynamic model, consisting of a piecewise transport model acting
independently on systole and diastole performed better than the standard
continuous transport model, which oversmooths temporal variations.
Estimated strain and contraction parameters significantly correlated to
clinical scores, making them promising features for diagnosing not only
hypokinesia but also dyskinesia.

Index Terms—Myocardial motion, myocardial strain, contraction
phase, MRI, data assimilation, cardiac dyskinesia.

I. INTRODUCTION

THERAPEUTICS in heart failure are not unique as far as left
ventricular systolic function is concerned [1], [2]. Function may

be assessed globally by measuring Left Ventricular Ejection Fraction
(LVEF). 2/3D echocardiography is used routinely to provide LVEF
and to follow-up patients while Magnetic Resonance Imaging (MRI)
has become the gold standard for reliability and reproducibility of
ventricular volumes, thickening, motion and mass as well as for
anatomic and functional analysis [3]. Echocardiography and MRI are
also used for precise analysis of left ventricular kinetics.

The addition of myocardial tagging to cine MRI enables more
sensitive detection of early myocardial wall dysfunction and makes
it possible to estimate of myocardial strain, i.e. changes in shape
during systolic contraction [4]. The method proposed here is an
alternative to tag tracking techniques [5], [6], [7], that also works on
non-tagged cine MRI acquisitions. Accurate estimation of strain is
essential to clinical practice as attested by a recent prospective study
that found strain analysis to be sensitive and reliable for detecting
myocardial dysfunction, and to provide objective and quantitative
indexes superior to the visual analysis of left ventricular motion
abnormalities [8].

Non-invasive image-based analysis and quantification of cardiac
motion yields key information on how pathology affects local and
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global deformation of the myocardium and its responses to a given
therapy. The estimation of myocardial deformations helps study and
detect regions with abnormal contraction to guide treatment for recov-
ery. It includes a comprehensive study of structural or architectural
heart abnormalities, which provides an essential prognostic approach
for therapeutic decisions, such as the implantation of defibrillators
for cardiac resynchronization therapy or the adaptation of doses or
treatments such as beta-blockers converting enzyme inhibitors.

The past few years have seen an intensive drive to develop
methods to track the myocardium in imaging modalities ranging from
ultrasound (US) [9], [10], [11] to magnetic resonance imaging (cine
MRI or tagged MRI) [6], [12], [13] and SPECT [14]. However,
accurate cardiac motion estimation is still an unresolved challenge
due to low spatio-temporal imaging resolutions and the complexity of
cardiac biomechanics [15], [16], [17]. An array of approaches aiming
to extract cardiac contraction parameters and deformation fields from
images and the underlying dynamics of the heart are reviewed in
[18]. To improve accuracy, knowledge about cardiac contraction can
be used to constrain the solution in a data assimilation framework.

Variational data assimilation was initially derived from optimal
control theory to recover a state variable trajectory, driven by an
approximatively known dynamical law, from a sequence of mea-
surements [19]. This technique has been used with complex partial
differential equations (PDEs) to track curves and estimate physical
parameters (motion, temperature, etc) in geosciences and computer
vision disciplines [20], [21], [22], [23], [24]. Technical details can be
found in [25], [26], [27], [28]. To improve cardiac disease diagnosis
and therapy planning, researchers have extended the technique to
cardiac medical images to benefit from the robustness and accuracy of
this estimation process. Sainte-Marie et al. [29] and Sermesant et al.
[30] used data assimilation to estimate local cardiac contractility from
synthetic cardiac data. Sundar et al. [31], Delingette et al. [32] and
Marchesseau et al. [33] estimated myocardial motion and contractility
parameters of left and right ventricles using data assimilation and a
full electromechanical model of the heart and reported promising
results in the field of cardiac personalization.

The goal here was not to design a new physiological model
of the heart, but to propose a simple evolution model designed
to drive the measurement of myocardial motion without imposing
strong constraints over the displacement field. The brief was to
develop a generic model with enough degrees of freedom to not
hide defects in cardiac kinetics due to various pathologies. To this
end, a transport equation parameterized by the contraction phase was
used as a dynamic evolution model in a variational data assimilation
framework.

Our model brings three novel contributions over previous works.
(1) It includes contraction parameters and makes displacement field
estimation more accurate. Indeed, invariance assumption, usually em-
bedded in dynamics models, tends to oversmooth temporal variations
in the transported flow field values. It is geared to uniformly acceler-
ated movements, but is unsuitable for cardiac dynamics. Therefore, an
asymmetric square wave function is used to account for the sign of the
contraction, essentially by piecewisely and independently smoothing
the contraction and relaxation phases. (2) Flow fields and contraction
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parameters are simultaneously estimated as complementary features
to diagnose cardiac dyskinesia. (3) The method includes observation
terms that preserves motion discontinuities. The method was applied
to synthetic and 47 real cine MRI datasets, its validity was studied
against a reference method for MRI tag tracking and informational
value was assessed towards clinical expertise.

II. METHODS AND MATERIALS

A. Image Data Description

1) MRI sequence simulation: A synthetic dataset was generated
to evaluate the accuracy of the proposed methods. The images of the
simulated MRI sequence were obtained from the image at the initial
time and a displacement field using a transport model. A third order
finite differencing scheme was used as it does not suffer from the
artifacts observed for lower order schemes as boundary rebound effect
or diffusion. Figure 1 illustrates the results of the simulation process
from a synthetic displacement field made of a radial contraction
component and a circumferential torsion component with two-fold
lower in amplitude (Fig. 1b) applied inside a mask delimiting my-
ocardium on the first image (Fig. 1a). Temporal motion variations are
assumed to follow a sinusoidal pattern. To simulate spatial contraction
discrepancies, parameters ϕ and a vary angularly as a sinusoidal
wave around the myocardium (Fig. 4b and 4c). Four image datasets
are generated with the following ranges for ϕ and a: dataset #1
ϕ ∈ [−π/6, π/6] and a ∈ [0.4, 0.6], dataset #2 ϕ ∈ [−π/6, π/6]
and a ∈ [0.15, 0.35], dataset #3 ϕ ∈ [−π/4, π/12] and a ∈ [0.4, 0.6]
and dataset #4 ϕ ∈ [−π/6, π/6] and a ∈ [−0.1, 0.1]. Figures 1c and
1d illustrate the resulting deformation between end systole and end
diastole when applied to the initial image.

(a) (b)

(c) (d)

Fig. 1: Simulated image dataset #1. (a) Myocardium delineated on
the reference cine MRI frame at end diastole and (b) the synthetic
displacement field. A regular grid overlaid on the reference cine MRI
frame (c) underwent myocardial deformation when overlaid on the
frame at end systole (d).

To test the efficiency and the robustness of the assimilation dynam-
ical model, we created artifacts similar to time varying occultation.
This is the case for dark band artifacts [34] (DBA), even if they
are known to occur at 3T rather than 1.5T. These are caused by
blood or myocardial motion, which causes loss in image intensity

due to a breakdown in the steady state signal. Indeed flow may bring
the image to off-resonance regions with B0 inhomogeneities. Four
image sequences are generated with artefacts simulated as horizontal
or vertical dark bands, placed in the middle or at one quarter
of the image size, appearing every four images of the sequence
by modulating the intensity with a spatial sinusoid of maximal
attenuation of 50% (Fig. 5a).

The influence of noise has also been tested by adding zero mean
Gaussian noise with different standard deviations to the images of the
simulated sequence. Multiple repeats have been generated in order to
demonstrate the stability of the estimation.

