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A Complex Gap Lemma
Sébastien Biebler

Abstract
Inspired by the work of Newhouse in one real variable, we introduce

a relevant notion of thickness for dynamical Cantor sets of the plane as-
sociated to a holomorphic IFS. Our main result is a complex version of
Newhouse’s Gap Lemma : we show that under some assumptions, if the
product t(K)t(L) of the thicknesses of two Cantor sets K and L is larger
than 1, then K and L have non empty intersection. Since in addition
this thickness varies continuously, this gives a criterion to get a robust
intersection between two Cantor sets in the plane.
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1 Introduction and main results

1.1 Historical context
We say that a smooth dynamical system f : M →M defined on a manifold

M is uniformly hyperbolic if periodic points of f are dense in the non-wandering
set Ω(f) and if the tangent space along Ω(f) admits a continuous invariant
splitting Es

⊕
Eu where vectors in Es (resp. Eu) are uniformly contracted

under f (resp. under f−1). The dynamics of such systems is particularly well
understood (see [4]).

It was initially believed in the 1960’s that uniform hyperbolicity was a dense
property in the space of diffeomorphisms of a manifold. The discovery in the
1970’s (see [7]) of the so-called Newhouse phenomenon, i.e. the existence of
residual sets of C2-diffeomorphisms of compact surfaces with infinitely many
sinks (periodic attractors) showed that this expectation was false.

The main point in Newhouse’s proof is the creation of robust homoclinic
tangencies. To produce them, Newhouse takes a diffeomorphism which has a
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horseshoe. Newhouse isolates a certain curve called line of tangency with the
property that the stable and unstable laminations of the horseshoe intersect
this curve along two respective Cantor sets and any intersection between these
Cantor sets corresponds to a tangency between the laminations. In particular a
robust intersection gives rise to a robust tangency. To get a robust intersection
of Cantor sets, Newhouse uses a technical result called the Gap lemma. As a
first step, Newhouse assigns to any one-dimensional Cantor set K a number
τ(K) called thickness which measures to what extent the Cantor set K is fat :

Definition. For every Cantor set K ⊂ R, a gap of K is a connected component
I of R\K. We denote τI = `(U)

`(I) , where U is the smallest interval between I and
a gap of length equal or larger than the length `(I) of I. Then, we denote by
τ(K) the thickness of K :

τ(K) = infIτI

The thickness of a Cantor set is related to its Hausdorff dimension :

dimH(K) ≥ log 2

log(2 + τ(K)−1)

In particular, Cantor sets with high thickness have a Hausdorff dimension close
to 1. Then, a geometric proof (see [8]) gives :

Theorem (Newhouse’s Gap lemma). Let K ⊂ R and L ⊂ R be two one-
dimensional Cantor sets such that : τ(K)τ(L) ≥ 1. Then, one of the following
is true :

1. or K is included in a gap of L
2. or L is included in a gap of K
3. or K ∩ L 6= ∅

Since the thickness varies continuously and it is easy to get rid of the two
first options, the previous result gives intersections which are in fact robust.
Let us remark that other important studies about intersections of Cantor sets
in one dimension include [5] and [6].

In the complex setting, an extension of the Newhouse phenomenon was stud-
ied in the 1990’s by Buzzard. Let us denote by Autd(Ck) the space of polynomial
automorphisms of Ck of degree d for d, k ≥ 2. Buzzard proved in [3] that there
exists d > 0 such that there exists an open set N ⊂ Autd(C2) such that auto-
morphisms in N have persistent homoclinic tangencies. The method is similar
to the one-dimensional case, but this time one has to intersect two Cantor sets
in the plane and not in the line. Buzzard gives an elegant criterion (see [2])
which generates an intersection for two planar Cantor sets with very special
geometric properties. Nevertheless, he does not give any general Gap lemma
for planar Cantor sets, his construction is very specific and can’t be applied for
most Cantor sets. Let us also point out that Buzzard’s work was extended to
higher complex dimensions in [1], which relies on a different mechanism.

1.2 Main results
In this article, we prove a complex Gap lemma for dynamical Cantor sets

in C associated to Iterated Function Systems (IFS’s) {f1, ..., fp}, where each
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fi : S → fi(S) b S is defined on a square S and univalent. To the dynamical
Cantor set K associated to such an IFS, we assign a thickness t(K) defined in
Definition 2.14. We will work with dynamical Cantor sets satisfiying a condition
called "well balanced" (see Definition 2.16). This condition is robust. It means
that :

1. the subsets fi(S) occupy a substantial part of the available space in the
initial square S

2. all the subsets fi(S) are small compared to the initial square
The following Theorem is the main result in this paper and is a generalization

of Newhouse’s Gap lemma to the holomorphic context. It might be used to
investigate the existence of the Newhouse phenomenon in spaces of polynomial
automorphisms of given degree.

Theorem A. Let K and L be two dynamical Cantor sets which are limit sets
of respective IFS’s defined on a same square. Suppose that K and L are well
balanced and satisfy :

t(K)t(L) ≥ 1

Then K ∩ L is non empty.

We will also show that the thickness is a continuous function of the maps
defining the dynamical Cantor sets K and L :

Theorem B. The thickness t(K) is a continuous function of the maps {f1, · · · , fp}
defining K.

