
HAL Id: hal-01887402
https://hal.science/hal-01887402

Submitted on 4 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The De Vylder-Goovaerts conjecture holds true within
the diffusion limit

Stefan Ankirchner, Christophette Blanchet-Scalliet, Nabil Kazi-Tani

To cite this version:
Stefan Ankirchner, Christophette Blanchet-Scalliet, Nabil Kazi-Tani. The De Vylder-Goovaerts con-
jecture holds true within the diffusion limit. Journal of Applied Probability, 2019, 56 (2), pp.546-557.
�10.1017/jpr.2019.33�. �hal-01887402�

https://hal.science/hal-01887402
https://hal.archives-ouvertes.fr


The De Vylder-Goovaerts conjecture

holds true within the di�usion limit

Stefan Ankirchner ∗ Christophette Blanchet-Scalliet†

Nabil Kazi-Tani ‡

October 4, 2018

The De Vylder and Goovaerts conjecture is an open problem in risk the-
ory, stating that the �nite time ruin probability in a standard risk model
is greater or equal to the corresponding ruin probability evaluated in an as-
sociated model with equalized claim amounts. Equalized means here that
the jump sizes of the associated model are equal to the average jump in the
initial model between 0 and a terminal time T. In this paper, we consider the
di�usion approximations of both the standard risk model and its associated
risk model. We prove that the associated model, when conveniently renor-
malized, converges in distribution to a Gaussian process satisfying a simple
SDE. We then compute the probability that this di�usion hits the level 0
before time T and compare it with the same probability for the di�usion
approximation for the standard risk model. We conclude that the De Vylder
and Goovaerts conjecture holds true for the di�usion limits.
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1 Introduction

Ruin theory is concerned with the study of level crossing probabilities of
certain stochastic processes with jumps. This has for instance a clear interest
in insurance, where the focus is on the probability that the wealth process
of a given insurance company reaches a lower level, in particular the level 0:
in this case, the jumps represent claim sizes. There are also applications in
storage, for example of water in a dam: in that context, the jumps represent
water arrival events, such as rainfalls. The probability that the water level
reaches critical levels for the dam is important for energy management for
instance. We refer the reader to the monograph [3] for further details on
applications of Ruin theory to other problems, in particular its duality with
Queuing theory.

In this paper, we use the terminology and interpretations from insurance.
Let τ1, τ2, . . . be a sequence of positive random variables on a probability
space (Ω,F , P ) and let Tn := τn − τn−1 (τ0 := 0). Now de�ne

Nt := # {n ≥ 1 : τn ≤ t} , t ≥ 0,

the counting process associated to the sequence (τn)n≥0. This last sequence
represents the arrival epochs of the claims, and Nt is the number of claims
in the time interval [0, t].
Let (ξi)i≥0 be an i.i.d. sequence of non-negative random variables, de�ned

on the same probability space, with �nite second moments, i.e. satisfying
E(ξ2i ) < ∞. Moreover suppose that the sequence (ξi)i≥0 is independent of
the process N . The aggregate claim size up to time t is given by

∑Nt
i=1 ξi. We

assume that the insurer receives premia from customers at a rate c ∈ R≥0.
The claim surplus process is de�ned by St =

∑Nt
i=1 ξi−ct and the risk reserve

process by

Rt = x− St = x+ ct−
Nt∑
i=1

ξi, t ∈ [0,∞), (1.1)

where x ∈ [0,∞) is the initial reserve. Within the ruin model the insurer's
vulnerability to �nancial distress is measured in terms of the ruin probability
up to a given time horizon T ∈ (0,∞):

ρ(x, T ) := P ( inf
t∈[0,T ]

Rt < 0). (1.2)

De Vylder and Goovaerts [14] suggested the following modi�cation of the
risk reserve process:

R̃t = x+ ct− Nt

NT

NT∑
i=1

ξi = x− S̃t,
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with the convention that if NT = 0, then Nt
NT

∑NT
i=1 ξi = 0, too. The ruin

probability is given in that case by

ρ̃(x, T ) := P ( inf
t∈[0,T ]

R̃t < 0).

The processes R and R̃ have the same jump times and the same values at
times 0 and T , but the jump sizes of R̃ are equalized, in the sense that each
jump of R̃ is equal to the average jump of R between times 0 and T .