2) Real MRI sequence acquisition and preprocessing: Cine and
tagged MRI image sequences were acquired for 47 patients with
abnormal kinetics (hypokinesia, akinesia or dyskinesia). MRI was
part of a post-myocardial infarction protocol. MRI sequences were
acquired with an Avanto 1.5T system (Siemens, Forchheim, Ger-
many) using a cine trueFISP sequence in short axis view at basal,
mid-ventricular and apical slice locations with and without tagging
pattern (grid spacing of 7mm). Spatial and temporal resolutions were
not the same for cine and tagged MRI, but were kept constant for
every scans of every patient. The settings were: pixel dimensions
1.8mm × 1.8mm, slice thickness of 7mm and temporal step of
31 ± 6ms with prospective gating for cine MRI; pixel dimensions
2.0mm × 1.3mm, slice thickness of 6mm and temporal step of
34 ± 4ms with prospective gating for tagged MRI. Image numbers
ranged from 19 to 36 for one cardiac cycle of length of time T . As
our goal was to stay as close as possible to the the clinical protocol
of left-ventricular function evaluation from cine or tagged MRI [35],
no out-of-plane motion compensation method was used.

Sequences were first spatially registered to compensate for offsets
arising from a lack of breath-hold reproducibility (two points hand-
selected in the middle of the LV cavity and at the junction to the
RV in order to center and reorient the images). The accuracy of the
registration process at a few millimeters is good enough to compare
values averaged over AHA standard sectors [36]. Image sequences
are then temporally interpolated to get the same number of frames
with cubic interpolation. Temporal comparison between scans was
valid because there was only two minutes between cine and tagged
MR scans, and patients were not arythmic with betablocker treatment,
heart rate can be assumed stable. Results of cardiac displacement and
strain estimated from cine MRI using three variational methods were
cross-compared against the results computed on tagged MRI images
using inTag software 1.

B. Data Assimilation Overview

We present a method for cardiac motion and contraction parameter
estimation using variational data assimilation. Data assimilation was
chosen because it incorporates a dynamical model that provides
temporal coherence and makes results robust to poor quality and
potentially incomplete and noisy data.

In this framework, the transport equation which has found use as a
default dynamical model for temporal regularization of displacement
fields in satellite meteorological applications is replaced by a parame-
terized transport equation accounting for the nature of the contraction
movement [37], [24]. To the best of our knowledge, this is the first
time that this kind of model is applied to cardiac imaging data.

The model is introduced below and the mathematical principles
of data assimilation used for estimating model parameters are intro-
duced.

1inTag is an open-source OsiriX plugin developed by the CREATIS
laboratory (http://www.creatis.insa-lyon.fr/inTag/).
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C. Dynamic Evolution Model

The transport equation based on fluid flow laws used by different
authors for motion estimation on meteorological data overly smoothes
the estimated fields, especially when direction is changing rapidly,
see [21], [22], [24] and references therein. To handle the case of
cardiac dynamics, we propose a parameterized transport equation.
An asymmetric square wave function accounting for the sign of
myocardium contraction is embedded into the standard transport
equation, which leads to the following dynamic model:

M(X ) = sgn (sin (ωt+ ϕ(x, t)) + a(x, t)) vT(x, t)∇X (x, t), (1)

where sgn is the sign function, X = (v(x, t), ϕ(x), a(x))T is the
state vector, v(x, t) = (u(x, t), v(x, t)) is the displacement field, ω =
2π/T is the cardiac pulsation, and ϕ(x) and a(x) are phase angle and
temporal asymmetry respectively. As illustrated in Fig. 2, a ∈ [−1, 1]
implicitly defines the ratio between the durations of systole S and
diastole D.

t

1

-1

a

S D

T
-φ/ω

Fig. 2: Function modeling contraction / relaxation movement of the
heart. It is based on a sgn function (blue) applied to a sinus function
(red) of phase ϕ and offset a. S, D and T stand for systolic, diastolic
and full cardiac periods.

In fact, ϕ gives the phase of the contraction and a acts on the
symmetry of the cardiac cycle (for instance a = 0.5 corresponds
to D/S = 2). The assimilation process adjusts their values to syn-
chronize the asymmetric square wave function with the cardiac cycle
(positive for contraction and negative for relaxation). Its principle is
detailed in the next paragraph.

D. Mathematical Formulation for Data Assimilation

We are dealing with a problem that seeks to recover a system’s
state X (x, t) abiding to a given dynamical law that governs system
evolution. The dynamical system is defined by the non-linear operator
M depending on state variables. The measurements Y (commonly
known as observations) are assumed to be available at some discrete
times and are measured through a non-linear operator H that belongs
to a Hilbert space. This operator links the system state variables to
the observation function. Given these different data, assimilation aims
to produce accurate estimates of the current and future states of the
dynamic system by solving the following system of three equations:

∂X
∂t

(x, t) +M(X )(x, t) = νm(x, t),
Y(x, t) = H(X )(x, t) + νo(x, t),
X (x, 0) = X b(x) + νb(x, 0),

(2)

where (x, t) are the spatio-temporal variables, X b is the background
(a priori knowledge of the state vector) and νm, νo and νb are
the uncertainties of dynamic evolution, observation and background
information respectively. They are associated to definite positive

endomorphisms Q, R and B referred to as error covariance tensors.
The system (2) is solved by minimizing the following functional:

E(X ) =

∫
x,t

(
∂X
∂t

+M(X )

)T

Q−1

(
∂X
∂t

+M(X )

)
dxdt

+

∫
x,t

(Y(x, t)−H(X )(x, t))T R−1 (Y(x, t)−H(X )) dxdt

+

∫
x
(X b −X 0)TB−1(X b −X 0)dx. (3)

A common way to optimize this cost function is to compute the
gradient of E and use a gradient descent algorithm. Unfortunately a
direct computation of this gradient is too expensive from a computa-
tional point of view since it would require to integrate the dynamical
system along all possible perturbations of X , which in unfeasible in
practice for large system states. An alternative approach is the adjoint
technique [20]. We introduce the adjoint variables λ that express the
errors of the dynamic model:

λ = Q−1

(
∂X
∂t

+M(X )

)
(4)

where
(
∂M

∂X̃

)
and

(
∂H

∂X̃

)
are the linear tangent operators of M and

H respectively. The linear tangent of an operator A is the directional
derivative of the operator (the Gâteaux derivative):(

∂A
∂X̃

)
(dX ) = lim

β→0

A(X̃ + βdX )− A(X̃ )

β
, (5)

and (∂XM)∗ and (∂XH)∗ their adjoint operators. The adjoint A∗
of a linear operator A on a space D is such as:

∀x1, x2 ∈ D, < Ax1, x2 >=< x1,A∗x2 > . (6)

It can be shown that estimating the gradient of E with respect to
the adjoint variables λ leads to a retrograde integration of an adjoint
evolution model that takes into account the observations [20]. Once
the adjoint variables λ are estimated, one can recover the system state
X using relation (4).

Algorithm 1 Implementation of the data assimilation process

1: Initialization: X (x, t0)← X0(x) . X0(x) is computed from
equations (8) and (12)

2: for t = 1 : T do . T is the total number of frames within a
sequence

3: From X (t0), compute X (t), ∀ t ∈ ]t0, T ] by forward
integration of:

∂X
∂t

+ M(X ) = 0

4: Compute the adjoint variable by backward integration:{
λ(T ) = 0

− ∂λ
∂t

+
(
∂M
∂X
)∗

(λ) = −
(
∂H
∂X
)∗ R−1

[
H(X ,Y) +

(
∂H
∂X
)

(δX )
]

5: Compute the incremental variable δX by forward integration:{
δX (0) = B ∗ λ
∂δX
∂t

+
(
∂M
∂X
)

(δX ) = Q ∗ λ

6: Update: X = X + δX
7: Return to (3) and repeat until convergence
8: end for

Intuitively, the adjoint variables λ contain information about on
discrepancy between observations and dynamic model. They are com-
puted from a current solution with backward integration [21], [22]
that encompasses both the observations and the dynamic operators.
As described in algorithm 1, this deviation indicator between the
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observations and the model is then used to refine the initial condition
(step 6) and to recover system state through an imperfect dynamic
model where errors are modeled by Q (step 5). Note that if the
dynamic is perfect, the associated error covariance Q is zero and the
algorithm only refines the initial condition. For more informations,
all computational details are given in [20].

