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Asymptotic stability of the solitary waves for the generalized Kawahara equation

 we prove that this families of solitary waves are asymptotically stable in the energy space.

Let us prove that L 1,p,µp | H 4 e is an isomorphism. We have clearly the linearity and the continuity: L 1,p,µp L 2 ≤ C u H 4 . Now, since the kernel of L 1,p,µp is spanned by ϕ 1,p,µp (see Lemma 2.1 (P 3)) and ϕ 1,p,µp is an odd function, then L 1,p,µp | H 4 e is injective. Let g ∈ L 2 e , then there exists f ∈ H 4 such that L 1,p,µp f = g. We deduce also that L 1,p,µp f (-•) = g. By setting u(x) = f (x)+f (-x) 2

Introduction

The generalized Kawahara equation is given by:

u t + u p ∂ x u + ∂ 3 x u -µ∂ 5 x u = 0, (t, x) ∈ R * + × R, (1.1) 
where p ∈ N * denotes the power of nonlinearity, and µ > 0 the parameter which control the fifth-order dispersion term. For p = 1 and 2, the gKW equation has applications for instance in fuid mechanics and plasma physics. For p ≥ 3, what interests us is the interactions between the nonlinear forces produced by 1 p+1 ∂ x u p+1 and the linear forces produced by ∂ x (∂ 2

x u -µ∂ 4 x u). The most interesting property generated by this interaction is the appearance of solitary waves.

The Cauchy problem associated to (1.1) is locally well-posed in H 2 (R) (see for instance [START_REF] Abdelouhab | Nonlocal models for nonlinear, dispersive waves[END_REF]). The H 2 -solutions of (1.1) satisfy the following two conservation laws in time:

E p,µ (u(t)) = R µ 2 (∂ 2 x u) 2 (t) + 1 2 (∂ x u) 2 (t) - 1 (p + 1)(p + 2) u p+2 (t) = E µ (u 0 ) (energy) (1.2)
and

V (u(t)) = 1 2 R u 2 (t) = V (u 0 ) (mass). (1.3)
These conserved quantities enable to extend the solutions for all positive times so that (1.1) is actually globally well-posed in H 2 (R). Moreover, thanks to the conservation laws one can rewrite equation (1.1) in the Hamiltonian form:

∂ t V (u) = ∂ x E (u), (1.4) 
where V (u) and E (u) denote respectively the Fréchet derivative of V (u) and E(u).
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The solitons of gKW are solution of (1.1) of the form u(t, x) = ϕ c,p,µ (x -ct), which travels to the right direction with the constant speed c > 0. Substituting u by ϕ c,p,µ in (1.1), integrating on R with the assumption ∂ k

x ϕ c,p,µ (±∞) = 0 for k = 0, . . . 4, we obtain the equation of gKW-solitons:

µ∂ 4
x ϕ c,p,µ (x) -∂ 2 x ϕ c,p,µ (x) + cϕ c,p,µ (x) = 1 p + 1 ϕ p+1 c,p,µ (x), ∀x ∈ R.

(1.5)

In 1996 Dey , Khare and Kumar [START_REF] Dey | Stationary solitons of the fifth order KdV-type. Equations and their stabilization[END_REF] compute the explicit solitons of gKW, they found: Due to the necessary condition of stability of the soliton ϕ c,p,µ introduced by Karpman [START_REF] Karpman | Stabilization of soliton instabilities by higher order dispersion: KdV-type equations[END_REF]:

ϕ c,
µ R ∂ 2 x ϕ c,p,µ 2 (x) c R ϕ 2 c,p,µ (x) > p(p -4) (p 2 + 4p + 32) , (1.8) 
Dey et al. [START_REF] Dey | Stationary solitons of the fifth order KdV-type. Equations and their stabilization[END_REF] obtain that the single soliton ϕ c,p,µ is unstable with respect to the small perturbation in the case p ≥ 5. Now we fix µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 then the speed of the explicit soliton (1.6)-(1.7) is c 0 = 1. In [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF], we construct a family of even solitons {ϕ c0,p,µp , c 0 ∈]1 -δ p , 1 + δ p [}, with 0 < δ p 1, by applying the Implicit Function Theorem in the neighborhood of ϕ 1,p,µp (see Lemma 2.2 for the sketch of the proof). Moreover, combining the spectral method introduced by Benjamin [START_REF] Benjamin | The stability of solitary waves[END_REF] with the continuity arguments, we prove that this familly of solitons is orbitally stable in the energy space H 2 for the nonlinearity p ∈ {1, 2, 3, 4} (see Theorem 2.1 for the sketch of the proof).

Second, for any c > 0 and any µ > 0 (independent of each other) we construct a family of even solitons {ψ c,p,µ , µ > 0} by solving the global minimization problem inf{I c,µ (g) : g ∈ H 2 e (R) and K p (g) = K p (ψ c,p )}, where H 2 e (R) = {g ∈ H 2 (R) : g(-x) = g(x)}, I c,µ (g) = [µ(∂ 2 x g) 2 + (∂ x g) 2 + cg 2 ], K p (g) = 1 p+1 g p+1 , and ψ c,p (x) = [ (p+1)(p+2)c 2 ] 1/p sech 2/p [ p √ c

2 x] the explicit soliton of the generalized Korteweg-de Vries equation (gKdV). Moreover, we prove that the family {ψ c,p,µ : 0 < µ 1} converge to ψ c,p strongly in H 1 as µ tends to 0. We also obtain the orbital stability for the nonlinearity p ∈ {1, 2, 3}. In this paper we transform this global minimization problem by a local minimization problem and we give a more simple proof. Moreover, we obtain the convergence in all Sobolev space (see Proposition 2.1).

In Kabakouala [START_REF] Kabakouala | A Nonlinear Liouville Property for the Generalized Kawahara Equation[END_REF], following the method of Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF] on the gKdV equation, we prove the nonlinear Liouville property for the gKW equation: if u(t, x) the H 2 -global solution of gKW equation is close to the soliton ϕ c0,p,µ (up to a translation) in the energy space: u(t, • + ξ(t)) -ϕ c0,p,µp H 2 (R) ≤ γ, with γ 1, moreover if u(t, x + ξ(t)) is uniformly localized: |u(t, x + ξ(t))| ≤ e -σ|x| , then u(t, x) is identically equal to a soliton ϕ c1,p,µp (x -ξ 1 -c 1 t), where |c 1 -c 0 | ≤ γ and |ξ 1 | ≤ γ (See Theorem 6.2 and Corollary 6.1). In this paper, following the method of Kenig-Martel-Robbiano [START_REF] Kenig | Local well-posedness and blow-up in the energy space for a class of L 2 critical dispersion generalized Benjamin-Ono equations[END_REF] we have established the same result with the family {ψ c,p,µ , 0 < µ < µ 0 } with 0 < µ 0 1 (see Theorem 5.1). The main result of this paper is the asymptotic stability of the two families of solitons: the solution of gKW which is close to a soliton at initial time converge in some sense to a soliton. Theorem 1.1 (Asymptotic stability). (a) Let p ∈ {1, 2}, c 0 ∈]1 -δ p , 1 + δ p [, with δ p 1, and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 . Let u(t, x) be the global H 2 -solution of the gKW equation which is close at the initial time (t = 0): u 0 -ϕ c0,p,µp H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x).

(1.9)

Then there exists c(t) ∈ C 1 (R) and ξ(t) ∈ C 1 (R) such that: u(t, x) -ϕ c(t) (x -ξ(t)) → 0 in H 2 (x > θt) as t → +∞, where θ > 0.

(1.10)

Moreover there exists c0 such that: ξ (t) → c0 as t → +∞ and |c 0 -c 0 | ≤ γ.

(1.11)

(b)
The part (a) holds with the family of solitons {ψ c,p,µ : 0 < µ 1} with 0 < µ < µ 0 1, for any speed c > 0, and for all nonlinearity power p > 1.

Preliminaries

Lemma 2.1 (Spectral properties of L 1,p,µp ). Let p ∈ N * and µ p = 2 2 (p+2) (p 2 +4p+8) 2 . We consider the unbounded operator L 1,p,µp : L 2 → L 2 , defined by: u → µ p ∂ 4

x u -∂ 2 x u + u -ϕ p 1,p,µp u. We claim that L 1,p,µp possesses, among others, the following three crucial properties: (P1) The essential spectrum of L 1,p,µp is [1, +∞[ ; (P2) L 1,p,µp has only one negative eigenvalue λ 1,p,µp which is simple; (P3) The kernel of L 1,p,µp is spanned by ϕ 1,p,µp .

Proof. First, the property (P 1) is due to the fact that L 1,p,µp is a compact perturbation of µ p ∂ 4

x -∂ 2 x + 1, since ϕ p 1,p,µp is smooth and decay exponentially to 0. Second, Albert [START_REF] Albert | Positivity properties and stability of solitary-wave solutions of model equations for long waves[END_REF] has given a sufficient condition based on the qualitative properties of the solitons ϕ 1,p,µp which confers the operator L 1,p,µp the spectral properties (P2) and (P3): F(ϕ 1,p,µp )(ω) > 0, ∀ω ∈ R, and

d 2 dw 2 logF(ϕ p 1,p,µp )(ω) < 0, ∀ω ∈ R * , (2.1) 
where F(g(x))(ω) = e -ixω g(x) denotes the fourier transformation. The sufficient conditions (2.1) are clearly satisfied for the solitons of gKW (see [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF] Lemma 2.1 for detailed calculations).

Remark 2.1 (Spectral properties of L 1,p,0 ). We claim that Lemma 2.1 holds for L 1,p,0 the linearized operator of gKdV around the soliton ψ 1,p of gKdV. It suffices to prove (2.1):

F(ψ 1,p (x))(ω) = [2(p + 1)(p + 2)] 1/p pΓ(2/p) |Γ( 1 p + i ω p )| 2 ≥ 0, ∀ω ∈ R, (2.2) 
where Γ(z) = +∞ 0 t z-1 e -t ∀z ∈ C denotes the gamma function. We also compute that:

F(ψ p 1,p (x))(ω) = (p + 1)(p + 2) p πω sinh(πω/p) , (2.3) 
and then:

d 2 dw 2 logF(ψ p 1,p (x))(ω) = π 2 p 2 sinh 2 (πω/p) - 1 ω 2 < 0, ∀ω ∈ R * .
(2.4) Lemma 2.2 (Existence of Solitons ϕ c0,p,µp for c 0 close to 1). Let p ∈ N * and µ p = 2 2 (p+2) (p 2 +4p+8) 2 . There exist δ p > 0 and δp > 0 such that for any c 0 > 0 with |c 0 -1| < δ p , there exists a unique H 4 even soliton ϕ c0,p,µp of gKW in the ball of H 4 centered at ϕ 1,p,µp with radius δp > 0. Moreover, the function c 0 → ϕ c0,p,µp is of class

C 1 from ]1 -δ p , 1 + δ p [ into B H 4 (ϕ 1,p,µp ).
Proof. The proof is based on the application of the Implicit Function Theorem (See K-M. Lemma 2.2). We consider the fonctional T :]1 -δ p , 1 + δ p [×H 4 e → L 2 e defined by: T (c, g) = µ p ∂ 4 x ψ -∂ 2 x g + cg -1 p+1 g p+1 , where H 4 e = {u ∈ H 4 : u(-x) = u(x)} and L 2 e = H 0 e . One can easily compute that T (1, ϕ 1,p,µp ) = 0 and ∈ H 4 e we get L 1,p,µp u(-•) = g, and this prove the surjectivity of L 1,p,µp | H 4 e . Finally, by applying the Implicit Function Theorem we obtain the desired result.

Remark 2.2 (Important properties on ϕ c0,p,µp and L c0,p,µp for c 0 close to 1). For c 0 close enough to 1, the even soliton ϕ c0,p,µp ∈ H 4 satisfies the following nonlinear fourth-order ODE:

µ p ∂ 4
x ϕ c0,p,µp -∂ 2 x ϕ c0,p,µp + c 0 ϕ c0,p,µp -

1 p + 1
ϕ p+1 c0,p,µp = 0.

(2.5)

The classical bootstrap argument implies that ϕ c0,p,µp ∈ H k ∀k ∈ N. Observe that by differentiating equation 2.5 with respect to the speed c we obtain: 

L c,
Note that by Lemma 2.2 the claim (2.7) holds for k ∈ {0, 1, 2, 3, 4}. Now, We make the difference between the equation of ϕ c0,p,µp and ϕ 1,p,µp :

µ p ∂ 4
x (ϕ c0,p,µp -ϕ 1,p,µp ) -∂ 2 x (ϕ c0,p,µp -ϕ 1,p,µp ) + c 0 (ϕ c0,p,µp -ϕ 1,p,µp ) + (c 0 -1)ϕ 1,p,µp -1 p + 1 (ϕ p+1 c0,p,µp -ϕ p+1 1,p,µp ) = 0.

(2.8)

By differentiating (2.8) with respect to the space variable x, multiplying by ∂ 5

x (ϕ c0,p,µp -ϕ 1,p,µp ), and integrating on R, we get:

µ p [∂ 5
x (ϕ c0,p,µp -ϕ 1,p,µp )] 2 = -[∂ 4

x (ϕ c0,p,µp -ϕ 1,p,µp )] 2 -c 0 [∂ 3

x (ϕ c0,p,µp -ϕ 1,p,µp )] 2

-(c 0 -1) (∂ 3 x ϕ 1,p,µp )∂ 3 x (ϕ c0,pµp -ϕ 1,p,µp ) +

1 p + 1 ∂ 3 
x (ϕ p+1 c0,p,µp -ϕ p+1 1,p,µp )∂ 3 x (ϕ c0,p,µp -ϕ 1,p,µp )

|c 0 -1| ∂ 3 x (ϕ c0,p,µp -ϕ 1,p,µp ) L 2 .
(2.9)

Proceeding similarly with the eqution of ρ c0,p,µp -ρ 1,p,µp , we get:

µ p [∂ 5 x (ρ c0,p,µp -ρ 1,p,µp )] 2 = -[∂ 4 x (ρ c0,p,µp -ρ 1,p,µp )] 2 -c 0 [∂ 3 x (ρ c0,p,µp -ρ 1,p,µp )] 2 -(c 0 -1) (∂ 3 x ρ 1,p,µp )∂ 3 x (ρ c0,pµp -ρ 1,p,µp ) + 1 p + 1 ∂ 3 
x (ϕ c0,p,µp -ϕ 1,p,µp )∂ 3 x (ρ c0,p,µp -ρ 1,p,µp )

(|c 0 -1| + ∂ 3 x (ϕ c0,p,µp -ϕ 1,p,µp ) L 2 ) ∂ 3 x (ρ c0,p,µp -ρ 1,p,µp ) L 2 .
(2.10)

Then we deduce that (2.7) holds for k = 5. By iterating the method, we obtain the desired result for all k ∈ N. From (2.7), we infer that for c 0 close to 1, the soliton ϕ c0,p,µp and all these derivatives decay exponentially:

|∂ k x ϕ c0,p,µp (x)| e -√ c0|x| , ∀x ∈ R, ∀k ∈ N. (2.11)
Indeed, let x ∈ R, and choose R 0 > 0 such that |x| ≤ R 0 . From (2.7) and the Sobolev embedding of H 1 into C 0 there exists ε(R 0 ) > 0 such that for all |c 0 -1| ≤ ε we have:

|ϕ c0,p,µp (x)| ≤ |ϕ 1,p,µp (x)| + |ϕ c0,p,µp (x) -ϕ 1,p,µp (x)| ≤ C(p)e - √ p 2 +4p+8 p+2
|x| + e -R0 e -|x| .