The De Vylder and Goovaerts conjecture can then be stated as follows:

Open problem 1.1. ∀x ≥ 0, ∀T > 0,

ρ̃(x, T ) ≤ ρ(x, T ). (1.3)

De�ne

ρn(x, T ) := P ( inf
t∈[0,T ]

Rt < 0|NT = n), n ≥ 0.

As explained in [14], the inequality (1.3) is equivalent to the fact that

ρ̃n(x, T ) ≤ ρn(x, T ), for every n ≥ 0, where ρ̃n is de�ned as ρn, with R̃
instead of R. Obviously, ρ̃0(x, T ) = ρ0(x, T ). It is proved in [14] that
ρ̃1(x, T ) = ρ1(x, T ), ρ̃2(x, T ) ≤ ρ2(x, T ), and that the probabilities coincide
in case of an initial reserve equal to zero: ρ̃(0, T ) = ρ(0, T ), but the general
case has yet to be established. The results in [14] are derived analytically,
using polynomial representations for the ruin probabilities.
A progress towards a proof of (1.3) was made in [12], where it is proved,

using stop-loss order techniques, that for each u ≥ 0,∫ +∞

u

ρ̃(x, T )dx ≤
∫ +∞

u

ρ(x, T )dx.

We are not aware of any further articles providing results on Problem (1.1).

Our idea is to approximate both processes (St)t∈[0,T ] and (S̃t)t∈[0,T ] with
continuous di�usions. Standard references for these type of approximations,
using functional limit theorems, include in particular [9], [8], [2] and [7]. The
idea is to rescale both time and space, time in order to let the number of
claims increase and space in order to make the claim sizes smaller so that
the risk reserve process converges in distribution to a continuous process.
It is well known that the surplus process (St)t∈[0,T ] can be approximated

with a Brownian motion with drift (see e.g. Chapter V in [3]). We show that

also (S̃t)t∈[0,T ] has a di�usion approximation. Conditional to the terminal
value at time T both di�usion approximations are Brownian bridges. The
di�usion rate of the Brownian bridge approximating (St)t∈[0,T ] is greater than

or equal to the di�usion rate of the Brownian bridge approximating (S̃t)t∈[0,T ].
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Since the probability for a Brownian bridge to hit zero is increasing in the
di�usion rate, the ruin probability for the �rst di�usion approximation is
larger then for the second. The De Vylder-Goovaerts conjecture is therefore
true for the di�usion limits.
We consider two cases for computing the di�usion limits. In the �rst case

we assume that c = λE(ξ1). In this case the accumulated premia coincide
with the expected aggregate claims. In Section 2, we derive the di�usion
limits by scaling time with a factor m while scaling the aggregate claim size
with 1√

m
, and we also characterize the distribution of the limit as the solution

of a stochastic di�erential equation. In the second case, which is dealt with
in Section 3, we assume that c exceeds λE(ξ1). The di�erence η := c−λE(ξ1)
is usually referred to as the safety loading. We compute the di�usion limits
by scaling time with 1/η2 and letting η ↓ 0, which is referred to as the heavy
tra�c approximation in risk theory ([3]).

2 Zero safety loading

To deal with di�usion approximations, we introduce D[0, T ], the space of real
càdlàg functions on [0,T], i.e. the real functions that are right-continuous and
have left-hand limits. We next recall the de�nition of weak convergence on
this space.
We say that a sequence of càdlàg processes (Xn) converges in distribution

to the càdlàg process X if for every bounded function f : D[0, T ] → R that
is continuous with respect to the Skorohod topology (see e.g. [5]), one has

E (f(Xn))→ E (f(X)) .

We make the following assumption on the inter arrival claim times:

Assumption 2.1. There exist positive constants ν and κ such that the pro-

cess  1

κ
√
n

bntc∑
j=1

(Tj − ν)


t∈[0,T ]

converges in distribution in D[0, T ] to a standard Brownian motion as n →
∞.

Using the Central Limit Theorem, we know that Assumption 2.1 is satis�ed
if the random variables (Tn)n≥1 are independent and identically distributed
with mean ν and variance κ2. This is the so-called renewal theory framework.
In the particular case where the common distribution of the variables (Tn)n≥1
is exponential, N is a Poisson process, and the model de�ned in (1.2) is the
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so called Cramér-Lundberg model. By analogy with the Poisson case, we
write λ := 1

ν
.

