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ORBIFOLD CHERN CLASSES INEQUALITIES AND APPLICATIONS

ERWAN ROUSSEAU AND BEHROUZ TAJI

ABSTRACT. In this paper we prove that given a pair (X, D) of a threefold X and
a boundary divisor D with mild singularities, if (KX + D) is movable, then the
orbifold second Chern class c2 of (X, D) is pseudoeffective. This generalizes the
classical result of Miyaoka on the pseudoeffectivity of c2 for minimal models. As
an application, we give a simple solution to Kawamata’s effective non-vanishing

conjecture in dimension 3, where we prove that H0(X, KX + H) 6= 0, whenever
KX + H is nef and H is an ample, effective, reduced Cartier divisor. Furthermore,
we study Lang-Vojta’s conjecture for codimension one subvarieties and prove that
minimal threefolds of general type have only finitely many Fano, Calabi-Yau or
Abelian subvarieties of codimension one that are mildly singular and whose nu-
merical classes belong to the movable cone.
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1. INTRODUCTION

It is well known that the Chern classes of nef vector bundles over smooth pro-
jective varieties satisfy certain inequalities [DPS94]. More generally, a theorem
of Miyaoka [Miy87] states that over a normal, projective variety (that is smooth
in codimension two) any torsion free, coherent sheaf E that is semipositive with re-
spect to the tuple of ample divisors (H1, . . . , Hn−1) and whose determinant det(E )
is nef, verifies the inequality

c2(E ) · H1 . . . Hn−2 ≥ 0.

On the other hand, thanks to Miyaoka’s celebrated generic semipositivity result,
cf. [Miy87], and the result of Boucksom, Demailly, Păun and Peternell ([BDPP13]),
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2 ERWAN ROUSSEAU AND BEHROUZ TAJI

when KX is pseudoeffective, the cotangent bundle Ω1
X of a smooth projective vari-

ety is generically semipositive. As a result, for a smooth projective variety X with
KX nef, the inequality

(1.0.1) c2(X) · H1 . . . Hn−2 ≥ 0

holds, for any tuple of ample divisors (H1, . . . , Hn−2).
Recent works of Campana and Păun ([CP15], [CP16]) have generalized some

parts of Miyaoka’s results, showing in particular that if X is a smooth projective

variety with KX pseudoeffective, then Ω1
X is semipositive with respect to any mov-

able class α ∈ Mov1(X).
Our first result is a natural generalization of the inequality (1.0.1) to the setting

of pairs with movable log-canonical divisors.

Theorem 1.1. Let X be a normal projective threefold that is smooth in codimension two
and D a reduced effective divisor such that (X, D) has only isolated lc singularities. If

(KX + D) ∈ Mov1(X)Q, then for any ample divisor A, the inequality

c2

(
(Ω1

X log(D))∗∗
)
· A ≥ 0

holds.

The second result is another generalization of an inequality established by
Miyaoka [Miy87], which is sometimes referred to as the Miyaoka-Yau inequality.

Theorem 1.2. Let X be a normal projective threefold that is smooth in codimension two
and D a reduced effective divisor such that (X, D) has only isolated lc singularities. If

(KX + D) ∈ Mov1(X)Q, then

c2
1

(
(Ω1

X log(D))∗∗
)
· A ≤ 3c2

(
(Ω1

X log(D))∗∗
)
· A,

for any ample divisor A.

There are two main ingredients in the proof of the above inequalities. The first
one is a restriction result for semistable sheaves with respect to some strongly mov-
able curves. This is described in section 3. The second component involves the
semipositivity of the orbifold cotangent sheaves and is treated in section 4.

The rest of the paper is devoted to two applications of Theorems 1.1 and 1.2.
The first one concerns the so-called effective non-vanishing conjecture.

Conjecture 1.3 (Effective non-vanishing conjecture of Kawamata). Let Y be a nor-
mal projective variety and DY an effective R-divisor such that (Y, DY) is klt. Let H be
an ample, or more generally big and nef, divisor such that (KY + DY + H) is Cartier and
nef. Then H0(X, KY + DY + H) 6= 0.

Using Theorem 1.1, in Section 6, we obtain a simple proof of the following weak
version of Conjecture 1.3 in dimension three.

Theorem 1.4 (Non-vanishing for canonical threefolds). Let Y be a normal projective
threefold with only canonical singularities. Let H be a very ample divisor. If (KY + H) is

a nef and Cartier divisor, then H0(Y, KY + H) 6= 0.

We note that Theorem 1.4 is stated in [Hör12] under the weaker assumption
that H is a nef and big Cartier divisor. The proof relies on an inequality similar to
that of Theorem 1.1 but under the weaker assumption that the first Chern class is
nef in codimension one. It seems that there is a gap in the proof of that inequality,
but according to the author one can get rid of this assumption and use only the
classical result of Miyaoka where c1 is assumed to be nef (cf. the inequality 1.0.1).
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A second application is given in section 8 vis-à-vis Lang-Vojta’s conjectures on
subvarieties of varieties of general type:

Geometric Lang-Vojta conjecture: In a projective variety of general type X,
subvarieties that are not of general type are contained in a proper algebraic subva-
riety of X.

In particular, a variety of general type should have only finitely many codi-
mension one subvarieties that are not of general type. We partially establish this
conjecture in the setting of the following theorem.

Theorem 1.5. Let X be a normal projective Q-factorial threefold such that KX ∈

Mov1(X)Q. If X is of general type then X has only a finite number of movable codi-
mension one, normal subvarieties D verifying the following conditions.

(1.5.1) The subvariety D has only canonical singularities.
(1.5.2) The anticanonical divisor −KD is pseudoeffective.
(1.5.3) The pair (X, D) has only isolated lc singularities.

In particular, there are only finitely many such Fano, Abelian and Calabi-Yau subvarieties.

Here, by a variety of general type, we mean a normal variety whose resolution
has a big canonical bundle.

We remark that—in the smooth setting—a stronger version of Theorems 1.5
and 1.1 has been claimed in [LM97], where the authors establish these results un-
der the weaker assumption that (KX + D) is pseudoeffective. Unfortunately the
arguments in [LM97] are not complete. We refer to Remark 8.2 for a detailed dis-
cussion of these problems.

1.1. Acknowledgements. The authors would like to thank Sébastien Boucksom,
Junyan Cao, Paolo Cascini, Andreas Höring, Steven Lu and Mihai Păun for fruitful
discussions.

2. BASIC DEFINITIONS AND BACKGROUND

2.1. Movable cone. We introduce the movable cone of divisors; one of the impor-
tant cones of divisors that is ubiquitous in birational geometry.

Let X be a normal projective variety and D a Q-divisor on X. The stable base
locus of D is defined by

B(D) :=
⋂

m

Bs(|mD|).

The restricted base locus is given by

B−(D) =
⋃

A ample

B(D + A).

Definition 2.1. Let X be a normal variety. The movable cone Mov1(X) ⊂ N1(X)
is the closure of the cone generated by the classes of all effective divisors D such
that B−(D) has no divisorial components.

The following proposition gives a more geometric picture of this definition.

Proposition 2.2 ([Bou04], Proposition 2.3). Given any α in the interior of Mov1(X),
there is a birational map φ : Y → X and an ample divisor A on Y such that [φ∗A] = α.
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2.2. Stability with respect to movable classes. Now we introduce the notion of
movable curves which generate the cone dual to the pseudoeffective cone.

Definition 2.3. A class γ ∈ N1(X) is movable if γ.D ≥ 0 for all effective divisors
D. We define Mov1(X) to be the closed convex cone of such 1-cycles.

Movable classes form a natural setting for the notion of stability of coherent
sheaves (see [CP11] and [GKP15]). We shall now recall the basic definitions and
properties.

Definition 2.4. Assume that X is Q-factorial and let γ ∈ Mov1(X). The slope of a
coherent sheaf E with respect to γ is given by

µγ(E ) :=
1

r
· (det(E )) · γ.

Definition 2.5. We say that E is semistable with respect to γ if µγ(F ) ≤ µγ(E ) for
any coherent subsheaf 0 ( F ⊂ E .

Proposition 2.6 ([GKP15], Corollary 2.27). Let X be a normal, Q-factorial, projective
variety and γ ∈ Mov1(X). There exists a unique Harder-Narasimhan filtration i.e. a
filtration 0 = E0 ( E1 ( · · · ( Er = E where each quotient Qi := Ei/Ei−1 is torsion-
free, γ-semistable, and where the sequaence of slopes µγ(Qi) is strictly decreasing.