(2.12)

We argue similarly for the derivatives of ϕ c0,p,µp . Next, we claim that for p ∈ {1, 2, 3, 4} and c 0 close enough to 1, the kernel of L c0,p,µp is spanned by ϕ c0,p,µp . Proof: by differentiating equation 2.5 with respect to x, we have L c0,p,µp ϕ c0,p,µp = 0. Recall that for p ∈ {1, 2, 3, 4}, we prove in [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF]. (see Subsection 2.3) that: ρ 1,p,µp , ϕ 1,p,µp L 2 < 0. Then, for all v ∈ H 2 satisfying the orthogonality conditions: v, ϕ c0,p,µp L 2 = v, ϕ c0,p,µp L 2 = 0 for c 0 close 1, the operator L c0,p,µp is strictly positive: L c0,p,µp v, v L 2 > 0. Assume that the dimension of the kernel of L c0,p,µp is larger than or equal to 2, and

choose v 0 = v 1 - v1,ϕ c 0 ,p,µp L 2 ϕ c 0 ,p,µp 2 L 2 ϕ c0,p,µp with v 1 ∈ KerL c0,p,µp {ϕ c0,p,µp }. Then v 0 satisfies the orthogonalities: v 0 , ϕ c0,p,µp L 2 = 0 and v 0 , ϕ c0,p,µp L 2 = L c0,p,µp v 0 , ρ c0,p,µp L 2 = 0. But we have L c0,p,µp v 0 , v 0 L 2 = 0 which is a contradiction.
One can deduce that for p ∈ {1, 2, 3, 4} and c 0 close to 1 the function ρ c0,p,µp is even. Indeed, since ϕ c0,p,µp is odd we have L c0,p,µp (ρ c0,p,µp (x) -ρ c0,p,µp (-x)) = 0. Then ρ c0,p,µp (x) -ρ c0,p,µp (-x) ∈ {0, ϕ c0,p,µp (x)}. Since ϕ c0,p,µp is odd and ρ c0,p,µp , ϕ c0,p,µp L 2 ∼ ρ 1,p,µp , ϕ 1,p,µp L 2 < 0 pour p ∈ {1, 2, 3, 4}, we have ρ c0,p,µp (x) = ρ c0,p,µp (-x).

Proposition 2.1 (Existence of the solitons ψ c,p,µ for all c > 0 and µ > 0). Let c > 0, µ > 0, R > 1 2 and p > 1. We define the functionnals

I µ,c,R (g) = R -R µ 2 (∂ 2 x g) 2 + 1 2 (∂ x g) 2 + c 2 g 2 and K p,R (g) = 1 (p+1)(p+2) R -R g p+2 .
(a) There exists ψ c,p,µ,R solution of the following minimization problem:

S c,p,µ,R = inf{I µ,c,R (g) : g ∈ H 2 e (] -R, R[) and K p,R (g) = K p,R (ψ c,p )}, (2.13) 
where ψ c,p is a soliton of gKdV travelling with the speed c. Let P R :

H 2 (] -R, R[) → H 2 (R)
the linear bounbed extension operator defined by: P R g = g. Then the family { ψc,p,µ,R : R > Moreover ψc,p,µ,∞ is a even soliton of gKW travelling with the speed c.

(b) The familly { ψc,p,µ,∞ : 0 < µ 1} is uniformly bounded in H 2 , and there exists ψc,p,0,∞ ∈ H 2 satisfying:

ψc,p,µ,∞ → ψc,p,0,∞ in H 1 , as µ → 0 + . (2.17)
Moreover ψc,p,0,∞ = ψ c,p is a soliton of gKdV.

(c) For p ∈ {1, 2, 3} there exists µ 0 > 0 such that for all 0 < µ < µ 0 1 ψc,p,µ,∞ is the unique soliton of gKW.

Proof. We will present the proof in four steps.

Step 1: Resolution of the minimization problem. We choose c = 1. Let (g k ) be a mininizing sequence of the problem (2.13), that is to say, for all k ∈ N,

g k ∈ H 2
e (] -R, R[), and satisfying:

K p,R (g k ) = K p,R (ψ 1,p ) and S 1,p,µ,R ≤ I µ,R (g k ) ≤ S 1,p,µ,R - 1 k . (2.18) We infer that (g k ) is bounded H 2 e (]-R, R[).
Since it is a reflexive space, then there exists

ψ 1,p,µ,R ∈ H 2 e (]-R, R[) such that up to a subsequence g k ψ 1,p,µ,R converge weakly in H 2 (] -R, R[).
And since we have the compact injection of

H 2 (] -R, R[) into C 1 ([-R, R]), we infer that g k → ψ 1,p,µ,R strongly in C 1 ([-R, R]).
In particular, we also have

g k → ψ 1,p,µ,R strongly in L p+2 (] -R, R[): R -R |g k -ψ 1,p,µ,R | p+2 ≤ g k -ψ 1,p,µ,R p L ∞ (]-R,R[) g k -ψ 1,p,µ,R p L 2 (]-R,R[) → 0 as k → +∞.
(2.19)

Passing to the limit in (2.18), using (2.19) and the lower semi-continuity:

I µ,R (ψ 1,p,µ,R ) ≤ lim inf k→+∞ I µ,R (g k ),
we obtain:

K p,R (ψ 1,p,µ,R ) = lim k→+∞ K p,R (g k ) = K p,R (ψ 1,p ) and S 1,p,µ,R = lim inf k→+∞ I µ,R (g k ) ≥ I µ,R (ψ 1,p,µ,R ). (2.20)
This prove that ψ 1,p,µ,R is the solution of the minimization problem (2.18).

We can now rewrite the Euler-Lagrange equation related to our minimization problem. There exists

α 1,p,µ,R ∈ R * the multiplier of lagrange such that for all g ∈ H 2 e (] -R, R[): µ R -R (∂ 2 x ψ 1,p,µ,R )(∂ 2 x g) + R -R (∂ x ψ 1,p,µ,R )(∂ x g) + R -R ψ 1,p,µ,R g - α 1,p,µ,R p + 1 R -R ψ p+1 1,p,µ,R g = 0. (2.21)
It is clear that (2.21) is satisfied, since the scalar product of an even and odd function is zero. This implies that

(2.21) is satisfied g ∈ H 2 (] -R, R[).
Step 2: Existence of solitons of gKW.

Let P R : H 2 (] -R, R[) → H 2 (R)
the linear bounbed extension operator defined by: P R g = g. According to the Theorem 8.6 of Brezis [START_REF] Brezis | Analyse fonctionnelle[END_REF]:

ψ1,p,µ,R H 2 (R) ≤ 6(1 + 1 2R ) ψ 1,p,µ,R H 2 (]-R,R[) .
(2.22)

Since ψ 1,p the soliton of gKdV is a potential solution of the minimization problem (2.18) then for R > 1/2: directly, form the pointwise convergence (2.26), we deduce that ψ1,p,µ∞ is even. Indeed, let x 0 ∈ R, there exists

I µ,∞ ( ψ1,p,µ,R ) ≤ 12I µ,R (ψ 1,p,µ,R ) ≤ 12I µ,∞ (ψ 1,p
N (x 0 ) such that for n > N |x| ≤ R n , then: ψ1,p,µ,∞ (-x 0 ) = lim n→+∞ ψ1,p,µ,Rn (-x 0 ) = lim n→+∞ ψ1,p,µ,Rn (x 0 ) = ψ1,p,µ,∞ (x 0 ).
On the other hand if we replace g by ψ 1,p,µ,R in the equation (2.21), we obtain:

α 1,p,µ,R = 2I µ,R (ψ 1,p,µ,R ) (p + 2)K p,R (ψ 1,p,µ,R ) ≤ 2I µ,R (ψ 1,p ) (p + 2)K p,R (ψ 1,p ) . ( 2 

.27)

When R → +∞ we deduce that:

0 < lim R→+∞ α 1,p,µ,R := α 1,p,µ,∞ ≤ 2I µ,∞ (ψ 1,p ) (p + 2)K p,∞ (ψ 1,p ) . ( 2 

.28)

We now have all the elements to pass to the limit in (2.21). Using that lim n→+∞ 1 ]-Rn,Rn[ = 1 and (2.24), we deduce that:

∀k ∈ {0, 1, 2}, (∂ k x ψ1,p,µ,R )1 ]-Rn,Rn[ ∂ k x ψ1,p,µ,∞ weakly in L 2 (R)
. This allows to pass to the limit in the linear part of the equation.

For the nonlinear part of the equation we use that: lim n→+∞ ψp+1 1,p,µ,Rn 1 ]-Rn,Rn[ = ψp+1 1,p,µ,∞ and we apply Lebesgue's dominated convergence theorem. Therefore ψ1,p,µ,∞ satisfied for all g ∈ H 2 (R):

µ (∂ 2 x ψ1,p,µ,∞ )(∂ 2 x g) + (∂ x ψ1,p,µ,∞ )(∂ x g) + ψ1,p,µ,∞ g - α 1,p,µ,∞ p + 1 ψp+1 1,p,µ,∞ g = 0.
(2.29)

By applying elliptic regularization arguments we deduce that ψ1,p,µ,∞ ∈ H k (R) ∀k ∈ N and satisfied:

µ∂ 4 x ψ1,p,µ,∞ -∂ 2 x ψ1,p,µ,∞ + ψ1,p,µ,∞ - α 1,p,µ,∞ p + 1 ψp+1 1,p,µ,∞ = 0. (2.30)
By setting ψ1,p,µ,p,∞ = α 1/p 1,p,µ,∞ ψ1,p,µ,∞ we obtain a soliton of gKW. Knowing that for all k ∈ N ∂ k x ψ1,p,µ,∞ (±∞) = 0, then for |x| large enough and p ≥ 1, ψ1,p,µ,∞ behaves like the solution of a linear fourth order ODE: µ∂ 4

x ψ1,p,µ,∞ -∂ 2 x ψ1,p,µ,∞ + ψ1,p,µ,∞ = 0. We deduce that:

|∂ k x ψ1,p,µ,∞ (x)| e - √ 1- √ 1-4µ √ 2µ |x| e -|x| , for |x| 1, k ∈ N, and 0 < µ 1. (2.31)
For more rigorous proof of (2.31) see Li-Zhao.

Step 3: Relation between the soliton of gKW and the soliton of gKdV.

Directly we remarque that by passing to the limit in (2.28):

0 < lim µ→0 + α 1,p,µ,∞ := α 1,p,0,∞ ≤ 2I 0,∞ (ψ 1,p ) (p + 2)K p,∞ (ψ 1,p ) = 1. (2.32)
On the other hand, using the lower semi-continuity and (2.23), we obtain:

I µ,∞ ( ψ1,p,µ,∞ ) ≤ lim sup n→+∞ I µ,∞ ( ψ1,p,µ,Rn ) ≤ 12I µ,∞ (ψ 1,p ). ( 2 

.33)

It means that this familly { ψ1,p,µ,∞ : 0 < µ 1} is uniformly bounded in H 1 (R). We claim that the family { ψ1,p,µ,∞ : 0 < µ 1} is uniformly bounded in H 2 (R). Indeed, by applying the Fourier transformation (2.30), we obtain: 

(µ|ω| 4 + |ω| 2 + 1)F( ψ1,p,µ,∞ (x))(ω) = α 1,p,µ,∞ p + 1 F( ψp+1 1,p,µ,∞ (x))(ω). (2.34) Since {α 1,p,µ,∞ : 0 < µ 1} is bounded, then it suffice to prove that: {F( ψp+1 1,p,µ,∞ ) : 0 < µ 1} is bounded in L 2 (R). Thanks to the Plancherel Parseval identity this is equivalent to prove that { ψ1,p,µ,∞ : 0 < µ 1} is bounded in L 2p+2 (R). We know that: ψ1,p,µ,∞ 2p+2 L 2p+2 (R) ≤ ψ1,p,µ,∞ 2p L ∞ (R) ψ1,p,µ,∞ 2 L 2 (R) ≤ 2 -p ψ1,p,µ,∞ 2p+2 H 1 (R) . ( 2 
(∂ x ψ1,p,0,∞ )(∂ x g) + ψ1,p,0,∞ g - α 1,p,0,∞ p + 1 ψp+1 1,p,0,∞ g = 0.
(2.41)

Thus by setting ψ1,p,0,∞ = α 1/p ψ1,p,0,∞ we obtain a soliton of gKdV.