These two results can produce a robust intersection of Cantor sets. Indeed,
as an immediate corollary of Theorems A and B, we have :

Corollary C. Let K and L be two dynamical Cantor sets which are limit sets
of respective IFS’s defined on a same square. Suppose that K and L are well
balanced and satisfy :

t(K)t(L) > 1

Then K and L intersect in a robust way, this is if K ′ and L′ are dynamical
Cantor sets obtained after perturbation of the IFS’s defining K and L, then
K ′ ∩ L′ 6= ∅.

1.3 Organization of the paper
In Section 2, we define our notion of thickness for dynamical Cantor sets in

C and we also define the "well balanced" condition. In Section 3, we give an
example of two dynamical Cantor sets having a robust intersection. In Section
4, we prove Theorem A. Finally, we prove Theorem B in section 5.

Acknowledgments : The author would like to thank his PhD advisor, Ro-
main Dujardin as well as Pierre Berger for useful comments. This research was
partially supported by the ANR project LAMBDA, ANR-13-BS01-0002.
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2 Definition of the thickness
In this article, we will work with dynamical Cantor sets in C associated to

IFS’s {f1, ..., fp}. In particular, we first need to define a norm on C and a
suitable topology for the maps fi.

Choice of a norm on C : We use the usual euclidean norm | · | = | · |2 on
C in all this article. For every z = x + iy ∈ C, |z| = |z|2 =

√
x2 + y2. All the

distances will be measured relatively to this norm.

We will often use squares in the following. All these squares will be open.
In particular, the diameter of a square S is measured relatively to | · | and is
equal to the length of its diagonal. A square S of diameter 1 has its four sides
of length 1√

2
and contains an inscribed disk of diameter 1√

2
.

We will also often use disks in the following. All these disks will be open.
In particular, the diameter δ(Γ) of a disk Γ is measured relatively to | · | and is
equal to twice its radius.

Choice of a topology on the space of IFS’s : We will use IFS’s
{f1, ..., fp} defined on a square S ⊂ C, where every fi is a holomorphic contrac-
tion defined on S such that fi(S) b S. We take the product topology of the
compact open topology on the set of holomorphic maps from S to S to get a
topology on the set of IFS’s {f1, ..., fp}

Definition 2.1. Let {f1, ..., fp} be an IFS, where every contraction fi is a
holomorphic map defined on a square S (called the initial square of the IFS) such
that fi(S) b S. The dynamical Cantor set K associated to the IFS {f1, ..., fp}
is the limit set of the IFS {f1, ..., fp}, defined as follows :

K0 = S

Kn =
⋃

1≤i≤p

fi(Kn−1) for every n > 1

K =
⋂
n≥0

Kn

We now introduce a formalism that will be used in the rest of the article :

Definition 2.2. Let K be a dynamical Cantor set equal to the limit set of the
IFS {f1, ..., fp}. A piece of depth j is a connected component of Kj. Let P be a
piece of depth j and Q a piece of depth k. We will say that :

1. P is the father of Q if k = j + 1 and if Q b P . We also say that Q is a
son of P

2. For every sequence I = (i1, ..., ik), we denote :

KI = fI(K) = fik ◦ ... ◦ fi1(K)

This is a dynamical Cantor set which is equal to the limit set of the IFS
{fI ◦ f1 ◦ f−1

I , . . . , fI ◦ fp ◦ f−1
I } whose maps are all defined on fI(S)

In the following, for any IFS {f1, ..., fp} of initial square S, we will suppose
by simplicity that the center of S is equal to 0.
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Definition 2.3. Let {f1, ..., fp} be an IFS of initial square S. Let P = fI(S)
be a piece of depth k for some finite sequence I of k digits.

1. The inscribed disk of P is the disk of maximal diameter included in P
whose center is fI(0). We denote by δ(P ) its diameter.

2. The middle inscribed disk is the disk of same center as the inscribed disk
and of diameter multiplied by 1

2 .
3. The escribed disk of P is the disk of minimal diameter containing P whose

center is fI(0). We denote by ∆(P ) its diameter.

Remark 2.4. These disks are well defined. For example, to define the diameter
of the inscribed disk, it is enough to take the upper bound of the diameters of
disks of center fI(0) included in P . Beware that for a square S of diameter 1,
we have δ(S) = 1√

2
and ∆(S) = 1.

In the following we will define several notions associated to a fixed IFS
{f1, ..., fp}. By simplification, they will be denoted relatively to the associated
limit set, which will always be a dynamical Cantor set. For technical reasons,
we will always suppose the existence of a disk S′ of center 0 of diameter larger
than 1

r times the diameter of the square S (for some 0 < r < 1) such that each
contraction fi can be extended in a contraction defined on S′ with fi(S′) b S.