2.3. Q-twisted sheaves. It will be quite useful in the sequel to work in the more
general setting of Q-twisted sheaves as introduced in [Miy87].

Definition 2.7 (Q-twisted sheaves). A Q-twisted sheaf is a pair E 〈B〉, where E is
a coherent sheaf and B is a Q-Cartier divisor.

Notation 2.8. Let X be a normal projective variety and F a coherent sheaf on X of
rank r. Let D be a Weil divisor in X such that det(F ) ∼= OX(D). When D is Q-

Cartier, we define [F ] to denote the numerical class [D] ∈ N1(X)Q of D. For any
Q-Cartier divisor A, we set [F 〈A〉] = [F ] + r · [A]. Here by det(F ) we always
mean the reflexive hull of the determinant of F .

Let X be a normal projective variety of dimension n which is smooth in codi-
mension 2 and E a reflexive sheaf on X. Then, one can define the second Chern
class c2(E ), cycle-theoretically, as a multilinear form on

N1(X)Q × . . . × N1(X)Q︸ ︷︷ ︸
(n − 2)-times

.

We now recall the usual formulas for Chern classes of Q-twisted sheaves.

Definition 2.9 (Chern classes of Q-twisted sheaves). Let E 〈B〉 be a Q-twisted
locally-free sheaf of rank r.

c1(E 〈B〉) = c1(E ) + rc1(B),

c2(E 〈B〉) = c2(E ) + (r − 1)c1(E ) · c1(B) +
r(r − 1)

2
c1(B)2.

The semipositivity property for sheaves also naturally extends to this setting.

Definition 2.10 (Semipositive Q-twisted sheaves). Let X be a normal projective
variety and γ ∈ Mov(X). A Q-twisted, torsion-free sheaf E 〈B〉 is said to be
semipositive with respect to γ, if for every torsion-free, Q-twisted, quotient sheaf
E 〈B〉 ։ F 〈B〉 we have [F 〈B〉] · γ ≥ 0.

We also have the Bogomolov-Gieseker inequality for semistable Q-twisted
sheaves.
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Proposition 2.11 (Bogomolov-Gieseker inequality for semistable Q-twisted
sheaves). Take S to be a smooth projective surface. Let E 〈B〉 be a Q-twisted locally-
free sheaf on S of rank r and A ∈ Amp(X)Q. If E 〈B〉 is semistable with respect to A,
then E 〈B〉 verifies the Bogomolov-Gieseker inequality:

(2.11.1) 2r · c2(E 〈B〉)− (r − 1) · c2
1(E 〈B〉) ≥ 0.

Proof. Let h : T → S be the morphism adapted to B so that ET := h∗(Ê 〈(B)〉) is
locally-free. Define K := Gal(T/S). Notice that as the maximal destablizing sub-
sheaf of h∗(ET) is unique, it is K-invariant. As a result, ET is semistable with respect
to AT := h∗A. The inequality 2.11.1 now follows from the standard Bogomolov-
Gieseker inequality for semistable locally free sheaves.

�

2.4. Orbifold basics. Following the terminology of Campana [Cam04], an orbifold
is simply a pair (X, D), consisting of a normal projective variety and a boundary
divisor D = ∑ di · Di, where di = (1 − bi/ai) ∈ [0, 1]∩ Q.

Our aim is now to define a notion of cotangent sheaf, adapted to an orbifold.
To this end, and since we will not be exclusively working with smooth varieties,
we will need a notion of pull-back for Weil divisors (that are not necessarily Q-
Cartier).

Definition 2.12 (Pull-back of Weil divisors). Let f : Y → X be a finite morphism
between quasi-projective normal varieties X and Y. We define pull-back f ∗(D) of
a Q-Weil divisor D ⊂ X by the Zariski closure of ( f |Yreg)

∗(D).

To define classical objects for orbifolds, it is quite convenient to use adapted mor-
phisms.

Definition 2.13 (Adapted and strongly adapted morphisms). Let (X, D) be an orb-
ifold. A finite, surjective, Galois morphism f : Y → X is called adapted (to D) if,
f ∗D is an integral Weil divisor. We say that a given adapted morphism f : Y → X
is strictly adapted, if we have f ∗Di = ai · D′

i , for some Weil divisor D′
i ⊂ Y. Further-

more, we call a strictly adapted morphism f , strongly adapted, if the branch locus
of f only consists of supp

(
D − ⌊D⌋+ A

)
, where A is a general member of a linear

system of a very ample invertible sheaf on X.

Remark 2.14. For a pair (X, D), where X is smooth, and D is Q-effective divisor
with simple normal crossing support, the existence of a strongly adapted mor-
phism f : Y → X was established by Kawamata, cf. [Laz04, Prop. 4.1]. A similar
strategy can be applied to construct strongly adpapted morphisms f : Y → X
when all the irreducible components of D are Q-Cartier; in particular when X is
assumed to be Q-factorial.

Notation 2.15. Let f : Y → X be a a morphism adapted to D, where D = ∑ di · Di,

di = 1 − bi
ai
∈ (0, 1]∩ Q. For every prime component Di of (D − ⌊D⌋), let {Dij}j(i)

be the collection of prime divisors that appear in f ∗(Di). We define new divisors
in Y by

D
ij
Y := bi · Dij(2.15.1)

D f := f ∗(⌊D⌋).(2.15.2)

Now, let us explain how to define the cotangent sheaf of an orbifold.
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Definition 2.16 (Orbifold cotangent sheaf). In the situation of Notation 2.15, de-

note Y◦ to be the snc locus of the pair (Y, ∑ Dij + D f ) and define D
ij
Y

◦
:= D

ij
Y|Y◦ .

Set Ω1
(Y◦, f ,D)

to be the kernel of the sheaf morphism

( f |Y◦)∗
(
ΩX log(pDq)

)
−→

⊕

i,j(i)

O
D

ij
Y

◦

induced by the natural residue map. We define the orbifold cotangent sheaf

Ω
[1]
(Y, f ,D)

by the coherent extension (iY◦)∗(Ω1
(Y◦, f ,D)

), where iY◦ is the natural in-

clusion. We define the orbifold tangent sheaf T(Y, f ,D) by (Ω
[1]
(Y, f ,D)

)∗.

3. RESTRICTION RESULTS FOR SEMISTABLE SHEAVES

Let h = (H1, . . . , Hn−1) be a tuple of ample divisors on a normal projective vari-
ety X of dimension n and E a torsion free sheaf. A theorem of Mehta-Ramanathan
[MR82] states that if m is large enough and Y ∈ |mHn−1| is a generic hypersurface,
then the maximal destabilizing subsheaf of E |Y is the restriction of the maximal
destabilizing subsheaf of E .

It is natural to try to extend this restriction theorem to movable polarization.
Unfortunately, in general, such results are not valid for movable curve. For ex-

ample, when X is a projective K3 surface then its cotangent bundle Ω1
X is not

pseudoeffective, which gives rise to the existence of movable curves for which
the restriction theorem does not hold (cf. [BDPP13, Sect. 7]).

In this section, we will prove a restriction theorem for some strongly movable
curves (see Proposition 3.3 below). The following lemma will serve as the key
technical ingredient in the proof of this result.

Lemma 3.1 (Induced destablizing subsheaves on higher birational models). Let

π : S̃ → S be a birational morphism between two smooth projective surfaces S̃ and S. Let

Ã
S̃
⊂ S̃ be an ample divisor and define PS := [π∗(Ã

S̃
)] ∈ N1(S)Q. Let FS ( ES be a

maximal destablizing subsheaf with respect to PS of a locally-free sheaf ES on S of rank 3.

The maximal destablizing subsheaf G̃
S̃

of π∗(ES) with respect to Ã
S̃

is then of the form

π∗(FS)⊗ O
S̃
(E′),

where E′ is an exceptional divisor.

Proof. First we notice that by arguing inductively we may assume, without loss

of generality, that π : S̃ → S is a blow up of a single point in S. Let F̃
S̃

be the
pull-back π∗FS. We divide the proof into various cases depending on the ranks

of F̃
S̃

and G̃
S̃
, aiming to show that F̃

S̃
∼= G̃

S̃
.

