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The De Vylder and Goovaerts conjecture is an open problem in risk theory, stating that the nite time ruin probability in a standard risk model is greater or equal to the corresponding ruin probability evaluated in an associated model with equalized claim amounts. Equalized means here that the jump sizes of the associated model are equal to the average jump in the initial model between 0 and a terminal time T. In this paper, we consider the diusion approximations of both the standard risk model and its associated risk model. We prove that the associated model, when conveniently renormalized, converges in distribution to a Gaussian process satisfying a simple SDE. We then compute the probability that this diusion hits the level 0 before time T and compare it with the same probability for the diusion approximation for the standard risk model. We conclude that the De Vylder and Goovaerts conjecture holds true for the diusion limits.

Introduction

Ruin theory is concerned with the study of level crossing probabilities of certain stochastic processes with jumps. This has for instance a clear interest in insurance, where the focus is on the probability that the wealth process of a given insurance company reaches a lower level, in particular the level 0: in this case, the jumps represent claim sizes. There are also applications in storage, for example of water in a dam: in that context, the jumps represent water arrival events, such as rainfalls. The probability that the water level reaches critical levels for the dam is important for energy management for instance. We refer the reader to the monograph [START_REF] Asmussen | Ruin probabilities[END_REF] for further details on applications of Ruin theory to other problems, in particular its duality with Queuing theory.

In this paper, we use the terminology and interpretations from insurance. Let τ 1 , τ 2 , . . . be a sequence of positive random variables on a probability space (Ω, F, P ) and let T n := τ n -τ n-1 (τ 0 := 0). Now dene N t := # {n ≥ 1 : τ n ≤ t} , t ≥ 0, the counting process associated to the sequence (τ n ) n≥0 . This last sequence represents the arrival epochs of the claims, and N t is the number of claims in the time interval [0, t].

Let (ξ i ) i≥0 be an i.i.d. sequence of non-negative random variables, dened on the same probability space, with nite second moments, i.e. satisfying E(ξ 2 i ) < ∞. Moreover suppose that the sequence (ξ i ) i≥0 is independent of the process N . The aggregate claim size up to time t is given by Nt i=1 ξ i . We assume that the insurer receives premia from customers at a rate c ∈ R ≥0 . The claim surplus process is dened by S t = Nt i=1 ξ i -ct and the risk reserve process by

R t = x -S t = x + ct - Nt i=1 ξ i , t ∈ [0, ∞), (1.1) 
where x ∈ [0, ∞) is the initial reserve. Within the ruin model the insurer's vulnerability to nancial distress is measured in terms of the ruin probability up to a given time horizon T ∈ (0, ∞):

ρ(x, T ) := P ( inf t∈[0,T ] R t < 0). (1.2)
De Vylder and Goovaerts [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF] suggested the following modication of the risk reserve process:

R t = x + ct - N t N T N T i=1 ξ i = x -S t ,
with the convention that if N T = 0, then Nt N T N T i=1 ξ i = 0, too. The ruin probability is given in that case by ρ(x, T ) := P ( inf

t∈[0,T ] R t < 0).
The processes R and R have the same jump times and the same values at times 0 and T , but the jump sizes of R are equalized, in the sense that each jump of R is equal to the average jump of R between times 0 and T .

The De Vylder and Goovaerts conjecture can then be stated as follows:

Open problem 1.1. ∀x ≥ 0, ∀T > 0, ρ(x, T ) ≤ ρ(x, T ). (1.3) Dene ρ n (x, T ) := P ( inf t∈[0,T ] R t < 0|N T = n), n ≥ 0.
As explained in [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF], the inequality (1.3) is equivalent to the fact that ρ n (x, T ) ≤ ρ n (x, T ), for every n ≥ 0, where ρ n is dened as

ρ n , with R instead of R. Obviously, ρ 0 (x, T ) = ρ 0 (x, T ). It is proved in [14] that ρ 1 (x, T ) = ρ 1 (x, T ), ρ 2 (x, T ) ≤ ρ 2 (x, T )
, and that the probabilities coincide in case of an initial reserve equal to zero: ρ(0, T ) = ρ(0, T ), but the general case has yet to be established. The results in [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF] are derived analytically, using polynomial representations for the ruin probabilities.