Assumption 2.1 implies the following convergence (Theorem 14.6 in [5]):(
Ntn − λtn
κλ3/2

√
n

)
t∈[0,T ]

⇒ (Bt)t∈[0,T ], (2.1)

where here, and for the remainder of the paper, ⇒ denotes convergence in
distribution on D := D([0, T )] and B is a Brownian motion.

Throughout this section we assume that c = λE(ξ1). Note that in this
case the process (St)t∈[0,T ] is a martingale.
We �rst characterize the laws of the di�usion limits of (St)t∈[0,T ] and

(S̃t)t∈[0,T ] with the help of a Brownian motion. Moreover, we introduce the
following constants:

γ :=
√
λV (ξ1) + λ3κ2E[ξ1]2, (2.2)

σ := κλ3/2E(ξ1). (2.3)

Notice that γ ≥ σ, and that equality is satis�ed if and only if the claims ξi
are deterministic.

2.1 Limiting di�usions

Proposition 2.2. The process
(

1√
m
Stm

)
t∈[0,T ]

converges in law on D[0, T ]

to

Ut := γBt, t ∈ [0, T ],

as m→∞.

In the proof of Proposition 2.2 we make use of the continuous mapping
theorem, which, for the ease of the reader, we recall here.

Proposition 2.3 (see e.g. Theorem 2.7 in [5]). Let M and M ′ be two met-

ric spaces, h : M → M ′ a measurable mapping and denote by Dh the set

of discontinuities of h. Let (Xn) be an M-valued sequence of random vari-

ables converging to a random variable X in distribution as n → ∞. If

P (X ∈ Dh) = 0, then h(Xn) converges to h(X) in distribution as n→∞.

Proof of Proposition 2.2. Let us write

1√
m
Stm =

1√
m

Ntm∑
i=1

(ξi − E[ξ1]) +
1√
m
E[ξ1] (Ntm − λtm) .
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De�ne

Zm(t) :=
1√
m

tm∑
j=1

(ξj − E[ξ1]).

By Donsker's theorem,

(
1√
V (ξ1)

Zm(t)

)
t∈[0,T ]

converges in distribution on D,

as m goes to +∞, to a Brownian motion. On the other hand, (2.1) entails
that (

1√
m
E[ξ1] (Ntm − λtm)

)
t∈[0,T ]

⇒ (σBt)t∈[0,T ] . (2.4)

Let W = (Wt) be a Brownian motion that is independent of B. By in-
dependence of N and the sequence (ξm)m ≥ 1, the pair of scaled processes
(Zm(t), 1√

m
E[ξ1] (Ntm − λtm))t∈[0,T ] converges in distribution to

(
√
V (ξ1)Wt, σBt)t∈[0,T ].
Since Ntm

m
converges in distribution on D to the function Φ : t 7→ λt, this

implies, using Theorem 3.9 in [5] that

(
Ntm

m
,Zm(t),

1√
m
E[ξ1] (Ntm − λtm))t∈[0,T ] ⇒ (λt,

√
V (ξ1)Wt, σBt)t∈[0,T ].

Let D0 the space of non-decreasing functions in D. As the function Φ is
continuous and strictly increasing, we can use Theorem 3.1 in [15] to obtain
that the mapping de�ned on D0 × D by (y, x) 7→ x ◦ y is continuous at
(Φ, x′) for arbitrary x′ ∈ D. Consequently, Ψ : D0 × D2 → D2, given by
Ψ(y, x, z) = (x◦y, z), is continuous at (Φ, x′, z′) for arbitrary x′, z′ ∈ D. The
continuous mapping theorem now implies

(Zm(
Ntm

m
),

1√
m
E[ξ1] (Ntm − λtm))t∈[0,T ] ⇒ (

√
λV (ξ1)Wt, σBt))t∈[0,T ].

(2.5)

By Theorem 4.1 in [15] the addition of two elements in D is continuous
at every (x, y) where x and y are continuous functions. By appling the
continuous mapping theorem to the sum of the components in (2.5) we arrive
at

1√
m
Stm ⇒

(
σBt +

√
λV (ξ1)Wt

)
t∈[0,T ]

.