Definition 2.5. Let f be a univalent map defined on S′ such that f(S′) b S.
The distorsion of f (on S), denoted by Df , is defined by :

Df = max
(z,z′)∈S2

∣∣∣∣ f ′(z)f ′(z′)

∣∣∣∣
We have : 1 ≤ Df < +∞ according to the Koebe distorsion Theorem (since
S b S′). For any dynamical Cantor set K associated to the IFS {f1, . . . , fp},
we define the distorsion of K to be the following number :

DK = sup
I
DfI = sup

I

(
max

(z,z′)∈S2

∣∣∣∣ f ′I(z)f ′I(z
′)

∣∣∣∣ ) = sup
n≥0

(
max
|I|=n

(
max

(z,z′)∈S2

∣∣∣∣ f ′I(z)f ′I(z
′)

∣∣∣∣ ))
where the upper bound is taken on the set of finite sequences of digits in {1, . . . , p}.

Remark 2.6. The distorsion DK can be easily computed. Indeed, each contrac-
tion fi can be extended in a contraction defined on S′ with fi(S′) b S where S′
is a disk of center 0 of diameter larger than 1

r times the diameter of the square
S for some 0 < r < 1. For every I = (i1, . . . , ik), we have fI(S′) ⊂ fik(S′) b S.
Then, by the Koebe distorsion Theorem we get for every I the uniform bounds :

1− r
(1 + r)3

≤
∣∣∣∣ f ′I(z)f ′I(z

′)

∣∣∣∣ ≤ 1 + r

(1− r)3

In particular, this implies 1 ≤ DK ≤ min( (1+r)3

1−r , 1+r
(1−r)3 ) < +∞

We will need the following technical lemma :
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Lemma 2.7. For every finite sequence of digits I in {1, . . . , p}, we have that :

1

DK
|f ′I(0)|δ(S) ≤ δ(fI(S)) ≤ DK |f ′I(0)|δ(S)

1

DK
|f ′I(0)|∆(S) ≤ ∆(fI(S)) ≤ DK |f ′I(0)|∆(S)

In particular, since ∆(S)
δ(S) =

√
2, we have : 1

D2
K

√
2 ≤ ∆(fI(S))

δ(fI(S)) ≤ D
2
K

√
2

Proof. The lemma is an easy consequence of the mean value inequality. The
proof is left to the reader.

The following lemma is an intermediate result :

Lemma 2.8. Let z 6= z′ ∈ S. We denote by Γ the disk of center z such that
z′ ∈ ∂Γ. Then there exists a disk Γ′ of radius larger than 1

5 |z − z
′| included in

Γ ∩ S.

Proof. We can suppose by simplicity that the center of S is 0 and that its
diameter is equal to

√
2 (that is the length of a side of S is 1 and δ(S) = 1). Let

us first suppose that |z− z′| ≤ 1
2 . It is easy to check that this implies that S ∩Γ

contains at least one of the four quarters of the disk Γ. This quarter of disk
contains a right triangle of sides |z − z′|, |z − z′| and

√
2|z − z′|. The inscribed

circle Γ′ of this triangle has its diameter equal to :

2
1× 1

1 + 1 +
√

2
|z − z′| = 2

2 +
√

2
|z − z′|

In the general case, |z − z′| ≤
√

2 and then Γ contains a disk Γ′′ of radius
1

2
√

2
|z − z′| ≤ 1

2 of center z. This disk contains a disk Γ′ included in S of
diameter 1

2
√

2
2

2+
√

2
|z − z′| = 1

2
√

2+2
|z − z′| > 1

5 |z − z′|. Since Γ′ is included
inside Γ ∩ S, this concludes the proof.

We will use the following lemma in the proof of Theorem A :

Lemma 2.9. Let Γ1 be a disk of diameter 1. We denote by Γ2 the disk of same
center as Γ1 and half diameter. Let I be a finite sequence of digits in {1, . . . , p}.
We suppose that fI(S) intersects both Γ2 and the complement of Γ1. Then there
exists a disk Γ3 of diameter larger than 1

20D2
K

included in Γ1 ∩ fI(S).

Proof. Let us denote by z1 a point of Γ2 ∩ fI(S) and we take z2 = f−1
I (z1) ∈ S.

We call C = ∂Γ1∩fI(S) which is a compact set as an intersection of two compact
sets. The set C′ = f−1

I (C) is then a compact set included in S. We denote by
z3 a point of C′ such that |z3 − z2| = minz∈C′ |z − z2| (such a point z3 exists by
compacity). We denote by Ω1 the disk of center z2 going through z3. According
to Lemma 2.8 (with z2 as z, z3 as z′, Ω1 as Γ and Ω2 as Γ′), there exists a disk
Ω2 of radius 1

5 |z2− z3| included in Ω1 ∩S. Since Ω2 is included in Ω1, for every
z ∈ Ω2, we have fI(z) ∈ Γ1. According to Lemma 2.7, fI(Ω2) contains a disk
of diameter larger than 1

DK
|f ′I(0)| · 1

5 |z2 − z3|. But according to Lemma 2.7, we
also have : 1

4 ≤ |fI(z2)− fI(z3)| ≤ DK |f ′I(0)||z2 − z3|. Finally fI(Ω2) contains
a disk Γ3 of diameter larger than 1

20D2
K

included in Γ1 ∩ fI(S).
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Definition 2.10. For every dynamical Cantor set K of initial square S associ-
ated to the IFS {f1, ..., fp}, we denote by Si = fi(S) and we define the maximal
reduction ratio λ0

K and the minimal reduction ratio Λ0
K of K as follows :