A progress towards a proof of (1.3) was made in [START_REF] Robert | On the De Vylder and Goovaerts conjecture about ruin for equalized claims[END_REF], where it is proved, using stop-loss order techniques, that for each u ≥ 0,

+∞ u ρ(x, T )dx ≤ +∞ u ρ(x, T )dx.
We are not aware of any further articles providing results on Problem (1.1).

Our idea is to approximate both processes (S t ) t∈[0,T ] and ( S t ) t∈[0,T ] with continuous diusions. Standard references for these type of approximations, using functional limit theorems, include in particular [START_REF] Iglehart | Diusion approximations in collective risk theory[END_REF], [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF], [START_REF] Asmussen | Approximations for the probability of ruin within nite time[END_REF] and [START_REF] Furrer | Stable Lévy motion approximation in collective risk theory[END_REF]. The idea is to rescale both time and space, time in order to let the number of claims increase and space in order to make the claim sizes smaller so that the risk reserve process converges in distribution to a continuous process.

It is well known that the surplus process (S t ) t∈[0,T ] can be approximated with a Brownian motion with drift (see e.g. Chapter V in [START_REF] Asmussen | Ruin probabilities[END_REF]). We show that also ( S t ) t∈[0,T ] has a diusion approximation. Conditional to the terminal value at time T both diusion approximations are Brownian bridges. The diusion rate of the Brownian bridge approximating (S t ) t∈[0,T ] is greater than or equal to the diusion rate of the Brownian bridge approximating ( S t ) t∈[0,T ] .

Since the probability for a Brownian bridge to hit zero is increasing in the diusion rate, the ruin probability for the rst diusion approximation is larger then for the second. The De Vylder-Goovaerts conjecture is therefore true for the diusion limits.

We consider two cases for computing the diusion limits. In the rst case we assume that c = λE(ξ 1 ). In this case the accumulated premia coincide with the expected aggregate claims. In Section 2, we derive the diusion limits by scaling time with a factor m while scaling the aggregate claim size with 1 √ m , and we also characterize the distribution of the limit as the solution of a stochastic dierential equation. In the second case, which is dealt with in Section 3, we assume that c exceeds λE(ξ 1 ). The dierence η := c-λE(ξ 1 ) is usually referred to as the safety loading. We compute the diusion limits by scaling time with 1/η 2 and letting η ↓ 0, which is referred to as the heavy trac approximation in risk theory ([3]).

Zero safety loading

To deal with diusion approximations, we introduce D[0, T ], the space of real càdlàg functions on [0,T], i.e. the real functions that are right-continuous and have left-hand limits. We next recall the denition of weak convergence on this space.

We say that a sequence of càdlàg processes (X n ) converges in distribution to the càdlàg process X if for every bounded function f : D[0, T ] → R that is continuous with respect to the Skorohod topology (see e.g. [START_REF] Billingsley | Convergence of probability measures[END_REF]), one has

E (f (X n )) → E (f (X)) .
We make the following assumption on the inter arrival claim times: Assumption 2.1. There exist positive constants ν and κ such that the process

  1 κ √ n nt j=1 (T j -ν)   t∈[0,T ] converges in distribution in D[0, T ] to a standard Brownian motion as n → ∞.
Using the Central Limit Theorem, we know that Assumption 2.1 is satised if the random variables (T n ) n≥1 are independent and identically distributed with mean ν and variance κ 2 . This is the so-called renewal theory framework.

In the particular case where the common distribution of the variables (T n ) n≥1 is exponential, N is a Poisson process, and the model dened in (1.2) is the so called Cramér-Lundberg model. By analogy with the Poisson case, we write λ := 1 ν . Assumption 2.1 implies the following convergence (Theorem 14.6 in [START_REF] Billingsley | Convergence of probability measures[END_REF]):

N tn -λtn κλ 3/2 √ n t∈[0,T ] ⇒ (B t ) t∈[0,T ] , (2.1) 
where here, and for the remainder of the paper, ⇒ denotes convergence in distribution on D := D([0, T )] and B is a Brownian motion.