Case. 1. (rank(F̃
S̃
) = rank(G̃

S̃
) = 2). As F̃

S̃
and G̃

S̃
are both saturated in-

side π∗ES, thus so are
∧2

F̃S,
∧2

G̃
S̃

inside
∧2(π∗ES). Therefore, if there ex-

ists a nontrivial morphism t : G̃
S̃
→ F̃

S̃
, then the naturally induced morphism

∧2 t :
∧2

G̃
S̃
→
∧2

F̃
S̃

is a nontrivial morphism between invertible sheaves. It fol-

lows that µ
Ã

S̃
(G̃

S̃
) must be equal to µ

Ã
S̃
(F̃

S̃
) and thus, by the uniqueness of G̃ , we

have F̃
S̃
∼= G̃

S̃
.

So, we may assume that there is no nontrivial morphisms from G̃
S̃

to F̃
S̃
. Aim-

ing for a contradiction, consider the exact sequence 0 → F̃
S̃
→ π∗(ES) → L̃ → 0.

By our assumption, there exists a nontrivial morphism u : G̃
S̃
→ L̃ with kernel

K̃ :
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0 F̃
S̃

π∗(ES) L̃ 0,

0 K̃ G̃
S̃
.

u

Now, as F̃
S̃

properly destablizes π∗(ES), we have

(3.1.1) µ
Ã

S̃
(F̃

S̃
) > µ

Ã
S̃
(π∗

ES).

It thus follows that

µ
Ã

S̃
(L̃ ) < µ

Ã
S̃
(π∗

ES) < µ
Ã

S̃
(F̃

S̃
), by Inequality 3.1.1

< µ
Ã

S̃
(G̃

S̃
).(3.1.2)

On the other hand, as G̃
S̃

is semistable, from the exact sequence 0 → K̃ → G̃
S̃
→

L̃ → 0, it follows that µ
Ã

S̃
(G̃

S̃
) < µ

Ã
S̃
(L̃ ), contradicting the inequality (3.1.2).

Case. 2. (rank(F̃
S̃
) = 2 and rank(G̃

S̃
) = 1). We claim that this case does not occur.

To this end, consider the exact sequence

0 → G̃
S̃
→ π∗

ES → Q → 0,

where Q is torsion free, quotient sheaf of rank two. Note that there exists a non-
trivial morphism q : π∗FS → Q. Therefore, we have the slope inequality

(3.1.3) µ
Ã

S̃
(π∗

FS) ≤ µ
Ã

S̃
(Q).

On the other hand, as G̃
S̃
⊂ π∗ES is the maximal destablizing subsheaf, we have

(3.1.4) µ
Ã

S̃
(Q) < µ

Ã
S̃
(π∗

ES).

From the inequalities 3.1.3 and 3.1.4 it now follows that

µ
Ã

S̃
(π∗

FS) < µ
Ã

S̃
(π∗

ES),

contradicting the fact that FS destablizes ES.

Case. 3. (rank(FS) = 1). We divide the proof of this case into two subcases based

on the existence of a nontrivial morphism from F̃
S̃

to G̃
S̃
.

Subcase. 3.1. (No nontrivial morphisms exist). In this case for the projection p : F̃
S̃
→

Q̃, defined by

0 G̃
S̃

π∗(ES) Q̃ 0

F̃
S̃
,

p

we have that rank(Image(p)) 6= 0. Again, as we are only concerned with the slope

of the sheaves F̃
S̃

and Q̃, we may assume with no loss of generality that p is an

injection and that F̃
S̃
⊆ Q̃. On the other hand, we know, thanks to the assumption

that G̃
S̃

properly destablizes π∗ES (with respect to Ã
S̃
), that
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(3.1.5) µ
Ã

S̃
(π∗

ES) > µ
Ã

S̃
(Q̃).

But µ
Ã

S̃
(Q̃) ≥ µ

Ã
S̃
(F̃

S̃
) ≥ µ

Ã
S̃
(π∗FS), i.e.

(3.1.6) µ
Ã

S̃
(Q̃) ≥ µPS

(FS).

By combining the two inequalities 3.1.5 and 3.1.6 we find that µ
Ã

S̃
(π∗E ) >

µPS
(FS), that is µPS

(ES) > µPS
(FS), contradicting the assumption that FS

destablizes ES with respect to PS.

Subcase. 3.2. (A nontrivial morphism exists). Let j : F̃
S̃
→ G̃

S̃
be a nontrivial mor-

phism. As G̃
S̃

has no torsion, the sheaf morphism j is an injection in codimension
one. Moreover since we are only concerned with slope of the image j with respect

to Ã
S̃
, we may assume with no loss of generality, that j is globally an injection. Af-

ter identifying F̃
S̃

with its image (under j), we write F̃
S̃
⊂ G̃

S̃
. Our aim is now to

show that this set-up for G̃
S̃

and F̃
S̃

leads to a contradiction and that this subcase

does not occur, unless F̃
S̃
∼= G̃

S̃
.

Let GS be the locally-free sheaf on S defined by the coherent extension of

(π|
S̃\ Exc(π))∗(G̃S̃

) onto S. Thanks to the reflexivity of both FS and GS, we have

the inclusion of locally free sheaves FS ⊂ GS. In particular rank(G̃
S̃
) = 2. Fur-

thermore, we have π∗(FS) ⊂ π∗(GS) and that, for some a ∈ Z, the isomorphism

G̃
S̃
∼= π∗(GS)⊗ O

S̃
(a · E) holds. Here, the divisor E is the (irreducible) exceptional

divisor. Notice that we have

(3.1.7) Ã
S̃
· (a · E) ≥ 0,

otherwise G̃ cannot be the maximal destablizing subsheaf of π∗ES. Therefore a ≥
0.

Claim 3.2. Let F̂S be the saturation of F̃
S̃

inside G̃
S̃
. There exists a positive integer

b ≥ a for which the isomorphism

F̂S
∼= π∗(FS)⊗O

S̃
(b · E)

holds.

Proof of Claim 3.2. First notice that we have F̂S
∼= π∗(FS) ⊗ O

S̃
(b · E), for some

b ∈ N. As the inclusion π∗(FS) ⊗ O
S̃
(b · E) ⊆ π∗(GS) ⊗ O

S̃
(a · E) is saturated,

over a Zariski open subset E◦ ⊆ E we have O
S̃
(b · E)|E◦ ⊆

(
O

S̃
(a · E)|E◦

)⊕2
. Since

O
S̃
(E)|E◦ ∼= OE◦(−1), it follows that b ≥ a. �

Using Claim 3.2, and by construction of F̂S, we get the following sequence of
inequalities.
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µ
Ã

S̃
(F̂S) = (π∗([FS]) + (b · E)) · Ã

S̃

= [FS] · PS + ((b · E) · Ã
S̃
)

> µPS
(GS) + ((b · E) · Ã

S̃
), as FS is maximal destablizing

≥
1

2
[GS] · PS + ((a · E) · Ã

S̃
), as b ≥ a

≥
1

2

(
π∗[GS] · Ã

S̃
+ ((a · E) · Ã

S̃
)
)

,

i.e.

(3.2.1) µ
Ã

S̃
(F̂S) > µ

Ã
S̃
(G̃

S̃
)

As G̃ is semistable, the inequality in 3.2.1 yields the desired contradiction.
�

The next proposition is the main result in this section, proving a restriction the-
orem for semistable sheaves with respect to a particular set of movable classes.
As we shall see later in Section 5, these classes naturally arise in the context of
positivity problems for second Chern classes.

Proposition 3.3 (A restriction theorem for movable classes). Let X be a normal

projective threefold that is smooth in codimension two. Let P ∈ Mov1(X)Q and
H1, H2 ∈ Amp(X)Q. Let E be a torsion free sheaf on X of rank 3. There exists a positive
integer M1 such that for all sufficiently divisible integers m1 ≥ M1, there is a Zariski
open subset Vm1 ⊂ |m1 · H1| for which the following properties holds.

(3.3.1) Every member S ∈ Vm1 is smooth, irreducible and that S ⊂ Xreg.
(3.3.2) The restriction E |S torsion free.
(3.3.3) The divisor P|S is nef.
(3.3.4) For every such S, there exists M2 ∈ N+ such that every sufficiently divisible

integer m2 ≥ M2 gives rise to a Zariski open subset Vm2 ⊂ |m2 · (P + H2)|S|,
where every γ ∈ Vm2 is a smooth, irreducible curve in S verifying the following
property:
(*) The formation of the HN-filtration of E with respect to (H1, P + H2) com-
mutes with restriction to γ, i.e. HN•(E )|γ = HN•(E |γ).