λ0
K = min

i∈{1,...,p}

δ(Si)

δ(S)

Λ0
K = max

i∈{1,...,p}

∆(Si)

δ(S)

Definition 2.11. For every dynamical Cantor set K of initial domain S asso-
ciated to the IFS {f1, ..., fp} of distorsion DK , we define the distorted maximal
reduction ratio λK :

λK =
1

D2
K

· min
i∈{1,...,p}

δ(Si)

δ(S)

For every sequence I, we have λ0
KI
≥ λK (note that λ0

KI
can be defined

exactly as in Definition 2.10 even if the initial domain fI(S) is not a square).
Informally speaking, in the construction of K, pieces are contracted by a factor
larger than λK from one step to another (from a father to a son). Indeed, by
Lemma 2.7 :

δ(fI(S)) ≤ |f ′I(0)|DKδ(S)

and for every i ∈ {1, . . . , p} we have :

δ(fiI(S)) ≥ |f
′
I(0)|
DK

δ(Si)

min
1≤i≤p

δ(fiI(S)) ≥ |f
′
I(0)|
DK

min
1≤i≤p

δ(Si)

Then :
λ0
KI = min

i∈{1,...,p}

δ(fiI(S))

δ(fI(S))
≥ 1

D2
K

min
i∈{1,...,p}

δ(Si)

δ(S)

λ0
KI ≥ λK

Similarly we can define :

Definition 2.12.
ΛK = D2

K · max
i∈{1,...,p}

∆(Si)

δ(S)

Informally speaking, in the construction of K, pieces are contracted by a
factor smaller than ΛK from one step to another (from a father to a son).

We want to define a relevant notion of thickness. Similarly to the one-
dimensional case, it will be defined as a quotient. The numerator is intended to
measure the size of the pieces, this will be λK . The denominator will measure
the size of the gap between points of the Cantor set, we define it now.

Definition 2.13. Let K be a dynamical Cantor set K of initial square S. We
denote by ρ(S) = 2 maxz∈S dist(z,K) the diameter of the largest disk included
in S which does not intersect K. We define the gap of K :

σ0
K =

ρ(S)

δ(S)
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The Koebe distorsion Theorem implies that for every sequence I, we have σ0
KI
≤

D2
Kσ

0
K (again, σ0

KI
can be defined with the same formula even if fI(S) is not a

square). We set σK = D2
Kσ

0
K .

In particular, by definition, if we take any piece P of K, every disk included
in P of diameter larger than σKδ(P ) contains a point of K ∩ P .

Here is the definition of the thickness of a dynamical Cantor set :

Definition 2.14. Let K be a dynamical Cantor set. We define the thickness
t(K) of K by :

t(K) =
λK

D2
K

√
σK

=
λ0
K

D5
K

√
σ0
K

Remark 2.15. We already saw that it is possible to give bounds for DK . Since
it is easy to estimate λ0

K and σ0
K , it is also the case for t(K).

We will work under the following condition :

Definition 2.16. Two dynamical Cantor sets K and L which are limit sets of
respective IFS’s defined on the same square are well balanced if :

1. max(ΛK ,ΛL) < 1
20

2. for every piece P of K, every disk of diameter larger than 1
20D2

L
δ(P ) in-

cluded in P contains a son of P
3. for every piece P of L, every disk of diameter larger than 1

20D2
K
δ(P ) in-

cluded in P contains a son of P

This condition simply means that :
1. all the pieces are small compared to the initial square
2. the pieces occupy a substantial part of the initial square, there is not a big

gap inside this initial square (up to a factor depending on the distorsion
of the other Cantor set)

Remark 2.17. A sufficient condition to satisfy condition 2. in the previous
definition is σK + 2ΛK < 1

20D2
L

and similarly a sufficient condition to satisfy
condition 3. is σL+2ΛL <

1
20D2

K
. Then a sufficient condition to satisfy the well

balanced condition is :

max(ΛK ,ΛL, σK + 2ΛK , σL + 2ΛL) <
1

20 max(DK , DL)2

When the IFS is affine, which is often close to be the case, the distorsions DK

and DL are equal to 1 : max(ΛK ,ΛL, σK + 2ΛK , σL + 2ΛL) < 1
20

3 An example of robust intersection
Before proving our results, let us give an example. In particular, it is in-

tended to emphasize the fact that we are taking a square as an initial set in
order to get easily arbitrarily large thicknesses with affine IFS’s. We take the
dynamical Cantor set K which is equal to the limit set of the IFS {f1, . . . , fN2}
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where every map fk (1 ≤ k ≤ N2) is affine and defined on a square K0 of diam-
eter 1. The set K1 =

⋃
1≤k≤N2 fk(K0) is the union of N2 subsquares regularly

located in the interior of K0, of relative size 0 < r < 1. Then every subsquare
has an inscribed disk of diameter equal to 1√

2
r
N . The limit set of this IFS is a

dynamical Cantor set K. Since each fk is affine, we have DK = 1. Since each
subsquare has its inscribed disk of diameter equal to 1√

2
r
N and the initial square

has its inscribed disk of diameter 1√
2
, we have λ0

K = r
N . Every point of K0 is

distant from one of the subsquares at most
√

2
2

1−r
N . In any of these subsquares,

every point is distant at most
√

2
2

1−r
N ·

r
N from one of the subsubsquares and so

on... Finally we have :

