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Let H =< V,S > be a hypergraph, V is a set of vertices and S = {S1, . . . , Sm} is a set of not necessarily disjoint
clusters Si ⊆ V such that ∪m

i=1Si = V . The Clustered Spanning Tree problem is to find a tree spanning all the
vertices of V which satisfies that each cluster induces a subtree, when it exists. We provide an efficient and unique
algorithm which finds a feasible solution tree for H when it exists, or states that no feasible solution exists. The paper
also uses special structures of the intersection graph of H to construct a feasible solution more efficiently. For cases
when the hypergraph does not have a feasible solution tree, we consider adding vertices to exactly one cluster in order
to gain feasibility. We characterize when such addition can gain feasibility, find the appropriate cluster and a possible
set of vertices to be added.

Keywords: Clustered spanning tree, Feasibility

1 Introduction
Let H =< V,S > be a hypergraph, where V is a set of vertices and S is a set of clusters S1, . . . , Sm,
Si ⊆ V for i ∈ {1, . . . ,m}, ∪mi=1Si = V , and the clusters are not necessarily disjoint. The Clustered
Spanning Tree problem, denoted by CST, is to find a tree spanning all the vertices of V , such that each
cluster induces a subtree, if one exists.

One of the main results of this paper (Algorithm ES, Figure 1) is a novel algorithm for the essential
question of whether a feasible solution tree exists for a given instance of the CST problem. This algorithm
requires O(|V |2m) time complexity and can handle every instance hypergraph. In the first stage of the
algorithm a weighted graph is constructed, V is the set of vertices of this graph, an edge (v, u) exists in
the graph if there is a cluster which contains both vertices, the weight of each edge in the graph is equal
to the number of clusters containing both endpoints of this edge. Next, we find a maximum spanning
tree for this graph. A feasible solution for the CST problem exists if and only if the weight of this tree is∑m
i=1 |Si| −m. Furthermore, the maximum spanning tree offers a feasible solution, when one exists.
This paper also introduces how a solution for the CST problem can be derived using information from

the hypergraph and the corresponding intersection graph. First, we prove that when H has a feasible solu-
tion tree TH , then subtrees of TH are feasible solution trees for the corresponding induced subproblems.
This also proves that when an induced hypergraph does not have a feasible solution tree, neither does H .
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When the intersection graph contains a cut-edge, we prove that deciding whether a feasible solution exists
can be based on the decision made independently for each component of the intersection graph. The feasi-
ble solution tree for the given hypergraph is constructed using the feasible solution subtrees created from
the corresponding subproblems and thus this technique may significantly reduce the required complexity.
For the special case where every vertex in V is contained in at most 2 clusters from S, the CST problem
has a feasible solution if and only if the corresponding intersection graph is a tree. In all cases, a feasible
solution tree is offered when it exists.

Another main result of the paper (Theorems 4.12 and 4.15) considers hypergraphs which do not have
a feasible solution tree. In these cases we want to characterize when adding vertices to exactly one
cluster can gain feasibility. Assuming the clusters satisfy the Helly Property, we prove that when all the
chordless cycles of the intersection graph share a joint node, adding an appropriate set of vertices to the
corresponding cluster creates a hypergraph with a feasible solution tree. We classify all the sets of vertices
whose addition creates feasibility.

Throughout this paper, we assume that the intersection graph of H is connected. Otherwise, a feasible
solution tree for H can be constructed by properly adding edges between the feasible solutions of each
connected component, if they exist.

The following theorem, summarized in McKee and McMorris (1999), which will be used throughout
the paper, gives sufficient and necessary conditions for the feasibility decision problem for a given instance
of the CST problem.

Theorem 1.1 (Duchet (1976), Flament (1978), Slater (1978)) A hypergraphH =< V,S > has a feasible
solution tree if and only if it satisfies the Helly property and its intersection graph is chordal.

Verifying whether a hypergraph satisfies the Helly Property requires O(|V |4m) time complexity, ac-
cording to Dourado et al. (2009). This time complexity dominates the time required to verify that the
intersection graph is chordal. Thus using Theorem 1.1 to check whether a hypergraph has a feasible
solution tree requires O(|V |4m) time complexity.

Related problems consider different structures of the solution tree and the clusters’ induced subtrees.
In Swaminathan and Wagner (1994) a polynomial algorithm is presented, which constructs a tree where
each cluster spans a path. The most restricted problem where both the tree and subtrees are required to be
paths, is in fact the Consecutive Ones Problem, which Booth and Lueker (1976) solve in linear time using
PQ-trees.

When considering the optimization CST problem, the edges of E have weights and the objective is to
find a feasible solution tree with minimum weight. This problem was solved in Korach and Stern (2003)
where an optimum solution is found in O(|V |4m2) time complexity, when a feasible solution exists. In
addition, an abstraction of the problem using matroids is presented. For the restricted case where each
cluster contains at most three vertices, there is a linear time algorithm and a polyhedral description of all
feasible solutions. A special case of the optimization CST problem, where the optimum spanning tree
solution is required to span a complete star on each cluster, is presented in Korach and Stern (2008).
A structure theorem which describes all feasible solutions and a polynomial algorithm for finding an
optimum solution is presented, assuming the intersection graph is connected.