Proof. Let π : X̃ → X be the birational morphism and X̃ the smooth projective

variety with ample ample divisor Ã ⊂ X̃ in Proposition 2.2 associated to the Fujita
approximation of the big divisor P + H2, i.e.

π∗[Ã] = [(P + H2)].

Now, let N1 ∈ N+ be a sufficiently large and divisible integer such that for every

n1 ≥ N1, there are open subsets Un1 ⊂ |n1 · π∗H1| and Ũn−1 ⊂ |n1 · Ã|, where for

every subscheme S̃ := D̃n1 and C̃ := D̃n1 ∩ Dn1 , with D̃n1 ∈ Un1 and Dn1 ∈ Ũn1 ,
we have:

(3.3.5) Both S̃ and C̃ are smooth and irreducible.

(3.3.6) The restrictions (π[∗]E )|S̃ is locally free.

(3.3.7) The HN-filtration of π[∗]E with respect to (H1, P + H2) verifies:

HN•
(
(π[∗]E

)
|
S̃
) = HN•(π[∗]E )|

S̃
.
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The positive integer N1 exists, thanks to Bertini theorem and Langer’s restriction
theorem for stable sheaves, cf. [Lan04].

Step. 1. (Reflexivity assumption). By the Bertini theorem and [DG65, Thm. 12.2.1],

and as P ∈ Mov1(X)Q, there exists a positive integer N2 such that for every suffi-
ciently divisible n2 ≥ N2 there exists a Zariski open subset Vn2 ⊂ |n2 · H1| where
every S ∈ Vn2 satisfies the three Properties (3.3.1), (3.3.2) and (3.3.3). We can also
ensure that every S ∈ Vn2 is transversal to the exceptional centre of π. Further-
more, as P|S is nef, we can find N3 ∈ N+ such that for each sufficiently divisi-
ble n3 ≥ N3, the general member of γ ∈ |n3 · (P + H2)|S| is smooth and is con-
tained in an open subset of X over which the HN-filtration of E (with respect to
(H1, P + H2)) is a filtration of E by locally-free sheaves. Therefore, to prove that
Property (*) is verified by γ, we may assume, without loss of generality, that E is
reflexive.

Step. 2. (Construction of S and γ). Let m ∈ N+ be a sufficiently divisible integer ver-
ifying the inequality m1 ≥ M1 := max{N1, N2}. After shrinking Vm1 , if necessary,

we have, for every S ∈ Vm1 (defined in Step. 1), that S̃ := π∗(S) ∈ Um.
Let M2 ≥ N1 be a sufficiently large and divisible integer such that for every

m2 ≥ M2 there exists a Zariski open subset Vm2 ⊂ |m2(P + H2)|S|, where ev-
ery curve γ ∈ Vm2 is smooth and if E |γ is not semistable, then ES := E |S is not
semistable with respect to (P + H2)|S and that HN•(ES)|γ = HN•(E |γ). The
existence of such M2 us guaranteed by Mehta-Ramanathan restriction Theorem,
cf. [MR82].

Now, to prove the proposition, it suffices to show that if E is semistable with
respect to (H1, P + H2), then so is E |γ. So let us now assume that E is indeed
semistable. The next step is devoted to proving that E |γ is also semistable.

Step. 3. (Extension of maximal destablizing subsheaves). Aiming for a contradiction,
assume that E |γ is not semistable. Then, by our construction in Step. 2, it follows
that ES is not semistable with respect to (P + H2)|S ≡ (1/m2) · γ and that the
maximal destablizing subsheaf FS ⊂ ES restricts to the one for E |γ. Note that FS,

being saturated inside E |S, is locally-free. By applying Lemma 3.1 to π|
S̃

: S̃ → S,

with Ã
S̃

:= Ã|
S̃
, we find that the maximal destablizing subsheaf G̃

S̃
of (π|

S̃
)∗(ES)

with respect to Ã
S̃

is of the form

(π|
S̃
)∗(FS)⊗ O

S̃
(E′),

for some exceptional divisor E′. As m2 ≥ N1, by the construction in Step. 1, it

follows that G̃
S̃
= G̃ |

S̃
, where G̃ is the maximal destablizing subsehaf of π∗(E )

with respect to (π∗H1, Ã).
Let G ⊂ E be the reflexive sheaf on X defined by the coherent extension of the

sheaf (π|X̃\ Exc(π))∗(G̃ ) onto X. We have, by the construction of the sheaves G̃ , G̃
S̃
,

G , FS and the fact that S is transversal to the exceptional centre Y ⊂ X, that

(3.3.8) G |(S\Y)
∼= (FS)|(S\Y).

As the construction of G̃ , and hence G , is independent of the choice of S, by
shrinking Vm1 , if necessary, we can ensure that G |S is reflexive. The isomorphism
in (3.3.8), together with the fact that G |S and FS are both reflexive, imply that
G |S ∼= FS. As FS destablizes E |S with respect to (P + H2), it follows that G ⊂ E

is a properly destablizing subsheaf with respect to (H1, P + H2), contradicting the
semistability assumption on E .

�
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Remark 3.4 (Restriction of HN-filtration for Q-twisted sheaves). We note that the
consequences of Proposition 3.3 are still valid for Q-twisted torsion-free sheaves.
More precisely, given a Q-twisted, torsion-free sheaf E 〈B〉 and Hi ∈ Amp(X)Q,

P ∈ Mov1(X)Q, there is a complete intersection surface S and γ ⊂ S, as in
Proposition 3.3, such that HN•(E 〈B〉)|γ = HN•(E 〈B〉|γ). To see this, let F 〈B〉
be a Q-twisted reflexive sheaf, semistable with respect to (H1, . . . , P + Hn−1). Let
f : Y → X be a finite morphism, adapted to B so that the reflexive pull-back

f [∗](F 〈B〉) is a coherent reflexive sheaf on Y. Semistability of f [∗](F 〈B〉) is guar-
anteed by [HL10, Lem. 3.2.2]. According to Proposition 3.3 the reflexive sheaf

f [∗](E 〈B〉) verifies the Restriction Theorem, and therefore so does E 〈B〉.

Remark 3.5 (Restriction result in higher dimensions). Following the same argu-
ments as those of the proof of Proposition 3.3, we can remove the restriction on
the dimension, that is the consequences of Proposition 3.3 are still valid, if X
is of dimension n ≥ 3 and the polarization is (H1, H2, . . . , (P + Hn−1)), for any
H1, . . . , Hn−1 ∈ Amp(X)Q, as long as rank(E ) = 3.

As an immediate consequence we establish a Bogomolov-Gieseker inequality
for (Q-twisted) sheaves that are semistable with respect to movable classes of the
form that appear in Proposition 3.3. Although we do not use this inequality in the
rest of the paper, we find it to be of independent interest.

Proposition 3.6 (Bogomolov-Gieseker inequality in higher dimensions). Let X be
an n-dimensional, normal projective variety that is smooth in codimension two and E 〈B〉
a Q-twisted, reflexive sheaf of rank at most equal to 3 on X. If E 〈B〉 is semistable with

respect to (H1, P + H2), where H1, H2 ∈ Amp(X)Q and P ∈ Mov1(X)Q, then
(
2r · c2(E 〈B〉)− (r − 1) · c2

1(E 〈B〉)
)
· H1 . . . · Hn−2 ≥ 0.

Proof. This is an immediate consequence of the restriction result in Proposition 3.3
together with Proposition 2.11 (and Remark 3.4).

�

4. SEMIPOSTIVITY OF ADAPTED SHEAF OF FORMS

In [CP16] Campana and Păun remarkably prove that the orbifold cotangent
sheaf of a log-smooth pair (X, D) is semipositive with respect to movable curve
classes on X (see Theorem 4.1 below). Currently it is not clear if this result can be
easily extended to the case of singular pairs. In the present section we show that,
for a special subset of movable classes, the generalization to singular pairs can be
achieved by essentially reducing to the smooth case.

Theorem 4.1 (Orbifold semipositivity with respect to movable classes, cf. [CP16,
Thm. 1.2]). Given an snc pair (X, D), if (KX + D) is pseudoeffective, then for any mov-
able class γ ∈ Mov1(X) and any adapted morphism f : Y → X, where Y is smooth, the

adapted cotangent sheaf Ω1
(Y, f ,D)

is semipositive with respect to f ∗(γ).