σ0
K =

ρ(K0)

1/
√

2
≤ 2
√

2
(√2

2

1− r
N

+

√
2

2

1− r
N

r

N
+

√
2

2

1− r
N

( r
N

)2

+ . . .
)
≤ 4

1− r
N

t(K) ≥ r

N
√

4(1− r)/N
=

r√
4(1− r)N

We take N = 100 and r = 999
1000 . It is easy to check that K and K are well bal-

anced and that we have t(K) > 1. In particular, we have t(K)2 > 1. According
to Corollary C, this implies that the two dynamical Cantor sets K and K have
a robust intersection (i.e. if f ′k and f ′′k are perturbations of fk then Kf ′k

and
Kf ′′k

intersect).

Figure 1 : the sets K0 and K1 for N = 4 and r close to 1

4 Proof of Theorem A
We can suppose that the initial square is the square S = S(0, 1) centered at

0 of diameter 1. Indeed, the thickness of a dynamical Cantor set is defined from
quotients of lengths and then invariant by rescaling, so it is possible to suppose
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that the initial square is S(0, 1). We also suppose that : σK ≤ σL. To show
Theorem A, we construct by induction a sequence (αn)n≥0 of points of K such
that αn ∈ Ln for every n ≥ 0, and more precisely αn belongs to the middle
inscribed disk of a piece of Ln

We first show that this property is satisfied for n = 0. By hypothesis,
K and L are well balanced so by definition there is a piece of K of depth 1
included in every disk of diameter larger than 1

20D2
L
δ(S) included in S. Since

1
20D2

L
δ(S) ≤ 1

20
1√
2
< 1

2
√

2
, there exists a piece of depth 1 of K included in the

disk of center 0 of diameter 1
2
√

2
. But this disk is the middle inscribed disk of

S = S(0, 1), which is the only piece of L0. And since any piece of K contains
points of K, this implies that the middle inscribed disk of S = S(0, 1) contains
a point α0 of K. Then the property is true for n = 0.

Let us now suppose that the property is true for some integer n : there
exists a point αn ∈ K in the middle inscribed disk of a piece of Ln. We denote
by P this piece. We also denote ρ(P ) = 2 maxz∈P dist(z, L) the diameter of
the largest disk included in P which does not intersect L. The point αn is the
intersection of a sequence of pieces of K whose first term is S(0, 1). We denote
by R1, . . . , Rq the different sons of P . We distinguish two cases.

Case 1, large gap : ρ(P ) ≥ max1≤j≤q δ(Rj)

In this case, informally speaking, the sons R1, . . . , Rq of P are sufficiently
distant inside P and not too close to one another. The point αn is the intersec-
tion of a sequence of pieces of K whose first term is S(0, 1). We choose in this
sequence of pieces the piece Q defined as follows :

1. if (1 + 2
√

2)D2
Lρ(P ) ≥ 1√

2
, we set Q = S(0, 1)

2. if (1 + 2
√

2)D2
Lρ(P ) < 1√

2
, we define Q as the last piece in the sequence

such that δ(Q) ≥ (1 + 2
√

2)D2
Lρ(P )

Let us show that Q contains a son R of P . If Q = S(0, 1), this is obvious. If
not, Q has its inscribed disk Γ of diameter larger than (1 + 2

√
2)D2

Lρ(P ). Since
ρ(P ) ≥ max1≤j≤q δ(Rj), the diameter of the inscribed disk of every son of P is
smaller than ρ(P ). We then have two cases, depending on Γ is (fully) included
in P or not.

Let us first suppose that Γ is included in P . Since (1+2
√

2)D2
Lρ(P ) > ρ(P ),

by definition of ρ(P ) the disk of same center as Γ of diameter ρ(P ) contains a
point of L in its closure. This point of L belongs to some son R of P and also to
the escribed disk of R. This escribed disk is of diameter bounded from above by√

2D2
Lρ(P ) by Lemma 2.7. But Γ is of diameter larger than (1 + 2

√
2)D2

Lρ(P ),
then Γ contains the escribed disk of R. Then Γ contains R and since Γ ⊂ Q
then Q contains R too.

Let us now suppose that Γ is not included in P . We denote by Γ′ the
inscribed disk of P and by Γ′′ its middle inscribed disk. Then αn ∈ Γ′′ and Q
intersects both Γ′′ and the complement of Γ′. Then Q ∩ Γ′ contains a disk Γ′′′

of diameter larger than 1
20D2

K
δ(P ) by Lemma 2.9 (with Γ′ as Γ1, Γ′′ as Γ2 and

Γ′′′ as Γ3). By hypothesis K and L are well balanced, so there is a son of P

10



which is included in every disk of diameter larger than 1
20D2

K
δ(P ) included in

P . In particular, there is a son R of P which is included in the disk Γ′′′. Since
Γ′′′ ⊂ Q, Q contains R.

This shows that in any case Q contains a son R of P .