Step 4: Uniqueness of the solitons of gKW. Now we will prove (c) arguing by contradiction. Assume that we have two families { ψI 

µ∂ 4 x η µ -∂ 2 x η µ + η µ - 1 p + 1 η µ p k=0 ( ψI 1,p,µ,∞ ) k ( ψII 1,p,µ,∞ ) p-k = 0. (2.42)
One can easy comptute:

L 1,p,µ η µ = η µ ηµ   1 p + 1 p-k k=0 ( ψI 1,p,µ,∞ ) k p-k-1 j=0 ( ψII 1,p,µ,∞ ) j ( ψI 1,p,µ,∞ ) p-k-j-1   . (2.43)
This implies:

L 1,p,µ η µ L 2 η µ L 2 ηµ L 2 and L 1,p,µ η µ H 1 ηµ H 1 . (2.44)
On the other hand one can comptute that:

L 1,p,0 η µ , η µ L 2 = L 1,p,µ η µ , η µ L 2 -µ (∂ 2 x η µ ) 2 + η 2 µ [( ψI 1,p,µ,∞ ) p -ψ p 1,p ] ηµ L 2 + µ + ( ψI 1,p,µ,∞ ) p -ψ p 1,p H 1 . (2.45)
It is clear ηµ which is an even functin is orthogonal to ψ 1,p which is odd function. We will prove that ηµ is almost orthogonal to ψ 1,p . We have:

| η µ , ψ 1,p L 2 | = | η µ , L 1,p,0 ρ 1,p L 2 | = | L 1,p,µ η µ , ρ 1,p L 2 -µ η µ ∂ 4 x ρ 1,p + η µ ρ 1,p [( ψI 1,p,µ,∞ ) p -ψ p 1,p ]| ( ηµ L 2 + µ + ( ψI 1,p,µ,∞ ) p -ψ p 1,p L 2 ) η µ L 2 . (2.46) Since L -1 1,p,0 ψ 1,p , ψ 1,p L 2 = -1 2 d dc ψ c,p L 2 | c=1 < 0 for p ∈ {1, 2, 3}
, then there exists C > 0 such that:

L 1,p,0 η µ , η µ L 2 ≥ C. (2.47)
For µ small (2.45) contradicts (2.47). Hence the uniqueness.

Remark 2.3 (Approximation dans H k des solitons de gKdV par des solitons de gKW). We claim that for all k ∈ N the familly { ψ1,p,µ,∞ : 0 < µ 1} is bounded in H k . We will just prove the control in H 4 . By differentiating twice equation (2.30) and applying the Fourier transformation we get:

(µ|ω| 6 + |ω| 4 + |ω| 2 )F( ψ1,p,µ,∞ (x))(ω) = α 1,p,µ,∞ p + 1 |ω| 2 F( ψp+1 1,p,µ,∞ (x))(ω). ( 2 

.48)

Then it suffice to prove that ψp+1 1,p,µ,∞ ∈ H 2 . One can easily compute that:

∂ 2 x ψp+1 1,p,µ,∞ 2 
L 2 ≤ 2(p + 1) 2 ψ1,p,µ,∞ 2p L ∞ ∂ 2 x ψ1,p,µ,∞ 2 L 2 2p 2 (p + 1) 2 ψ1,p,µ,∞ 2p-2 L ∞ ∂ x ψ1,p,µ,∞ 2 
L ∞ ∂ x ψp+1 1,p,µ,∞ 2 L 2 ψ1,p,µ,∞ 2p+2 H 2 .
(2.49)

By iterating this method we obtain the control in H k .

Theorem 2.1 (Orbital stability). (a) Let p ∈ {1, 2, 3, 4} and µ p = 2 2 (p+2) (p 2 +4p+8) 2 . There exists δ p > 0 such that for all |c 0 -1| < δ p the soliton ϕ c0,p,µp of gKW given by Lemma 2.2 is orbitally stable.

(b) Let p ∈ {1, 2, 3} and c > 0. There exists µ 0 > 0 such that 0 < µ < µ 0 the soliton ψ c,µ,p of gKW given by Proposition 2.1 is orbitally stable.

Sketch of the proof. We explain the prove of (a). Assume that the global solution u(t, x) of gKW is close ϕ c0,p,µp at the initial time in the energy space: u 0 -ϕ c0,p,µp H 2 ≤ ε 2 , where u 0 (x) = u(0, x) and ε 1. Let ξ(t) ∈ R a translation that we will choose appropriately. We set: η(t, x) = u(t, x + ξ(t)) -ϕ c0,p,µp (x). We introduce the following action functional: S c0,pµp (u) = E µp,p (u) + c 0 V (u) which is preserved over time. By applying the Taylor expansion of S c0,p,µp (u) in the neighbourhood ϕ c0,p,µp , we obtain ∀t ∈ R:

S c0,p,µp (u 0 ) -S c0,pµp (ϕ 0,p,µp ) = 1 2 L c0,p,µp η(t), η(t) L 2 + R(ϕ c0,p,µp , η(t)), (2.50) 
where

R(f, g) = - 1 (p + 1)(p + 2) p+2 k=3 C p+2 k f k g p-k+2 .
(2.51)

Using the initial assumption: |S c0,p,µp (u 0 ) -S c0,p,µp (ϕ c0,p,µp )| ≤ ε 2 . The soliton ϕ c0,p,µp is orbitally stable if and only if L c0,p,µp is coercive, i.e, there exists C > 0 such that:

L c0,p,µp η(t), η(t) L 2 ≥ C η(t) 2 H 2 .
(2.52)

Thanks to the initial assumption of and the continuity of the map: t → η(t) H 2 , we can suppose that:

η(t) H 2 ∼ ε for t ∈ [0, t 0 ] with |t 0 | 1.
For to obtain (2.52). We will choose ξ(t) such that η(t), ϕ c0,p,µp L 2 = 0. And using the conservation of the L 2 -norm, one can see that η(t, x) is almost orthogonal to ϕ c0,p,µp (x):

η(t), ϕ c0,p,µp L 2 = (V (u 0 ) -V (ϕ c0,p,µp )) -V (η(t)) ≤ ε η(t) L 2 .
(2.53)

One can easy check that ϕ 1,p,µp is a negative vector: L 1,p,µp ϕ 1,p,µp , ϕ 

L 2 | + | η(t), ϕ 1,p,µp L 2 | ≤ ε η(t) L 2 ,
for c 0 close to 1, so according to Weinstein [START_REF] Weinstein | Modulational stability of ground states of nonlinear Schrödinger equations[END_REF], there exists C > 0 such that:

L 1,p,µp η(t), η(t) L 2 ≥ C η(t) 2 H 2 .
(2.54)

This implies (2.52) for c 0 close 1. Hence we deduce that:

u(t, • + ξ(t)) -ϕ c0,p,µ H 2 ≤ ε.
For the proof of (b) we argue similarly using that L -1 c,p,0 ψ c,p , ψ c,p L 2 < 0 for p ∈ {1, 2, 3}, and that ψ c,p,µ ∼ ψ c,p in H 1 and L c,p,µp ∼ L 1,p,0 when µ is small enough.

3 Linear Liouville property with the family of solitons of gKW which is close to the explicit soliton of gKW Theorem 3.1 (Linear Liouville property with ϕ c0,p,µp ). Assume that p ∈ {1, 2},

µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 and c 0 ∈ ]1 -δ p , 1 + δ p [, with 0 < δ 1. Let u ∈ C(R, H 2 (R)) ∩ L ∞ (R, H 2 (R)
) be the solution of

∂ t u = ∂ x (L c0,p,µp u), (t, x) ∈ R × R. (3.1)
Moreover, assume that u(t, x) is L 2 -compact:

∀ε > 0, ∃R ε > 0, such that ∀t ∈ R |x|>Rε |u(t, x)| 2 ≤ ε. (3.2)
Then there exists a 1 ∈ R such that Therefore the solution of (3.1) must be orthogonal to ϕ c0,p,µp .

u(t, x) ≡ a 1 ϕ c0,p,µp (x), ∀(t, x) ∈ R × R. ( 3 
Corollary 3.1 (Linear Liouville property with ψ c,p,µ for p = 1 and c > 0). The Theorem 3.1 holds with the family of solitons {ψ c,p,µ : 0 < µ 1} with 0 < µ < µ 0 1, for any speed c > 0, and for the nonlinearity power p = 1.

Monotonicity formula related to the linearized gKW equation

The aim of this section is to prove the smoothness and exponential decay properties of the L 2 -compact solutions u(t, x) of the linearized gKW equation around ϕ c0,p,µp . Proposition 3.1 (Smoothness and exponential decay). Let p ∈ N * and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 . Let x 0 > 0 , K > 0 chosen corretly, t 0 > t, and φ K

(x) = 1 2 + 1 2 tanh(x/2K). Let u ∈ C(R, H 2 (R)) ∩ L ∞ (R, H 2 (R)) satisfying (3.1). We set x = x -c0
2 (t 0 -t) -x 0 , and we define ∀k ∈ N:

I (k) x0,t0 (t) = (∂ k x u(t, x)) 2 φ K (x). (3.4) 
Then ∀k ∈ N:

I (k) x0,t0 (t 0 ) -I (k) x0,t0 (t) sup t∈R u(t) 2 H k e -x0/K . (3.5) Moreover, if u(t, x) is L 2 -compact, then ∀k ∈ N u(t) ∈ H k (R), and 
|∂ k x u(t, x)| e -|x|/2K , ∀(t, x) ∈ R × R. (3.6) 
Proof. We follows the arguments of Laurent and Martel [START_REF] Laurent | Smoothness and exponential decay of L 2 -compact solutions of the generalized KdV equations[END_REF].

For more clarity we will present the proof in four steps.

Step 1: Monotonicity formula at order 0. For x 0 > 0 and t 0 ≥ t, we claim that:

I (0) x0,t0 (t 0 ) -I (0) x0,t0 (t) sup t∈R u(t) 2 L 2 e -x0/K . (3.7)
Proof of (3.7). We compute the time variation of

I (0)
x0,t0 (t):

d dt I (0) x0,t0 (t) = 2 (∂ t u)uφ K (x) + c 0 2 u 2 φ K (x). (3.8)
Using that u(t, x) satisfies equation (3.1), the first term in (3.8) gives us:

2 (∂ t u)uφ K (x) = 2µ p (∂ 5 x u)uφ K (x) -2 (∂ 3 x u)uφ K (x) + 2c 0 (∂ x u)uφ K (x) -2 ∂ x (ϕ p c,p,µp u)uφ K (x) = I + J + K + L. (3.9) 
We compute I by applying several integration by parts:

I = -2µ p (∂ 4 x u)(∂ x u)φ K (x) -2µ p (∂ 4 x u)uφ K (x) = I 1 + I 2 .
(3.10)

I 1 give us I 1 = 2µ p (∂ 3 x u)(∂ 2 x u)φ K (x) + 2µ p (∂ 3 x u)(∂ x u)φ K (x) = -3µ p (∂ 2 x u) 2 φ K (x) + µ p (∂ x u) 2 φ K (x). (3.11)
I 2 give us

I 2 = 2µ p (∂ 3 x u)(∂ x u)φ K (x) + 2µ p (∂ 3 x u)uφ K (x) = I 21 + I 22 , (3.12) 
with

I 21 = -2µ p (∂ 2 x u) 2 φ K (x) + µ p (∂ x u) 2 φ K (x), (3.13) 
and

I 22 = -2µ p (∂ 2 x u)(∂ x u)φ K (x) -2µ p (∂ 2 x u)uφ K (x) = 3µ p (∂ x u) 2 φ K (x) -µ p u 2 φ (5) 
K (x). 

I = -5µ p (∂ 2 x u) 2 φ K (x) + 5µ p (∂ x u) 2 φ K (x) -µ p u 2 φ (5) K (x), (3.15) 
We compute J:

J = 2 (∂ 2 x u)(∂ x u)φ K (x) + 2 (∂ 2 x u)uφ K (x) = -3 (∂ x u) 2 φ K (x) + u 2 φ K (x). ( 3 

.16)

K and L give us

K = -c 0 u 2 φ K (x), L = u 2 ϕ p c0,p,µp φ K (x) -(ϕ p c0,p,µp ) φ K (x) .
(3.17) Therefore, combining (3.8),(3.15)-(3.17), we obtain

d dt I x0,t0 (t) = -5µ p (∂ 2 x u) 2 φ K (x) -3 (∂ x u) 2 φ K (x) - c 0 2 u 2 φ K (x) + 5µ p (∂ x u) 2 φ K (x) -µ p u 2 φ (5) K (x) + u 2 φ K (x) + u 2 ϕ p c0,p,µp φ K (x) -(ϕ p c0,p,µp ) φ K (x) . (3.18)
Note that the term 5µ p (∂ 2 x u) 2 φ K (x) + 3 (∂ x u) 2 φ K (x) will permit us to gain regularity. One can notice that:

φ K (x) = 1 4K sech 2 (x/2K) and |φ (j+1) (x)| ≤ 1 K j φ K (x), ∀x ∈ R, ∀j ∈ N.
Let us estimate the terms on the second line of (3.18):

5µ p (∂ x u) 2 φ K (x) -µ p u 2 φ (5) K (x) + u 2 φ K (x) ≤ max 5µ p K 2 , µ p K 4 + 1 K 2 ((∂ x u) 2 + u 2 )φ K (x). (3.19)
Now, let us estimate the last term in (3.18). We first remark that, using the properties of the soliton ϕ c0,p,µp and the test function φ K , we have for all x ∈ R:

ϕ p c0,p,µp (x) φ K (x) + (ϕ p c0,p,µp ) (x) φ K (x) e -p √ c0|x| e x/K . (3.20)
Then we deduce that for K ≥ 1/p √ c 0 :

u 2 ϕ p c0,p,µp φ K (x) -(ϕ p c0,p,µp ) φ K (x) ≤ u 2 L 2 sup x∈R (e -p √ c0|x| e x/K ) = u 2 L 2 e (-c 0 2 (t0-t)-x0)/K . (3.21)
Finally, by adding (3.18), (3.19) and (3.21), integrating between t and t 0 , we obtain for K chosen correctly:

u 2 (x, t 0 )φ K (x -x 0 )dx + t0 t R [µ p (∂ 2 x u) 2 + (∂ x u) 2 + u 2 ](x, s)φ K (x)dxds sup t∈R u(t) 2 L 2 e -x0/K + R u 2 (x, t)φ K (x - c 0 2 (t 0 -t) -x 0 )dx. (3.22)
This prove in particular (3.7).

Step 2: Asymptotic limit of the L 2 -localized energy.