In this paper we suggest to rely on this formalism to estimate
myocardial strain and contraction phase introduced in the previous
paragraph. In the following discussions, the standard transport model
without the sgn function is referred to as DASS1 and our model (1)
as DASS2. We now discuss the observation operator.

E. Observation Models

The observation operator on the displacement field relies on the
optical flow constraint equation [38], [39], [40], [41], [42] combined
with a non-linear regularizer [43], [44], [45], [46], that acts as both
quadratic and total variation smoothing and preserves myocardial
motion discontinuities [47], [48] (OBS). Displacement field v is the
minimum of the following functional energy:

v(x, t) = argmin

∫
Ω

[
(∇I.v + It)

2 + αΦ(‖ ∇v ‖)
]
dΩ, (7)

where I denotes the intensity measured at position (x, t) on the image
domain Ω, ∇ the gradient operator, It the temporal derivatives, α is
weight on the regularisation term and Φ is a function applied to
the displacement gradient in order to preserve myocardial motion
discontinuities.

After solving the Euler-Lagrange equation associated to the
functional (7) and a mathematical simplification, we have
Φ′′(‖∇v‖)vηη + Φ′(‖∇v‖)

‖∇v‖ vξξ = 2α(∇I.v + It)∇I , where η and
ξ define the Gauge coordinate system illustrated in Fig. 3a. For
displacement coordinate u, η = 1

‖∇u‖ (ux uy)T is the normalized
gradient of u and ξ, orthogonal to η i.e ξ = 1

‖∇u‖ (−uy ux)T, is
tangential to the isointensity curves of u. The same definitions hold
for coordinate v.

Different functions Φ (quadratic, total variation, etc.) have been
proposed in the literature to weight the diffusion process in the
normal direction η and in the tangential direction ξ (see for instance
[49]). The key point is to do isotropic diffusion in regions with low
amplitude motion gradients, and tangential diffusion elsewhere. As
these two extreme cases cannot be perfectly handled by a unique
function Φ, we proposed in [48] to fix independent weights for η
and ξ directions in the following way:

g(‖∇v‖)vηη + vξξ = 2α(∇I.v + It)∇I, (8)

where g(.) denotes the Gaussian kernel g(‖∇v‖) =
1

2πk
exp

(
− ‖∇v‖2

2k

)
. vηη = ∂2v

∂η2
= ∇ (∇v.η) .η and

vξξ = ∂2v
∂ξ2

= ∇ (∇v.ξ) .ξ are the second-order Gauge derivatives
that can be obtained as the product of gradients in η and ξ directions
and the Hessian matrix. For instance for coordinate u, we get:

uηη =
1

u2
x + u2

y

(
ux uy

)( uxx uxy
uyx uyy

)(
ux
uy

)
,

uξξ =
1

u2
x + u2

y

(
uy −ux

)( uxx uxy
uyx uyy

)(
uy
−ux

)
.

After performing the matrix product above, we get the following
equations:

uηη =
u2
xuxx + 2uxuxyuy + u2

yuyy

u2
x + u2

y

, (9)

uξξ =
u2
xuyy − 2uxuxyuy + u2

yuxx

u2
x + u2

y

. (10)

For the displacement field v, the observation vector Yv is given by
the spatio-temporal gradient ∇3I(x, t) =

(
∇I(x, t) It(x, t)

)T. The
observation operator Hv linking the observations Yv to the unknown
displacement field v, is obtained by putting together the left-hand
side and right-hand side of equation (8):

Hv
(
v,Yv

)
(x, t) = (∇I(x, t).v(x, t))∇I(x, t) + It∇I(x, t)

− 1

2α

(
4g,η,ξu 0

0 4g,η,ξv

)
v(x, t), (11)

where 4g,η,ξ = g(‖∇.‖) ∂
2.

∂η2
+ ∂2.

∂ξ2
.

To constrain values of contraction parameters a and ϕ, the ob-
servation Ya,ϕ measures the synchronization between the observed
motion and the sinusoidal signal of the dynamical model. The radial
component of displacement is the one that shows the most perfect
oscillation, comparable with a sinusoid function. Thus the observation
operator is built as the opposite of the negative correlation between
the normalized radial component Λ of the background displacement
and the sinusoid of phase ϕ and offset a:

Ha,ϕ

(
a, ϕ,Ya,ϕ

)
(x, t) = −Λ− Λ̄

σΛ
[sin(ωt+ ϕ(x, t)) + a(x, t)] ,

(12)
where Λ̄ and σΛ are the mean and standard deviation of Λ respec-
tively. The resulting linear tangent operators and adjoint models are
given in appendix A.

η

ξ

(a) (b) (c)

Fig. 3: (a) Illustration of a local first-order Gauge coordinate system;
(b) the resulting second-order Gauge derivative Iηη applied on a cine-
MRI image (c).

The covariance matrices R, Q, and B that represent errors in
observation, evolution model and background, respectively, have
to be defined to avoid the influence of observation noise on the
computed solution. To this end, we define the observation covariance

matrix as R(x) =

(
1− exp

− ‖∇3I(x,t)‖2

σ2

)
, where σ is the standard

deviation of the spatio-temporal gradient [50]. In practice, covariance
matrix Q acts on the temporal regularization of the variations in
state variables; if too small, then noisy variations could occur, or
oversmoothing otherwise. It can be learnt in a training process on real
data by minimizing the error between the estimated displacements
and a ground truth. To this end, the reference displacement field
given by inTag for one patient dataset was compared against the
displacement field estimated with our method: minimum errors were
obtained for variances of 10 and 0.1 for (u, v) and (a, ϕ) respectively.
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This patient was excluded from the database used for evaluation.
Matrix B is chosen to be identity. All numerical details required for
implementation are given in appendix B.

Note that motion outside the myocardial tissue does not completely
fit the dynamical model, especially for the blood pool where turbu-
lences may happen, but the observation operator applies everywhere.
As a result displacements may be less temporally coherent outside
myocardium, but they do not interfere with the measurements inside.
To limit the influence of the exterior of the myocardium, a rectangular
ROI is manually delimited at the beginning of the process. An
automatic Otsu thresholding method provides a rough mask for
myocardium pixels that look darker than blood pool. Since this simple
processing is not accurate enough to provide a perfect delineation
of endocardial and epicardial borders, we use a 90th percentile
for the radial component (positive) and 10th percentile for the
circumferential component (negative) of strain instead of averaging
strain values in order to exclude points outside myocardial region
supposed to be negligible in amplitude.

F. Statistical protocol for evaluation

1) Analysis of simulated data: We assessed the relative robustness
of the methods OBS, DASS1 and DASS2 with respect to deformation,
level of noise and DBA as described in the simulation part. We
used mixed linear model analyses, with a particular focus on the
first order interactions between each of these three main effects
and methods. We further performed multiple comparison procedures
following Tukey method to detail these possible interactions and ease
result interpretation.