Another related optimization problem, called the clustering-TSP-path, arises when the optimum so-
lution tree is required to be a TSP-path. The TSP-path is proven to be NP-hard in Christofides (1976).
In Guttmann-Beck et al. (2018) several algorithms for the not necessarily disjoint clustered TSP-path are
presented. For a restricted case of the problem an exact polynomial algorithm is presented. For other cases
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approximation algorithms are presented, whose efficienty depends on the structure of the hypergraph. A
lot of research has also been investigated on the clustered TSP-path where the clusters are disjoint. A
heuristic for this problem is presented in Chisman (1975), a branch and bound algorithm for solving this
problem is presented in Lokin (1979) and bounded-approximation algorithms are presented in Arkin et al.
(1997) and Guttmann-Beck et al. (2000). In Anily et al. (1999) the ordered disjoint clustered TSP is con-
sidered and an approximation algorithm is offered. In Potvin and Guertin (1998) a genetic algorithm for
solving this problem is presented.

This paper is organized as follows. Section 2 introduces Algorithm Existence of Solution which decides
whether a feasible solution tree exists for any given instance of the CST problem and finds a feasible
solution when one exists. Section 3 contains theorems which state how the feasibility of subproblems
of a given instance indicates whether a feasible solution tree exists. This section also uses information
derived from the intersection graph of a given instance to determine its feasibility. When applicable, the
methods introduced in this section have significantly better complexity than the algorithm introduced in
Section 2. Section 4 considers hypergraphs with no feasible solution tree. For those cases, we characterize
when adding vertices to exactly one cluster of the given hypergraph gains feasibility. The section contains
proofs which characterize the hypergraphs that become feasible when such an addition is preformed,
identify which clusters are appropriate for this change and what are the relevant sets of vertices whose
addition creates feasibility.

2 Existence of Solution
This section introduces algorithm Existence of Solution (ES) which is a major result of the paper. The
algorithm, presented in Figure 1, either finds a feasible solution tree for a hypergraph H =< V,S > or
declares that there is no feasible solution. The algorithm creates a weighted graph denoted by GES =
(VES , EES), where VES = V and EES contains an edge (v, u) if there exists a cluster Si such that
{v, u} ⊆ Si. The weight of each edge is equal to the number of clusters containing both endpoints of the
edge. In this graph a maximum spanning tree TES is found. We prove that a hypergraph has a feasible
solution tree if and only if the weight of TES , denoted by w(TES), is equal to

∑m
i=1 |Si| −m. When a

solution exists, TES is a feasible solution tree.
First, we define induced subtrees and the weighted graph GES which is used by Algorithm ES.

Definition 2.1 Given a hypergraph H =< V,S >, T a tree spanning V and V ′ ⊆ V , the subgraph of T
induced by V ′, denoted by T [V ′], is defined to contain all the vertices of V ′ and all the edges of T whose
both endpoints are in V ′.

Definition 2.2 Given a hypergraph H =< V,S >:

• GES is the weighted graph with vertex set VES and edge set EES , where: VES ≡ V and EES
contains the edge (v, u) (for v 6= u) if there exists a cluster Si such that {v, u} ⊆ Si.

• For every edge (v, u) ∈ EES and every cluster Si ∈ S:

wi(v, u) =

{
1 if v, u ∈ Si
0 otherwise

• For every edge (v, u) ∈ EES : w(v, u) =
∑m
i=1 wi(v, u) = |{Si : i ∈ {1, . . . ,m}, {v, u} ⊆ Si}|.

This is the weight used in Algorithm ES (Figure 1).
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ES (Existence of Solution)
input
A hypergraph H =< V,S >, where S = {S1, . . . , Sm}.
returns
A feasible solution tree or a statement ”No feasible solution”.
begin
Construct the following weighted graph GES = (VES , EES):
VES ≡ V .
EES contains the edge (v, u) (for v 6= u) if there exists a cluster Si such that {v, u} ⊆ Si.
The weight of an edge (v, u) is set: w(v, u) = |{Si : i ∈ {1, . . . ,m}, {v, u} ⊆ Si}|.
Find TES - a maximum spanning tree of GES .
if w(TES) =

∑m
i=1 |Si| −m

then Return TES
else Return ”No feasible solution”.

end if
end ES

Fig. 1: Algorithm ES

• For every tree T of GES and every cluster Si ∈ S: wi(T ) =
∑

(v,u)∈E(T )

wi(v, u), where E(T ) is

the set of edges in T .

• For every tree T of GES: w(T ) =
∑m
i=1 wi(T ).

Lemma 2.3 Given a hypergraphH =< V,S >, the inequalitywi(T ) ≤ |Si|−1 holds for every spanning
tree T of GES and every cluster Si ∈ S . An equality holds if and only if T [Si] is a subtree spanning all
the vertices in Si.