We claim that: lim

t→-∞ I (0) x0,t0 (t) = 0. (3.23) Proof of (3.23). Let ε > 0, since u(t, x) is L 2 -compact, there exists R ε > 0 such that: |x|>Rε u 2 (t, x) ≤ ε. (3.24) 
Then we deduce that:

R u 2 (t, x)φ K (x) = x>Rε u 2 (t, x)φ K (x) + x<Rε u 2 (t, x)φ K (x) ≤ ε + A. (3.25)
For the convergence of A we use that: u(t) L 2 ≤ C, φ K (x) is increasing, and φ K (-∞) = 0:

A ≤ u 2 φ K (R ε - c 0 2 (t 0 -t) -x 0 ) → 0 as t → -∞. (3.26)
Moreover, passing to the limit in (3.22), we deduce that:

I (0) x0,t0 (t 0 ) + t0 -∞ [µ p (∂ 2 x u) 2 + (∂ x u) 2 + u 2 ](t, x)φ K (x)dxdt sup t∈R u(t) 2 L 2 e -x0/K . (3.27)
Step 3: Monotonicity formula at any order. For x 0 > 0, t 0 ≥ t and k ∈ N, we claim that:

(∂ k x u) 2 (t 0 , x)φ K (x -x 0 )dx + t0 -∞ [µ p (∂ k+2 x u) 2 + (∂ k+1 x u) 2 + (∂ k x u) 2 ](t, x)φ K (x)dxdt sup t∈R u(t) 2
H k e -x0/K , (3.28) Proof of (3.28). We proceed by induction on k. From Step 1 and Step 2, the estimate (3.28) holds for k = 0. Now, we assume that (3.28) is true for 1 ≤ j ≤ k -1. By repeating the computations done on Step 1, we get:

d dt I (k) x0,t0 (t) = -5µ p (∂ k+2 x u) 2 φ K (x) -3 (∂ k+1 x u) 2 φ K (x) - c 0 2 (∂ k x u) 2 φ K (x) + 5µ p (∂ k+1 x u) 2 φ K (x) -µ p (∂ k x u) 2 φ (5) K (x) + (∂ k x u) 2 φ K (x) -2 ∂ k+1 x (ϕ p c0,p,µp u)(∂ k x u)φ K (x). (3.29)
By applying the similar arguments as for the estimate (3.19), we have:

5µ p (∂ k+1 x u) 2 φ K (x) -µ p (∂ k x u) 2 φ (5) K (x) + (∂ k x u) 2 φ K (x) ≤ max 5µ p K 2 , µ p K 4 + 1 K 2 ((∂ k+1 x u) 2 + (∂ k x u) 2 )φ K (x). (3.30)
Let us estimate the last term in (3.29). Applying the Leibniz formula on ∂ k+1

x (ϕ p c0,p,µp u), it holds:

-2 ∂ k+1 x (ϕ p c0,p,µp u)(∂ k x u)φ K (x) = (∂ k x u) 2 [-(2k + 1)(ϕ p c0,p,µp ) φ K (x) + ϕ p c0,p,µp φ K (x)] -2 k-1 j=0 C j k+1 (∂ k x u)(∂ j x u)(ϕ p c0,p,µp ) (k-j+1) φ K (x). (3.31)
Arguing as for the estimate (3.21), we get

(∂ k x u) 2 -(2k + 1)(ϕ p c0,p,µp ) φ K (x) + ϕ p c0,p,µp φ K (x) ∂ k x u 2 L 2 e (-c 0 2 (t0-t)-x0)/K . (3.32)
Similarly, with the last term we apply the Young's inequality and we argue as estimate (3.21):

2 k+1 j=2 C j k+1 (∂ k x u)(∂ k-j+1 x u)(ϕ p c0,p,µp ) (j) φ K (x) u 2 H k e (-c 0 2 (t0-t)-x0)/K . (3.33) 
Therfore, by integrating (3.29) between on t and t 0 , and combining the estimates (3.30), (3.32) and (3.33), we obtain

I (k) x0,t0 (t 0 ) + t0 t [µ p (∂ k+2 x u) 2 + (∂ k+1 x u) 2 + (∂ k x u) 2 ]φ K (x) ≤ sup t∈R u 2 H k e -x0/K + I (k) x0,t0 (t). (3.34)
Letting t tends to -∞ we get:

I (k) x0,t0 (t 0 ) + t0 -∞ [µ p (∂ k+2 x u) 2 + (∂ k+1 x u) 2 + (∂ k x u) 2 ]φ K (x) ≤ sup t∈R u 2 H k e -x0/K + lim inf t→-∞ I (k) x0,t0 (t). (3.35) Let us proof that I (k) x0,t0 (t) → 0 as t → -∞. From the induction hypothesis with j = k -1, we know that t0 -∞ (∂ k x u) 2 φ K (x) e -x0/K . (3.36) Then t0 -∞ x< c 0 2 (t0-t)+x0 (∂ k x u) 2 e (x-c 0 2 (t0-t))/K 1, (3.37) 
since e x/K φ K (x) for x < 0. Thus, passing to the limit as x 0 tends to +∞ in (3.37) and multiplying by e -x0/K , we get:

t0 -∞ (∂ k x u) 2 e x/K e -x0/K , (3.38) 
and then, since φ(x) e x/K for all x ∈ R, Step 4: Smoothness and exponential decay. For all k ∈ N, we claim that:

t0 -∞ (∂ k x u) 2 φ K (x) e -x0/K . (3.39) Thus, we infer that lim inf t→-∞ (∂ k x u) 2 φ K (x) = 0. ( 3 
sup t∈R u(t) H k+2 ≤ C (3.41) and (∂ k x u) 2 (t 0 , x)e |x|/K ≤ C. (3.42)
Proof of (3.42) assuming (3.41). From Step 3, we know that:

(∂ k x u) 2 (t 0 , x)φ K (x -x 0 ) e -x0/K , (3.43) 
and then

x<x0 (∂ k x u) 2 (t 0 , x)e x/K 1, (3.44) 
since e (x-x0)/K φ K (x -x 0 ) for x < x 0 . Now, passing to the limit as x 0 tends to +∞ in (3.44), we get the exponential decay property by the right:

(∂ k x u) 2 (t 0 , x)e x/K 1. (3.45)
For the left exponential decay proprety, one can remark that u(-t, -x) satisfies (3.1) and (3.2). Then, repeating the same analysis with u(-t, -x), we get the claim (3.42). In particular, applying the Gagliardo-Nirenberg inequality, we infer that for all k ∈ N and t 0 ∈ R:

(∂ k x u)(t 0 )e |•|/2K L ∞ ≤ C G (∂ k x u)(t 0 )e |•|/2K 1/2 L 2 (∂ k x u)(t 0 )e |•|/2K L 2 + (∂ k+1 x u)(t 0 )e |•|/2K L 2 1/2 1,
(3.46) and this prove (3.6).

Let us prove (3.41). Assume that k = 1. From (3.28) we know that for all t 0 ∈ R:

t0 t0-1 (∂ 3 x u) 2 (t, x)φ K (x) sup t∈R u(t) 2 H 1 e -x0/K . (3.47)
Now arguing as from the estimate (3.46), and using the invariance of the problem by the transformation: x → -x and t → -t, we get:

t0 t0-1 (∂ 3 x u) 2 (t, x)e |x|/K ≤ sup t∈R u(t) 2 H 1 ≤ C. (3.48)
This implies that there exists t 1 ∈ [t 0 -1, t 0 ] such that:

(∂ 3 x u) 2 (t 1 , x) ≤ C. (3.49)
On the other hand, using the equation of u(t, x), one can easly check that:

1 2 d dt (∂ 3 x u) 2 = ∂ 3 x (ϕ p c0,p,µp u)(∂ 4 x u). (3.50)
We claim that: 1 2

d dt (∂ 3 x u) 2 (∂ 3 x u) 2 + sup t∈R u(t) 2 H 2 . (3.51)
Indeed, applying the Leibniz formula, we have:

∂ 3 x (ϕ p c0,p,µp u) = 3 k=0 C k 3 (ϕ p c0,p,µp ) (k) (∂ 3-k x u). (3.52)
Let us explain the estimate of the first term:

ϕ p c0,p,µp (∂ 3 x u)(∂ 4 x u) = - 1 2 (ϕ p c0,p,µp ) (∂ 3 x u) 2 (∂ 3 x u) 2 .
(3.53) By Young's inequality the estimate of the last term is given by:

(ϕ c0,p,µp ) (3) u(∂ 4 x u) = -(ϕ c0,p,µp ) (4) u(∂ 3 x u) -(ϕ c0,p,µp ) (3) (∂ x u)(∂ 3 x u) u 2 + (∂ x u) 2 + (∂ 3 x u) 2 .
(3.54) Therefore, by integrating (3.51) between [t 1 , t 0 ] and using (3.49), we obtain that:

(∂ 3 x u) 2 (t 0 , x) ≤ C. (3.55)
The iteration of this method implies (3.41).

Proof of Theorem 3.1.

We follows the ideas of Martel [START_REF] Martel | Linear problems related to asymptotic stability of solitons of the generalized KdV equations[END_REF] and we split the proof in four steps.

Step 1. Numerical computing of

K p = L -2 1,p,µp ϕ 1,p,µp , L -1 1,p,µp ϕ 1,p,µp L 2 ([0,10]) for p ∈ {1, 2, 3}
We work with c 0 = 1 and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 . We know that ρ 1,p,µp ∈ L -1 1,p,µp ϕ 1,p,µp , and since L 1,p,µp is self-ajoint on L 2 the value of K p does not depend on the choice of ρ 1,p,µp . We recall that ρ 1,p,µp is an even function since ϕ 1,p,µp is even, then ρ 1,p,µp ∈ (Ker L 1,p,µp ) ⊥ . Moreover L -1 1,p,µp ρ 1,p,µp , χ 1,p,µp

L 2 = λ -2
1,p,µp χ 1,p,µp , ϕ 1,p,µp L 2 = 0, where the pair (λ 1,p,µp , χ 1,p,µp ) is such that L 1,p,µp χ 1,p,µp = λ 1,p,µp χ 1,p,µp with λ 1,p,µp < 0 (see Lemma 2.1). Recall also that ρ 1,p,µp is a negative direction: L 1,p,µp ρ 1,p,µp , ρ 1,p,µp L 2 = ρ 1,p,µp , ϕ 1,p,µp L 2 < 0 for p ∈ {1, 2, 3, 4} (see [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF] Subsection 2.4).

It is well known that if K p < 0, then for all v ∈ H 2 satisfying the orthogonalities: v, ϕ 1,p,µp

L 2 = v, ρ 1,p,µp L 2 = 0, there exists C > 0 such that: L 1,p,µp v, v L 2 ≥ C v 2 H 2 .
In the proof of the Theorem 3.1 we will use this coercivity. Following exactly the same numerical scheme described in [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF] (see Subsection 2.4), we compute that: K 1 ≈ -6.4912 < 0 (see Fig. 1a-1b), K 2 ≈ -0.0713 < 0 (see Fig. 1c-1d) and K 3 ≈ 0.1090 > 0 (see Fig. 1e-1f).

Step 2. Linear dual problem related to (3.1)

We set ṽ = L c0,p,µp u. Since ϕ c0,p,µp ∈ KerL c0,p,µp , we get the first orthogonality condition: ṽ, ϕ c0,p,µp L 2 = 0, and from (3.1) we infer that ṽ satisfies: ∂ t ṽ = L c0,p,µp (∂ x ṽ) on R × R. Next, we modify ṽ to obtain the second othogonality condition with the function ρ c,p,µp :

v(t, x) = ṽ(t, x) - ṽ(t, x)ρ c0,p,µp (x) ϕ c0,p,µp (x)ρ c0,p,µp (x) ϕ c0,p,µp (x). (3.56)
One can see that v, ϕ c0,p,µp L 2 = v, ρ c0,p,µp L 2 = 0 and satisfies for (t, x) ∈ R × R:

∂ t v = L c0,p,µp (∂ x v) + δ(t)ϕ c0,p,µp , (3.57) 
with

δ(t) = - 1 ϕ c0,p,µp (x)ρ c0,p,µp (x) d dt ṽ(t, x)ρ c0,p,µp (x), (3.58) 
since L c0,p,µp (∂ x v) = L c0,p,µp (∂ x ṽ). Now, substituting ∂ t ṽ by L c0,p,µp (∂ x ṽ) in (3.58), using that L c0,p,µp ρ c0,p,µp = ϕ c0,p,µp , doing intergation by parts, and from the fact ṽ is orthogonal to ϕ c0,p,µp in L 2 , we obtain that δ(t) = 0. This justifies our choice of orthogonality condition between v and ρ c0,p,µp (as Côte and al.). Therefore, v is a solution of the following linear dual problem:

∂ t v = L c0,p,µp (∂ x v), (t, x) ∈ R × R. (3.59)
Step 3. Virial Type Identity related to equation (3.59) We compute a Virial Type Identity for the linear dual problem (3.59). By multiplying (3.59) with the function v(t, x)x and integrating on R, we obtain 1 2

d dt v 2 x = (∂ t v)vx = L c0,p,µp (∂ x v)vx. (3.60)
Using the definition of L c0,p,µp , it holds

L c0,p,µp (∂ x v)vx = µ p (∂ 5 x v)vx -(∂ 3 x v)vx + c 0 (∂ x v)vx -ϕ p c0,p,µp (∂ x v)vx = I + J + K + L. (3.61)
Now, with the aid of integration by parts, I give us

I = -µ p (∂ 4 x v)∂ x (vx) = -µ p (∂ 4 x v)v -µ p (∂ 4 x v)(∂ x v)x = I 1 + I 2 , (3.62) 
with

I 1 = µ p (∂ 3 x v)(∂ x v) = -µ p (∂ 2 x v) 2 (3.63) 
and

I 2 = µ p (∂ 3 x v)∂ x [(∂ x v)x] = µ p (∂ 3 x v)(∂ 2 x v)x + µ p (∂ 3 x v)(∂ x v) = µ p 2 ∂ x [(∂ 2 x v) 2 ]x -µ p (∂ 2 x v) 2 = - 3µ p 2 (∂ 2 x v) 2 .
(3.64) Summing (3.63) and (3.64), we deduce that

I = - 5µ p 2 (∂ 2 x v) 2 . (3.65)
We compute J:

J = (∂ 2 x v)∂ x (vx) = (∂ 2 x v)v + (∂ 2 x v)(∂ x v)x = -(∂ x v) 2 + 1 2 ∂ x [(∂ x v) 2 ]x = - 3 2 (∂ x v) 2 . (3.66)
Finally, we compute K and L:

K = c 0 2 ∂ x (v 2 )x = - 1 2 v 2 (3.67) and L = - 1 2 ∂ x (v 2 )ϕ p c0,p,µp x = 1 2 v 2 ϕ p c0,p,µp + p 2 v 2 ϕ p-1 c0,p,µp ϕ c0,p,µp x. (3.68)
Thus, summing (3.65)-(3.68), we obtain the following identity:

- d dt v 2 x = 5µ p (∂ 2 x v) 2 + 3 (∂ x v) 2 + c 0 v 2 -v 2 ϕ p c0,p,µp -p v 2 ϕ p-1 c0,p,µp ϕ c0,p,µp x. (3.69)
Step 4. End of the proof of Theorem 3.1.