This last limit process is centered, Gaussian and has the same covariance
structure as the centered Gaussian process γB, which ends the proof.

We now approximate (S̃t)t≥0. Notice that E[ Nt
NT

∑NT
i=1 ξi] = λE(ξ1)t. Hence

E(S̃t) = 0 for all t ∈ [0, T ].
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Theorem 2.4. The scaled process ( 1√
m
S̃tm)t∈[0,T ] converges in law on D[0, T ]

to

Ũt := σBt + (γ − σ)
t

T
BT , t ∈ [0, T ], (2.6)

as m→∞.

Proof. First we note that the process (Ũt) is a centered Gaussian process
with covariance function given by

K(s, t) = (γ2 − σ2)
st

T
+ σ2(s ∧ t), s, t ∈ [0, T ]. (2.7)

Consider the following decomposition

1√
m
S̃tm =

1√
m

Ntm

NTm

NTm∑
i=1

(ξi − E[ξ1]) +
1√
m
E[ξ1] (Ntm − λtm) . (2.8)

De�ne

Zm(t) :=
1√
m

tm∑
j=1

(ξj − E[ξ1]).

Now, notice that the decomposition (2.8) can be written as

1√
m
S̃tm =

Ntm

NTm

Zm(
NTm

m
) +

1√
m
E[ξ1] (Ntm − λtm) . (2.9)

The quantity Ntm
NTm

(resp. NTm
m

) converges in distribution on D to t 7→ t
T

(resp. t 7→ λT ).
Theorem 3.9 of Billingsley [5] implies that(

NTm

m
,
Ntm

NTm

, Zm(t),
1√
m
E[ξ1] (Ntm − λtm)

)
t∈[0,T ]

⇒ (λT,
t

T
,
√
V (ξ1)Wt, σBt)t∈[0,T ] (2.10)

By Theorem 3.1, 4.2 and 4.1 in [15] the mapping h : D ×D0 ×D2 → D,
(x′, y′, z′, v′) 7→ x′(z′ ◦y′)+v′, is continuous at every quadruple of continuous
functions (x, y, z, v) with y being strictly increasing. The continuous mapping
theorem, applied to h and the convergent sequence (2.10), yields

1√
m
S̃tm ⇒

t

T

√
λV (ξ1)WT + σBt =: Vt.

V and Ũ are centered Gaussian processes with the same covariance func-
tion given in (2.7), thus they have the same distribution, and the proof is
complete.
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We brie�y comment on the method we use for proving Proposition 2.2
and Theorem 2.4. Recall that a more commonly used method for proving
convergence in distribution on D is, �rst, to prove weak convergence of �nite
dimensional distributions and, second, to show tightness of the considered
sequence of probability measures on D (see e.g. Section 13 in [5]). A con-
venient method for verifying tightness is to show that the second moment,
or another appropriately chosen moment, of the product of two neighboring
process increments can be nicely controlled.
This commonly used approach can also be applied to the two scaled pro-

cess families of Proposition 2.2 and Theorem 2.4, respectively. A su�cient
moment criterion for tightness of the distributions of ( 1√

m
S·m), m ≥ 1, is

that there exists a constant C ∈ [0,∞) such that for all r, s, t ∈ [0, T ] with
r ≤ s ≤ t we have

E[(Ss − Sr)2(St − Ss)2] ≤ C(t− r)2

(see e.g. Section 13 in [5]). The same moment criterion applies to the scaled
versions of S̃. Notice that the increments of (St)t∈[0,T ] and (S̃t)t∈[0,T ] are
not independent. Even in the Poisson case where (St)t∈[0,T ] has independent

increments, the increments of S̃ are not independent. The dependence of
increments implies that the moment criterion for verifying tightness requires
a stronger integrability condition on the claim sizes ξi than L

2 integrability.
The approach that we follow for proving Proposition 2.2 and Theorem 2.4

requires only L2 integrability of the claim sizes. The reason is that it falls
back on limit theorems for simpler processes and then applies the continuous
mapping theorem for the Skorohod topology. This approach relies on results
of [15], and it has been used in particular in [7] in the context of di�usion
approximations of risk processes.