Proof: According to Definition 2.2, the weight wi(T ) is equal to the number of edges in T [Si]. Since T
is cycle-less, the number of edges in T [Si] is at most |Si| − 1 which proves that wi(T ) ≤ |Si| − 1. T [Si]
is a tree if and only if it contains exactly |Si|−1 edges, each edge e with weight wi(e) = 1 . Hence, T [Si]
is a spanning tree of Si if and only if wi(T ) = wi(T [Si]) = |Si| − 1. 2

Corollary 2.4 Given a hypergraph H =< V,S >, for every T a spanning tree of GES the weight
w(T ) =

∑m
i=1 wi(T ) ≤

∑m
i=1 |Si| −m.

Theorem 2.5 Given a hypergraphH =< V,S > and TES a maximum spanning tree ofGES , w(TES) =∑m
i=1 |Si| −m if and only if TES is a feasible solution tree.

Proof: By Corollary 2.4, w(T ) =
∑m
i=1 wi(T ) ≤

∑m
i=1 |Si| −m, for every T a spanning tree of GES .

Using Lemma 2.3, the weight of the maximum spanning tree is w(TES) =
∑m
i=1 |Si| −m if and only if

wi(TES) = |Si|−1 for every i ∈ {1, . . . ,m}. In this case, T [Si] is a spanning tree of Si for every cluster
Si ∈ S. Therefore, TES is a feasible solution tree for H . 2
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In Figure 2 we give two examples of hypergraphs. The left most item in this figure is the hyper-
graph suited for S = {{1, 2}, {2, 4}, {1, 2, 3}, {2, 3, 4}}. The second item on the left is the appropri-
ate weighted graph created for this hypergraph by Algorithm ES. The solid lines describe the maxi-
mum spanning tree of this graph. The weight of this tree is 6 =

∑m
i=1 |Si| − m which indicates, ac-

cording to Theorem 2.5, that the hypergraph has a feasible solution tree with the maximum spanning
tree as its solution. The two right items of this figure describe the hypergraph and the weighted graph
suited for S = {{1, 2}, {2, 4}, {1, 2, 3}, {1, 3, 4}}. The weight of a maximum spanning in this case is
5 6=

∑m
i=1 |Si| −m and indeed the hypergraph has no feasible solution tree.

3

2

4

1 11

3

2

4

1

3 3

2 2

4 4

2

2
21

1

2

2

1

1
11

(a) (b)

Fig. 2: Example of a hypergraph (a) with a feasible solution tree and (b) without a feasible solution tree

Theorem 2.6 The complexity of Algorithm ES (Figure 1) is O(|V |2m).

Proof: The first step of the algorithm is to construct GES . For every two nodes v, u the algorithm decides
whether the edge (v, u) is included in EES and when it does, computes the weight of this edge. Thus
constructing GES takes O(|V |2m) steps. The second step is to find the maximum spanning tree of this
graph. The dominating step with respect to complexity in finding a maximum spanning tree requires
sorting the edges by their weights. Since the edge weights are integers and bounded by m, this can be
done in O(m+ |V |2) time. Hence the complexity of finding the required maximum tree is dominated by
the complexity of the first step. Therefore, the complexity of Algorithm ES is O(|V |2m). 2

3 Induced Hypergraphs
Consider a hypergraph H =< V,S > which is an instance for the CST problem. New instances of
the problem are created by considering induced hypergraphs defined by subsets of S. In this section we
prove that when H has a feasible solution tree TH , then induced subtrees of TH are feasible solution
trees for the corresponding induced subproblems. Furthermore, when an induced hypergraph does not
have a feasible solution tree, neither does H . Section 3.1 considers the case where the intersection graph
of H has a cut-edge. In this case, we prove that the hypergraph has a feasible solution tree if and only if
the induced hypergraphs, corresponding to the connected components created by removing the cut-edge,
have feasible solution trees. Furthermore, a feasible solution tree for H can be constructed from the
solution trees of the induced hypergraphs. Section 3.2 considers the special case where each vertex of V
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is contained in at most two clusters. In this case, we prove that H has a feasible solution tree if and only
if the corresponding intersection graph is a tree.
The following definitions will be used throughout the paper.

Definition 3.1 Given a hypergraph H =< V,S > where S is a set of not necessarily disjoint clusters
{Si1 , . . . , Sip} of V . The intersection graph of {Si1 , . . . , Sip}, denoted by Gint({Si1 , . . . , Sip}),
is defined to be a graph whose set of nodes is {si1 , . . . , sip}, where sij corresponds to Sij , and an edge
(sij , sik) exists if Sij ∩ Sik 6= φ.

Definition 3.2 Let H =< V,S > be a hypergraph and let S ′ ⊂ S be a set of clusters. We define H[S′]
to be the hypergraph whose vertex set is V (S′) =

⋃
Si∈S′ Si and its clusters set is S ′.

Property 3.3 Let H =< V,S > be a hypergraph, if Gint(S) is the intersection graph of H , then the
induced graph Gint(S)[(

⋃
Si∈S′ Si)] is the intersection graph of H[S ′] and therefore can be denoted as

Gint(S ′).

Theorem 3.4 Let H =< V,S > be a hypergraph with a connected intersection graph Gint(S) and a
feasible solution tree TH . If Gint(S ′) is connected for S ′ ⊂ S, then TH [V (S ′)] is a feasible solution tree
for H[S ′].