In the next proposition we slightly refine Theorem 4.1 for a class of movable
1-cycles that we call complete intersection 1-cycles. We say that γ ∈ Mov1(X)Q is a

complete intersection 1-cycle, if there are classes B1, . . . , Bn−1 ∈ N1(X)Q such that
γ is numerically equivalent to the cycle defined by (B1 · . . . · Bn−1) ∈ N1(X)Q. As
we will see later in Section 5, such classes appear naturally in our treatment of the
pseudoeffectivity of c2.

Proposition 4.2 (A refinement of the orbifold semipositivity result). Let (X, D) be

an snc pair and γ ∈ Mov1(X)Q a complete intersection movable cycle. If (KX + D) is
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pseudoeffective, then for any strictly adapted morphism g : Z → X, the adapted cotangent

sheaf Ω
[1]
(Z,g,D)

is semipositive with respect to g∗γ.

Proof. Assume that Z is not smooth, otherwise the claim follows from the argu-
ments of Campana and Păun, cf. [CP16]. Let D = ∑ di · Di, where Di are Weil divi-
sors and di ∈ [0, 1]∩Q. For every Di, let g∗(Di) = ni · DZ,i, for some DZ,i ∈ Div(X)
and ni ∈ N+.

Now, set f : Y → X to be a strictly adapted morphism, where, thanks to Kawa-
mata’s construction, cf. [Laz04, Prop. 4.1.12], the variety Y is smooth. Let W be
the irreducible component of the normalization of fibre product Y ×X Z with the
resulting commutative diagram:

W
v

//

u
��

h

''◆
◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

◆

Z

g

��

Y
f

// X.

Aiming for a contradiction, assume that Ω
[1]
(Z,g,D)

is not semipositive with respect

to g∗γ, that is there exists a reflexive subsheaf GZ ⊂ Ω
[1]
(Z,g,D)

such that

(4.2.1)
(
γ∗(KX + D)− [GZ]

)
· g∗γ < 0.

We consider v[∗](GZ) ⊂ Ω
[1]
(W,h,D)

. As γ is, numerically, a complete intersection

cycle, we can use the projection formula to conclude that

(4.2.2)
(
h∗(KX + D)− [v[∗]GZ]

)
· h∗γ < 0,

which implies that Ω
[1]
(W,h,D)

is not semipostive with respect to h∗γ. Now, let

Ω
[1]
(W,h,D)

։ FW be the torsion free quotient having the minimal slope with the

kernel GW :

(4.2.3) 0 → GW → Ω
[1]
(W,h,D)

→ FW → 0.

Let G := Gal(W/Y). Notice that by the construction of f , we have Ω
[1]
(W,h,D)

=

u∗(Ω1
(Y, f ,d)

). Now, as the inclusion GW ⊂ Ω1
(W,h,D)

is saturated, and since GW

is a G-subsheaf (thanks to its uniqueness), according to [HL10, Thm. 4.2.15]

or [GKPT15, Prop. 2.16], there exists a reflexive subsheaf GY ⊂ Ω1
(Y, f ,D)

GY ⊂

Ω1
(Y, f ,D)

such that u[∗](GY) = GW .

Now by taking the G-invariant sections of Sequence 4.2.3 we find

(4.2.4) 0 → GY → Ω1
(Y, f ,D) →

(
u∗(FW)

)G
→ 0.

Again, by using the projection formula we find that Ω1
(Y, f ,D)

is not semipositive

with respect to f ∗γ, contradicting Theorem 4.1.
�

The next proposition is the extension of Theorem 4.1 to a special class of com-
plete intersection, movable 1-cycles on a mildly singular X.

Proposition 4.3 (Semipositivity for mildly singular pairs). Let X be a normal projec-
tive variety. Let D = ∑ di · Di, di ∈ [0, 1] ∩ Q, be an effective Q-divisor such that the
pair (X, D), in case D is reduced, is at worst lc, and otherwise is assumed to be klt. Let
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H1 . . . , Hn−1 ∈ Amp(X)Q and P ∈ Mov1(X)Q. If (KX + D) is pseudoeffective, then

for any strictly adapted morphism f : Y → X, the adapted cotangent sheaf Ω
[1]
(Y, f ,D)

is

semipositive with respect to f ∗(H1, . . . , Hn−2, P + Hn−1).

Proof. Notice that as (X, D) has simple normal crossing in codimension two. Ac-
cording to the construction of adapted covers, cf. [Laz04, Prop. 4.1.12] there exists
an adapted morphism f : Y → X (which is not unique) such that Y is smooth

in codimension two. Now, let π : (X̃, D̃) → (X, D) be a log-resolution and Ỹ

the main component of the normalization of the fibre product Y ×X Ỹ with the
commutative diagram

Ỹ
f̃

//

π̃
��

X̃

π

��

Y
f

// X,

where π̃ : Ỹ → Y and f̃ : Ỹ → Y are the naturally induced projections.
For simplicity, and as the arguments are identical in higher dimensions, we

only deal with the case when dim X = 3. Denote HY,i = f ∗(Hi), for i ∈ {1, 2} and
PY = f ∗(P).

Now, aiming for a contradiction, assume that Ω
[1]
(Y, f ,D)

is not semipositive with

respect to (HY,1, PY + HY,2). This implies that there exists a saturated subsheaf G ⊂

T(Y, f ,D) such that [G ] · (HY,1, PY + HY,2) > 0. Define H̃ := (π̃[∗]H )∩T
(Ỹ, f̃ ,D)

. Let

m be a sufficiently large positive integer such that the 1-cycle γ ∈ Mov1(Y)Q that

is numerically equivalent to the cycle defined by m2(HY,1, PY + HY,2) is away from
the exceptional centre of π̃. Existence of such γ in particular guarantees that

[H̃ ] · π̃∗(HY,1, PY + HY,2) > 0.

In other words there exists a torsion-free quotient sheaf

(4.3.1) Ω
[1]

(Ỹ, f̃ ,D̃)
։ F̃

on Ỹ such that deg(F̃ |γ̃) < 0, where γ̃ := π̃−1(γ).
Now, let us consider the logarithmic ramification formula

KX̃ + D̃ = π∗(KX + D) +∑ ai · Ei −∑ bi · E′
i ,

where ai ∈ Q+, and, thanks to the assumptions on the singularities, bi ∈ (0, 1]∩Q.

Define G̃ := ∑ bi · E′
i and let h̃ : Z → X̃ be the morphism adapted to (X̃, D̃ + G̃),

factoring through f̃ : Ỹ → X̃:

Z

h̃

))

r
// Ỹ

f̃

// X̃ .

Set BZ := h̃∗(π∗(H1, P + H2)) and B
Ỹ

:= f̃ ∗(π∗(H1, P + H2)). Now, let G
Ỹ

be the
kernel of the sheaf morphism (4.3.1) so that

(4.3.2)
(

f̃ ∗(KX̃ + D̃)− [G
Ỹ
]
)
· B

Ỹ
< 0.

As γ is away from the exceptional centre of π̃ and since G̃ is supported on the
exceptional locus of π, we have
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h̃∗(KX̃ + D̃ + G̃) · BZ = h̃∗(KX̃ + D̃) · BZ

= r∗( f̃ ∗(KX̃ + D̃)) · BZ.

As a result, for the inclusion r[∗](G
Ỹ
) ⊂ Ω

[1]

(Z,h̃,D̃+G̃)
, we find that

([
Ω

[1]

(Z,h̃,D̃+G̃)

]
− r[∗]G

Ỹ

)
· BZ =

(
r∗
(

f̃ ∗(KX̃ + D̃)
)
− r[∗]G

Ỹ

)
· BZ

= (deg r)
(

f̃ ∗(KX̃ + D̃)− [G
Ỹ
]
)
· B

Ỹ

< 0, by Inequality 4.3.2,

contradicting Proposition 4.2.
�

5. PSEUDOEFFECTIVITY OF THE ORBIFOLD c2

In [Miy87] Miyaoka famously proved that c2 of a generically semipositive sheaf
with nef determinant is pseudoeffective. Thanks to his result on the semipositiv-
ity of cotangent sheaves, Miyaoka then established the pseudoeffectivity of c2(X)
for any minimal model X. Our aim in this section is to generalize this result to
the case of pairs (X, D) with movable (KX + D) (Corollary 5.2) by first extending
Miyaoka’s result on pseudoeffectivity of c2 for any semipositive sheaf.