Figure 2 : construction of R when Γ ⊂ P

We denote by ρ(Q) = 2 maxz∈Q dist(z,K) the diameter of the largest disk
included in Q which does not intersect K. We have :

minU sons of Q δ(U)

ρ(Q)
·
minRj sons of P δ(Rj)

D2
Lρ(P )

≥ λK
σK
· λL
D2
LσL

≥ 1
√
σKσL

· λK
D2
K

√
σK
· λL
D2
L

√
σL

where the last inequality comes from the fact that DK ≥ 1. Since K and L are
well balanced, we have σK < 1

20 and σL < 1
20 . We finally get :

minU sons of Q δ(U)

ρ(Q)
·

minRj sons of P δ(Rj)

D2
Lρ(P )

> 20 · t(K)t(L) ≥ 20 · 1 = 20

Since by definition of Q we have δ(Uk) < (1 + 2
√

2)D2
Lρ(P ) for the son Uk of Q

which contains αn, we get :

min
U sons of Q

δ(U) < (1 + 2
√

2)D2
Lρ(P )

ρ(Q) <
1 + 2

√
2

20
min

Rj sons of P
δ(Rj) <

1

2
min

Rj sons of P
δ(Rj) <

1

2
δ(R)

Since Q contains R, then there exists a point αn+1 ∈ K in the middle inscribed
disk of the piece R of Ln+1. The property is then satisfied for n+ 1.

11



Case 2, small gap in P : ρ(P ) < max1≤j≤q δ(Rj)

In this case, informally speaking, the sons R1, . . . , Rq of P are this time close
to one another. For each son Rj of P , we denote by Cj = Cxj b Rj (1 ≤ j ≤ q)
the disk of same center as the inscribed disk of Rj and of diameter 1

2x times its
diameter, where 0 < x ≤ 1 will be fixed in the following. For convenience, we
will often write Cj for Cxj when recalling the "x" is not needed but the disk Cj
depends on x.

We denote by ρ̃(P ) the diameter of the largest disk included in P which
does not intersect C1 ∪ . . . ∪ Cq = Cx1 ∪ . . . ∪ Cxq . We have that ρ̃(P ) is a
continuous and decreasing function of x. We are now going to fix 0 < x ≤ 1.
The disks C1

1 , . . . , C
1
q are the respective middle inscribed disks of R1, . . . , Rq.

If we have max1≤j≤q δ(C
1
j ) ≤ ρ̃(P ), then we fix x = 1. Let us suppose this is

not the case. We have that max1≤j≤q δ(Cj) = max1≤j≤q δ(C
x
j ) is a continuous

and increasing function of x which tends to 0 when x tends to 0. On the other
hand, ρ̃(P ) is a continuous function of x strictly positive and decreasing. Then
by the intermediate value Theorem there exists a value 0 < x < 1 such that
max1≤j≤q δ(C

x
j ) = ρ̃(P ) and we fix it.

We want to give a bound on ρ̃(P ). Let us first suppose that x = 1. Let
us take any disk Ω included in P of diameter larger than max1≤j≤q ∆(Rj) +
ρ(P ). Then the disk Ω′ of diameter ρ(P ) of same center as Ω contains a point
β of L by definition of ρ(P ). The point β belongs to the escribed disk Ω′′

of a son Rl of P . This escribed disk has its radius equal to 1
2∆(Rl) with

1
2∆(Rl) ≤ 1

2 max1≤j≤q ∆(Rj). Then the center of Ω′′ is at distance from β at
most 1

2 max1≤j≤q ∆(Rj). But the center of Ω′′ also belongs to Cl = C1
l . Since

the disk Ω has its diameter larger than max1≤j≤q ∆(Rj) + ρ(P ), Ω intersects
C1 ∪ . . . Cq = C1

1 ∪ . . . ∪ C1
q . Then any disk included in P of diameter larger

than max1≤j≤q ∆(Rj) + ρ(P ) intersects C1 ∪ . . . Cq = C1
1 ∪ . . . ∪ C1

q . Then :

ρ̃(P ) ≤ max
1≤j≤q

∆(Rj) + ρ(P )

According to Lemma 2.7 and because ρ(P ) < max1≤j≤q δ(Rj), we have :

ρ̃(P ) ≤
√

2D2
L max

1≤j≤q
δ(Rj) + ρ(P ) <

√
2D2

L max
1≤j≤q

δ(Rj) + max
1≤j≤q

δ(Rj)

We have DL ≥ 1 and δ(Rj) = 2δ(C1
j ) (remind that for x = 1, C1

j = Cj is the
middle inscribed disk of Rj). Then we get :

ρ̃(P ) < (1 +
√

2)D2
L max

1≤j≤q
δ(Rj) = 2(1 +

√
2)D2

L max
1≤j≤q

δ(Cj) < 5D2
L max

1≤j≤q
δ(Cj)

On the other hand, if 0 < x < 1, we have max1≤j≤q δ(Cj) = ρ̃(P ).