Proof: First we prove that TH [V (S ′)] is a tree. Since TH [V (S ′)] is a subgraph of TH clearly it has no
cycles.
To prove that this subgraph is connected, consider v1, v2 ∈ V (S ′). There are two clusters Si1 , Si2 ∈ S ′,
not necessarily distinct, such that v1 ∈ Si1 and v2 ∈ Si2 .

If Si1 6= Si2 then sinceGint(S ′) is connected it contains a simple path (si1 , w1), (w1, w2), . . . , (wk, si2)
with si1 representing Si1 , si2 representing Si2 and wi representing a cluster Wi ∈ S ′, ∀i ∈ {1, . . . , k}.
Hence, there are vertices u1, . . . , uk+1 ∈ V (S ′) such that:

1. u1 ∈ Si1 ∩W1,

2. ui ∈Wi−1 ∩Wi, ∀i ∈ {2, . . . , k},

3. uk+1 ∈Wk ∩ Si2 .

Since TH is a feasible solution tree it contains the following simple paths:

1. a path v1 − u1 whose vertices are all contained in Si1 .

2. ∀i ∈ {2, . . . , k} a path ui−1 − ui whose vertices are all contained in Wi,

3. a path uk+1 − v2 whose vertices are all contained in Si2 .

TH [V (S ′)] contains all these paths and their union gives a path connecting v1 and v2 in TH [V (S ′)].
Similarly, if Si1 = Si2 then TH contains a path connecting v1 and v2 whose vertices are all contained

in Si1 which is also in TH [V (S ′)].
Combining the above claims we get that TH [V (S ′)] is cycle-less and connected and therefore a tree.
Since TH is a feasible solution tree, the induced tree TH [V (S ′)] on any Si ∈ S ′ is equal to the induced

tree of TH on Si and hence is a subtree spanning Si. Thus, TH [V (S ′)] is a feasible solution tree for
H[S ′]. 2



Clustered Spanning Tree - Conditions for Feasibility 7

Corollary 3.5 Let H =< V,S > be a hypergraph with a connected intersection graph Gint(S). If
Gint(S ′) is connected for S ′ ⊂ S andH[S ′] has no feasible solution tree, thenH has no feasible solution
tree.

3.1 Breaking the Intersection Graph
This section introduces a strategy to decide whether it is possible to divide the problem into smaller
subproblems by a cut-edge of the intersection graph. We prove that a feasible solution tree of the given
problem exists if and only if each subproblem has a feasible solution tree. Since the instances for the
subproblems may be significantly smaller, the complexity of deciding whether a subproblem has a feasible
solution decreases according to the size of the subproblem.

Theorem 3.6 Let H =< V,S > be a hypergraph with a connected intersection graph Gint(S). If the
intersection graph contains a cut-edge (bridge) which divides the intersection graph into two connected
componentsGint(S ′) andGint(S\S ′), thenH has a feasible solution tree if and only if each one ofH[S ′]
and H[(S\S ′)] has a feasible solution tree.

Proof: Without loss of generality, denote the cut-edge as (s1, s2) with s1 representing cluster S1 ∈ S ′
and s2 representing cluster S2 ∈ S\S ′. According to the theorem’s assumption Gint(S) = Gint(S ′) ∪
Gint(S\S ′) + (s1, s2).

If H has a feasible solution tree then since both Gint(S ′) and Gint(S\S ′) are connected, according to
Theorem 3.4, H[S ′] and H[S\S ′] both have feasible solution trees.

Suppose, on the other end, that H[S ′] and H[S\S ′] have feasible solution trees T1 and T2 respectively.
Since T1 is a feasible solution tree forH[S ′], T1[S1] is a connected subtree. According to the theorem’s as-
sumption, the only edge inGint between S ′ and S\S ′ is (s1, s2). Therefore, (S1∩S2)∩V (S\{S1, S2}) =
φ. Hence, the vertices contained in T1[S1] can be reordered to obtain a connected subtree on T1[S1 ∩S2].
T2 can be reordered in a similar way to satisfy that T2[S1 ∩S2] is a connected subtree of T2[S2]. This can
be performed also to satisfy T2[S1 ∩ S2] = T1[S1 ∩ S2]. After the described adjustments, the union of T1
and T2 is a feasible solution tree for H . 2

3.2 Bounded Containment of Vertices
In this section a special type of hypergraphs is considered, when every vertex in V is contained in at most
2 clusters from S. We prove that in this type of hypergraphs, the CST problem has a feasible solution if
and only if the intersection graph is a tree.
First, some definitions and properties are presented.

Definition 3.7 For every v ∈ V , we define nc(v) = |{Si : i ∈ {1, . . . ,m}, v ∈ Si}| (the number of
clusters which contain vertex v).

Observation 3.8 In an intersection graph, a vertex v ∈ V which belongs to k clusters (nc(v) = k)
creates a k-size clique. Hence, if the intersection graph of a hypergraph is a tree or a chordless cycle with
at least 4 nodes, then nc(v) ≤ 2 ∀v ∈ V .

Definition 3.9 We denote the following subclusters:

• For every i ∈ {1, . . . ,m}, define the subcluster K{i}= {v : v ∈ Si, nc(v) = 1}. K{i} contains
all the vertices which belong only to Si.
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• For every i 6= j ∈ {1, . . . ,m}, define the subcluster K{i,j} = {v : v ∈ Si ∩ Sj}. K{i,j} contains
all the vertices which belong both to Si and to Sj .