2) Analysis of real data: The validity of the methods OBS,
DASS1 and DASS2 was studied assessing the concordance with
inTag, considered as the gold standard method. First, we sought for
systematic difference between strain or displacement values between
the methods by performing a discordance test, using a paired non
parametric signed rank test. Then, the concordance between each
method and inTag was estimated using ICC. These analyses were
completed with Bland and Altman plots.

The clinical informational value of strain and displacement as
measured by all methods was assessed performing analyses that seek
for monotonic or expected associations between, on the one hand,
strain and displacement indices, and, on the other hand, clinical
expertise expressed through a classification score referred to as the
Wall Motion Score (WMS). This score, issued from the observation
of the agreement between medical experts (a cardiologist and a
radiologist), is used to classify each myocardial segment as follows:
1 = normal contraction, 2 = low moderate hypokinesia (reduced
contraction), 3 = severe hypokinesia, 4 = akinesia (no contraction)
and 5 = dyskinesia (paradoxical motion during systole) [51], [52]. To
assess clinical informational value of strain and displacement, a one
way analysis of variance (ANOVA 1) was performed with each strain
and displacement indices as dependent variable and WMS as a 4
classes explanatory variable. In case of significant ANOVA 1 (through
Fisher statistics testing null hypothesis of no strain or displacement
difference between the 4 WMS classes), a multiple comparisons pro-
cedure was performed using a Tukey honestly significant difference
(THSD) test, to detail these differences, with a particular focus on
monotonic patterns (e.g. strain increasing with WMS).

The clinical informational value of strain and displacement indices,
and also of a and ϕ criteria, was performed towards WMS which
was dichotomized between absence (WMS from 1 to 4) or presence
(WMS = 5) of a dyskinesia. To perform such analyses, we used a
Wilcoxon test to compare a and ϕ criteria between dyskinetic and
non dyskinetic myocardial sectors. A logistic regression model was

also performed with dyskinesia as binary dependent variable and
all aforementioned continuous indices as explanatory variables. A
particular focus was placed on discrimination using the area under
the ROC curve (AUROCC) estimated for each criterion, denoting
the probability that two myocardial sectors range in the expected
order (e.g. lower value for non dyskinetic myocardial motion). All
statistical analyses were performed on the Statistical Analysis System
(SAS v9.4 for Windows, SAS Institute Inc., Cary, NC, USA) with a
double-sided type I error set at 0.05.

III. RESULTS

A. Validation with Simulated Data

Figure 4 shows how parameters are recovered by the assimilation
process DASS2 with respect to the respective ground truth values
used for simulated image dataset #1 (Fig. 1).

1) Influence of an occultation artefact: Displacement fields are
estimated, on the one hand by using the assimilation method with the
standard transport model (DASS1) and with the proposed dynamical
model (DASS2), and on the other hand with the observation term
alone (OBS) (Fig. 5b)for the four simulated DBAs. A three modality
factor was considered for the pixels of the image sequence: 0 =
when DBA does not exist, 1 = when located in the DBA region
but DBA is not present (3 out of 4 images) and 2 = when DBA
is really applied (1 out of 4 images). Significant interaction was
found between the methods and DBA (p < 0.0001). Similar DBA
effects were found for OBS and DASS1, with mean errors (±SE)
as follows: -0.05021±0.00031mm (DBA 0), -0.89922±0.02475mm
(DBA 1) and -0.4073±0.00664mm (DBA 2) for OBS, and -
0.0452±0.00028mm (DBA 0), -0.76408±0.01982mm (DBA 1) and
-0.3749±0.00598mm (DBA 2) for DASS1. DBA exhibited a very
different effect for DASS2 with much smaller errors, notably for
DBA 1 and 2 that were not significantly different (p=0.3305): -
0.01162±0.00008mm (DBA 0), -0.07077±0.00097mm (DBA 1)
and -0.08794±0.00211mm (DBA 2).

2) Influence of noise: The means and standard deviations of errors
for the three methods OBS, DASS1 and DASS2 with respect to the
expected displacement field are plotted in Fig. 6 for four signal-to-
noise ratios (∞, 20, 10 and 5) for the four simulated deformations.
Significant interaction was found between the methods and noise
(p < 0.0001). Similar noise effects were found for OBS and
DASS1, with mean errors (±SE) as follows: -0.07042±0.0004mm
(SNR∞), -0.08083±0.00047mm (SNR 20), -0.09634±0.00052mm
(SNR 10) and -0.1156±0.00064mm (SNR 5) for OBS, and
-0.07077±0.00043mm (SNR ∞), -0.08469±0.00054mm (SNR
20), -0.10417±0.00061mm (SNR 10) and -0.1254±0.00075mm
(SNR 5) for DASS1. Noise exhibited a very different effect for
DASS2 with much smaller errors, notably for the first three lev-
els of noise that were not significantly different (p > 0.05 for
all 6 paired comparisons): -0.00698±0.00004mm (SNR ∞), -
0.00707±0.00004mm (SNR 20), -0.00674±0.00004mm (SNR 10)
and -0.00912±0.00006mm (SNR 5).

B. Application to Clinical Data

Cardiac motion was estimated from real cine MRI using the
3 methods DASS1, DASS2 and OBS, and retrieved from tagged
MRI images using inTag software. Figure 7 illustrates the typical
displacement fields recovered for one frame of one patient with
DASS2 and inTag.

Displacement fields were then spatially differentiated to give the
strain tensor, transformed to the local myocardium coordinate system
(radial/circumferential). Its components averaged over all of the 16
AHA divisions of the myocardium were compared with the ones
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Fig. 4: Parameters estimated by DASS2 for the simulated image
dataset #1: displacement field v (a), angular variations of asymmetry
a (b) and contraction phase ϕ (c). Estimated values in red superim-
posed with their respective ground truth in blue.
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Fig. 5: (a) Simulated vertical dark band artefact with added Gaussian
noise of SNR = 10; (b) estimated displacement field with DASS2
(red) and OBS (green) superimposed with ground truth (blue); (c)
displacement field zoomed over the artefact region.
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Fig. 6: Mean and standard deviation of the errors between ground
truth and estimated displacements for the three methods OBS (green),
DASS1 (blue) and DASS2 (red) for simulated image dataset #1.
Gaussian noise with different SNRs was added to the simulated
sequence: ∞ (a), 20 (b), 10 (c) and 5 (d).

(a) (b)

Fig. 7: Cine and tagged MRI in short-axis view with superimposed
displacement fields at systole time estimated by DASS2 (a) and inTag
(b) respectively.

0 10 20 30

1
20

15

10

5

0

-5

R
a
d
ia

l 
s
tr

a
in

 (
%

)

0 10 20 30

2
30

20

10

0

-10
0 10 20 30

3
20

15

10

5

0

-5
0 10 20 30

4
20

15

10

5

0

-5

0 10 20 30

5
15

10

5

0

-5

R
a
d
ia

l 
s
tr

a
in

 (
%

)

0 10 20 30

6
15

10

5

0

-5
0 10 20 30

7
20

15

10

5

0

-5
0 10 20 30

8
15

10

5

0

-5

0 10 20 30

9
15

10

5

0

-5

R
a
d
ia

l 
s
tr

a
in

 (
%

)

0 10 20 30

10
15

10

5

0

-5
0 10 20 30

11
15

10

5

0

-5
0 10 20 30

12
20

15

10

5

0

-5

0 10 20 30

13
15

10

5

0

-5

R
a
d
ia

l 
s
tr

a
in

 (
%

)

# image
0 10 20 30

14
20

15

10

5

0

-5

# image
0 10 20 30

15

10

5

0

15

# image
0 10 20 30

16
30

20

10

0

-10

# image

Fig. 8: Radial strain component (%) estimated at AHA sectors 1 to
16 over one cardiac cycle for one patient of the database with inTag
(black) from tagged MRI and with DASS2 (red), DASS1 (blue) and
OBS (green) from cine MRI.

retrieved from tagged MRI by the inTag software. Figures 8 and 9
respectively give the temporal variations of radial and circumferential
components of strain for one representative patient with the four
methods.