The goal is to prove that v(t, x) = L c0,p,µp u(t, x) = 0 for all (t, x) ∈ R × R, and then we will deduce that u(t, x) = a 1 ϕ c0,p,µp (x), with a 1 ∈ R, since KerL c0,p,µp = {0, ϕ c0,p,µp }. The definition of L c0,p,µp permit us to rewrite (3.69) as:

- d dt v 2 x = L c0,p,µp v, v L 2 + 4µ p (∂ 2 x v) 2 + 2 (∂ x v) 2 -p v 2 ϕ p-1 c0,p,µp ϕ c0,p,µp x. (3.70)
With the last term we deal as follow, let us set ϕ c0,p,µp 

(x) = ϕ 1,p,µp (x)+(ϕ c0,p,µp (x)-ϕ 1,p,µp )(x) = ϕ c0,p,µp (x)+ γ(x).
-p v 2 ϕ p-1 c0,p,µp ϕ c0,p,µp x ≥ -p v 2 ϕ p-1 1,p,µp ϕ 1,p,µp x -γ v 2 . (3.71)
Since ϕ c0,p,µp (x) > 0 and -ϕ c0,p,µp (x)x > 0 for all x ∈ R, we get

-p v 2 ϕ p-1 c0,p,µp ϕ c0,p,µp x ≥ -γ v 2 . (3.72)
The identity (3.70) becomes

- d dt v 2 x ≥ L c0,p,µp v, v L 2 + 4µ p ∂ 2 x v 2 L 2 + 2 ∂ x v 2 L 2 -γ v 2 L 2 . (3.73) Recall that v, ϕ c0,p,µp L 2 = v, ρ c0,p,µp L 2 = 0 (by Step 2)
. Now, we claim that v still almost ortogonal to ϕ 1,p,µp and ρ 1,p,µp . Indeed, applying the Cauchy-Schwarz inequality, it holds

| v, ϕ 1,p,µp | ≤ γ v L 2 and | v, ρ 1,p,µp | = v, d dc |c=c 0 ϕ c,p,µp - d dc |c=1 ϕ c,p,µp L 2 ≤ γ v L 2 . (3.74)
Since v is almost orthogonal to ϕ 1,p,µp and ρ 1,p,µp , and since K p < 0 for p = 1, 2 (by Step 1), and L 1,p,µp possesses the properties (P1)-(P2) (see Lemma Spectral), arguing as [START_REF] Kabakouala | On the stability of the solitary waves to the (generalized) Kawahara equation[END_REF] (see Subsection 2.3), there exists

C 0 > 0 such that L 1,p,µp v, v L 2 ≥ C 0 v 2 H 2 . (3.75)
It follows immediatly that for c 0 close to 1,

L c0,p,µp v, v L 2 = L 1,p,µp v, v L 2 + (c 0 -1) v 2 L 2 -v 2 , ϕ p c0,p,µp -ϕ p 1,p,µp L 2 ≥ C 0 v 2 H 2 + (c 0 -1 -γ) v 2 L 2 ≥ C 0 2 v 2 H 2 . (3.76)
Then combining (3.73) and (3.76), we get the following inequality

- d dt v 2 x ≥ C 1 v 2 H 2 .
(3.77) Lemma 3.1, the definition of L c0,p,µp , the smoothness and exponential decay properties of ϕ c0,p,µp , imply that v ∈ C ∞ (R × R), and there exists σ 0 > 0 such that

|v(t, x)| e -σ0|x| , ∀(t, x) ∈ R × R. (3.78)
For all t ∈ R, we set

J (t) = v 2 (t, x)x. (3.79)
Thanks to (3.78), one can check that for all t ∈ R:

|J (t)| ≤ v 2 (t, x)|x| R e -2σ|x| |x| = 1 2σ 2 1 . (3.80)
Now, integrating (3.77) with respect to time and using (3.80), we obtain

+∞ -∞ v(t) 2 H 2 dt ≤ C -1 1 (J (-∞) -J (+∞)) < +∞. (3.81)
It follows that for a time sequence

t n → +∞, we have v(t n ) → 0 in H 2 (R).
In particular, we have

|J (t n )| ≤ v(t n )x L 2 v(t n ) L 2 1 √ 2σ 3 1 v(t n ) L 2 → 0 as t n → +∞. (3.82)
We infer that J (+∞) = 0. Similarly, J (-∞) = 0. Thus (3.81) becomes

+∞ -∞ v(t) 2 H 2 dt = 0,
which implies that v(t, x) ≡ 0 for all (t, x) ∈ R × R. Then L c0,p,µp u(t, x) = ṽ(t, x) = β(t)ϕ c0,p,µp (x), and using that L c,p,µp ρ c,p,µp (x) = ϕ c,p,µp (x) and KerL c0,p,µp = ϕ c0,p,µp , we get u(t, x) = a(t)ρ c0,p,µp (x) + b(t)ϕ c0,p,µp (x).

One can easily compte that ∂ x L c0,p,µp u = a(t)ϕ c0,p,µp (x) and

∂ t u = a (t)ρ c0,p,µp (x) + b (t)ϕ c0,p,µp (x). Now, using that ∂ t u = ∂ x (L c0,p,µp u)
, we obtain a (t) = 0 and b (t) = a(t), and this implies that a(t) = a 0 and b(t) = a 0 t + a 1 . Finally, since sup t∈R u(t) H 2 ≤ C, then a 0 = 0 and we deduce that u(t, x) ≡ a 1 ϕ c0,p,µp (x) for all (t, x) ∈ R × R.

Proof of Corollary 3.1. The corollary 3.1 follows since we have:

L -1 1,1,0 ψ 1,1 , ψ 1,1 L 2 ([0,10]) = -7
.5784 < 0 (see Fig. 2a-2b). Note that L -1 1,2,0 ψ 1,2 , ψ 1,2 L 2 ([0,10]) = 0.521 > 0 (see Fig. 2c-2d).

4 Linear Liouville property with the family of solitons of gKW which converge to the soliton of gKdV Theorem 4.1 (Linear Liouville property with ψ c,p,µ for p > 1 and c > 0). The Theorem 3.1 holds with the family of solitons {ψ c,p,µ : 0 < µ 1} with 0 < µ < µ 0 1, for any speed c > 0, and for all nonlinearity power p > 1.

Proof. The proof of the Theorem 4.1 is done by contradiction following the ideas of Kenig-Martel-Robbiano [START_REF] Kenig | Local well-posedness and blow-up in the energy space for a class of L 2 critical dispersion generalized Benjamin-Ono equations[END_REF] and assuming that the Linear Liouville property holds for the solitons of gKdV. We choose c = 1, and we assume that µ n → 0 + as n → +∞, and the functions w n (t, x) satisfy:

∂ t w n = ∂ x (L 1,p,µn w n ), (t, x) ∈ R × R, (4.1) 
w n (t, x) = a n (t)ψ 1,pµn (x), sup t∈R w n (t) H 2 ≤ C n , (4.2) 
and

∀ε > 0, ∃R n (ε) > 0, ∀t ∈ R, |x|>Rn(ε) |w n (t, x)| 2 dx ≤ ε. (4.3)
We start by constructing the functions wn (t, x) orthogonal to ψ 1,p,µn (x) in L 2 . We set: 

wn (t, x) = w n (t, x) - w n (t, x)ψ 1,p,µn (x) (ψ 1,p,µn (x)) 2 ψ 1,p,µn (x). (4.4) 0 1 2 3 4 5 6 7 8 9 10 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 (a) ρ 1,1,µ 1 (x) and L -1 1,1,µ 1 ρ 1,1,µ 1 (x) profiles. 0 2 4 6 8 -7 -6 -5 -4 -3 -2 -1 0 (b) x 0 L -1 1,1,µ 1 ρ 1,1,µ 1 (x)(y)ρ 1,1,µ 1 (y) profile. 0 2 4 6 8 10 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 (c) ρ 1,2,µ 2 (x) and L -1 1,2,µ 1 ρ 1,2,µ 2 (x) profiles. 0 2 4 6 8 -0.25 -0.2 -0.15 -0.1 -0.05 0 (d) x 0 L -1 1,2,µ 2 ρ 1,2,µ 2 (y)ρ 1,2,µ 2 (y) profile.
(f) x 0 L -1 1,3,µ 3 ρ 1,3,µ 3 (y)ρ 1,3,µ 3 (y) profile.
µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 ).
Using (4.1)-(4.3), and the fact that (ϕ µn ) n∈N is bounded in H s (R) and decays exponentially, we deduce that:

∂ t wn = ∂ x (L 1,p,µn wn ) + δ n (t)ψ 1,p,µn , (t, x) ∈ R × R, (4.5) wn (t, x) = 0, sup t∈R wn (t) H 2 ≤ C n , wn (t)ψ 1,p,µn = 0, (4.6) δ n (t) = 1 (ψ 1,p,µn ) 2 wn (t)L 1,p,µn (ψ 1,p,µn ), (4.7) 
and By the monotonicity property related to the Linear Liouville property, we know that (4.9) holds for w n (t, x). Then, It suffices to explain how we can estimate the term which contain δ n (t). We have:

∀ε > 0, ∃R n (ε) > 0, ∀t ∈ R, |x|>Rn(ε) | wn (t, x)| 2 dx ≤ ε. (4.8) 0 2 4 6 8 10 -3 -2 -1 0 1 2 3 (a) ρ 1,1 (x) and L -1 1,1,0 ρ 1,1 (x) profiles. 0 2 4 6 8 10 -8 -7 -6 -5 -4 -3 -2 -1 0 (b) x 0 L -1 1,1,0 ρ 1,1 (y)ρ 1,1 (y) profile. 0 2 4 6 8 10 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 (c) ρ 1,2 (x) and L -1 1,2,0 ρ 1,1 (x) profiles. 
(d) x 0 L -1 1,1,0 ρ 1,2 (y)ρ 1,2 (y) profile. 
δ n (t) ϕ (6) 1,p,µn (x)(∂ 5 x ω n )(t, x)φ K (x) = -δ n (t) ∂ 5 x [ϕ (6) 
1,p,µn (x)φ K (x)] wn (t, x)

|δ n (t)| wn (t) L 2 e -2|x| e 2x/K 1/2 wn (t) 2 L 2 e (-c 0 2 (t0-t)-x0)/K . (4.10)
Then integrating between [t, t 0 ] we obtain: 

t0 t δ n (t) ϕ (6) 1,p,µn (x)(∂ 5 x ω n )(t, x)φ K (x) sup t∈R wn (t) 2 L 2 e -x0/K . ( 4 
∂ t w n = ∂ x (L 1,p,µn w n ) + δn (t)ψ 1,p,µn , (t, x) ∈ R × R, (4.18) 
w n (0) H 5 ≥ 1 2 , w n (0) H 5 ≤ 1, w n (0)ϕ 1,p,µn = 0, (4.19) 
and

∀x 0 > 0, 5 k=0 |x|>x0 (∂ k x w n (0, x)) 2 dx e -x0/K . (4.20)
Since ( w n (0)) is bounded in H 5 , there exists w 0 ∈ H 5 , such that up to a subsequence: 

w n (0) w 0 in H 5 as n → +∞, (4.21) 
∂ t w = ∂ x (L 1,p,0 w), (t, x) ∈ R × R, w(0, x) = w 0 ∈ H 5 (R). (4.24)
We claim that ∀t ∈ R:

w n (t) → w(t) in H 2 as n → +∞. (4.25)
Since (4.18) is invariant by the transformation: x → -x and t → -t, it suffice to prove (4.25) for t > 0. We define ∀t ∈ R:

v n (t, x) = w n (t, x) -w(t, x). (4.26)
Then v(t, x) satisfies:

∂ t v n = ∂ x (L 1,p,µn v n ) + µ n ∂ 5 x w -∂ x [(ψ p 1,p,µn -ψ p 1,p ) w], (4.27) 
and we have:

v n (0) → 0 in H 4 as n → +∞ and sup t∈[0,T ] v n (t) H 5 ≤ C T . (4.28) Let us compute d dt w(t) 2 H 2 : 1 2 d dt (∂ 2 x v) 2 = ∂ 3 x (L 1,p,µn v) + µ n (∂ 7 x w)(∂ 2 x v n ) -∂ 3 x [(ψ p 1,p,µn -ψ p 1,p ) w](∂ 2 x v n ) = A + B + C. (4.29) Let us estimate C: C = (ψ p 1,p,µn -ψ p 1,p ) w(∂ 5 x v n ) ≤ w L ∞ ψ p 1,p,µn -ψ p 1,p L 2 ∂ 5 x v n L 2 ≤ C T ψ p 1,p,µn -ψ p 1,p L 2 . (4.30) Let us estimate B: B = -µ n (∂ 4 x w)(∂ 5 x v n ) ≤ µ n ∂ 4 x w L 2 ∂ 5 x v n L 2 ≤ C T µ n . (4.31) Let us estimate A: A = -∂ 3 x (ψ p 1,p,µn v n )(∂ 2 x v n ), (4.32) 
and recall that:

∂ 3 x (ψ p 1,p,µn v n ) = 3 k=0 C k 3 (ψ p 1,p,µn ) (k) (∂ 3-k x v n ). (4.33)
We have:

-ψ 1,p,µn (∂ 3 x v n )(∂ 2 x v n ) = 1 2 ψ 1,p,µn (∂ 2 x v n ) 2 (∂ 2 x v n ) 2 , (4.34) 
and applying Young's inequality:

ψ (3) 1,p,µn v n (∂ 2 x v n ) v 2 n + (∂ 2 x v n ) 2 . (4.35)
Now combining (4.27)-( 4.35) we get:

1 2 d dt (∂ 2 x v n ) 2 (t, x) (∂ 2 x v n ) 2 (t, x) + C T (µ n + ψ p 1,p,µn -ψ p 1,p L 2 ). (4.36) 
One can easly deduce that:

d dt v n (t) 2 H 2 v n (t) 2 H 2 + C T (µ n + ψ p 1,p,µn -ψ p 1,p L 2 ). (4.37)
Then integrating between 0 < t < T we obtain:

v n (t) 2 H 2 C T ( v n (0) 2 H 2 + µ n + ψ p 1,p,µn -ψ p 1,p L 2 ) → 0 as n → +∞. (4.38)
Moreover, using that: ∀k ∈ N lim n→+∞ ψ 1,p,µn -ψ 1,p H k = 0, we get:

δn (t) → δ(t) = 1 (ψ 1,p ) 2 w(t)L 1,p,0 (ψ 1,p ). (4.39) Let us define: w(t, x) = w(t, x) + ψ 1,p (x) t 0 δ(s)ds. Then ∀t ∈ R, wn (t) → w(t) in H 2 , (4.40) ∂ t w = ∂ x (L 1,p,0 w) + δψ 1,p , (4.41) 
w(0) = 0, w(t, x)ψ 1,p = 0, (4.42) and

∀x 0 > 0, ∀t ∈ R, 5 k=0 |x|>x0 (∂ k x w(t, x)) 2 dx e -x0/K . (4.43)
But the existence of such a w(t, x) is a contradiction with the linear Liouville Property for the gKdV equation (See Theorem 1 in Martel [START_REF] Martel | Linear problems related to asymptotic stability of solitons of the generalized KdV equations[END_REF]).