Proposition 5.1 (Pseudoeffectivity of c2 for semipositive sheaves). Let X be a normal
projective threefold with isolated singularities and A1 ∈ Amp(X)Q. Then, the inequality

c2(E ) · A1 ≥ 0

holds for any reflexive sheaf E of rank r verifying the following properties.

(5.1.1) [E ] ∈ Mov1(X)Q.
(5.1.2) For any A2 ∈ Amp(X)Q, the sheaf E is semipositive with respect to (A1, [E ] +

A2).

Proof. Let c any any positive integer. Consider the Q-twisted reflexive sheaf

E 〈 1
c · H〉. For the choice of polarization (A1, [E 〈 1

c · H〉]), the assumptions of Propo-
sition 3.3 are satisfied, for all c.

Now let S be the complete intersection surface defined in Proposition 3.3 (see

also Remark 3.4) so that the restriction ES〈
1
c · HS〉 := (E 〈 1

c · H〉)|S is semipositive
with respect to

β := c1(ES〈
1

c
· HS〉) = ([E ] +

r

c
· [HS])|S.

Following the arguments of Miyaoka, we now consider two cases based on the

stability of ES〈
1
c · HS〉.

First, we consider the case where ES〈
1
c · HS〉 is semistable with respect to β.

Here, the semipositivity of c2 follows from Bogomolov-Gieseker inequality for for
Q-twisted locally-free sheaves (Proposition 2.11).

So we now assume that ES〈
1
c · HS〉 is not semistable with respect to β. Let

(5.1.3) 0 6= E
1
S 〈

1

m
· HS〉 ⊂ . . . ⊂ E

t
S〈

1

c
· HS〉 = ES〈

1

c
· HS〉

be the the Q-twisted HN-filtration ES〈
1
c HS〉. Denote the semistable, torison-free,

Q-twisted sheaves

E
i
S〈

1

c
· HS〉/E

i−1
S 〈

1

c
· HS〉
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of rank ri by Qi
S〈

1
c · HS〉 and let Q

i
S〈

1
c · HS〉 denote its reflexivization. As the second

Chern character ch2(·) is additive, we have

2 · c2(ES〈
1

c
· HS〉)− c2

1(ES〈
1

c
· HS〉) = ∑

(
2 · c2(Q

i
S〈

1

c
· HS〉)− c2

1(Q
i
S〈

1

c
· HS〉)

)
(5.1.4)

≥ ∑
(
2 · c2(Q

i
S〈

1

c
· HS〉)− c2

1(Q
i
S〈

1

c
· HS〉)

)
,

where the last inequality follows from the fact that c2(Q
i
S) ≥ c2(Q

i
S). Now,

by applying the Bogomolov inequality 2.11 to each semistable, Q-twisted sheaf

Q
i
S〈

1
c · HS〉 we find that each term in the right-hand side of the inequality (5.1.4)

verifies the inequality

2 · c2(Q
i
S〈

1

c
· HS〉)− c2

1(Q
i
S〈

1

c
· HS〉) ≥

−1

ri
· c2

1(Q
i
S〈

1

c
· HS〉).

Therefore we have

(5.1.5) 2 · c2(ES〈
1

c
· HS〉)− c2

1(ES〈
1

c
· HS〉) ≥ ∑

−1

ri
· c2

1(Q
i
S〈

1

c
· HS〉).

Next, we define the rational number αi ∈ Q by the equality

(5.1.6) ri · αi =
c1(Q

i
S〈

1
c · HS〉) · β

c2
1(ES〈

1
c · HS〉)

=
c1(Q

i
S〈

1
c · HS〉) · β

β2
.

It follows that

(5.1.7) ∑ ri · αi = 1.

Furthermore, according to the definition of αi, and by using the fact that the
slopes of the quotients of the HN-filtration (5.1.3) is strictly decreasing, we know
that

(5.1.8) α1 > α2 > . . . > αt ≥ 0,

where the last inequality follows from the semipositivity of ES〈
1
c HS〉.

Now, as αi ≥ 0, for each i, the equality (5.1.7) implies that αi ≤ 1. On the other
hand, according to the Hodge index theorem we have

−c2
1(Q

i
S〈

1

c
· HS〉) ≥

(
c1(Q

i
S〈

1
c · HS〉) · β

)2

β2
,

so that

−c2
1(Q

i
S〈

1

c
· H〉) ≥ β2(ri · αi)

2.

After substituting back into the inequality (5.1.5) we now find that

2 · c2(ES〈
1

c
· HS〉) ≥ β2(1 − ∑ ri · α2

i )

≥ β2(1 − α1 ∑ ri · αi) by 5.1.8

= β2(1 − α1) by 5.1.7

≥ 0 as α1 ≤ 1.

The inequality c2(ES) ≥ 0 now follows by taking the limit c → ∞.
�
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As an immediate consequence we can now prove the pseudoeffectivity of c2 for
the orbifold cotangent sheaves of pairs (X, D) in dimension 3, whose KX + D is
movable and has only isolated singularities.

Corollary 5.2 (Positivity of c2 of orbifold cotangent sheaves). Let X be a normal
projective threefold and D an effective Q-divisor such that (X, D) has only isolated lc

singularities. If (KX + D) ∈ Mov1(X)Q, then then for any ample divisors A ⊂ X and
strongly adapted morphism f : Y → X, the inequality

c2(Ω
[1]
(Y, f ,D)

) · f ∗(A) ≥ 0

holds.

Proof. As [Ω
[1]
(Y, f ,D)

] = f ∗(KX + D), the corollary is a direct consequence of Propo-

sition 5.1 together with Proposition 4.3. �

5.1. Positivity of orbifold c2 for log-minimal models. We would like to point
out that once we assume that (KX + D) is nef, then an easy adaptation of the
original results of Miyaoka to the case of orbifold Chern classes, together with
semipositivity result of [CP14] leads to the following theorem.

Theorem 5.3. Let X be a projective klt variety of dimension n and D = ∑(1− 1/ai) · Di,
ai ∈ N+ ∪ {∞}, an effective Q-divisor such that (X, D) is lc. If (KX + D) is nef, then
for any strongly adapted morphism f : Y → X , we have

c2(Ω
[1]
(Y, f ,D)

) · f ∗(An−2) ≥ 0,

where A ⊂ X is any ample divisor.

6. AN EFFECTIVE NON-VANISHING RESULT FOR THREEFOLDS

The goal of this section is to prove Theorem 1.4. The main point of our strategy
is to devise an effective lower bound for χ(KY + H), when Y is terminal (and
(Y, H) is lc).

Proposition 6.1 (Lower bounds for the Euler characteristic of adjoint bundles). Let
X be a terminal projective threefold and D an effective divisor. Then, the inequality

(6.1.1) χ(X, KX + D + A) ≥ (
1

12
) · (KX + D + A) · (D + A) · (D + A +

1

2
KX).

holds, for any divisor A satisfying the following conditions.

(6.1.2) The divisor D + A is Cartier and nef and, up to integral linear equivalence,
effective and reduced.

(6.1.3) The pair (X, D + A) is lc.
(6.1.4) The divisors (D + A) and (KX + D + A) are Cartier and nef.