1) Evaluation of the concordance of strain and displacement mea-
sures between inTag and DASS2 (Tab. I): Regarding displacement,
the mean difference between measurements from inTag and DASS2
was 0.0291± 0.0085mm (mean±SE) and was slightly significantly
different from 0 (p = 0.0145). The ICC was 0.83, reflecting a good
agreement of displacement measures between methods. Regarding
radial strain, the mean difference between measurements from inTag
and DASS2 was 0.001±0.0023 (mean±SE) and was not significantly
different from 0 (p = 0.6763). The ICC was 0.85, reflecting a good
agreement of radial strain measures between methods. Regarding
circumferential strain, the mean difference between measurements
from inTag and DASS2 was 0.0033 ± 0.0015 (mean±SE) and was
not significantly different from 0 (p = 0.4992). The ICC was 0.89,
reflecting a very good agreement of circumferential strain measures
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TABLE I: RELIABILITY OF OBS, DASS1 AND DASS2 VS. INTAG FOR THE CRITERIA OF DISPLACEMENT (DISP), RADIAL STRAIN (RS)
AND CIRCUMFERENTIAL STRAIN (CS) WITH THE p-VALUE OF THE DISCORDANCE TEST (SIGNED RANK TEST) AND THE INTRACLASS

CORRELATION COEFFICIENT (ICC).

Method Criterion N Mean Difference (SE) Median Difference [IQR] p-value ICC
OBS Disp (mm) 718 0.0372 (0.0097) 0.0212 [-0.135;0.2058] 0.0016 0.8483

RS 718 0.0001 (0.0025) -0.0042 [-0.0462;0.0397] 0.4204 0.8729
CS 718 0.0047 (0.0016) -0.0035 [-0.0261;0.0271] 0.9650 0.8943

DASS1 Disp (mm) 718 -0.0165 (0.0098) -0.0525 [-0.1667;0.1264] 0.0009 0.5988
RS 718 -0.0172 (0.0016) -0.0144 [-0.0423;0.0091] 9.7921E-25 0.4740
CS 718 -0.0141 (0.0018) -0.012 [-0.0406;0.015] 5.9564E-14 0.5725

DASS2 Disp (mm) 718 0.0291 (0.0085) 0.0097 [-0.1321;0.1571] 0.0145 0.8328
RS 718 0.001 (0.0023) -0.0024 [-0.0404;0.0353] 0.6763 0.8548
CS 718 0.0033 (0.0015) -0.0055 [-0.0238;0.0223] 0.4992 0.8878

TABLE II: MULTIPLE COMPARISONS USING TUKEY GROUPING OF DISPLACEMENTS IN mm AS ESTIMATED BY INTAG (1), OBS (2),
DASS1 (3) AND DASS2 (4) WITH RESPECT TO WMS. MEANS SHARING THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

WMS N Mean SD THSD
1 461 1.0368 0.4299 A
2 56 0.9135 0.4116 A B
3 101 0.8512 0.4455 C B
4 90 0.7427 0.3707 C

(1)

WMS N Mean SD THSD
1 461 1.1573 0.5524 A
2 56 0.8887 0.3832 B
3 101 0.8466 0.4578 B
4 90 0.6347 0.3559 C

(2)

WMS N Mean SD THSD
1 461 0.6805 0.3476 A
2 56 0.6651 0.2561 A B
3 101 0.5558 0.2562 B
4 90 0.4357 0.2567 C

(3)

WMS N Mean SD THSD
1 461 0.9646 0.4678 A
2 56 0.7546 0.3611 B
3 101 0.7184 0.3775 B
4 90 0.5459 0.2973 C

(4)
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Fig. 9: Circumferential strain component (%) estimated at AHA
sectors 1 to 16 over one cardiac cycle for one patient of the database
with inTag (black) from tagged MRI, and with DASS2 (red), DASS1
(blue) and OBS (green) from cine MRI.

between methods. Results for OBS were comparable to DASS2
ones with a slightly lower offset with regard to inTag, while for
DASS1 discordance is significant for all criteria with a trend to
underestimation and poor ICC values. The corresponding Bland and
Altman plots are displayed in Fig. 10.
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Fig. 10: Bland and Altman plots of displacement, radial and cir-
cumferential strain components for OBS (top), DASS1 (middle) and
DASS2 (bottom) vs. inTag. The difference to inTag is plotted against
the mean.

2) Evaluation of the clinical informational value of strain and
displacement indices regarding the Wall Motion Score (WMS) from 1
(normal contraction) to 4 (akinesia): Regardless of the method used,
inTag or DASS2, both strain and displacement were significantly
different regarding the 4 classes of WMS (all p-values lower than
0.0001). Furthermore, whatever the method, displacement, circum-
ferential and radial strain ranged in descending order from WMS 1
to WMS 4 (Tab. II and III). Regarding displacement, the multiple
comparisons procedure using THSD showed that the couples of
classes not significantly different were 1-2 and 2-3 for inTag, and
only 2-3 for DASS2 (Tab. II). Regarding circumferential strain, the
multiple comparisons procedure using THSD showed that the couples
of classes not significantly different were 1-2 and 2-3 for inTag, while
classes 1, 2 and 3 were undistinguishable for DASS2 (Tab. III).
Regarding radial strain, the multiple comparisons procedure using
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TABLE III: MULTIPLE COMPARISONS USING TUKEY GROUPING OF STRAIN AS ESTIMATED BY INTAG (1), OBS (2), DASS1 (3) AND

DASS2 (4) WITH RESPECT TO WMS. (A) AND (B) ARE THEIR RESPECTIVE RADIAL AND CIRCUMFERENTIAL COMPONENTS. MEANS

SHARING THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

WMS N Mean SD THSD
2 56 0.182 0.0841 A
1 461 0.1725 0.0867 A
3 101 0.1648 0.0868 A
4 90 0.1127 0.0573 B

(1.a)

WMS N Mean SD THSD
1 461 0.2947 0.1356 A
2 56 0.2287 0.0962 B
3 101 0.1997 0.1327 B
4 90 0.1306 0.0864 C

(2.a)

WMS N Mean SD THSD
1 461 0.0885 0.0307 A
2 56 0.0826 0.0281 A
3 101 0.078 0.0362 A
4 90 0.0619 0.0358 B

(3.a)

WMS N Mean SD THSD
1 461 0.2471 0.121 A
2 56 0.1798 0.0814 B
3 101 0.1665 0.1159 B
4 90 0.1067 0.0691 C

(4.a)

WMS N Mean SD THSD
1 461 0.1344 0.0599 A
2 56 0.1284 0.0589 A B
3 101 0.11 0.0529 B
4 90 0.0782 0.0486 C

(1.b)

WMS N Mean SD THSD
1 461 0.16 0.1123 A
2 56 0.1431 0.0908 A
3 101 0.131 0.1053 A
4 90 0.0886 0.0682 B

(2.b)

WMS N Mean SD THSD
1 461 0.0999 0.0435 A
2 56 0.0948 0.0379 A
3 101 0.077 0.0414 B
4 90 0.0527 0.035 C

(3.b)

WMS N Mean SD THSD
1 461 0.1385 0.0989 A
2 56 0.1241 0.0804 A
3 101 0.1124 0.089 A
4 90 0.077 0.0576 B

(4.b)

TABLE IV: COMPARISONS OF DISPLACEMENT (DISP), RADIAL STRAIN (RS) AND CIRCUMFERENTIAL STRAIN (CS) FOR INTAG,
OBS, DASS1 AND DASS2 AND a AND ϕ FOR DASS2 BETWEEN DYSKINETIC AND NON DYSKINETIC MYOCARDIAL AHA DIVISIONS

PERFORMING A WILCOXON TEST AND ITS CORRESPONDING AURROC.