The following Property follows from Definition 3.9.

Property 3.10 All clusters and subclusters satisfy:

• K{i} ∩K{i,j} = φ, ∀i 6= j ∈ {1, . . . ,m}.

• Si = K{i} ∪ (
⋃
j 6=iK{i,j}), ∀i ∈ {1, . . . ,m}.

• When nc(v) ≤ 2 for every v ∈ V , then K{i,j1} ∩K{i,j2} = φ for j1 6= j2 and ∀i ∈ {1, . . . ,m}.

Theorem 3.11 Let H =< V,S > be a hypergraph with nc(v) ≤ 2 ∀v ∈ V and a connected intersection
graph. H has a feasible solution tree if and only if its intersection graph is a tree.

Proof: Consider the weighted graph created for H in Algorithm ES (Figure 1). Using Observation 3.8
and Property 3.10, the graph contains edges (v, u) with w(v, u) ∈ {1, 2}, and w(v, u) = 2 when there are
i, j ∈ {1, . . . ,m} such that v, u ∈ K{i,j}.

A maximum spanning tree TES contains a maximum number of edges of weight 2. Inside each sub-
cluster K{i,j} a subtree is chosen, using |K{i,j}| − 1 edges. By property 3.10, these subclusters are

disjoint, giving that altogether TES contains
m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}| − 1) edges of weight 2. The rest

of the edges are of weight 1. Since any spanning tree on n vertices contains n − 1 edges, there are

(n− 1)− (
m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}| − 1)) edges of weight 1.

Hence, the weight of a maximum spanning tree returned by Algorithm ES:

w(TES) = 2 ∗ (
m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}| − 1)) + 1 ∗ ((n− 1)− (

m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}| − 1)))

= (n− 1) +

m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}|)−
m∑
i=1

m∑
j>i

K{i,j} 6=φ

1 (1)

In an intersection graph, the degree of si (the vertex representing Si) is di = |{Sj |Si ∩Sj 6= φ, j 6= i}| =
|{K{i,j}|K{i,j} 6= φ, j 6= i}|. Therefore:

w(TES) = (n− 1) +

m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}|)− 0.5

m∑
i=1

di (2)

By Property 3.10 each vertex of the graph belongs to exactly one subcluster, hence:

n =

m∑
i=1

|K{i}|+
m∑
i=1

m∑
j>i

K{i,j} 6=φ

(|K{i,j}|) (3)
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Using Equations (2) and (3) and Property 3.10:

w(TES) =

m∑
i=1

|K{i}|+ 2

m∑
i=1

m∑
j>i

K{i,j} 6=φ

|K{i,j}| − 1− 0.5

m∑
i=1

di

=

m∑
i=1

|Si| − 1− 0.5

m∑
i=1

di (4)

According to Theorem 2.5, hypergraphH has a feasible solution tree if and only ifw(TES) =
∑m
i=1 |Si|−

m. Using Equation (4), hypergraph H has a feasible solution tree if and only if

0.5

m∑
i=1

di = m− 1

Since di is also the degree of si in the intersection graph, 0.5
∑m
i=1 di is equal to the number of edges of

this intersection graph. The number of edges in a connected intersection graph with m nodes is equal to
m− 1 if and only if the intersection graph is a tree, thus proving the correctness of the theorem. 2

Theorem 3.11 proves the following remark, which can also be deduced from Theorem 1.1:

Remark 3.12 Let H =< V,S > be a hypergraph with a connected intersection graph Gint(S). If
Gint(S) contains a chordless cycle with at least 4 nodes, then H has no feasible solution tree.

Proof: Denote by si1 , . . . , sip , p ≥ 4, the nodes of a chordless cycle inGint(S) and let SC = {Si1 , . . . , Sip}.
Consider the induced hypergraph H[SC ], its intersection graph Gint(SC) is a chordless cycle and there-
fore it is connected. According to Observation 3.8, ∀v ∈ V (SC) it holds that nc(v) ≤ 2. By Theorem
3.11, since Gint(SC) is a cycle, H[SC ] has no feasible solution tree. Therefore, by Corollary 3.5, H has
no feasible solution tree. 2

4 Inserting Vertices to Gain Feasibility
In this section we discuss hypergraphs with no feasible solution tree. We consider adding vertices to only
one cluster of the given hypergraph. We characterize the hypergraphs that become feasible when such an
addition is preformed. We find an appropriate cluster and all the set of vertices which could be added to
it.

Definition 4.1 Let H =< V,S > with S = {S1, . . . , Sm}, be a hypergraph with no feasible solution
tree. An insertion cluster is a cluster Si ∈ S, such that there exists a set of vertices U ⊂ V , for which the
hypergraph H ′ =< V, {S1, . . . , Si−1,Si ∪U, Si+1, . . . , Sm} > has a feasible solution tree.

Definition 4.2 Let H =< V,S > be a hypergraph, U ⊂ V is an intersection cover set of S ′ ⊂ S if
for every set of clusters {Si1 , . . . , Siq} ⊆ S ′ , when

⋂q
j=1 Sij 6= φ, for q ≥ 2, there is at least one node

u ∈ U such that u ∈
⋂q
j=1 Sij . In this case we say that u covers the intersection

⋂q
j=1 Sij .