Remark 2.5. Let z ∈ D([0, T ]) be a given path with �nite jump activity,
i.e. such that z admits a �nite number of jumps in any �nite interval (notice

that S and S̃ have �nite jump activity, almost surely). De�ne then nt(z)
as the number of jumps of z during the time interval [0, t]. The path z can
always be written as

z(t) = zc(t) +
∑

0<t≤T

(
z(t)− z(t−)

)
,

where zc is a continuous trajectory and z(t−) is the left-hand side limit of
z at t. The transformation suggested by De Vylder and Goovaerts is the
following application R : D → D:

R(z)(t) := zc(t) + nt(z)

(
1

nT (z)

∑
0<t≤T

(
z(t)− z(t−)

))
,
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that replaces each jump of z by the average jump of z between 0 and T .
A simple consequence of our results is that the application R is not contin-

uous for the Skorohod topology. If it was, then Proposition 2.2 would imply
that R( 1√

m
S·m) = 1√

m
S̃·m converges in distribution on D for the Skorohod

topology to R(γB) = γB, which is not the case, by Theorem 2.4.

2.2 Comparison of the ruin probabilities

Let Xt := x − Ut and X̃t := x − Ũt. The ruin probability ρ can be ap-
proximated by χ := P (inft∈[0,T ]Xt < 0) and the ruin probability ρ̃ by

χ̃ := P (inft∈[0,T ] X̃t < 0). In this section we show that χ̃ ≤ χ.

First note that XT = X̃T . Conditional to XT = y, the process (Xt)t∈[0,T ] is
a Brownian bridge from x to y with di�usion rate γ. We can therefore derive
an explicit formula for the conditional probability that (Xt)t∈[0,T ] goes below
zero at some time before T .
To make this precise, let B be the collection of Borel sets on the space of

continuous functions C([0, T ]) endowed with the supremum norm. Moreover,
let B × R 3 (A, y) 7→ P (A|XT = y) be a regular conditional distribution of
(Xt)t∈[0,T ] with respect to XT .

Lemma 2.6. For all y ≥ 0 we have

P ( inf
t∈[0,T ]

Xt < 0|XT = y) = exp

(
−2

xy

Tγ2

)
.

Proof. One can show ([11], Chap I) that the law of (Xt)t∈[0,T ] under
P (·|XT = y) coincides with the law a Brownian bridge from x to y with
di�usion rate γ. Therefore,

P ( inf
t∈[0,T ]

Xt < 0|XT = y) = P ( inf
t∈[0,γ2T ]

Bt < −x|Bγ2T = y − x).

Well-known results on hitting probilities for Brownian bridges (see e.g. Propo-
sition 3 in [13]) imply the result.

We next derive an explicit formula for the conditional probability that (X̃t)
goes below zero at some time before T . To this end recall that the process

Yt := (Bt −
t

T
BT ), t ∈ [0, T ], (2.11)

is a Brownian bridge on [0, T ] from zero to zero. Observe that

Ũt = σYt + γ
t

T
BT = σYt +

t

T
(x−XT ).

and that BT is independent of Yt. Conditional to XT = y, the process
(X̃t)t∈[0,T ] is therefore a Brownian bridge from zero to y with di�usion rate
σ. From well-known results on hitting probabilities of Brownian bridges we
arrive at the following result.

9



Lemma 2.7. For all y ≥ 0 we have

P ( inf
t∈[0,T ]

X̃t < 0|XT = y) = exp
(
−2

xy

Tσ2

)
.

Lemma 2.6 and 2.7 imply that the di�erence of ruin probabilities χ and χ̃
satis�es

χ− χ̃ =

∫ ∞
0

[P ( inf
t∈[0,T ]

Xt < 0|XT = y)− P ( inf
t∈[0,T ]

X̃t < 0|XT = y)]P (XT ∈ dy)

=

∫ ∞
0

[
exp

(
−2

xy

Tγ2

)
− exp

(
−2

xy

Tσ2

)] 1√
2πγ2T

exp

(
−(y − x)2

2γ2T

)
dy

≥ 0.

Note that the di�erence is greater than zero if γ > σ. Thus we have obtained
the following

Theorem 2.8.