Method Criterion WMS ≤ 4 (N=708) WMS = 5 (N=10) p-value AUROCC
Mean±SE Median [IQR] Mean±SE Median [IQR] (Wilcoxon)

inTag Disp (mm) 0.9632±0.0164 0.8939 [0.6303;1.2563] 0.722±0.1183 0.6649 [0.3587;0.8243] 0.0662 0.677
RS 0.1645±0.0032 0.1466 [0.1022;0.2156] 0.1148±0.0168 0.0948 [0.0784;0.1598] 0.0565 0.674
CS 0.1233±0.0023 0.1151 [0.0783;0.1647] 0.091±0.0159 0.0912 [0.0587;0.135] 0.1203 0.657

OBS Disp (mm) 1.0253±0.0203 0.9402 [0.6248;1.347] 0.886±0.1421 0.8566 [0.5949;1.0686] 0.4684 0.559
RS 0.2551±0.0053 0.2418 [0.151;0.3406] 0.1987±0.0373 0.1577 [0.1285;0.2941] 0.1823 0.627
CS 0.1455±0.004 0.1157 [0.0715;0.1903] 0.1124±0.0158 0.1112 [0.0906;0.1449] 0.6375 0.533

DASS1 Disp (mm) 0.6304±0.0124 0.6102 [0.4301;0.8038] 0.5552±0.1032 0.458 [0.2858;0.7211] 0.3772 0.588
RS 0.0831±0.0012 0.0822 [0.0608;0.1032] 0.0766±0.013 0.0716 [0.0446;0.1008] 0.4637 0.569
CS 0.0902±0.0017 0.0899 [0.0586;0.1197] 0.0636±0.0107 0.0615 [0.0338;0.0759] 0.0542 0.695

DASS2 Disp (mm) 0.8596±0.0171 0.7822 [0.5282;1.1296] 0.7552±0.1204 0.7199 [0.5072;0.9114] 0.55 0.557
RS 0.2123±0.0046 0.2006 [0.122;0.2863] 0.1598±0.035 0.1259 [0.0666;0.2514] 0.1509 0.64
CS 0.1258±0.0035 0.0994 [0.0609;0.1648] 0.0996±0.014 0.098 [0.0794;0.1351] 0.7437 0.511
a 0.8415±0.0086 0.9388 [0.6959;1.0028] 0.6889±0.0605 0.6458 [0.534;0.7536] 0.0369 0.697
ϕ(rad) 1.0104±0.0184 1.108 [0.7093;1.3108] 0.6309±0.1418 0.5867 [0.2885;0.835] 0.0122 0.733

THSD showed that the couples of classes not significantly different
were only 2 and 3 for both inTag and DASS2 (Tab. III).

3) Evaluation of the clinical informational value of strain and
displacement indices, a and ϕ criteria regarding the diagnosis of
dyskinesia (dichotomizing WMS less or equal to 4 vs. 5) (Table
IV): Regarding displacement, the median value as measured by
inTag was 0.89mm [IQR(mm)=1.25-1.63] for non dyskinetic versus
0.66mm [IQR(mm)=0.82-0.36] for dyskinetic sectors (p=0.0662),
while for DASS2 the median value was 0.78mm [IQR(mm)=1.13-
0.53] for non dyskinetic versus 0.72mm [IQR(mm)=0.91-0.51] for
diskinetic sectors (p=0.55). The discriminant power of displacement
measured by inTag and DASS2 regarding dyskinesia, as assessed
by AUROCC, was 0.677 and 0.557, respectively. Regarding radial
strain, the median value as measured by inTag was 0.15 [IQR=0.22-
0.11] for non dyskinetic versus 0.095 [IQR=0.16-0.078] for dysk-
inetic sectors (p=0.0565), while for DASS2 the median value was

0.20 [IQR=0.29-0.12] for non dyskinetic versus 0.13 [IQR=0.25-
0.067] for dyskinetic sectors (p=0.1509). The discriminant power of
radial strain measured by inTag and DASS2 regarding dyskinesia, as
assessed by AUROCC, was 0.674 and 0.64, respectively. Regarding
circumferential strain, the median value as measured by inTag was
0.11 [IQR=0.15-0.078] for non diskinetic versus 0.095 [IQR=0.13-
0.059] for diskinetic sectors (p=0.1203), while for DASS2 the median
value was 0.099 [IQR=0.16-0.061] for non dyskinetic versus 0.099
[IQR=0.14-0.079] for dyskinetic sectors (p=0.7437). The discrimi-
nant power of circumferential strain measured by inTag and DASS2
regarding dyskinesia, as assessed by AUROCC, was 0.657 and 0.511,
respectively. Results for OBS were comparable to DASS2 ones, while
they were less good for DASS1. Regarding a, the median value was
0.94 [IQR=1.00-0.70] for non dyskinetic versus 0.65 [IQR=0.75-
0.53] for dyskinetic sectors (p=0.0369). Regarding ϕ, the median
value was 1.11rad [IQR(rad)=1.31-0.71] for non dyskinetic versus
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0.59rad [IQR(rad)=0.84-0.29] for dyskinetic sectors (p=0.0122).
The discriminant power of a and ϕ regarding dyskinesia, as assessed
by AUROCC, was 0.695 and 0.733, respectively.

IV. DISCUSSION

Figure 4a shows that the displacement field is almost perfectly
estimated by DASS2 with respect to the ground truth field, and we
also get very good spatial distribution of the contraction parameters,
i.e. contraction phase ϕ and factor of asymmetry a compared to
simulations (Fig. 4b and 4c). Angular variations of the parameters
are properly estimated even in presence of high noise (SNR = 10),
which is a promising sign for detecting local asynchrony of contrac-
tion in real data.

Figure 6 shows that the error is roughly proportional to the
motion amplitude, and in presence of noise, systematically smaller for
DASS2 than for DASS1 or OBS. The difference increases with the
amount of noise: error remains rather stable for DASS2 as a result
of the proposed dynamical model that properly smooths temporal
variations of the state variables separately for systole and diastole.
Variability of the estimation is also greatly improved. The smoothing
by the continuous transport model of DASS1 tends to mix contraction
and dilation phases, and therefore to underestimate displacement
amplitude, making the error higher than the one of OBS at diastole.

The simulation of the dark band artifact confirms the robustness of
the dynamical model of DASS2 (Fig. 5). Indeed, for the observation
operator, the dark band loss from one frame to the next is equivalent
to an horizontal inward flow. Zoom over the dark band region (Fig.
5b) shows that the proposed piecewise transport model compensates
the result when the observation operator fails due to temporary
occultation or loss in signal. The statistical analysis reveals that errors
are about ten times lower for DASS2 and that they are even higher
for both OBS and DASS1 for locations inside the DBA region but
without effective attenuation.

For real MRI datasets, figure 7 shows that the motion fields
estimated by inTag and DASS2 are almost identical. The differences
come from the following key points: inTag provides very smooth
fields with non null circumferential component and a radial compo-
nent sometimes underestimated due to the lack of tagging patterns
within the myocardium thickness; for DASS2, motion is null outside
myocardium except for the blood pool where flow turbulences hold,
and non radial motion only happens where endocardium is non
smooth (trabeculae or pillars).