Throughout this section we assume that c = λE(ξ 1 ). Note that in this case the process (S t ) t∈[0,T ] is a martingale.

We rst characterize the laws of the diusion limits of (S t ) t∈[0,T ] and ( S t ) t∈[0,T ] with the help of a Brownian motion. Moreover, we introduce the following constants:

γ := λV (ξ 1 ) + λ 3 κ 2 E[ξ 1 ] 2 , (2.2) 
σ := κλ 3/2 E(ξ 1 ). (2.3) 
Notice that γ ≥ σ, and that equality is satised if and only if the claims ξ i are deterministic.

Limiting diusions

Proposition 2.2. The process

1 √ m S tm t∈[0,T ] converges in law on D[0, T ] to U t := γB t , t ∈ [0, T ],
as m → ∞.

In the proof of Proposition 2.2 we make use of the continuous mapping theorem, which, for the ease of the reader, we recall here. Proposition 2.3 (see e.g. Theorem 2.7 in [START_REF] Billingsley | Convergence of probability measures[END_REF]). Let M and M be two metric spaces, h : M → M a measurable mapping and denote by D h the set of discontinuities of h. Let (X n ) be an M -valued sequence of random variables converging to a random variable

X in distribution as n → ∞. If P (X ∈ D h ) = 0, then h(X n ) converges to h(X) in distribution as n → ∞. Proof of Proposition 2.2. Let us write 1 √ m S tm = 1 √ m Ntm i=1 (ξ i -E[ξ 1 ]) + 1 √ m E[ξ 1 ] (N tm -λtm) . Dene Z m (t) := 1 √ m tm j=1 (ξ j -E[ξ 1 ]).
By Donsker's theorem,

1 √ V (ξ 1 ) Z m (t) t∈[0,T ]
converges in distribution on D, as m goes to +∞, to a Brownian motion. On the other hand, (2.1) entails that

1 √ m E[ξ 1 ] (N tm -λtm) t∈[0,T ] ⇒ (σB t ) t∈[0,T ] . (2.4) 
Let W = (W t ) be a Brownian motion that is independent of B. By independence of N and the sequence (ξ m ) m ≥ 1, the pair of scaled processes

(Z m (t), 1 √ m E[ξ 1 ] (N tm -λtm)) t∈[0,T ] converges in distribution to ( V (ξ 1 )W t , σB t ) t∈[0,T ] .
Since Ntm m converges in distribution on D to the function Φ : t → λt, this implies, using Theorem 3.9 in [START_REF] Billingsley | Convergence of probability measures[END_REF] that

( N tm m , Z m (t), 1 √ m E[ξ 1 ] (N tm -λtm)) t∈[0,T ] ⇒ (λt, V (ξ 1 )W t , σB t ) t∈[0,T ] .
Let D 0 the space of non-decreasing functions in D. As the function Φ is continuous and strictly increasing, we can use Theorem 3.1 in [START_REF] Whitt | Some useful functions for functional limit theorems[END_REF] to obtain that the mapping dened on D 0 × D by (y, x) → x • y is continuous at (Φ, x ) for arbitrary x ∈ D. Consequently, Ψ :

D 0 × D 2 → D 2 ,
given by Ψ(y, x, z) = (x • y, z), is continuous at (Φ, x , z ) for arbitrary x , z ∈ D. The continuous mapping theorem now implies

(Z m ( N tm m ), 1 √ m E[ξ 1 ] (N tm -λtm)) t∈[0,T ] ⇒ ( λV (ξ 1 )W t , σB t )) t∈[0,T ] .
(2.5) By Theorem 4.1 in [START_REF] Whitt | Some useful functions for functional limit theorems[END_REF] the addition of two elements in D is continuous at every (x, y) where x and y are continuous functions. By appling the continuous mapping theorem to the sum of the components in (2.5) we arrive at

1 √ m S tm ⇒ σB t + λV (ξ 1 )W t t∈[0,T ] .
This last limit process is centered, Gaussian and has the same covariance structure as the centered Gaussian process γB, which ends the proof.