Proof. As usual, a key element in the proof is the Hizerbruch-Riemann-Roch for
(KX + D + A):

χ(X, KX + D + A) =
1

12
· (KX + D + A) · (D + A) ·

(
2(KX + D + A)− KX

)

+
1

12
· c2(X) · (KX + D + A) + χ(X, OX). (6.1.5)

Standard Chern class calculations then show that we have the equality

(6.1.6) c2(X) = c2(Ω
[1]
X log(D + A))− (KX + D + A) · (D + A),
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as linear forms on N1(X)Q. After substituting back into Equality 6.1.5, we find
that the equality

χ(X, KX + D + A) = (KX + D + A) ·
{
(D + A) · (KX + 2(D + A))

+ c2(Ω
[1]
X log(D + A))− (KX + D + A) · (D + A)

}

+ χ(X, OX)

holds, which then simplifies to

χ(X, KX + D + A) = (KX + D + A) ·
{
(D + A)2

+ c2(Ω
[1]
X log(D + A))

}
+ χ(X, OX). (6.1.7)

On the other hand, as X is terminal, we know, thanks to [Kaw81, Lem. 2.3] (see
also [KM98, Cor. 5.39]), that

(6.1.8) χ(X, OX) ≥
−1

24
KX · c2(X).

After substituting 6.1.8 in 6.1.6 we find:

χ(X, OX) =
(
(KX + D + A)− (D + A)

)
· c2(Ω

[1]
X log(D + A))

+ (KX) · (KX + D + A) · (D + A)

≥ (KX + D + A) ·
{

c2(Ω
[1]
X log(D + A))− (KX) · (D + A)

}
,

where we have used the assumption that (D + A) is nef and the pseudoeffectivity
of c2 (Theorem 5.3). Now, substituting back into Equation 6.1.7, we get

χ(X, KX + D + A) = (KX + D + A)
{
(D + A)2

+
1

2
(KX) · (D + A) +

1

2
c2(Ω

[1]
X log(D + A))

}
. (6.1.9)

Again, by using Corollary 5.2 and the nefness assumptions on (KX + D + A) and
(KX + A), we find that

(6.1.10) χ(X, KX + D + A) ≥ (KX + D + A) · (D + A) · (D + A +
1

2
KX),

as required.
�

6.1. Proof of Theorem 1.4. According to Kawamata-Viehweg vanishing, it suf-
fices to prove that χ(Y, KY + H) 6= 0. The pair (Y, H) satisfies the assumptions of
Proposition 6.1 with D = 0, except for the terminal condition.

Now, let π : X → Y be a terminalization of Y, cf. [KM98, Sect. 6.3]. Set A :=
π∗(H). Since π is small, the adjoint divisor (KX + A) is nef and big. As a result, the
strict positivity of the right-hand side of the inequality (6.1.1) immediately follows:
First we rewrite the right-hand side of (6.1.1) as

1

2
· (KX + A) · A · ((KX + A) + A).
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Now, according to the basepoint freeness theorem for log-canonical threefolds,
cf. [Kol92], the divisor KX + A is semi-ample. Therefore, for sufficiently large inte-
ger m, we can find an irreducible surface S ∈ |m · (KX + 2A)| such that (A|S) is big.
On the other hand (KX + A)|S is nef. It thus follows that (KX + A)|S · A|S > 0. �

7. A MIYAOKA-YAU INEQUALITY IN HIGHER DIMENSIONS

In [Miy87], Miyaoka generalized the famous inequality c2
1 ≤ 3c2 from surfaces

with pseuodeffective canonical divisor to higher dimensional varieties with nef
canonical divisor. We extend this result to the case of movable canonical divisor.

Theorem 7.1. Let X be a normal projective threefold and D an effective Q-divisor such

that (X, D) has only isolated lc singularities. If (KX + D) ∈ Mov1(X)Q, then for any
A ∈ Amp(X)Q and for any strongly adapted morphism f : Y → X,

c2
1(Ω

[1]
(Y, f ,D)

) · f ∗A ≤ 3c2(Ω
[1]
(Y, f ,D)

) · f ∗A.

Proof. Let H̃ ∈ Amp(X)Q, H := f ∗H̃ and E := Ω
[1]
(Y, f ,D)

. Let c any any positive

integer. Consider the Q-twisted reflexive sheaf E 〈 1
c · H〉. For the choice of polar-

ization ( f ∗A, [E 〈 1
c · H〉]), the assumptions of Proposition 3.3 are satisfied, for all

c.
Now let S be the complete intersection surface defined in Proposition 3.3 (see

also Remark 3.4) so that the restriction ES〈
1
c · HS〉 := (E 〈 1

c · H〉)|S is semipositive
with respect to

β := ([E ] +
r

c
· HS)|S.

Let

(7.1.1) 0 6= E
1
S 〈

1

c
· HS〉 ⊂ . . . ⊂ E

s
S〈

1

c
· HS〉 = ES〈

1

c
· HS〉

be the the Q-twisted HN-filtration of ES〈
1
c HS〉.

The same arguments as those in the proof of Proposition 5.1 show that

(2c2(ES〈
1

c
· HS〉)− c2

1(ES〈
1

c
· HS〉)) ≥ (∑

−1

ri
c2

1(Q
i
S)),

where Qi
S〈

1
c · HS〉 is the torsion free, Q-twisted quotient sheaf of rank ri of the

filtration (7.1.1).
Again, as in the proof of Proposition 5.1, for each i, we define αi by the equation

ri · αi =
c1(Q

i
S〈

1
c · HS〉) · β

β2
.

From the definition of αi it follows that ∑ ri · αi = 1 . Moreover, we have α1 >

· · · > αs ≥ 0, where the last inequality is due to the semipositivity of ES〈
1
c · HS〉.

We now deduce

(6c2(ES〈
1

c
· HS〉)− 2c2

1(ES〈
1

c
· HS〉)) ≥

(
3(∑

i>1

−1

ri
c2

1(Gi)) + 6c2(E
1
S 〈

1

c
· HS〉)− 3c2

1(E
1
S 〈

1

c
· HS〉) + c2

1(ES〈
1

c
· HS〉)

)
.
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And finally,

(7.1.2) (6c2(ES〈
1

c
· HS〉)− 2c2

1(ES〈
1

c
· HS〉)) ≥

((1 − 3 ∑
i>1

riα
2
i ).c

2
1(ES〈

1

c
· HS〉) + 6c2(E

1
S 〈

1

c
· HS〉)− 3c2

1(E
1
S 〈

1

c
· HS〉)).

There are three possibilities: r1 ≥ 3, r1 = 2 and r1 = 1.
If r1 ≥ 3, using Bogomolov-Gieseker inequality and the Hodge index theorem,

we obtain

(6c2(ES〈
1

c
· HS〉)− 2c2

1(ES〈
1

c
· HS〉)) ≥

((1 − 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1

c
· HS〉)− 3

1

r1
c2

1(E1)) ≥

(1 − 3 ∑
i

riα
2
i ) · c2

1(ES〈
1

c
· HS〉) ≥ (1 − 3α1) · c2

1(ES〈
1

c
· HS〉) ≥ 0.

since 3α1 ≤ r1α1 ≤ ∑i riαi = 1.

If r1 = 2, we choose S general enough so that E 1
S injects into ΩS(log f−1⌈D⌉|S).

Using the Bogomolov-Miyaoka-Yau inequality, we have either κ(S, c1(E
1
S )) ≤ 0

or c2
1(E

1
S ) ≤ 3c2(E

1
S ).

In the case κ(S, c1(E
1
S )) ≤ 0, since c1(E

1
S ).β > 0, we have c2

1(E
1
S ) ≤ 0.

Applying Bogomolov-Gieseker inequality to 7.1.2:

(6c2(ES〈
1

c
· HS〉)− 2c2

1(ES〈
1

c
· HS〉)) ≥

((1 − 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) ≥

(1 − 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) ≥

(1 − 3α2 ∑
i>1

riαi) · c2
1(ES〈

1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) =

(1 − 3α2(1 − 2α1)) · c2
1(ES〈

1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) ≥

(1 − 3α1(1 − 2α1)) · c2
1(ES〈

1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) =

(
6(α1 −

1

4
)2 +

5

8

)
· c2

1(ES〈
1

c
· HS〉)−

3

2
c2

1(E
1
S 〈

1

c
· HS〉)) ≥ −

3

2
c2

1(E
1
S 〈

1

c
· HS〉)).

Finally, we obtain (3c2(ES)− c2
1(ES)) ≥ 0.
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In the case c2
1(E

1
S ) ≤ 3c2(E

1
S ) we have from 7.1.2:

(6c2(ES〈
1

c
HS〉)− 2c2

1(ES〈
1

c
HS〉)) ≥

((1 − 3 ∑
i>1

riα
2
i )c

2
1(ES〈

1

c
HS〉)− c2

1(E
1
S 〈

1

c
HS〉) + (6c2(ES〈

1

c
HS〉)− 2c2

1(E
1
S 〈

1

c
HS〉) ≥

((1 − 4α2
1 − 3 ∑

i>1

riα
2
i )c

2
1(ES〈

1

c
HS〉)) + (6c2(ES〈

1

c
HS〉)− 2c2

1(E
1
S 〈

1

c
HS〉) ≥

((1− 4α2
1 − 3α2 ∑

i>1

riαi)c
2
1(ES〈

1

c
ḢS〉)) + (6c2(ES〈

1

c
HS〉)− 2c2

1(E
1
S 〈

1

c
HS〉) =

((1 − 4α2
1 − 3α2(1 − 2α1))c

2
1(ES〈

1

c
HS〉) + (6c2(ES〈

1

c
HS〉)− 2c2

1(E
1
S 〈

1

c
· HS〉)) =

(1 − 2α1)(1 + 2α1 − 3α2) · c2
1(ES〈

1

c
HS〉)) + (6c2(ES〈

1

c
HS〉)− 2c2

1(E
1
S 〈

1

c
HS〉).