P ( inf
t∈[0,T ]

X̃t < 0) ≤ P ( inf
t∈[0,T ]

Xt < 0),

where we have an equality if and only if the claim sizes (ξi)i≥0 are determin-

istic.

Remark 2.9. The assumption made on the counting process N in the for-
mulation of De Vylder and Goovaerts ([14]) di�ers from our Assumption 2.1.
In [14], it is assumed that N is a homogeneous risk process, meaning that
conditionally on (NT = n), the vector of jump times (τ1, . . . , τn) has the
same distribution as the increasing order statistics of n independent uniform
random variables on [0, T ]. In particular, this property is satis�ed when N
is a Poisson process. More details and properties of the homogenous process
are given in [10]. If we assume that (Nt)t∈R+ is a homogeneous process, then
according to Theorem A2 in [14], it is a mixed Poisson process. This entails,
using the same lines of reasoning as in the Chapter 4 of [6] (pages 65-67),
that our limit results hold true, with λ replaced by a structure random vari-
able Λ. Then by conditioning on this variable, we can still compare the ruin
probabilities in the di�usion limits, as in the previous Theorem.

Remark 2.10. All the results presented so far remain true if one omits the
assumption that each random variable ξi is non-negative, but simply assumes
that E(ξi) ≥ 0.

2.3 The dynamics of the approximating di�usion

We close this section by characterizing (Ũt)t∈[0,T ], the di�usion limit of the
claim surplus process within the model with equalized claims, as a solution of
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a stochastic di�erential equation (SDE). First observe that the di�usion limit

(Ũt)t∈[0,T ] is a Gaussian process. Recall that the law of a one-dimensional
Gaussian process (Zt)t∈[0,T ] is uniquely determined by its expectation func-
tion m(t) := E(Zt) and covariance function K(t, s) := Cov(Zt, Zs). Hence,

we can characterize the limiting law of
(

1√
m
S̃tm

)
t∈[0,T ]

as that of a Gaussian

process with m(t) = 0 and K(s, t) = (γ2 − σ2) st
T

+ σ2(s ∧ t) for s, t ∈ [0, T ],
where the constants γ and σ are de�ned in (2.2) and (2.3). This allows
further to characterize the limiting law in terms of an SDE.

Proposition 2.11. There exists a Brownian motion (W̃t)t∈[0,T ] such that the

process (Ũt) satis�es the SDE

dŨt = Ũt
γ2 − σ2

σ2(T − t) + γ2t
dt+ σdW̃t (2.12)

on [0, T ].

Proof. We �rst solve explicitly the SDE (2.12) for a given Brownian motion

(Wt). To this end let f(t) = γ2−σ2

σ2(T−t)+γ2t for all t ∈ [0, T ]. Note that the SDE

dZt = Ztf(t)dt + σdWt with initial condition Z0 = 0 has a unique solution
given by

Zt =

∫ t

0

exp

(∫ t

s

f(u)du

)
σdWs, t ∈ [0, T ].

The solution process (Zt)t∈[0,T ] is a Gaussian process. The covariance struc-

ture of (Zt)t∈[0,T ] coincides with the one of (Ũt)t∈[0,T ]. Indeed, for any s, t ∈
[0, T ], the Itô isometry implies

Cov(Zs, Zt) =

∫ s∧t

0

exp

(∫ s

r

f(u)du

)
exp

(∫ t

r

f(u)du

)
σ2dr.

Notice that exp
(∫ k

r
f(u)du

)
= σ2T+(γ2−σ2)k

σ2T+(γ2−σ2)r
for any k ∈ [r, T ]. Now a

straightforward computation shows that

Cov(Zs, Zt) = σ2(s ∧ t) + (γ2 − σ2)
st

T
.