We now approximate

( S t ) t≥0 . Notice that E[ Nt N T N T i=1 ξ i ] = λE(ξ 1 )t. Hence E( S t ) = 0 for all t ∈ [0, T ]. Theorem 2.4. The scaled process ( 1 √ m S tm ) t∈[0,T ] converges in law on D[0, T ] to U t := σB t + (γ -σ) t T B T , t ∈ [0, T ], (2.6) 
as m → ∞.

Proof. First we note that the process ( U t ) is a centered Gaussian process with covariance function given by

K(s, t) = (γ 2 -σ 2 ) st T + σ 2 (s ∧ t), s, t ∈ [0, T ]. (2.7) 
Consider the following decomposition

1 √ m S tm = 1 √ m N tm N T m N T m i=1 (ξ i -E[ξ 1 ]) + 1 √ m E[ξ 1 ] (N tm -λtm) . (2.8) Dene Z m (t) := 1 √ m tm j=1 (ξ j -E[ξ 1 ]).
Now, notice that the decomposition (2.8) can be written as

1 √ m S tm = N tm N T m Z m ( N T m m ) + 1 √ m E[ξ 1 ] (N tm -λtm) . (2.9) 
The quantity Ntm N T m (resp. N T m m ) converges in distribution on D to t → t T (resp. t → λT ). Theorem 3.9 of Billingsley [START_REF] Billingsley | Convergence of probability measures[END_REF] implies that

N T m m , N tm N T m , Z m (t), 1 √ m E[ξ 1 ] (N tm -λtm) t∈[0,T ] ⇒ (λT, t T , V (ξ 1 )W t , σB t ) t∈[0,T ] (2.10) 
By Theorem 3.1, 4.2 and 4.1 in [START_REF] Whitt | Some useful functions for functional limit theorems[END_REF] the mapping h :

D × D 0 × D 2 → D, (x , y , z , v ) → x (z • y ) + v
, is continuous at every quadruple of continuous functions (x, y, z, v) with y being strictly increasing. The continuous mapping theorem, applied to h and the convergent sequence (2.10), yields

1 √ m S tm ⇒ t T λV (ξ 1 )W T + σB t =: V t .
V and U are centered Gaussian processes with the same covariance function given in (2.7), thus they have the same distribution, and the proof is complete.

We briey comment on the method we use for proving Proposition 2.2 and Theorem 2.4. Recall that a more commonly used method for proving convergence in distribution on D is, rst, to prove weak convergence of nite dimensional distributions and, second, to show tightness of the considered sequence of probability measures on D (see e.g. Section 13 in [START_REF] Billingsley | Convergence of probability measures[END_REF]). A convenient method for verifying tightness is to show that the second moment, or another appropriately chosen moment, of the product of two neighboring process increments can be nicely controlled.

This commonly used approach can also be applied to the two scaled process families of Proposition 2.2 and Theorem 2.4, respectively. A sucient moment criterion for tightness of the distributions of ( 1

√ m S •m ), m ≥ 1, is that there exists a constant C ∈ [0, ∞) such that for all r, s, t ∈ [0, T ] with r ≤ s ≤ t we have E[(S s -S r ) 2 (S t -S s ) 2 ] ≤ C(t -r) 2
(see e.g. Section 13 in [START_REF] Billingsley | Convergence of probability measures[END_REF]). The same moment criterion applies to the scaled versions of S. Notice that the increments of (S t ) t∈[0,T ] and ( St ) t∈[0,T ] are not independent. Even in the Poisson case where (S t ) t∈[0,T ] has independent increments, the increments of S are not independent. The dependence of increments implies that the moment criterion for verifying tightness requires a stronger integrability condition on the claim sizes ξ i than L 2 integrability.