As 3α2 < r1α1 + r2α2 ≤ 1, we have

(6c2(ES)− 2c2
1(ES)) ≥ 0.

Finally, if r1 = 1, a classical result of Bogomolov and Sommese (the Bogomolov-

Sommese vanishing) implies that E 1
S ⊂ ΩS(log f−1⌈∆⌉|S) has Kodaira dimension

at most one. Therefore c2
1(E

1
S ) ≤ 0. From 7.1.2, one obtains:

(6c2(ES〈
1

c
· HS〉)− 2c2

1(ES〈
1

c
· HS〉)) ≥

((1 − 3 ∑
i>1

riα
2
i ) · c2

1(ES〈
1

c
· HS〉))− 3c2

1(E
1
S 〈

1

c
· HS〉) ≥

((1 − 3α1 ∑
i>1

riαi) · c2
1(ES〈

1

c
· HS〉))− 3c2

1(E
1
S 〈

1

c
· HS〉) =

((1 − 3α1(1 − α1)) · c2
1(ES〈

1

c
· HS〉))− 3c2

1(E
1
S 〈

1

c
· HS〉) ≥

(
1 −

3

2
(1 −

1

2
)

)
· c2

1(ES〈
1

c
· HS〉)− 3c2

1(E
1
S 〈

1

c
· HS〉) =

1

4
c2

1(ES〈
1

c
· HS〉)− 3c2

1(E
1
S 〈

1

c
· HS〉) ≥

−3c2
1(E

1
S 〈

1

c
· HS〉).

Therefore, we have

(6c2(ES)− 2c2
1(ES)) ≥ 0.

�

We finish this section by pointing out that when (KX + D) is nef, the original re-
sult of Miyaoka can be adapted to the case of orbifold Chern classes. This can then
be combined with the semipositivity result of [CP14] to conclude the following
result.

Theorem 7.2. Let X be a projective klt variety of dimension n and D = ∑(1− 1/ai) · Di,
ai ∈ N+ ∪ {∞}, an effective Q-divisor such that (X, D) is lc. If (KX + D) is nef, then for
arbitrary ample divisors H1, . . . , Hn−2 and any strongly adapted morphism f : Y → X,
we have

(7.2.1) c2
1(Ω

[1]
(Y, f ,D)

) · f ∗(H1 . . . Hn−2) ≤ 3c2(Ω
[1]
(Y, f ,D)

) · f ∗(H1 . . . Hn−2).
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8. REMARKS ON LANG-VOJTA’S CONJECTURE IN CODIMENSION ONE

A classical conjecture of Lang predicts that a variety of general type X, admits
a proper algebraic subvariety that contains all subvarieties of X that are not of
general type. In this section, we will prove a particular case of this conjecture for
codimension one subvarieties satisfying certain conditions: The codimension one
subvariety will be assumed to be movable and with only canonical singularities.

First, an immediate application of the inequality (7.1) gives the following theo-
rem.

Theorem 8.1. Let X be a normal projective Q-factorial threefold such that KX ∈

Mov1(X)Q. Let H be a nef divisor, D a movable, reduced, irreducible, normal divisor
such that (X, D) has only isolated lc singularities. If −KD is pseudoeffective, then

(8.1.1) KX · D · H ≤ (3c2 − c2
1) · H.

Proof. From the inequality (7.1), we have c2
1(ΩX(log D)) · H ≤ 3c2(ΩX(log D)) · H.

Therefore, (KX + D)2 · H ≤ 3(c2 + (KX + D) · D) · H. It follows that

2KX · D · H ≤ (3c2 − c2
1) · H + 3(KX + D) · D · H − D2 · H.

Finally, thanks to the adjunction formula, we get KX · D · H ≤ (3c2 − c2
1) · H +

2KD · H|D. The inequality (8.1.1) now follows from the assumption that −KD is
pseudoeffective. �

Proof of Theorem 1.5. Let H be an ample divisor in X. The divisor KX is big so we
can find a positive integer m such that (m · KX − H) is linearly equivalent to an
effective divisor E.

Let us first prove that the family of polarized varieties (D, H|D) is bounded. We
note that as each D has only rational singularities the theorem of Kollár and Mat-
susaka [KM83] applies, that is to bound the family (D, H|D), it suffices to bound
the intersection numbers

H2 · D and H · KD = H · (KX + D) · D.

For H2 · D, we note that, as long as D is not a component of E we can use the
inequality (8.1.1), to get

0 ≤ H2 · D ≤ mH · (3c2 − c2
1).

For the second term KD · H, we use Theorem 1.2 to find

0 ≤ 3c2(Ω
1
X(log D)) · H − c2

1(Ω
1
X(log D)) · H

= (3c2 − c2
1) · H + 2(KX + D) · D · H − KX · D · H.

We immediately deduce that

−
1

2
(3c2 − c2

1) · H ≤ H · (KX + D) · D = H · KD ≤ 0.

Therefore, the family of polarized varieties (D, H|D) is bounded.
It now remains to show the finiteness of the family (D, D|H). Aiming for a

contradiction assume that the family is not finite. As the family is bounded, after
going to a smooth model of X, we are reduced to the case of a fibration. The addi-
tivity of the Kodaira dimension (“easy additivity”) shows that, as −KD is pseudo-
effective, X cannot be of general type; a contradiction. �
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Remark 8.2. In [LM97, Thm. 4], in the setting where X is non-uniruled and smooth
and D is reduced, the Miyaoka-Yau inequality 7.2 is claimed to be valid. As a
consequence a stronger version of Theorem 1.5 is obtained. Unfortunately we have
been unable to verify the details of the proof of [LM97, Thm. 4]. The main point
of difficulty is that within the proof of this theorem, in [LM97, Subsect. 3.1], the
authors claim that given a smooth projective, threefold X of general type with an
ample divisor H, for sufficiently large m, there is a general member S ∈ |m · H| for
which the following conditions hold.

(8.2.1) The restriction (ΩX log(D))|S is semipositive with respect to (Pσ(KX +
D))|S, where Pσ is the positive part of the divisorial Zariski decomposi-
tion of KX + D.

(8.2.2) The restriction (Pσ(KX + D))|S of the positive part of KX + D verifies the
equality Pσ(KX + D)|S · N((KX + D)|S) = 0, where N(KX + D|S) is the
negative part of the Zariski decomposition of the pseudoeffective divisor
(KX + D)|S.

Although Item (8.2.1) in the conditions above can most likely be recovered
by [CP15, Thm. 2.1] and the arguments in Sections 3 and 4 in the current paper,
the second condition (8.2.2) is more problematic as the underlying assumption is
that Zariski decomposition is functorial; a condition that in general does not hold.

Remark 8.3. Starting with a general type variety X and a divisor D such that (X, D)
is lc, thanks to [BCHM10], it is certainly possible to establish a Miyaoka-Yau in-
equality using a minimal model of (X, D). More precisely, let π : (X, D) 99K

(X′, D′) be a LMMP map resulting in the minimal model (X′, D′). Let π̃ : X̃ → X′

be a desingularization of π factoring through µ : X̃ → X. Now, one can use the
original arguments of Miyaoka, together with those of Megyesi, to show that the
inequality (

3c2(ΩX′ log(D′)− (K′
X + D′)2)

)
· Hn−2 ≥ 0

holds for any ample divisor H ⊂ X′. Furthermore, we can use known results on
the behaviour of Chern classes under birational morphisms to show that

(8.3.1)
(
3c2(ΩX̃ log(D̃))− (KX̃ + D̃)2)

)
· π̃∗(H)n−2 ≥ 0.

But the inequality (8.3.1) is hardly independent of the divisor D. In fact in the
inequality (8.3.1) even the polarization (π∗H) depends on D. Therefore, the in-
equality (8.3.1) is far from being useful in the context of Lang-Vojta’s conjecture.
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[CP16] Frédéric Campana and Mihai Păun. Foliations with positive slopes and birational stability
of orbifold cotangent bundles. Preprint arXiv:1508.02456, April 2016. ↑ 2, 11, 12
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