Figures 8 and 9 illustrate representative trends for temporal profiles
of strain averaged over AHA sectors. There is visually a good match
between inTag and DASS2 profiles for most of the sectors, with
amplitudes that comply with expected values described in the litera-
ture of speckle tracking. For some sectors however, radial component
is underestimated by inTag, while for others the circumferential
component is underestimated by DASS2. Profiles of OBS is usually
higher than the other profiles, because optical flow constraint is
influenced by variations in image intensity, either due to noise or
to artifacts. In particular, the fact that through slice motion was
not compensated is likely to cause signal variations at myocardial
walls, and create artefactual inplane motion, possibly filtered by the
transport model of DASS2. Again, DASS1 is subject to underestimate
displacement and therefore corresponding strain profiles are lower.

Table I and the corresponding Bland and Altman plots (Fig.
10) emphasize these observations. Indeed, DASS1 exhibits poor
agreement and systematic bias as compared with inTag for all the
criteria, while OBS and DASS2, even if a slight overestimation is
noticed for displacement, show very good agreement for all criteria.

The clinical informational value of displacement measured by the
four methods is shown in Table II. We see that displacement ranges in

the expected order for all methods, and that DASS2 and OBS better
discriminate WMS than DASS1 and inTag, the latter being almost
unable to distinguish between the four clinical classes. As shown
in table III, we found similar results for radial strain component:
DASS2 and OBS significantly discriminate extreme scores 1 and 4
from each other and relative to intermediate scores 2 and 3, the latter
being non significantly different. On the contrary, circumferential
strain component poorly distinguishes WMS classes for OBS and
DASS2 as compared with inTag or even DASS1.

Despite WMS being a subjective measure, it integrates expert
knowledge at two levels: first, sectors are not scored independently
from others in a given slice, but relatively to them; second, the
cardiologist or the radiologist implicitly accounts for the character-
istics of the patient such as age or gender for instance. On contrary,
automatic quantification methods give absolute strain values and do
not take into account patient variability. It is noticeable that this
variability and the intrinsic one of strain estimation do not hide the
discrimination between WMS classes. DASS2 seems more trustful
to discriminate between WMS with radial component than inTag,
while for the circumferential component, inTag is better than DASS2.
Indeed, the variability of the radial measurement with inTag comes
from the fact that there might be too few tags to track in the thickness
for some sectors. For the circumferential measurement with DASS2,
there might be no angular gradient features to track when myocardial
walls are too smooth. Informational value of DASS2 and OBS are
similar for good cine MRI acquisitions, but discrepancies could occur
in presence of noise or artifacts as illustrated by the simulation study.
The weak informational value of DASS1 can be explained by the
smoothing performed by the continuous evolution model.

Table IV gives the informational value of the criteria regarding
dyskinesia. It shows that only a and ϕ are significantly different
between dyskinetic and non dyskinetic patients, with quite good
AUROCC. This result suggests that these two criteria should be
investigated on a larger number of patients before they could be used
as objective markers of dyskinesia.

One of the present limitation of both inTag and cine MRI based
methods such as DASS2 is that in-plane motion is influenced by
through-plane motion due to heart contraction. Only apparent motion
is provided; estimating pure strain components would require full
3D acquisitions instead of thick and spaced slices. Furthermore, it
would be necessary to know the exact limits of the myocardial walls
to get more accurate measurements in the sectors. For now we use
an approximate segmentation of myocardium. This is legitimate in
the variational approach developed here, as the regularization term
effectively cancels the displacement fields outside of the myocardium,
especially in the cavity.

V. CONCLUSION AND FUTURE PROSPECTS

This paper reports a method for estimating cardiac contractility
parameters in a formalism of variational data assimilation that com-
bines the image observations with a dynamic evolution model of
the heart. The method was applied to a synthetic data set where
the field of real movement is known and clinical data of cine MRI
sequences from 47 patients presenting areas of impaired kinetics. The
results were compared with those obtained with inTag tissue tagging
tracking software . The automatic contractility estimation was also
cross-compared against the cardiological and radiological expertise
through semi-quantitative contraction score.

The proposed method yields promising results for both motion
and dyskinesia index estimation. For now, the displacement and strain
components in radial direction demonstrate the best performance, but
it is interesting to note that the circumferential components are only
slightly recovered due to shape irregularities at the endocardium wall
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caused by the presence of papillary muscles or trabeculae and are
able to discriminate the kinetic scores. They could be improved by
including directional constraints in the model.

As future prospects, a wall deformation model will be added as
part of the state vector to solve segmentation and motion estimation
as a joint problem. DASS2 is being extended to 3D dynamic imaging
modalities such as echocardiography and Single-Photon Emission
Computed Tomography (SPECT), giving promising results for the
recovery of all strain components.

The final limit of any strain estimation method is the variability
in strain-normal values that are known to be dependent on gender
and age among others. Normalization of strain indices in terms of
nonlinear relationships with patient characteristics is important as a
field of further research to enable diagnosis of infraclinical functional
abnormalities in the future.

APPENDIX

A - OPTIMIZATION OF THE VARIATIONAL ASSIMILATION

PROBLEM

Using algorithm 1 requires to derive linear-tangent and adjoints of
models M and H. Their computation is presented in this appendix.

Dynamical model: Given the definition of the Gâteaux derivative
in (5), we get :

∂M

∂X (δX ) = lim
β→0

{
[sgn (sin(ωt+ ϕ+ βδϕ) + a+ βδa)]

β

(v + βδv)T∇(X + βδX )− [sgn (sin(ωt+ ϕ) + a)] vT∇X
β

}
.

(13)

In practice, the function sgn(x) can be approximated in the con-
tinuous domain by tanh(kx) with k > 1. After Taylor expansion
tanh[k(x + βδx)] = tanh(kx) + kβδx(1 − tanh2(kx)) and
sin(ωt+ ϕ+ βδϕ) = sin(ωt+ ϕ) + βδϕ cos(ωt+ ϕ) and putting
together terms in β, β2, ..., we get to the following equation:

∂M

∂X (δX ) = A1(δvT∇X + vT∇δX ) + (Akδϕ+ kA2δa)vT∇X ,

(14)
with A1 = tanh[k(sin(ωt+ ϕ) + a)], A2 = 1− tanh2[k(sin(ωt+
ϕ)+a)] and Ak = kA2 cos(ωt+ϕ). The global linear tangent model
is then: ∂δX

∂t
+ ∂M

∂X (δX ) = νm. The adjoint model operator will be
given in the next section.
Observation model: Following the same principle, the linear tangent
model of operator Hv and Hϕ,a read:

∂Hv =

(
∂Hv

∂X

)
δv = ∇IT (15)

∂Hϕ =

(
∂Hϕ,a
∂X

)
δϕ = −Λ− Λ̂

σΛ
cos(ωt+ ϕ) (16)

∂Ha =

(
∂Hϕ,a
∂X

)
δa = −Λ− Λ̂

σΛ
. (17)

Adjoint operators

Let us recall that the adjoint A∗ of a linear operator A on a space
D is such that:

∀x1, x2 ∈ D, < Ax1, x2 >=< x1,A∗x2 > . (18)

In the following we derive their expressions for the dynamical and
observation models respectively.