The approach that we follow for proving Proposition 2.2 and Theorem 2.4 requires only L 2 integrability of the claim sizes. The reason is that it falls back on limit theorems for simpler processes and then applies the continuous mapping theorem for the Skorohod topology. This approach relies on results of [START_REF] Whitt | Some useful functions for functional limit theorems[END_REF], and it has been used in particular in [START_REF] Furrer | Stable Lévy motion approximation in collective risk theory[END_REF] in the context of diusion approximations of risk processes. Remark 2.5. Let z ∈ D([0, T ]) be a given path with nite jump activity, i.e. such that z admits a nite number of jumps in any nite interval (notice that S and S have nite jump activity, almost surely). Dene then n t (z) as the number of jumps of z during the time interval [0, t]. The path z can always be written as

z(t) = z c (t) + 0<t≤T z(t) -z(t -) ,
where z c is a continuous trajectory and z(t -) is the left-hand side limit of z at t. The transformation suggested by De Vylder and Goovaerts is the following application R :

D → D: R(z)(t) := z c (t) + n t (z) 1 n T (z) 0<t≤T z(t) -z(t -) ,
that replaces each jump of z by the average jump of z between 0 and T .

A simple consequence of our results is that the application R is not continuous for the Skorohod topology. If it was, then Proposition 2.2 would imply that R( 1

√ m S •m ) = 1 √ m S •m
converges in distribution on D for the Skorohod topology to R(γB) = γB, which is not the case, by Theorem 2.4.

Comparison of the ruin probabilities

Let X t := x -U t and X t := x -U t . The ruin probability ρ can be approximated by χ := P (inf t∈[0,T ] X t < 0) and the ruin probability ρ by χ := P (inf t∈[0,T ] X t < 0). In this section we show that χ ≤ χ.

First note that X T = X T . Conditional to X T = y, the process (X t ) t∈[0,T ] is a Brownian bridge from x to y with diusion rate γ. We can therefore derive an explicit formula for the conditional probability that (X t ) t∈[0,T ] goes below zero at some time before T .

To make this precise, let B be the collection of Borel sets on the space of continuous functions C([0, T ]) endowed with the supremum norm. Moreover, let B × R (A, y) → P (A|X T = y) be a regular conditional distribution of (X t ) t∈[0,T ] with respect to X T . Lemma 2.6. For all y ≥ 0 we have

P ( inf t∈[0,T ] X t < 0|X T = y) = exp -2 xy T γ 2 .
Proof. One can show ( [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF], Chap I) that the law of (X t ) t∈[0,T ] under P (•|X T = y) coincides with the law a Brownian bridge from x to y with diusion rate γ. Therefore,

P ( inf t∈[0,T ] X t < 0|X T = y) = P ( inf t∈[0,γ 2 T ] B t < -x|B γ 2 T = y -x).
Well-known results on hitting probilities for Brownian bridges (see e.g. Proposition 3 in [START_REF] Scheike | A boundary-crossing result for Brownian motion[END_REF]) imply the result.

We next derive an explicit formula for the conditional probability that ( X t ) goes below zero at some time before T . To this end recall that the process

Y t := (B t - t T B T ), t ∈ [0, T ], (2.11) 
is a Brownian bridge on [0, T ] from zero to zero. Observe that

U t = σY t + γ t T B T = σY t + t T (x -X T ).
and that B T is independent of Y t . Conditional to X T = y, the process ( X t ) t∈[0,T ] is therefore a Brownian bridge from zero to y with diusion rate σ. From well-known results on hitting probabilities of Brownian bridges we arrive at the following result.

Lemma 2.7. For all y ≥ 0 we have

P ( inf t∈[0,T ] X t < 0|X T = y) = exp -2 xy T σ 2 .
Lemma 2.6 and 2.7 imply that the dierence of ruin probabilities χ and χ satises

χ -χ = ∞ 0 [P ( inf t∈[0,T ] X t < 0|X T = y) -P ( inf t∈[0,T ] X t < 0|X T = y)]P (X T ∈ dy) = ∞ 0 exp -2 xy T γ 2 -exp -2 xy T σ 2 1 2πγ 2 T exp - (y -x) 2 2γ 2 T dy ≥ 0.
Note that the dierence is greater than zero if γ > σ. Thus we have obtained the following Theorem 2.8.

P ( inf

t∈[0,T ] X t < 0) ≤ P ( inf t∈[0,T ] X t < 0),
where we have an equality if and only if the claim sizes (ξ i ) i≥0 are deterministic.