5 Nonlinear Liouville property with the familly of solitons of gKW which converge to the soliton of gKdV Theorem 5.1 (Nonlinear Liouville property with ψ c,p,µ for p > 1 and c > 0). Let p > 1, c > 0, and 0 < µ < µ 0 1. Assume that u(t, x) the H 2 global solution of the gKW equation which is close to the soliton ψ c,p,µ at the initial time (t = 0):

u 0 -ψ c,p,µ H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x), (5.1) 
and assume that u(t, x + ξ(t)) is L 2 -compact:

∀ε > 0 ∃R ε > 0 such that ∀t ∈ R |x|>Rε |u(t, x + ξ(t))| 2 ≤ ε, (5.2) 
then u(t, x) = ψ c,p,µ (x -ξ(0) -c(0)t), ∀(t, x) ∈ R × R, (5.3) 
where the translation function ξ(t) and the speed function c(t) are given by Lemma 5.1 below.

Construction of modulation parameters I

In this section we recall the lemma that give us the exitence of the modulation parameters.

Lemma 5.1 (Construction of modulation parameters). Let p > 1, c > 0, and 0 < µ < µ 0 1. Assume that u(t, x) the H 2 global solution of the gKW equation which is close to the soliton ψ c,p,µ at the initial time (t = 0):

u 0 -ψ c,p,µ H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x), (5.4) 
Then there exists c(t) ∈ C 1 (R) and ξ(t) ∈ C 1 (R) such:

η(t, x) = u(t, x + ξ(t)) -ψ c(t),p,µ (x), (5.5) 
satisfying for all t ∈ R,

|ξ(0)| + |c(t) -c 0 | + η(t) H 2 ≤ K 0 γ, (5.6 
)

η(t, x), ψ c(t),p,µ (x) = η(t, x), ψ c(t),p,µ (x) = 0, (5.7) 
and

|c (t)| 1/2 + |ξ (t) -c(t)| ≤ K 0 η 2 (t, x)ψ c,p,µ (x) 1/2 ≤ K 0 η(t) L 2 , (5.8) 
where K 0 is a positive constant.

Monotonicity formula related to the nonlinear gKW equation I

Proposition 5.1 (Monotonicity formula I). Let p > 1, c > 0, and 0 < µ < µ 0 1. Assume that u(t, x) is the H 2 global solution of the gKW equation which is close to the soliton ψ c,p,µ at the inital time (t = 0):

u 0 -ψ c,p,µ H 2 ≤ γ, with γ
1, and u 0 (x) = u(0, x).

(5.9)

Let x 0 > 0, K > 0 chosen correctly, t 0 > t, and φ K (x) = 1 2 + 1 2 tanh(x/2K). We set: x = x -c 2 (t 0 -t) -x 0 , and we redefine:

I x0,t0 (t) = η 2 (t, x)φ K (x) and J x0,t0 (t) = ( µ 2 (∂ 2 x η) 2 + 1 2 (∂ x η) 2 -R(η, ψ c,p,µ ))(t, x)φ K (x), (5.10) 
where

R(η, ψ c,p,µ ) = 1 (p + 1)(p + 2) p+2 k=2 C k p+2 η k ψ p-k+2 c,p,µ .
(5.11)

Assume that u(t, x) is the H 2 global solution of the gKW equation which is close to the soliton ψ c,p,µ at the inital time (t = 0): u 0 -ψ c,p,µ H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x).

(5.12)

Then we have:

I x0,t0 (t 0 ) -I x0,t0 (t) e -x0/K et J x0,t0 (t 0 ) -J x0,t0 (t) e -x0/K . (5.13)
Moreover if we assume that u(t, x + ξ(t)) is L 2 -compact:

∀ε > 0 ∃R ε > 0 such that ∀t ∈ R |x|>Rε |u(t, x + ξ(t))| 2 ≤ ε, (5.14) 
then we have:

2 k=0 (∂ k x η) 2 (t 0 , x)e |x|/K + t0 t0-1 [µ(∂ 4 x η) 2 + 3 k=0 (∂ 3 x η) 2 ](t, x)e |x|/K dxdt sup t∈R η(t) 2 H 2 , (5.15) 
where ξ(t) is given by Lemma 5.1.

Proof. We present the proof in four steps.

Step 1: Monotonicity formula for the L 2 localized mass. For all x 0 > 0, and t 0 > t, we claim that:

I x0,t0 (t 0 ) -I x0,t0 (t) sup t∈R η(t) 2 L 2 e -x0/K . (5.16) 
Proof. Recall that the equation of η(t, x) is given by:

∂ t η = ∂ x (L c,p,µ η) + ∂ x R 1 (η, ψ c,p,µ ) + (ξ -c)∂ x (η + ψ c,p,µ ) + c ρ c,p,µ , (5.17) 
where

R 1 (η, ψ c,p,µ ) = - 1 p + 1 p+1 k=2 C k p+1 η k ψ p-k+1 c,p,µ .
(5.18)

Now by differentiating I x0,t0 with respect to time:

d dt I x0,t0 (t) = 2 (∂ t η)ηφ K (x) + c 2 η 2 φ K (x) = 2 ∂ x (L c,p,µ η)ηφ K (x) + 2 ∂ x (R 1 (η, ψ c,p,µ ))ηφ K (x) + 2(ξ -c) ∂ x (η + ψ c,p,µ )ηφ K (x) + 2c ρ c,p,µ ηφ K (x) = A + B + C + D. (5.19)
The estimate of A is given by the monotonocity formula related to the linearized gKW equation:

A -µ (∂ 2 x η) 2 φ K (x) -(∂ x η) 2 φ K (x) -η 2 φ K (x) + η 2 L 2 e (-c 2 (t0-t)-x0)/K . (5.20)
The estimate of B is the following:

B = 2 p + 1 p+1 k=2 C k p+1 η k+1 [- 1 k + 1 ∂ x (ψ p-k+1 c,p,µ φ K (x)) + ψ p-k+1 φ K (x)] η 3 ψ c,p,µ φ K (x) + η 3 φ K (x) sup x∈R (e -c|x| e -x/K ) η H 1 η 2 L 2 + η H 1 η 2 φ K (x) η H 1 η 2 L 2 e (-c 2 (t0-t)-x0)/K + η 2 φ K (x) . (5.21)
The estimate of C is:

C = -2(ξ -c) η 2 φ K (x) + 2(ξ -c) ηψ c,p,µ φ K (x) η L 2 η 2 φ K (x) + η 2 L 2 e -2c|x| e -2x/K 1/2 η L 2 η 2 φ K (x) + η 2 L 2 e (-c 2 (t0-t)-x0)/K . (5.22)
Since ρ c,p,µ decays exponantially, the estimate of D is similar to C:

D η 3 L 2 e (-c 2 (t0-t)-x0)/K . (5.23)
Finally, by combining (5.19)- (5.22), and integrating between [t, t 0 ] we obtain for γ small enough and K chosen correctly:

I x0,t0 (t 0 ) -I x0,t0 (t) + t0 t (µ(∂ 2 x u) 2 + (∂ x u) 2 + u 2 )(s, x)dxds sup t∈R η(t) 2 L 2 e -x0/K , (5.24) 
and this prove (5.16).

Step 2: The asymptotic limit of the L 2 localized energy.

We claim that ∀t 0 ∈ R:

I x0,t0 (t 0 ) + t0 -∞ (µ(∂ 2 x u) 2 + (∂ x u) 2 + u 2 )(s, x)dxds sup t∈R η(t) 2 L 2 e -x0/K . (5.25) 
In view of (5.24) to obtain (5.25) we just need to prove that: lim t→-∞ I x0,t0 (t) = 0. Let ε > 0, since by assumption u(t, x + ξ(t)) is L 2 -compact and ψ c,p,µ (x) decays exponentially, then η(t, x) is also L 2 -compact. So, there exists R ε > 0 such that ∀t ∈ R we have: |x|>Rε η 2 (t, x) ≤ ε. Now we deduce that:

I x0,t0 (t) = |x|>Rε η 2 (t, x)φ K (x) + |x|<Rε η 2 (t, x)φ K (x) ≤ ε + Z. (5.26)
For the estimate of Z we use that φ K (x) is increasing and φ K (±∞) = 0:

A ≤ φ K (R ε - c 2 (t 0 -t) -x 0 ) η(t) 2 L 2 → 0 as t → -∞.
(5.27)

Step 3: Monotonicity formula for the H 2 -localized energy.

We claim that ∀x 0 > 0 and t 0 > t, we have:

J x0,t0 (t 0 ) -J x0,t0 (t) + t0 t [µ(∂ 4 x η) 2 + 3 k=1 (∂ k x η) 2 ](t, x)φ K (x) sup t∈R η(t) 2 H 2 e -x0/K .
(5.28) Proof. We compute the time variation of

1 2 d dt (∂ x η) 2 φ K (x): 1 2 d dt (∂ x η) 2 φ K (x) = ∂ 2 x (L c,p,µ η)(∂ x η)φ K (x) + ∂ 2 x (R 1 (η, ψ c,p,µ ))(∂ x η)φ K (x) + (ξ -c) ∂ 2 x (η + ψ c,p,µ )(∂ x η)φ K (x) + c ρ c,p,µ (∂ x η)φ K (x) + c 0 2 (∂ 2 x η)φ K (x) = A + B + C + D. (5.29)
The estimate of A is given by the monotonocity formula related to the linearized gKW equation:

A -µ (∂ 3 x η) 2 φ K (x) -(∂ 2 x η) 2 φ K (x) -(∂ x η) 2 φ K (x) + η 2 H 1 e (-c 2 (t0-t)-x0)/K .
(5.30)

C + D η L 2 (∂ x η) 2 φ K (x) + η 2 H 1 e (-c 2 (t0-t)-x0)/K . (5.31)
Let us explain the estimate of the nonlinear term B:

B = -∂ x (R 1 (η, ψ c,p,µ ))(∂ 2 x η)φ K (x) -∂ x (R 1 (η, ψ c,p,µ ))(∂ x η)φ K (x) = B 1 + B 2 .
(5.32)

We have:

-∂ x (R 1 (η, ψ c,p,µ )) = 1 p + 1 p+1 k=2 C k p+1 k(∂ x η)η k-1 ψ p-k+1 c,p,µ + η k (ψ p-k+1 c,p,µ ) , (5.33) 
then

B 1 = 1 p + 1 p+1 k=2 C k p+1 k (∂ 2 x η)(∂ x η)η k-1 ψ p-k+1 c,p,µ φ K (x) + 1 p + 1 p+1 k=2 C k p+1 (∂ 2 x η)η k (ψ p-k+1 c,p,µ ) φ K (x) = B 11 + B 12 .
(5.34) We compute:

B 11 = - p 2 (∂ x η) 3 η p-1 φ K (x) - 1 p + 1 p k=2 C k p+1 k 2 (k -1) (∂ x η) 3 η k-2 ψ p-k+1 c,p,µ φ K (x) - 1 p + 1 p+1 k=2 C k p+1 k 2 (∂ x η) 2 η k-1 (ψ p-k+1 c,p,µ φ K (x)) , (5.35) 
and

- 1 p + 1 p k=2 C k p+1 k 2 (k -1) (∂ x η) 3 η k-2 ψ p-k+1 c,p,µ φ K (x) - 1 p + 1 p+1 k=2 C k p+1 k 2 (∂ x η) 2 η k-1 (ψ p-k+1 c,p,µ φ K (x)) (∂ x η) 3 ψ c,p,µ φ K (x) + (∂ x η) 2 ηψ c,p,µ φ K (x) η 3 H 1 e (-c 2 (t0-t)-x0)/K .
(5.36)

We have:

B 12 = - 1 p + 1 p+1 k=2 C k p+1 k (∂ 2 x η) 2 η k-1 (ψ p-k+1 c,p,µ ) φ K (x) + 1 p + 1 p+1 k=2 C k p+1 k + 1 η k+1 [(ψ p-k+1 c,p,µ ) φ K (x)] η 3 H 1 e (-c 2 (t0-t)-x0)/K .
(5.37)

The estimate of B 2 is similar more simple since it contains φ K (x) and the nonlinearity term:

η[η 2 + (∂ x η) 2 ]. Let us compute the variation of µ 2 d dt (∂ 2 x η) 2 φ K (x): µ 2 (∂ 2 x η) 2 φ K (x) = µ ∂ 3 x (L c,p,µ η)(∂ 2 x η)φ K (x) + µ ∂ x (R 1 (η, ψ c,p,µ ))(∂ 2 x η)φ K (x) + µ(ξ -c) ∂ 3 x (η + ψ c,p,µ )(∂ 2 x η)φ K (x) + µc (∂ 2 x ρ c,p,µ )(∂ 2 x η)φ K (x) + µc 4 (∂ 2 x η) 2 φ K (x) = A + B + C + D. (5.38)
The estimate of A is given by the monotonocity formula related to the linearized gKW equation:

A -µ (∂ 4 x η) 2 φ K (x) -(∂ 3 x η) 2 φ K (x) -(∂ 2 x η) 2 φ K (x) + η 2 H 2 e (-c 2 (t0-t)-x0)/K . (5.39) C + D η L 2 (∂ 2 x η) 2 φ K (x) + η 2 H 2 e (-c 2 (t0-t)-x0)/K . (5.40)
Let us show how estimate the nonlinear term B:

B = -µ ∂ 2 x (R 1 (η, ψ c,p,µ ))(∂ 3 x η)φ K (x) + ∂ 2 x (R 1 (η, ψ c,p,µ ))(∂ 2 x η)φ K (x) = B 1 + B 2 .
(5.41)

We have:

-∂ 2 x (R 1 (η, ψ c,p,µ )) = 1 p + 1 p+1 k=2 C k p+1 [(ψ p-k+1 c,p,µ ) η k + 2k(ψ p-k+1 c,p,µ ) (∂ x η)η k-1 +k(ψ p-k+1 c,p,µ )(∂ 2 x η)η k-1 + k(k -1)(ψ p-k+1 c,p,µ )(∂ x η) 2 η k-2 ].
(5.42)

Let us estimate B 13 :

B 13 = µ p + 1 p+1 k=2 C k p+1 k (∂ 3 x η)(∂ 2 x η)η k-1 (ψ p-k+1 c,p,µ )φ K (x) = - µ 2 (∂ 2 x η) 2 (∂ x η)η p-1 φ K (x) - µ 2(p + 1) p k=2 C k p+1 k(k -1) (∂ 2 x η) 2 (∂ x η)η k-2 ψ p-k+1 c,p,µ φ K (x) - µ 2(p + 1) p+1 k=2 C k p+1 k (∂ 2 x η) 2 η k-1 (ψ p-k+1 c,p,µ φ K (x)) , (5.43) 
and we have:

- µ 2(p + 1) p k=2 C k p+1 k(k -1) (∂ 2 x η) 2 (∂ x η)η k-2 ψ p-k+1 c,p,µ φ K (x) - µ 2(p + 1) p+1 k=2 C k p+1 k (∂ 2 x η) 2 η k-1 (ψ p-k+1 c,p,µ φ K (x)) η 3 H 2 e (-c 2 (t0-t)-x0)/K . (5.44) 
Let us estimate B 14 :

B 14 = µ p + 1 p+1 k=2 C k p+1 k(k -1) (∂ 3 x η)(∂ 2 x η) 2 η k-2 ψ p-k+1 c,p,µ φ K (x) = -2µ (∂ 2 x η) 2 (∂ x η)η p-1 φ K (x) - 2µ p + 1 p k=2 C k p+1 k(k -1) (∂ 2 x η) 2 (∂ x η)η k-2 ψ p-k+1 c,p,µ φ K (x) - µ p + 1 p+1 k=2 C k p+1 k(k -1)(k -2) (∂ 2 x η)(∂ x η) 3 η k-3 ψ p-k+1 c,p,µ φ K (x) - µ p + 1 p+1 k=2 C k p+1 k(k -1) (∂ 2 x η)(∂ x η) 2 η k-2 (ψ p-k+1 c,p,µ φ K (x)) = -2µ (∂ 2 x η) 2 (∂ x η)η p-1 φ K (x) + B 141 + B 142 + B 143 , (5.45) 
It is clear that the term B 141 and B 143 contain just the exponential decay.

B 142 = µ 4(p + 1) p+1 k=2 C k p+1 k(k -1)(k -2)(k -3) (∂ x η) 5 η k-4 ψ p-k+1 c,p,µ φ K (x) + µ 4(p + 1) p+1 k=2 C k p+1 k(k -1)(k -2) (∂ x η) 4 η k-3 (ψ p-k+1 c,p,µ φ K (x)) ≤ µp(p -1)(p -2) 4 (∂ x η) 5 η p-3 φ K (x) + C η 4 H 2 e (-c 2 (t0-t)-x0)/K . (5.46)
The estimate of B 2 is similar and more simple since it contains φ K (x).

Let us compute the time variation of -d dt R(η, ψ c,p,µ ):

- d dt R(η, ψ c,p,µ ) = - 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k ψ p-k+2 c,p,µ η k-1 (∂ t η)φ K (x) - c 2(p + 1)(p + 2) p+2 k=2 C k p+2 ψ p-k+2 c,p,µ η k φ K (x) = - 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k ∂ x (L c,p,µ η)ψ p-k+2 c,p,µ η k-1 φ K (x) + 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k (∂ x R 1 (η, ψ c,p,µ ))ψ p-k+2 c,p,µ η k-1 φ K (x) - (ξ -c) (p + 1)(p + 2) p+2 k=2 C k p+2 k ∂ x (η + ψ c,p,µ )ψ p-k+2 c,p,µ η k-1 φ K (x) - c (p + 1)(p + 2) p+2 k=2 C k p+2 k ρ c,p,µ ψ p-k+2 c,p,µ η k-1 φ K (x) = A + B + C + D.
(5.47)

The estimate of C and D is simple:

C + D η L 2 η 2 φ K (x) + η 2 H 1 e (-c 2 (t0-t)-x0)/K . (5.48) Let us compute A: A = - 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k ψ p-k+2 c,p,µ η k-1 φ K (x)∂ x (µ∂ 4 x η -∂ 2 x η + cη -∂ x (ψ p c,p,µ η)), (5.49 
)

A 1 = - µ (p + 1)(p + 2) p+2 k=2 C k p+2 k (∂ 5 x η)η k-1 ψ p-k+2 c,p,µ φ K (x) = µ (p + 1)(p + 2) p+2 k=2 C k p+2 k (∂ 4 x η) (k -1)(∂ x η)η k-2 ψ p-k+2 c,p,µ φ K (x) + η k-1 (ψ p-k+2 c,p,µ φ K (x)) = A 11 + A 12 .
(5.50)

A 11 = - µ (p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1) (∂ 3 x η)[(∂ 2 x η)η k-2 ψ p-k+2 c,p,µ φ K (x) + (k -2)(∂ x η) 2 η k-3 ψ p-k+2 c,p,µ φ K (x) + (∂ x η)η k-2 (ψ p-k+2 c,p,µ φ K (x)) ] = A 111 + A 112 + A 113 .
(5.51)

A 111 = µ 2 (∂ 2 x η) 2 (∂ x η)η p-1 φ K (x) + µ 2(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2) (∂ 2 x η) 2 (∂ x η)η k-3 ψ p-k+2 c,p,µ φ K (x) + µ 2(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1) (∂ 2 x η) 2 η k-2 (ψ p-k+2 c,p,µ φ K (x)) ≤ µ 2 (∂ 2 x η) 2 (∂ x η)η p-1 φ K (x) + C η 2 H 2 e (-c 2 (t0-t)-x0)/K .
(5.52)

A 112 = µ (p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2) (∂ 2 x η)[2(∂ 2 x η)(∂ x η)η k-3 ψ p-k+2 c,p,µ φ K (x) (k -3)(∂ x η) 3 η k-4 ψ p-k+2 c,p,µ φ K (x) + (∂ x η) 2 η k-3 (ψ p-k+2 c,p,µ φ K (x)) = A 1121 + +A 1122 + A 1123 .
(5.53)

A 1121 = 2µp (∂ 2 x η) 2 (∂ x η) p-1 φ K (x) + 2µ (p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2) (∂ 2 x η) 2 (∂ x η)η k-3 ψ p-k+2 c,p,µ φ K (x) ≤ 2µp (∂ 2 x η) 2 (∂ x η) p-1 φ K (x) + C η 3 H 2 e (-c 2 (t0-t)-x0)/K .
(5.54)

A 1122 = - µp(p -1)(p -2) 4 (∂ x η) 5 η p-3 φ K (x) - µ 4(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2)(k -3)(k -4) (∂ x η) 5 η k-5 ψ p-k+2 c,p,µ φ K (x) - µ 4(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2)(k -3) (∂ x η) 4 η k-4 (ψ p-k+2 c,p,µ φ K (x)) ≤ - µp(p -1)(p -2) 4 (∂ x η) 5 η p-3 φ K (x) + C η 4 H 2 e (-c 2 (t0-t)-x0)/K .
(5.55) 

A 1123 = - µ 3(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2)(k -3) (∂ x η) 4 η k-4 (ψ p-k+2 c,p,µ φ K (x)) - µ 3(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1)(k -2) (∂ x η) 3 η k-3 (ψ p-k+2 c,p,µ φ K (x)) η 3 H 2 e (-c 2 (t0-t)-x0)/K . ( 5 
A 2 = - 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k ∂ 2 x η[(k -1)(∂ x η)η k-2 ψ p-k-2 c,p,µ φ K (x) + η k-1 (ψ p-k+2 c,p,µ φ K (x)) ] = A 21 + A 22 ,
(5.58)

A 21 = 1 2(p + 1)(p + 2) p+2 k=2 C k p+2 k(k -1) (∂ x η) 2 [(k -2)(∂ x η)η k-3 ψ p-k+2 c,p,µ φ K (x) + η k-2 (ψ p-k+2 c,p,µ φ K (x)) ] ≤ p 2 (∂ x η) 3 η p-1 φ K (x) + η 2 H 1 e (-c 2 (t0-t)-x0)/K , (5.59) 
A 22 η 2 H 1 e (-c 2 (t0-t)-x0)/K . (5.60)
Let us compute A 3 :

A 3 = - c (p + 1)(p + 2) p+2 k=2 C k p+2 η k (ψ p-k+2 c,p,µ φ K (x)) η 2 L 2 e (-c 2 (t0-t)-x0)/K . (5.61)
Let us compute A 4 :

A 4 = 1 (p + 1)(p + 2) p+2 k=2 C k p+2 η k [kψ p-k+2 c,p,µ (ψ p c,p,µ ) φ K (x) -(ψ 2p-k+2 c,p,µ φ K (x)) ] η 2 L 2 e (-c 2 (t0-t)-x0)/K . (5.62) Let us compute B: B = - 1 (p + 1)(p + 2) p+2 k=2 C k p+2 k R 1 (ψ c,p,µ , η)[(k-1)(∂ x η)η k-2 ψ p-k+2 c,pµ φ K (x)+η k-1 (ψ p-k+2 c,p,µ φ K (x)) ] = B 1 +B 2 ,
(5.63) It is clear that the estimate of B 2 is:

B 2 η 3 H 1 e (-c 2 (t0-t)-x0)/K .
(5.64)

One can compute that:

B 1 = - 1 (p + 1) 2 (p + 2) p+2 k=2 C k p+2 k(k -1) p+1 j=2 C k p+1 1 j + k -1 η j+k-1 (ψ 2p-k-j+3 c,p,µ φ K (x)) η 3 H 1 e (-c 2 (t0-t)-x0)/K .
(5.65)

The term: -p 2 (∂ x η) 3 η p-1 φ K (x) content in (5.35) will cancel with this opposite content in (5.59). Similarly, the term: -5µp 2 (∂ 2

x η) 2 (∂ x η) p-1 φ K (x) content in (5.43)+(5.45) will cancel with this opposite content in (5.52)+(5.54). Also, the term: µp(p-1)(p-2)

4(p+1)

(∂ x η) 5 η p-3 φ K (x) content in (5.46) will cancel with this opposite in (5.55).

Finally, by integrating J x0,t0 (t) between [t, t 0 ] and taking γ small enough we obtain (5.28).

Step 4: Asymptotic limit of the H 2 localized energy.

We claim that for all x 0 > 0 and t 0 ∈ R:

J x0,t0 (t 0 ) + t0 -∞ [µ(∂ 4 x η) 2 + 3 k=1 (∂ k x η) 2 ](t, x)φ K (x) sup t∈R η(t) 2 H 2 e -x0/K . (5.66)
In view of (5.28) it suffice to prove that: lim t→-∞ J x0,t0 (t) = 0. It is easy to see that:

J x0,t0 (t) ≤ 2 k=0 (∂ k x η) 2 φ K (x)

and for

Step 2 we have:

2 k=0 t0 -∞ (∂ k x η) 2 φ K (x) e -x0/K . (5.67) Since φ K (x) ∼ e -|x|/K ∼ φ K (x) for x < 0: 2 k=0 t0 -∞ x< c 2 (t0-t)+x0 (∂ k x η) 2 e (x-c 2 (t0-t))/K
1, (5.68) letting x 0 → +∞ and mutiplying by e -x0/K we get:

2 k=0 t0 -∞ (∂ k x η) 2 φ K (x) 2 k=0 t0 -∞ (∂ k x η) 2 e -x/K e -x0/K , (5.69) 
and this implies that:

lim t→-∞ 2 k=0 (∂ k x η) 2 (t, x)φ K (x) = 0.
(5.70)

Step 4: Exponential decay of ∂ x η(t, x). We claim that:

2 k=0 (∂ k x η) 2 (t 0 , x)e |x|/K + t0 t0-1 [µ(∂ 4 x η) 2 + 3 k=0 (∂ 3 x η) 2 ](t, x)e |x|/K dxdt sup t∈R η(t) 2 H 2 .
(5.71)

Proof. From Step 2 and Step 3 we have:

2 k=0 (∂ k x η) 2 (t 0 , x)φ K (x -x 0 ) sup t∈R η(t) 2 H 2 e -x0/K . (5.72) 
Using that φ K (x -x 0 ) ∼ e (x-x0)/K for x < x 0 we have:

2 k=0 x<x0
(∂ k x η) 2 (t 0 , x)e x/K 1.

(5.73) Letting x 0 → +∞ and multiplying by e -x0/K we obtain the exponential decay by the right:

2 k=0 R (∂ k x η) 2 (t 0 , x)e x/K 1.
(5.74) Now using that η(-t 0 , -x) is L 2 -compact and that η(-t 0 , -x) satisfies the same equation as η(t 0 , x) with ξ(t 0 ) substituting by -ξ(-t 0 ) and c(t 0 ) by c(-t 0 ) we obtain the left exponential decay:

2 k=0 R (∂ k x η) 2 (-t 0 , x)e -x/K 1, (5.75) 
and this prove (5.71).