Definition 4.3 Let H =< V,S > be a hypergraph, H is a cycled hypergraph if the clusters in S satisfy
the Helly Property and if Gint(S) is composed only of chordless cycles, each one of size ≥ 4.
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Definition 4.4 LetH =< V,S > be a hypergraph, for every v ∈ V and i ∈ {1, . . . ,m} define MI(v, i)
to be the maximum cardinality set of indices contained in {1, . . . , i − 1, i + 1, . . . ,m}, such that v ∈⋂
j∈MI(v) Sj .

Note that |MI(v, i)| ≥ 1, for every v ∈
⋃
j 6=i Sj .

Definition 4.5 Let H =< V,S > be a hypergraph, and let U ⊂ V . Define SUj = Sj ∩ U ∀Sj ∈ S.

IC (Insertion Cluster)
input
A hypergraph H =< V,S >, where S = {S1, . . . , Sm}.
A set U ⊂ V which is an intersection cover set of S\{Si}.
Assumptions
H is a cycled hypergraph with no feasible solution tree.
All the cycles in Gint(S) contain node si.
returns
A feasible solution tree T for H ′ =< V, {S1, . . . , Si−1, Si ∪ U, Si+1, . . . , Sm} > .
begin
for every (j 6= i)

Define SUj = Sj ∩ U .
end for
Define a hypergraph HU =< U, {SU1 , . . . , SUi−1, SUi+1, . . . , S

U
m} >.

Find T a feasible solution tree for HU (T exists by Lemma 4.7).
for every (v ∈ ((

⋃
j 6=i Sj)\U))

if (|MI(v, i)| == 1)
then

Find k 6= i such that v ∈ Sk and choose a node u ∈ SUk .
else

Find u ∈ U that covers the intersection
⋂
j∈MI(v,i) Sj .

end if
Add to T the edge (v, u).

end for
Choose a node u ∈ U .
Add to T a star whose center is u and spans the vertices of Si\(U ∪ (

⋃
j 6=i Sj)).

return T .
end IC

Fig. 3: Algorithm IC

Lemma 4.6 In Algorithm IC (Figure 3), with U an intersection cover set of S\{Si}, for every j, k ∈
{1, . . . , i− 1, i+ 1, . . . ,m}, j 6= k, Sj ∩ Sk 6= φ if and only if SUj ∩ SUk 6= φ.

Proof: Suppose that Sj ∩ Sk 6= φ. According to definition 4.2 and since U is an intersection cover set
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of S\{Si}, there exists u ∈ U such that u ∈ Sj ∩ Sk. According to the way SUj and SUk are defined,
u ∈ SUj ∩ SUk which proves that SUj ∩ SUk 6= φ.
Suppose that SUj ∩ SUk 6= φ. According to the way these clusters were defined Sj ⊇ SUj and Sk ⊇ SUk ,
hence Sj ∩ Sk ⊇ SUj ∩ SUk 6= φ. 2

Lemma 4.7 In Algorithm IC (Figure 3), HU =< U, {SU1 , . . . , SUi−1, SUi+1, . . . , S
U
m} > has a feasible

solution tree.

Proof: According to Lemma 4.6, two nodes inGint({SU1 , . . . , SUi−1, SUi+1, . . . , S
U
m}) intersect if and only

if the corresponding nodes intersect in Gint({S1, . . . , Si−1, Si+1, . . . , Sm}).
According to the assumption of the algorithm, si is contained in every chordless cycle of Gint(S).
Therefore, Gint({S1, . . . , Si−1, Si+1, . . . , Sm}) does not contain any chordless cycle and neither does
Gint({SU1 , . . . , SUi−1, SUi+1, . . . , S

U
m}).

In addition, sinceH is a cycled hypergraph the clusters in {S1, . . . , Si−1, Si+1, . . . , Sm} satisfy the Helly
Property. According to Lemma 4.6 the clusters in {SU1 , . . . , SUi−1, SUi+1, . . . , S

U
m} also satisfy the Helly

Property.
By Theorem 1.1 HU has a feasible solution tree. 2

Lemma 4.8 The output T of Algorithm IC (Figure 3) is a tree which spans V .

Proof: In the algorithm, T is initialized to be a feasible solution tree of HU . In this stage T is a spanning
tree of the vertices in U .
Consider a vertex v ∈ V \U . There are two options:

1. v ∈ (
⋃
j 6=i Sj)\U , in this case the algorithm finds the set of indices MI(v, i) and a vertex u ∈ U

such that u ∈
⋂
j∈MI(v,i) Sj . Vertex u exists since U is an intersection cover set. Next, the

algorithm adds v to T as a leaf.

2. v ∈ Si\(U ∪ (
⋃
j 6=i Sj)), in this case v is added to T as a leaf in the last step of the algorithm.

Hence, T is a tree which touches all the vertices of V . 2

Lemma 4.9 In the output tree T returned by Algorithm IC (Figure 3) , T [Sk] is a connected subtree for
every k ∈ {1, . . . ,m}, k 6= i.