Remark 2.9. The assumption made on the counting process N in the formulation of De Vylder and Goovaerts ( [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF]) diers from our Assumption 2.1.

In [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF], it is assumed that N is a homogeneous risk process, meaning that conditionally on (N T = n), the vector of jump times (τ 1 , . . . , τ n ) has the same distribution as the increasing order statistics of n independent uniform random variables on [0, T ]. In particular, this property is satised when N is a Poisson process. More details and properties of the homogenous process are given in [START_REF] Lefèvre | A new look at the homogeneous risk model[END_REF]. If we assume that (N t ) t∈R + is a homogeneous process, then according to Theorem A2 in [START_REF] Vylder | Homogeneous risk models with equalized claim amounts[END_REF], it is a mixed Poisson process. This entails, using the same lines of reasoning as in the Chapter 4 of [START_REF] Furrer | Risk theory and heavy-tailed Lévy processes[END_REF] (pages 65-67), that our limit results hold true, with λ replaced by a structure random variable Λ. Then by conditioning on this variable, we can still compare the ruin probabilities in the diusion limits, as in the previous Theorem.

Remark 2.10. All the results presented so far remain true if one omits the assumption that each random variable ξ i is non-negative, but simply assumes that E(ξ i ) ≥ 0.

The dynamics of the approximating diusion

We close this section by characterizing ( U t ) t∈[0,T ] , the diusion limit of the claim surplus process within the model with equalized claims, as a solution of a stochastic dierential equation (SDE). First observe that the diusion limit ( U t ) t∈[0,T ] is a Gaussian process. Recall that the law of a one-dimensional Gaussian process (Z t ) t∈[0,T ] is uniquely determined by its expectation function m(t) := E(Z t ) and covariance function K(t, s) := Cov(Z t , Z s ). Hence, we can characterize the limiting law of 1

√ m S tm t∈[0,T ]
as that of a Gaussian process with m(t) = 0 and K(s, t) = (γ 2 -σ 2 ) st T + σ 2 (s ∧ t) for s, t ∈ [0, T ], where the constants γ and σ are dened in (2.2) and (2.3). This allows further to characterize the limiting law in terms of an SDE. Proposition 2.11. There exists a Brownian motion ( W t ) t∈[0,T ] such that the process ( U t ) satises the SDE

d U t = U t γ 2 -σ 2 σ 2 (T -t) + γ 2 t dt + σd W t (2.12) on [0, T ].
Proof. We rst solve explicitly the SDE (2.12) for a given Brownian motion

(W t ). To this end let f (t) = γ 2 -σ 2 σ 2 (T -t)+γ 2 t for all t ∈ [0, T ].
Note that the SDE dZ t = Z t f (t)dt + σdW t with initial condition Z 0 = 0 has a unique solution given by

Z t = t 0 exp t s f (u)du σdW s , t ∈ [0, T ].
The solution process (Z t ) t∈[0,T ] is a Gaussian process. The covariance structure of (Z t ) t∈[0,T ] coincides with the one of ( U t ) t∈[0,T ] . Indeed, for any s, t ∈ [0, T ], the Itô isometry implies

Cov(Z s , Z t ) = s∧t 0 exp s r f (u)du exp t r f (u)du σ 2 dr. Notice that exp k r f (u)du = σ 2 T +(γ 2 -σ 2 )k σ 2 T +(γ 2 -σ 2 )r for any k ∈ [r, T ]. Now a straightforward computation shows that Cov(Z s , Z t ) = σ 2 (s ∧ t) + (γ 2 -σ 2 ) st T .
As a consequence, the process (Z t ) t∈[0,T ] has the same law as the process

( U t ) t∈[0,T ] . Now dene W t := 1 σ U t - t 0 U s f (s)ds .
Then the pair ( U t , W t ) t∈[0,T ] has the same process distribution as (Z t , W t ) t∈[0,T ] . In particular, ( W t ) t∈[0,T ] is a Brownian motion and ( U t ) t∈[0,T ] satises (2.12).

