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INTRODUCTION

The design of early convolutional architectures (CNN) involved choices of hyper-parameters such as: filter size, number of filters at each layer, and padding [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Since the introduction of the VGGNet [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], ResNet [START_REF] He | Identity mappings in deep residual networks[END_REF] and DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF], the design has moved towards following a template: filter size of 3 × 3 and N features maps, down-sample to half the input resolution only by the use of either maxpool or strided convolutions [START_REF] Tobias Springenberg | Striving for simplicity: The all convolutional net[END_REF], doubling the number the feature maps following each down-sampling operation, and "skip-connections" between non-contiguous layers.

Our work extends this template by adding another element, which we refer to as "coupled ensembling". In this set-up, the network is decomposed into several branches, each branch being functionally similar to a complete CNN. We show that given a parameter budget, it is better to have the parameters split among branches rather than having a single branch (which is the case for all current networks). The activations of the parallel branches are combined by taking the arithmetic mean of the individual log-probabilities. Combining these elements, we significantly match and improve the performance of convolutional networks on CIFAR and SVHN datasets, with a heavily reduced parameter count.

COUPLED ENSEMBLES

For the following discussion, we define some terms:

• Branch: the proposed model comprises several branches. The number of branches is denoted by e. Each branch takes as input a data point and produces a score vector corresponding to the target classes. Current design of CNNs are referred to as single-branch, having e = 1. • Element block: the model architecture used to form a branch. In our experiments, we use DenseNet-BC and ResNet with pre-activation as element blocks. • Fuse Layer: the operation used to combine each of the parallel branches which make up our model. In our experiments, each of the branches are combined by taking the mean of each of their individual log probabilities over the target classes.

We consider neural network models which output a score vector of the same dimension as the number of target classes. This is usually implemented as a linear layer and referred to as a fully connected (FC) layer. The differences among current neural network models is related to what is present before the last FC layer. We are agnostic to this internal setup (however complex it may or may not be) because the resulting "element block" always takes an image as input and produces a vector of N values as output, parametrized by a tensor W . In our set-up, the model is composed of parallel branches and each branch produces a score vector for the target categories. The score vectors are combined through the "fuse layer" during training and the composite model produces a single prediction. We refer to this as coupled ensembles (Figure 1).

No additional parameters are introduced as the fuse layer is an arithmetic operation without any learnable parameters.

EXPERIMENTS AND RESULTS

We use DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF] as the element block. We train and evaluate on CI-FAR [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], SVHN Netzer et al. (2011) and ILSVRC2012 Russakovsky et al. (2015) datasets. All yyperparameters for training set according to the description provided in the papers of the element blocks.

COMPARISON WITH SINGLE BRANCH MODELS

We fix the parameter budget and compare the top-1 error for single branch DenseNet and coupled ensembles with DenseNet element blocks. The results are in table 1. We see that for all parameter counts, coupled ensembles (e > 1) perform significantly better. DenseNet-L88-k20-e4 has error of 16.79% with 7M parameters, which is better than the 25M parameter single branch DenseNet-L190-k40-e1 model's 17.22%. Additionally, with 25M parameters, a coupled ensemble model achieves an error of 15.68%. In this case, coupled ensembles exceed the performance of single branch model with 7× less parameters, and for the same number of parameters perform better by 2%. The first four rows of table 1 show that using ResNet as the element block has similar results, with coupled ensembles performing significantly better.

Table 2: Coupled Ensembles of DenseNet-BC (e = 4) with different "fuse layer" combinations versus a single branch model. Performance is given as the top-1 error rate (mean±standard deviation for the individual branches) on the CIFAR-100 test set. Columns "L" and "k" denote the "element block" architecture, "e" is the number of branches. Column "Avg." indicates the type of "fuse layer" during training (section 2); Column "Individual" is error of each branch; Columns "FC" and "SM"(SoftMax) give the performance for "fuse layer" choices during inference.