Proof: In Algorithm IC, T is initialized to be a feasible solution tree of HU . Therefore, at this stage
T [SUk ] is a subtree spanning Sk ∩ U . In all the following steps of the algorithm T [SUk ] does not change.
Consider a vertex v ∈ Sk\U , in this case v ∈ ((

⋃
j 6=i Sj)\U).

If |MI(v, i)| = 1 then Sk is the only cluster to contain v. Since Gint(S) is connected, Sk intersects with
at least one other cluster Sj 6= Si. U is an intersection cover set, therefore there exists u ∈ U which
covers Sj ∩ Sk, proving that Algorithm IC can find u ∈ SUk .
If |MI(v, i)| > 1 and since U is an intersection cover set of S\{Si}, there exists u ∈ U which covers⋂
j∈MI(v,i) Sj . Since

⋂
j∈MI(v,i) Sj ⊂ Sk, it follows that also in this case u ∈ SUk .

In both cases Algorithm IC connects v to T [SUk ] by an edge (v, u) with u ∈ SUk . At the end of the
algorithm, all the vertices of Sk are either in T [SUk ] or connected to it by an edge whose both endpoints
are in Sk, thus proving the required subtree. 2
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Lemma 4.10 In the output tree T returned by Algorithm IC (Figure 3), T [Si∪U ] is a connected subtree.

Proof: In Algorithm IC, T is initialized to be a feasible solution tree of HU , therefore it is a spanning
tree of U .
Consider a vertex v ∈ Si\U . If there is k 6= i such that v ∈ Sk, by Lemma 4.9 T [Sk] is a connected
subtree and thus v is connected by an edge to u ∈ SUk ⊂ U . Otherwise, Si is the only cluster to contain v
and v ∈ Si\(U ∪ (

⋃
j 6=i Sj)). In the last step, Algorithm IC connects v by an edge to a vertex u ∈ U .

In both cases, Algorithm IC connects v to T [U ] by an edge (v, u) with u ∈ U . At the end of the algorithm,
all the vertices of Si ∪ U are either in T [U ] or connected to it by an edge whose both endpoints are in
Si ∪ U , thus proving the required subtree. 2

Corollary 4.11 Let H =< V,S > be a hypergraph. If H is a cycled hypergraph and there is a node si
which is contained in all the chordless cycles of Gint(S), then T returned by Algorithm IC (Figure 3)
is a feasible solution tree for H ′ =< V, {S1, . . . , Si−1, Si ∪ U, Si+1, . . . , Sm} > and Si is an insertion
cluster of H .

Theorem 4.12 Let H =< V,S > be a hypergraph with no feasible solution tree. If the clusters of H
satisfy the Helly Property and if there is at least one node which is contained in every chordless cycle of
Gint(S), then H has an insertion cluster.

Proof: Let {Si1 , . . . , Sip} ⊆ S be the set of clusters constructing all the chordless cycles of Gint(S).
Consider the induced hypergraphHC = H[{Si1 , . . . , Sip}]. HC is a cycled hypergraph and all the cycles
in the corresponding intersection graphGint({Si1 , . . . , Sip}) share a node, denote this node si. According
to Corollary 4.11, Si is an insertion cluster of HC and there is U ⊂ V such that the hypergraph, created
by adding U to Si in HC , has a feasible solution tree. By Theorem 1.1, this hypergraph has a chordal
intersection graph and its clusters satisfy the Helly Property.
Therefore, hypergraph< V, {S1, . . . , Si−1, Si∪U, Si+1, . . . , Sm} > has a chordal intersection graph and
its clusters satisfy the Helly property. By Theorem 1.1, it has a feasible solution tree. 2

Lemma 4.13 Let H =< V,S > be a hypergraph with no feasible solution tree. If Gint(S) has no node
which is contained in all its chordless cycles, then H does not have an insertion cluster, even if its clusters
satisfy the Helly Property.

Proof: Suppose by contradiction that H has an insertion cluster Si. By the lemma’s assumption, Gint(S)
has a chordless cycle C, which does not contain node si. Therefore, adding vertices to Si does not add
chords to C. Hence, after the vertices insertion, the intersection graph still contains cycle C which is
chordless. By Theorem 1.1, the hypergraph has no feasible solution tree, contradicting the assumption
that Si is an insertion cluster. 2

Another important question is achieving minimum cardinality set of vertices to be added to an insertion
cluster, in order to achieve feasibility. In the following Lemma we prove that the set of added vertices is
an intersection cover set. The discussion which follows Lemma 4.14, considers the required minimality.