Remark 2.12. The dynamics (2.12) can be derived from (2.6) via a projection argument. To explain this, let ( F t ) t∈[0,T ] be the smallest ltration such that, rst, the usual conditions of right-continuity and completeness are satised and, second, ( U t ) t∈[0,T ] is adapted. Denote by U t = M t + A t the Doob-Meyer decomposition of ( U t ) t∈[0,T ] with respect to ( F t ) t∈[0,T ] . Assume that there exists an integrable ( F t )-predictable process α such that A t = t 0 α s ds, t ∈ [0, T ]. Since M , M t = U , U t = σ 2 t for all t ∈ [0, T ], we conclude from Levy's theorem that M /σ is a Brownian motion w.r.t. ( F t ).

For the Brownian bridge Y , dened in (2.11), there exists a Brownian motion W Y such that

dY t = dW Y t - Y t T -t dt.
Since B T is independent of Y t , the process W Y is also a Brownian motion with respect to the initially enlarged ltration (G t ), where G t := ∩ s>t (F Y s ∨σ(B T )). In particular, ( X t ) t∈[0,T ] is a (G t )-Itô process with dynamics

d U t = γ 1 T B T dt - σY t T -t dt + σdW Y t = γB T -U t T -t dt + σdW Y t .
Notice that W Y t = W t -t 0 µ s ds, where

µ t = - 1 σ α t - γB T -U t T -t .
The process µ is the so-called information drift of W w.r.t. to the enlarged ltration (G t ). It is known that the L 2 projection of µ onto the space of square integrable and ( F t )-progressively measurable processes vanishes (see e.g. Section 1 in [START_REF] Ankirchner | The Shannon information of ltrations and the additional logarithmic utility of insiders[END_REF]). This entails that α t = U t γ 2 -σ 2 σ 2 (T -t)+γ 2 t , t ∈ [0, T ], and hence (2.12). [START_REF] Asmussen | Ruin probabilities[END_REF] The conjecture in the heavy trac approximation

We now assume that η = c -λE(ξ 1 ) > 0. By scaling time with 1/η 2 and letting η ↓ 0, the laws of the diusion limits of (S t ) t∈[0,T ] and ( S t ) t∈[0,T ] are given by the following proposition. as η → 0.

Proof. The proof is a straightforward adaptation of [3, Theo. 5.1] using the results from Proposition 2.2 and Theorem 2.4.

In the heavy trac approximation, the ruin probability ρ can be approximated by P (sup t∈[0,T ] V t > x) and the ruin probability ρ by P (sup t∈[0,T ] V t > x). Following similar arguments as in Section 2.2, one has V T = V T , and the conditional non ruin probability is equal to

P ( sup t∈[0,T ] V t ≤ x|V T = y) = P (B t ≤ x + t γ , 0 ≤ t ≤ T |B T = y + T γ ), y < x.
In other words, the non ruin probability conditional to V T = y is equal to the probability that a Brownian bridge starting form 0 and going to y γ + T with length equal to T stays under the line t → x+t γ . Using the results of [START_REF] Scheike | A boundary-crossing result for Brownian motion[END_REF][START_REF] Atkinson | Multidimensional hitting time results for Brownian bridges with moving hyperplanar boundaries[END_REF], we obtain This implies that the De Vylder-Goovaert conjecture holds true in the heavy trac approximation.

P ( sup t∈[0,T ] V t ≤ x|V T = y) = 1 -exp -2 x(x -y) T γ 2 . ( 3 

Proposition 3 . 1 .

 31 The process ηS t η 2 t∈[0,T ] converges in law on D[0, T ] to

V

  t := γB t -t, t ∈ [0, T ],and the process η S t η 2 t∈[0,T ] converges in law on D[0, T ] toV t := σB t + (γ -σ) t T B T -t, t ∈ [0, T ],

. 1 )

 1 Using arguments similar to the ones of Section 2.2, it follows thatP ( sup t∈[0,T ] V t ≤ x|V T = y) = 1 -exp -2 x(x -y) T σ 2 ,(3.2)and hence we obtain thatP ( sup t∈[0,T ] V t ≤ x|V T = y) -P ( sup t∈[0,T ] V t ≤ x|V T = y) ≤ 0.
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