No matter the value of x we have :

min1≤j≤q δ(Rj)

max1≤j≤q δ(Rj)
≥ λL

ΛL
> 20λL

12



because ΛL <
1
20 (because K and L are well balanced). Then :

min
1≤j≤q

δ(Cj) = x
1

2
min

1≤j≤q
δ(Rj) > 20λL · x

1

2
max

1≤j≤q
δ(Rj) = 20λL · max

1≤j≤q
δ(Cj)

Then, no matter the value of x, we have :

4

D2
L

λL =
1

5D2
L

· 20λL =
1

max(1, 5D2
L)
· 20λL <

min1≤j≤q δ(Cj)

ρ̃(P )

From now on, the method will be the same as in Case 1, replacing (P,R1, . . . , Rq)
by (P,C1, . . . , Cq). The point αn is the intersection of a sequence of pieces of
K whose first term is S(0, 1). We choose in this sequence of pieces the piece Q
defined as follows :

1. if 3ρ̃(P ) ≥ 1√
2
, we set Q = S(0, 1)

2. if 3ρ̃(P ) < 1√
2
, we define Q as the last piece in the sequence such that

δ(Q) ≥ 3ρ̃(P )

Let us show that Q contains one of the disks Cj . If Q = S(0, 1), this is obvious.
If not, Q has its inscribed disk Γ of diameter larger than 3ρ̃(P ). Since ρ̃(P ) ≥
max1≤j≤q δ(Cj), the diameter of each of the disks Cj is smaller than ρ̃(P ). We
then have two cases, depending on Γ is included in P or not.

Let us first suppose that Γ is included in P . Since 3ρ̃(P ) > ρ̃(P ), by defi-
nition of ρ̃(P ) the disk of same center as Γ of diameter ρ̃(P ) contains a point
of C1 ∪ . . . ∪ Cq in its closure. This point belongs to some disk Ck which is
of diameter bounded from above by ρ̃(P ). Since Γ is of diameter larger than
3ρ̃(P ), then Γ contains the disk Ck. Since Γ ⊂ Q then Q contains Ck too. If
Γ is not included in P , the proof is similar as in Case 1 (pages 10 and 11) : Q
contains a son Rk of P and then also the disk Ck ⊂ Rk.

This shows that in any case Q contains a son R of P . We denote by ρ(Q) =
2 maxz∈Q dist(z,K) the diameter of the largest disk included in Q which does
not intersect K. We have :

minU sons of Q δ(U)

ρ(Q)
· min1≤j≤q δ(Cj)

ρ̃(P )
≥ λK
σK
· 4

D2
L

λL ≥ 4
λK√
σK
· λL
D2
L

√
σL

where the second inequality comes from the fact that σK ≤ σL (this hypothesis
was made at the beginning of the proof). Then we have :

minU sons of Q δ(U)

ρ(Q)
· min1≤j≤q δ(Cj)

ρ̃(P )
≥ 4

λK
D2
K

√
σK
· λL
D2
L

√
σL
≥ 4 · t(K)t(L) ≥ 4

Since δ(Um) < 3ρ̃(P ) for the son Um of Q which contains αn (by definition of
Q), we have :

ρ(Q) <
3

4
min

1≤j≤q
δ(Cj) < min

1≤j≤q
δ(Cj) ≤ δ(Ck)

Since Ck is included in Q, there exists a point αn+1 ∈ K in the disk Ck and
then in the middle inscribed disk of the corresponding Rk. The property is then
true for n+ 1. By induction, it is true for every n.

In both cases we can conclude that K ∩ Ln 6= ∅ for every integer n. This
shows that K ∩ L is not empty. The proof of Theorem A is complete.
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5 Proof of Theorem B
Once defined the thickness t(K) of a dynamical Cantor set K, it is a natural

question to investigate if it is a continuous function of the maps fi which define
K. Indeed, as we already said it, Theorem A together with Theorem B give
robust intersections of dynamical Cantor sets. We now prove Theorem B. To
show this result, let us first remind that we have : t(K) =

λ0
K

D5
K

√
σ0
K

. To simplify,

we will suppose that the initial domain of K is the square S = S(0, 1) of center
0 of diameter 1. The following result is the key point in our proof :

Lemma 5.1. The distorsion DK is a continuous function of the maps fi.

To show this, let us remind that :

DK = sup
I

(
max

(z,z′)∈S2

|f ′I(z)|
|f ′I(z′)|

)
= sup
n≥0

(
max
|I|=n

(
max

(z,z′)∈S2

|f ′I(z)|
|f ′I(z′)|

))
In the following we will denote :

Sn(f1, . . . , fp) = max
|I|=n

(
max

(z,z′)∈S2

|f ′I(z)|
|f ′I(z′)|

)
We will need the following lemma :

Lemma 5.2. For every ε > 0, there exists an integer nε ≥ 0 and a neighbor-
hood Fε of (f1, . . . , fp) of the form Fε = {(g1, . . . , , gp) such that : |gi − fi| <
ηε on S } (for some constant ηε) such that : for every n ≥ nε, for every
(g1, . . . , gp) ∈ Fε, we have :

Sn(g1, . . . , gp) ≤ Snε(g1, . . . , gp) · (1 + ε)