L We next compare coupled ensembles to an ensemble of independently trained models. Row 4 of table 2 shows the results obtained by an ensemble 4 DenseNet-L100-k12 models, each of which where trained seperately. During inference, the models are combined by taking the mean of their predicted log-probabilities. We compare this with DenseNet-L100-k12-e4, where each branch is functionally equivalent to the individual single branch DenseNet models. First we see that error for coupled ensembles is 17.61%, which is lower than the ensemble of independent models' 18.42%.

In table 2, the column 'Individual' shows the error rate of branches. We observe that coupled ensembles' branches have an error rate of 22.29 ± 0.11. In contrast independent trainings of equivalent models obtains an error rate of 23.13 ± 0.09. This shows that the joint training in coupled ensembles aids each branch to perform better than when they are trained separately.

IMAGENET

Preliminary results on the ILSVRC-2012 validation set show that coupled ensembles have a lower error for a fixed parameter budget, as compared to a single branch model (DenseNet-L169-k32-e1) (table 3). We can see that results from the smaller scale datasets are carried over to the larger scale ILSVRC dataset. We also see that coupled ensembles perform better for a fixed training time (row 1 and 3 of table 3). Note that due to resource constraints, this was the strongest possible baseline that we could train. Training was done on down sampled 256×256 images instead of taking crops from the full sized images. Data augmentation consisted of random horizontal flips and random crops.

CONCLUSION

Coupled ensembles are a way of reconfiguring neural networks into 'element blocks', which resemble CNNs. This improves upon existing models especially for a fixed parameter budget, leading to competitive state of the art results. Additionally, the performances of the constituent element blocks are better than the case where the same element blocks are trained independently without coupling.

  DenseNet-BC L = 160 k = 24 e =

Table 1 :

 1 Coupled ensembles with mean of LogSoftMax for the fuse layer operation. Classification error comparison with the state of the art. The third and fourth groups of rows compare coupled ensembles with single branch models for the same parameter budget.

	Label							
	Image	[W 1 ]	Element Block ⋯	FC	SM	AVG	LL	Loss
		[W e ]	Element Block	FC	SM			
	Figure 1: Architecture				C10+ C100+ SVHN #Params
	ResNet pre-act. L = 164 k = 64 [2]		5.46	24.33	-	1.7M
	ResNet pre-act. L = 1001 k = 64 [2]		4.92	22.71	-	10.2M
	ResNet pre-activation L = 65 k = 64 e = 2	5.26	23.24	-	1.4M
	ResNet pre-activation L = 164 k = 64 e = 4 3.96	18.84	-	6.8M
	DenseNet-BC L = 100 k = 12 e = 1 [1]		4.51	22.27	1.76	0.8M
	DenseNet-BC L = 190 k = 40 e = 1 [1]		3.46	17.18	1.79	25.8M
	DenseNet-BC L = 100 k = 12 e = 1*		4.77	22.87	1.76	0.8M
	DenseNet-BC L = 112 k = 16 e = 1		4.47	20.73	1.83	1.7M
	DenseNet-BC L = 130 k = 20 e = 1		3.86	19.62	1.84	3.4M

Table 3 :

 3 Preliminary results on ImageNet with DenseNet element blocks.

		k e Avg. Individual	FC	SM	Params
	100 12 4 LSM 22.29±0.11 17.61 17.68	3.20M
	100 12 4 none 23.13±0.09 18.42 18.85	3.20M
	100 25 1	n/a	20.61	n/a	n/a	3.34M
	154 17 1	n/a	20.02	n/a	n/a	3.29M
	L	k e Params. Epochs Train time (h) Top-1 error
	161 32 1	14.1M	90	162		31.21
	121 30 2	14.1M	90	225		29.41
	121 30 2	14.1M	64	160		29.83
	3.2 COMPARISON WITH INDEPENDENTLY TRAINED MODELS	
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