Dynamical model: Recalling that the system state X is composed
of four variables : X = (u(x, t), v(x, t), ϕ(x), we first derive the
linear tangent operators of M with respect to each of these variables
(with A1 and A2 develop above):

(
∂M
∂X

)
δX =

(
∂M1

∂X (δX ),
∂M2

∂X (δX ),
∂M3

∂X (δX ),
∂M4

∂X (δX )

)T

=


A1 (uδux + vδuy + uxδu+ uyδv) + (uux + vuy)(Akδϕ+ kA2δa)
A1 (uδvx + vδvy + vxδu+ vyδv) + (uvx + vvy)(Akδϕ+ kA2δa)
A1 (uδϕx + vδϕy + ϕxδu+ ϕyδv) + (uϕx + vϕy)(Akδϕ+ kA2δa)
A1 (uδax + vδay + axδu+ ayδv) + (uax + vay)(Akδϕ+ kA2δa))


The computation of adjoint operator ( ∂M

∂X )∗ can be done using
integration by parts :∫

∂M
∂X

(ψ)Tλdxdt

=

∫ (
∂M1

∂X
(ψ)λ1 +

∂M2

∂X
(ψ)λ2 +

∂M3

∂X
(ψ)λ3 +

∂M4

∂X
(ψ)λ4

)
dxdt

=

∫
{A1 [(−u(λ1)x − v(λ1)y − vyλ1)ψ1 + uyλ1ψ2] + λ1(Akψ3

+kA2ψ4)vT∇u+A1 [(−u(λ2)x − v(λ2)y − uxλ2)ψ2 + vxλ2ψ1]

+λ2(Akψ3 + kA2ψ4)vT∇v +A1 [(−u(λ3)x − v(λ3)y − uxλ3

−vyλ3)ψ3 + ϕxλ3ψ1 + ϕyλ3ψ2] + λ3(Akψ3 + kA2ψ4)vT∇ϕ
+A1 [(−u(λ4)x − v(λ4)y − uxλ4 − vyλ4)ψ4 + axλ4ψ1 + ayλ4ψ2]

+λ4(Akψ3 + kA2ψ4)vT∇a
}

xdt

=

∫ (
(
∂M1

∂X
)∗ψ1 + (

∂M2

∂X
)∗ψ2 + (

∂M3

∂X
)∗ψ3 + (

∂M4

∂X
)∗ψ4

)
dxdt

=

∫ (
∂M
∂X

)∗
(λ)Tψdxdt.

Given previous relations, the adjoint operator is given by the following
vector as:

(
∂M
∂X

)∗
(λ) =


A1 [−u(λ1)x − v(λ1)y − vyλ1 + vxλ2 + ϕxλ3 + axλ4]

A1 [−u(λ2)x − v(λ2)y − uxλ2 + uyλ1 + ϕyλ3 + ayλ4]
A1 [−u(λ3)x − v(λ3)y − uxλ3 − vyλ3]

+AkvT [λ1∇u+ λ2∇v + λ3∇ϕ+ λ4∇a]

A1 [−u(λ4)x − v(λ4)y − uxλ4 − vyλ4]
+kA2vT [λ1∇u+ λ2∇v + λ3∇ϕ+ λ4∇a]

. (19)

Observation model: As for this operator its computation is obvious
and we get: (

∂Hv
)∗

= ∇I (20)(
∂Hϕ

)∗
= ∂Hϕ = −

Λ− Λ̂

σΛ
cos(ωt+ ϕ) (21)

(
∂Ha

)∗
= ∂Ha = −

Λ− Λ̂

σΛ
. (22)

B - NUMERICAL IMPLEMENTATION

Because of their simplicity of implementation, we decided to use
explicit schemes. However, numerical instability in time were observed
for forward and backward integrations in algorithm (1) with a standard
central finite differencing scheme. We decided to exploit specific explicit
Euler schemes [53], [54] adapted to the integration of complex physical
models as the ones we are dealing with. It is indeed demonstrated in
[53], [54] that such numerical models are conservative, meaning that
main physical quantities are kept along the integration process and that
discretization errors are bounded. From the adjoint models:

−
∂λ1

∂t
−A1

[
vT∇λ1 + vyλ1 − vxλ2 − ϕxλ3 − axλ4

]
= −IxHv(v, ∂v),

−
∂λ2

∂t
−A1

[
vT∇λ2 + uxλ2 − uyλ1 − ϕyλ3 − ayλ4

]
= −IyHv(v, ∂v),

−
∂λ3

∂t
−A1

[
vT∇λ3 + uxλ3 + vyλ3

]
−AkvT [λ1∇u+ λ2∇v + λ3∇ϕ+ λ4∇a] = − (∂Ha,ϕ)∗Ha,ϕ,

−
∂λ4

∂t
−A1

[
vT∇λ4 + uxλ4 + vyλ4

]
− kA2vT [λ1∇u+ λ2∇v + λ3∇ϕ+ λ4∇a] = − (∂Ha,ϕ)∗Ha,ϕ,



11

and by splitting each equation in two parts, for instance for λ1:{
∂λ1
∂t

= −A1 [u(λ1)x + vyλ1] ,
∂λ1
∂t

= −A1 [v(λ1)y − ϕxλ3 − axλ4] + IxHv(v, ∂v),
(23)

the explicit Euler numerical scheme gives:

(λ1)k−1
i,j = (λ1)ki,j

−
(
Sx
(
λ1, u

)k
i,j

+
1

2

(
vki,j+1 − vki,j−1

)
(λ1)ki,j

)
4t A1, (24)

(λ1)k−1
i,j = (λ1)ki,j −

(
Sy
(
λ1, v

)k
i,j
−

1

2

(
ϕki+1,j − ϕki−1,j

)
(λ3)ki,j

−
1

2

(
aki+1,j − aki−1,j

)
(λ4)ki,j

)
4t A1 + (IxHv(v, ∂v))ki,j , (25)

where

Sx
(
λ1, u

)k
i,j

= max
(
(λ1)ki,j , 0

)(
uki,j − uki−1,j

)
+ min

(
(λ1)ki,j , 0

)(
uki+1,j − uki,j

)
.

Note that these numerical schemes are backward since the initial condi-
tion for λi, i = 1 . . . 4 is given at time t = T . Thus, value of λi computed
from (24) is used to update λi in (25).

The numerical scheme to compute the incremental variable is obtained
by solving the following system of equations:

∂δX
∂t

+A1(δvT∇X +vT∇δX )+(Akδϕ+kA2δa)vT∇X = Q∗λ. (26)

The first equation from system of equations (26) can be discretized as
follows:

∂δu

∂t
+A1 (uδux + vδuy + uxδu+ uyδv)

+ (Akδϕ+ kA2δa)(uux + vuy)δa = Q1 ∗ λ1. (27)

Again, equation (27) is split into two parts:{
∂δu
∂t

+A1 (uδux + uxδu) = 0,
∂δu
∂t

+A1 (vδuy + uyδv)

+ (Akδϕ+ kA2δa)(uux + vuy)δa = Q1 ∗ λ1.

Using the explicit Euler numerical scheme, the incremental variables are
updated in the following way:

δuk+1
i,j = δuki,j −4t A1

(
Sx
(
δu, u

)k
i,j

+
1

2

(
uki+1,j − uki−1,j

)
δuki,j

)
,

(28)

δuk+1
i,j = δuki,j −4t A1

(
Sy
(
δu, v

)k
i,j

+
1

2

(
uki,j+1 − uki,j−1

)
δvki,j

)
−

1

2
4t uki,j

(
Akδϕ

k
i,j + kA2δa

k
i,j

) (
uki+1,j − uki−1,j

+uki,j+1 − uki,j−1

)
+ (Q1 ∗ λ1)ki,j . (29)

The same procedure is applied for the other incremental variables and the
complete implementation follows algorithm (1). Note that the numerical
schemes are exactly the same for forward and backward models.
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