Proof. We begin by fixing some constant ηε > 0 and some neighborhood Fε =
{(g1, . . . , , gp) such that : |gi−fi| < ηε on S } of (f1, . . . , fp) and some constant
0 < a < 1 such that for every (g1, . . . , gp) ∈ Fε, the IFS {g1, . . . , gp} defines
a dynamical Cantor set such that the diameter ∆(P ) of the escribed disk of
a piece P is multiplied by no more than a from one step to another. Such a
constant a exists for (g1, . . . , gp) near (f1, . . . , fp) by contraction of the Poincaré
metric, and it is easy to check that it can be taken locally constant. We also
fix another constant : reducing Fε if necessary, there exists R > 0 such that for
every (g1, . . . , gp) ∈ Fε, for every z ∈ g1(S) ∪ . . . ∪ gp(S), the disk of center z
of diameter 2R is included in S. Let us take any (z, z′) ∈ S2

. For every finite
sequence I = (i1, . . . , in), we have that :

|g′I(z)|
|g′I(z′)|

=
|g′i1(z)|
|g′i1(z′)|

·
|g′i2(gi1(z))|
|g′i2(gi1(z′))|

· · · · ·
|g′in(gin−1 ◦ . . . ◦ gi1(z))|
|g′in(gin−1

◦ . . . ◦ gi1(z′))|

But for every 1 ≤ k ≤ n− 1, we have :

gik ◦ . . . ◦ gi1(z) ∈ (gik ◦ . . . ◦ gi1)(S) and gik ◦ . . . ◦ gi1(z′) ∈ (gik ◦ . . . ◦ gi1)(S)
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and ∆((gik ◦ . . . ◦ gi1)(S)) ≤ ak. Let us consider the restriction of gik+1
to the

ball of center gik ◦ . . . ◦ gi1(z) and of diameter 2R which is included in S by
definition. The Koebe Theorem gives the following inequality :

|g′ik+1
(gik ◦ . . . ◦ gi1(z))|

|g′ik+1
(gik ◦ . . . ◦ gi1(z′))|

≤ 1 + ak/R

(1− ak/R)3
≤ 1 +

5

R
ak

if k is large enough. The series
∑
k a

k is absolutely converging, then the infinite
product

∏
k(1 + 5

Ra
k) is also absolutely converging. In particular, when n tends

to +∞,
∏
k≥n(1+ 5

Ra
k) tends to 1. It is then possible to take an integer nε such

that
∏
k≥nε(1 + 5

Ra
k) ≤ 1 + ε. We fix this integer and then for every n ≥ nε :

|g′I(z)|
|g′I(z′)|

=
|g′i1(z)|
|g′i1(z′)|

·
|g′i2(gi1(z))|
|g′i2(gi1(z′))|

· . . . ·
|g′in(gin−1

◦ . . . ◦ gi1(z))|
|g′in(gin−1 ◦ . . . ◦ gi1(z′))|

|g′I(z)|
|g′I(z′)|

≤
|g′i1(z)|
|g′i1(z′)|

·
|g′i2(gi1(z))|
|g′i2(gi1(z′))|

· . . . ·
|g′inε (ginε−1

◦ . . . ◦ gi1(z))|
|g′inε (ginε−1

◦ . . . ◦ gi1(z′))|
· (1 + ε)

|g′I(z)|
|g′I(z′)|

≤ Snε(g1, . . . , gp) · (1 + ε)

We take the upper bound on (z, z′) ∈ S2
and on |I| = n and we get :

Sn(g1, . . . , gp) ≤ Snε(g1, . . . , gp) · (1 + ε)

The result follows.

Proof of Lemma 5.1 : continuity of distorsion. We now show that the distor-
sion DK is a continuous function of the maps fi. Let us take any ε > 0. We
begin by fixing the integer nε and the neighborhood Fε given by the previous
lemma. In particular, for every n ≥ nε, for every (g1, . . . , gp) ∈ Fε, we have
Sn(g1, . . . , gp) ≤ Snε(g1, . . . , gp) · (1 + ε). Moreover, it is clear that every term
S1, . . . , Snε is a continuous function of (g1, . . . , gp) ∈ Fε. It is then possible to
choose a neighborhood F ′ε b Fε such that for every (g1, . . . , gp) ∈ F ′ε, we have :

∀1 ≤ k ≤ nε, Sk(g1, . . . , gp) ≤ DK · (1 + ε)

where K is the dynamical Cantor set associated to the IFS {f1, . . . , fp}. Let us
denote by L the dynamical Cantor set associated to the IFS {g1, . . . , gp}. Then
we have : DL ≤ DK · (1 + ε)2.

We choose l ≥ 1 such that Sl(f1, . . . , fp) ≥ DK · (1− ε). It is possible to take
a new neighborhood F ′′ε b F ′ε such that for every (g1, . . . , gp) ∈ F ′′ε , we have :
Sl(g1, . . . , gp) ≥ DK · (1− ε)2 and then : DL ≥ DK · (1− ε)2.

As a conclusion, for every (g1, . . . , gp) ∈ F ′′ε , if L is the limit set of (g1, . . . , gp),
we have : DK · (1− ε)2 ≤ DL ≤ DK · (1 + ε)2. This implies that the distorsion
is a continuous function.

Proof of Theorem B : continuity of the thickness. We saw that the distorsion
DK is a continuous function of fi. It is easy to check that λ0

K and σ0
K are

also continuous functions of fi, the proof is left to the reader. Finally, the
thickness t(K) =

λ0
K

D5
K

√
σ0
K

is a continuous function of the contractions fi.
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