Lemma 4.14 Let H =< V,S > be a hypergraph with no feasible solution tree. Suppose that H is a
cycled hypergraph with a node si which is contained in all the chordless cycles of Gint(S). If adding
U ⊂ V to Si creates a hypergraph H ′ =< V, {S1, . . . , Si−1, Si ∪ U, Si+1, . . . , Sm} > which has a
feasible solution tree, then U is an intersection cover set of S\{Si}.
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Proof: First we prove that Sj ∩U 6= φ ∀j ∈ {1, . . . ,m}, j 6= i. Suppose by contradiction that there exists
some cluster Sj with Sj ∩ U = φ. Consider a cycle C in Gint(S) containing Sj . Since H is a cycled
hypergraph, its clusters satisfy the Helly Property and C contains at least 4 nodes. Let Sjl and Sjr be two
clusters in C (not necessarily distinct), each one on a different path in C between Si and Sj . Choose Sjl
(respectively Sjr) to be the cluster closest to Sj which satisfy Sjl ∩ U 6= φ ( Sjr ∩ U 6= φ) if it exists,
otherwise let Sjl = Si (Sjr = Si). Let s′i be the node representing Si ∪U in the intersection graph of H ′.
This intersection graph contains the cycle C ′ = s′i · · · sjl · · · sj · · · sjr · · · s′i. According to the Lemma’s
assumption, H ′ has a feasible solution tree. Therefore, according to Theorem 1.1, C ′ contains exactly
3 nodes. Without loss of generality, suppose that C ′ contains nodes s′i = sjl , sj and sjr . According to
Theorem 1.1, the clusters of H ′ satisfy the Helly Property, therefore there exists v ∈ (Si ∪U)∩Sj ∩Sjr .
Since Sj ∩U = φ it follows that v ∈ Si ∩ Sj ∩ Sjr , contradicting the fact that cycle C contains at least 4
nodes.

Now we prove that U contains a vertex which covers each intersection. Consider q ≥ 2 distinct
clusters Sj1 , . . . , Sjq for {j1, . . . , jq} ⊆ {1, . . . , i − 1, i + 1, . . . ,m} with Sj1 ∩ . . . ∩ Sjq 6= φ and
Sj1 ∩ . . .∩Sjq 6⊂ Si . Since Sj1 ∩U 6= φ, . . . , Sjq ∩U 6= φ, in H ′ the q+1 clusters Sj1 , . . . , Sjq , Si ∪U
pairwise intersect. Since the clusters inH ′ satisfy the Helly Property Sj1∩ . . .∩Sjq ∩(Si∪U) 6= φ giving
that Sj1 ∩ . . . ∩ Sjq ∩ U 6= φ. Thus, there exists u ∈ U which covers the intersection Sj1 ∩ . . . ∩ Sjq . 2

Theorem 4.15 Let H =< V,S > be a hypergraph with no feasible solution tree. Suppose the clusters of
H satisfy the Helly Property and there is at least one node si which is contained in every chordless cycle
of Gint(S). If adding U ⊂ V to Si creates a hypergraph which has a feasible solution tree, then U is an
intersection cover set of all the clusters, excluding Si, which are contained in the chordless cycles in the
intersection graph.

Proof: Similar to the proof of Theorem 4.12, using Lemma 4.14. 2

According to Theorems 4.12 and 4.15, when H =< V,S > is a hypergraph whose clusters satisfy
the Helly Property and si is a node which is contained in all the chordless cycles of Gint(S), then Si
is an insertion cluster. Adding the vertex set U ⊂ V to Si creates a hypergraph with a feasible solution
tree if and only if U is an intersection cover set of all the clusters which are contained in the chordless
cycles, excluding Si. Thus, finding the minimum number of added vertices to Si is equivalent to finding
the minimum cardinality intersection cover set. Since the hypergraph satisfy the Helly Property, this is
equivalent to finding all the maximal cliques of the intersection graph induced on the chordless cycles,
which may require exponential complexity in the general case.
However, for the more common case when nc(v) ≤ k, for a constant k, for all vertices in the hypergraph
induced on the chordless cycles, the question of finding minimum cardinality intersection cover set be-
comes polynomial. For example, if Gint(S) contains exactly one chordless cycle of p nodes, every vertex
v of the induced hypergraph on this cycle satisfies that nc(v) ≤ 2. In this case, the minimum intersection
cover set will contain p− 2 vertices.

All the above discussion assumes that the clusters satisfy the Helly Property. Adding vertices to an
insertion cluster may increase nc(v) of a vertex v by at most 1. Therefore, if the intersection graph
contains a clique on the nodes si1 , si2 , . . . , sip and max{nc(v)|v ∈ ∪qj=1Sij} < p−1 then the hypergraph
has no insertion cluster. Furthermore, if the clusters do not satisfy the Helly Property, H has Si as an
insertion cluster if the following two conditions are satisfied:
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• In the intersection graph the corresponding node si is contained in all the chordless cycles.

• Adding vertices to Si causes the clusters of every clique of the intersection graph to satisfy the
Helly Property.

5 Summary and Further Research
In this paper we introduce different algorithms for the CST problem. The first algorithm introduced in this
paper creates a weighted graph where the weight of the maximum spanning tree of this graph indicates
whether a feasible solution tree exists. Furthermore, the maximum spanning tree offers a feasible solution,
if one exists. The other methods introduced in this paper decide whether a feasible solution exists and find
such a tree when it exists, for some special structures of the intersection graph.
For those instances where no feasible solution tree exists, we characterize when adding vertices to exactly
one cluster will gain feasibility. This approach finds the appropriate cluster and the vertices that should
be added.
Further research may be applied to find possible vertices insertion to more than one cluster of the given
hypergraph. It is of special interest to define which insertions to perform and how to measure their
minimality.
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