As a consequence, the process (Zt)t∈[0,T ] has the same law as the process

(Ũt)t∈[0,T ]. Now de�ne W̃t := 1
σ

(
Ũt −

∫ t
0
Ũsf(s)ds

)
. Then the pair (Ũt, W̃t)t∈[0,T ]

has the same process distribution as (Zt,Wt)t∈[0,T ]. In particular, (W̃t)t∈[0,T ]
is a Brownian motion and (Ũt)t∈[0,T ] satis�es (2.12).
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Remark 2.12. The dynamics (2.12) can be derived from (2.6) via a pro-

jection argument. To explain this, let (F̃t)t∈[0,T ] be the smallest �ltration
such that, �rst, the usual conditions of right-continuity and completeness
are satis�ed and, second, (Ũt)t∈[0,T ] is adapted. Denote by Ũt = M̃t + Ãt
the Doob-Meyer decomposition of (Ũt)t∈[0,T ] with respect to (F̃t)t∈[0,T ]. As-

sume that there exists an integrable (F̃t)-predictable process α such that

Ãt =
∫ t
0
αsds, t ∈ [0, T ]. Since 〈M̃, M̃〉t = 〈Ũ , Ũ〉t = σ2t for all t ∈ [0, T ], we

conclude from Levy's theorem that M̃/σ is a Brownian motion w.r.t. (F̃t).
For the Brownian bridge Y , de�ned in (2.11), there exists a Brownian

motion W Y such that

dYt = dW Y
t −

Yt
T − t

dt.

Since BT is independent of Yt, the processW
Y is also a Brownian motion with

respect to the initially enlarged �ltration (Gt), where Gt := ∩s>t(FYs ∨σ(BT )).

In particular, (X̃t)t∈[0,T ] is a (Gt)-Itô process with dynamics

dŨt = γ
1

T
BTdt−

σYt
T − t

dt+ σdW Y
t =

γBT − Ũt
T − t

dt+ σdW Y
t .

Notice that W Y
t = W̃t −

∫ t
0
µsds, where

µt = − 1

σ

(
αt −

γBT − Ũt
T − t

)
.

The process µ is the so-called information drift of W̃ w.r.t. to the enlarged
�ltration (Gt). It is known that the L2 projection of µ onto the space of

square integrable and (F̃t)-progressively measurable processes vanishes (see

e.g. Section 1 in [1]). This entails that αt = Ũt
γ2−σ2

σ2(T−t)+γ2t , t ∈ [0, T ], and

hence (2.12).

3 The conjecture in the heavy tra�c

approximation

We now assume that η = c − λE(ξ1) > 0. By scaling time with 1/η2 and

letting η ↓ 0, the laws of the di�usion limits of (St)t∈[0,T ] and (S̃t)t∈[0,T ] are
given by the following proposition.

Proposition 3.1. The process
(
ηS t

η2

)
t∈[0,T ]

converges in law on D[0, T ] to

Vt := γBt − t, t ∈ [0, T ],
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and the process
(
ηS̃ t

η2

)
t∈[0,T ]

converges in law on D[0, T ] to

Ṽt := σBt + (γ − σ)
t

T
BT − t, t ∈ [0, T ],

as η → 0.

Proof. The proof is a straightforward adaptation of [3, Theo. 5.1] using the
results from Proposition 2.2 and Theorem 2.4.

In the heavy tra�c approximation, the ruin probability ρ can
be approximated by P (supt∈[0,T ] Vt > x) and the ruin probability ρ̃ by

P (supt∈[0,T ] Ṽt > x). Following similar arguments as in Section 2.2, one

has VT = ṼT , and the conditional non ruin probability is equal to

P ( sup
t∈[0,T ]

Vt ≤ x|VT = y) = P (Bt ≤
x+ t

γ
, 0 ≤ t ≤ T |BT =

y + T

γ
), y < x.

In other words, the non ruin probability conditional to VT = y is equal to
the probability that a Brownian bridge starting form 0 and going to y

γ
+ T

with length equal to T stays under the line t → x+t
γ
. Using the results of

[13, 4], we obtain

P ( sup
t∈[0,T ]

Vt ≤ x|VT = y) = 1− exp

(
−2

x(x− y)

Tγ2

)
. (3.1)

Using arguments similar to the ones of Section 2.2, it follows that

P ( sup
t∈[0,T ]

Ṽt ≤ x|VT = y) = 1− exp

(
−2

x(x− y)

Tσ2

)
, (3.2)

and hence we obtain that

P ( sup
t∈[0,T ]

Vt ≤ x|VT = y)− P ( sup
t∈[0,T ]

Ṽt ≤ x|VT = y) ≤ 0.

This implies that the De Vylder-Goovaert conjecture holds true in the heavy
tra�c approximation.
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