Proof of Theorem 5.1

The proof of Theorem 5.1 is done by contradiction following the idea of Kening-Martel-Robbiano [START_REF] Kenig | Local well-posedness and blow-up in the energy space for a class of L 2 critical dispersion generalized Benjamin-Ono equations[END_REF]. Let (u n (0, x)) be the sequence of initial data satisfying (5.1), i.e: . We define:

lim n→+∞ u n (0) -ψ 1,p,µ H 2 = 0. ( 5 
w n (t, x) = η n (t n + t, x) b n . (5.82) 
One can see that w n (0) ≥ 1 2 and w n (t) H 2 ≤ 1. Fisrt, we claim that (w n (t, x)) is H 2 -compact. Ideed, applying the monotonicity formula with η n (t, x), we have ∀n ∈ N, K > 0 large enough, ∀t ∈ R:

2 k=0 (∂ 2 x η n (t, x)) 2 e -|x|/K + t t-1 [µ(∂ 4 x η n ) 2 + 3 k=0 (∂ k x η n ) 2 ](t, x)e -|x|/K sup t∈R η n (t) 2 H 2 .
(5.83)

Then we infer that:

2 k=0 (∂ 2 x w n ) 2 (t, x)e -|x|/K + t t-1 [µ(∂ 4 x w n ) 2 + 3 k=0 (∂ k x w n ) 2 ](t,
x)e -|x|/K 1.

(5.84)

In particular this implies that w n (t, x) is H 2 -compact: Proof. The equation of w n (t, x) is given by:

∀x 0 > 0, 2 k=0 |x|>x0 (∂ k x w n ) 2 (t, x) e -x0/K . ( 5 
∂ t w n = ∂ x (L cn(t+tn),p,µ w n ) - 1 b n ∂ x (R 1 (b n w n , ψ cn(tn+t),p,µ )) + 1 b n (ξ n (t n + t) -c n (t + t n ))ψ cn(tn+t),p,µ + (ξ n (t n + t) -c(t n + t))∂ x w n + c n (t n + t) b n ρ cn(tn+t),p,µ .
(5.87)

Then we obtain

1 2 (∂ 3 x w n ) 2 = ∂ 3 x (L cn(tn+t) w n )(∂ 3 x w) - 1 b n ∂ 3 x (R 1 (b n w n , ψ cn(tn+t) ))(∂ 3 x w n ) + 1 b n (ξ n (t n + t) -c n (t n + t)) (∂ 4 x ψ cn(tn+t) )(∂ 3 x w n ) + (ξ n (t n + t) -c n (t n + t)) (∂ 4 x w n )(∂ 3 x w n ) + c n (t n + t) b n (∂ 3 x ρ cn(tn+t) )(∂ 3 x w n ) = A + B + C + D + E.
(5.88)

Let us estimate E:

E = - c n (t n + t) b n (∂ 6 x ρ cn(tn+t) )w n b n w n 3 L 2 .
(5.89)

It is clear that D = 0. Let us estimate C:

C = - 1 b n (ξ n (t n + t) -c n (t n + t)) (∂ 7 x ψ cn(tn+t),p,µ )w n w n 2 L 2 .
(5.90)

Let us estimate B:

B = 1 b n ∂ 3 x (R 1 (b n w n , ψ cn(tn+t),p,µ ))(∂ 4 x w n ), (5.91) 1 b n ∂ 3 x (R 1 (b n w n , ψ cn(tn+t),p,µ )) = 1 p + 1 p+1 k=2 C k p+1 b k-1 n [k(∂ 3 x w n )w k-1 n ψ p-k+1 cn,p,µ + 3k(k -1)(∂ 2 x w n )(∂ x w n )w k-2 n ψ p-k+1 cn,p,µ + 3k(∂ 2 x w n )w k-1 n (ψ p-k+1 cn,p,µ ) + k(k -1)(k -2)(∂ x w n ) 3 w p-3 n ψ p-k+1 cn,p,µ + 3k(k -1)(∂ x w n ) 2 w k-2 n (ψ p-k+1 cn,p,µ ) + k(k -1)(k -2)(∂ x w n ) 3 w p+3 n ψ p-k+1 cn,p,µ + 3k(k -1)(∂ x w 2 n )w k-2 n (ψ p-k+1 cn,p,µ ) + 2k(∂ x w n )w k-1 (ψ p-k+1 cn,p,µ ) ]. (5.92)
We have:

B 1 = 1 p + 1 p+1 k=2 C k p+1 b k-1 n k (∂ 3 x w n )(∂ 4 x w n )w k-1 n ψ p-k+1 cn,p,µ = - 1 2(p + 1) p+1 k=2 C k p+1 b k-1 n k (∂ 3 x w n ) 2 (w k-1 n ψ p-k+1 cn,p,µ ) b n (∂ 3 x w n ) 2 , (5.93) 
B 2 = - 1 p + 1 p+1 k=2 C k p+1 3k(k -1)b k-1 n (∂ 3 x w n )[(∂ 3 x w n )(∂ x w n )w k-2 n ψ p-k+1 cn,p,µ + (∂ 2 x w n ) 2 w k-2 n ψ p-k+1 cn,p,µ + (∂ 2 x w n )(∂ x w n )(w k-2 n ψ p-k+1 cn,p,µ ) ],
(5.94)

B 21 = - 1 p + 1 p+1 k=2 C k p+1 3k(k -1)b k-1 n (∂ 3 x w n ) 2 (∂ x w n )w k-2 n ψ p-k+1 cn,p,µ b n (∂ 3 x w n ) 2 ,
(5.95)

B 22 = 1 p + 1 p+1 k=2 C k p+1 b k-1 n k(k -1) (∂ 2 x w n ) 3 (w k-2 n ψ p-k+1 cn,p,µ ) b n (∂ 2 x w n ) 3 b n ∂ 2 x w n 2 L 2 ∂ x w n L ∞ ≤ C G b n ∂ 2 x w n 5/2 L 2 ∂ 3 x w n 1/2 L 2 ≤ C G b n ( 1 4 ∂ 3 x w n 2 L 2 + 3 4 ∂ 2 x w n 10/3
L 2 ), (5.96)

B 23 = 1 2(p + 1) p+1 k=2 C k p+1 3k(k -1)b k-1 n (∂ 2 x w n ) 2 [(∂ 2 x w n )(w k-2 n ψ p-k+1 cn,p,µ ) ] + (∂ x w n )(w k-2 n ψ p-k+1
cn,p,µ ) ], (5.97)

B 231 = 1 2(p + 1) p+1 k=2 C k p+1 3k(k -1)b k-1 n (∂ 2 x w n ) 3 (w k-2 n ψ p-k+1 cn,p,µ ) b n (∂ 2 x w n ) 3 b n ( 3 4 ∂ 2 x w n 10/3 L 2 + 1 4 ∂ 3 x w n 2 L 2 ), (5.98) 
B 232 = 1 2(p + 1) p+1 k=2 C k p+1 3k(k -1)b k-1 n (∂ 2 x w n ) 2 (∂ x w n )(w k-2 n ψ p-k+1 cn,p,µ ) , (5.99) ∂ 2 x (w k-2 n ψ p-k+1 cn,p,µ ) = (k -2)(∂ 2 x w n )w k-3 n ψ p-k+1 cn,p,µ + (k -2)(k -3)(∂ x w n ) 2 w k-4 n ψ p-k+1 cn,p,µ + 2(k -2)(∂ x w n )w k-3 n (ψ p-k-+1 cn,p,µ ) + w k-2 n (ψ p-k+1 cn,p,µ ) , (5.100) 
and then

B 232 b n ( (∂ 2 x w n ) 3 + (∂ 2 x w n ) 2 ).
(5.101)

The estimate of B 3 is similar to B 2 since it contains the product (∂ 4 x w n )(∂2 x w n ), and the estimate of B 4 -B 8 is more simple since it contains the product:

(∂ 4 x w n )(∂ x w n ). Let us now estimate A: A = -∂ 4 x (ψ p cn,p,µ w n )(∂ 3 x w n ) = ∂ 3 x (ψ p cn,p,µ w n )(∂ 4 x w n ), (5.102) ∂ x (ψ p cn,p,µ w n ) = ∂ 3 x (ψ p cn,p,µ )w n + 3∂ 2 x (ψ p cn,p,µ )(∂ x w n ) + 3∂ x (ψ p cn,p,µ )(∂ 2 n w n ) + ψ p cn,p,µ (∂ 3 x w n ), (5.103) 
A 1 = (∂ 4 x w n )w n (∂ 3 x (ψ p cn,p,µ ) = -(∂ 3 x w n )[(∂ x w n )∂ 3 x (ψ p cn,p,µ ) + w n (∂ 4 x ψ p cn,p,µ )],
(5.104)

A 11 = (∂ 2 x w n )[(∂ 2 x w n ∂ 3 x (ψ p cn,p,µ ) + (∂ x w n )∂ 4 x (ψ p cn,p,µ )] = (∂ 2 x w n )∂ 3 x (ψ p cn,p,µ ) - 1 2 (∂ x w n ) 2 ∂ x (ψ p cn,p,µ ) (∂ 2 x w n ) 2 + (∂ x w n ) 2 ,
(5.105)

A 12 = (∂ 2 x w n )[(∂ x w n )∂ 4 x (ψ p cn,p,µ ) + w n ∂ 5 x (ψ p cn,p,µ )] = - 3 2 (∂ x w n ) 2 ∂ 5 x (ψ p cn,p,µ ) + 1 2 w 2 n ∂ 7 x (ψ p cn,p,µ ) (∂ x w n ) 2 + w 2 n , (5.106 
)

A 2 = -3 (∂ 3 x w n )[(∂ 2 x w n )∂ 2 x (ψ p cn,p,µ ) + (∂ x w n )∂ 3 x (ψ p cn,p,µ )],
(5.107)

A 21 = 3 2 (∂ 2 x w n ) 2 (∂ 3 x ψ p cn,p,µ ) (∂ 2 x w n ) 2 ,
(5.108)

A 22 = 3 (∂ 2 x w n ) 2 ∂ 3 x (ψ p cn,pµ ) - 3 2 (∂ x w n ) 2 ∂ 5 x (ψ p cn,p,µ ) (∂ 2 x w n ) 2 + (∂ x w n ) 2 .
(5.109)

A 3 = 3 (∂ 4 x w n )(∂ 2 x w n )∂ x (ψ p cn,p,µ ) = -3 (∂ 3 x w n )[(∂ 3 x w n )∂ x (ψ p cn,p,µ ) + (∂ 2 x w n )∂ 2 x (ψ p cn,p,µ )] = -3 (∂ 3 x w n ) 2 (∂ x ψ p cn,p,µ ) + A 4 = (∂ 4 x w n )(∂ 3 x w n )ψ p cn,p,µ = - 1 2 (∂ 3 x w n ) 2 ∂ x (ψ p cn,p,µ ) (∂ 3 x w n ) 2 .
(5.111)

Then we infer that:

d dt (∂ 3 x w n ) 2 (∂ 3 x w n ) 2 + 1.
(5.112) From ( 5.84) we know that ∀t ∈ R:

t t-1 (∂ 3 x w n ) 2 (s, x) 1, (5.113)
then there exists t 1 ∈ [t -1, t] such that:

(∂ 3 x w n ) 2 (t 1 , x) 1.
(5.114)

Integrating (5.112) between [t 1 , t] and using (5.114) we obtain (5.86). Now we will transform the equation of w n (t, x). We set:

βn (t) = 1 b n (ξ n (t n + t) -c n (t n + t)) and βn (t) = 1 (ψ cn(tn+t) ) 2
w n (t, x)L cn(tn+t),p,µ ψ cn(tn+t),p,µ (x), (5.115) and we rewrite the equation of w n (t, x) as: Using that (ψ cn,p,µ ) and (ρ cn,p,µ ) is bounded in H s for all s ∈ R, we obtain:

∂ t w n = ∂ x (L cn(tn+t),p,µ w n ) - 1 b n ∂ x (R(b n w n , ψ cn(tn+t),p,µ )) + β n (t)ψ cn(tn+t),p,µ + ( βn (t) -β n (t))ψ cn(tn+t),p,µ + b n βn (t)(∂ x w n ) + c n (t n + t) b n ρ cn(tn+t),p,µ . (5 
1 b n (ξ n (t n + t) -c n (t n + t)) - 1 (ψ cn(tn+t),p,µ ) 2
w n (t, x)L cn(tn+t),p,µ ψ cn(tn+t),p,µ b n → 0 as n → +∞.

(5.118) Next, we define:

wn (t, x) = w n (t, x) -ψ cn(tn+t),p,µ t 0 β n (t)ds, (5.119)
Then the equation of wn (t, x) is given by: (5.120) From (5.86) we know that (w n (0, x)) is bounded in H 3 , then there exists w 0 ∈ H 3 such that up to a subsequence we have: 

∂ t wn = ∂ x (L cn(tn+t),p,µ wn ) - 1 b n ∂ x (R 1 (b n w n ,
w n (0) w 0 in H 3 as n → +∞, ( 5 
∂ t w = ∂ x (L 1,p,µ w), (t, x) ∈ R × R, w(0, x) = w0 ∈ H 2 (R).
(5.124)

We claim that ∀t ∈ R: wn (t) → w(t) in H 2 as n → +∞.

(5.125) Since (5.120) is invariant by the transformation: x → -x and t → -t, it suffice to prove (5.126) for t > 0. We define ∀t ∈ R:

v n (t, x) = wn (t, x) -w(t, x).

(5.126)

Then v(t, x) satisfies: 

∂ t v n = ∂ x (L cn,p,µn v n ) + (c n -1)∂ x w -∂ x [(ψ p cn,p,µ -ψ p 1,p,µ ) w] - 1 b n ∂ x (R 1 (b n w n , ψ cn,p,µ )) + ( βn (t) -β n (t))ψ cn,p,µ + b n βn ∂ x wn + b n βn ψ cn,p,µ t 0 β n (s)ds + c n ρ cn,p,µ t 0 β n (s)ds. ( 5 
d dt (∂ 2 x v n ) 2 = ∂ 3 x (L cn,p,µ v n )(∂ 2 x v n ) + (c n -1) (∂ 3 x w)(∂ 2 x v n ) -∂ 3 x [(ψ p cn,p,µ -ψ p 1,p,µ ) w](∂ 2 x v n ) - 1 b n ∂ 3 x (R 1 (b n w n , ψ cn,p,µ ))(∂ 2 x v n ) + ( βn -β n ) ∂ 3 x (ψ cn,p,µ )(∂ 2 x v n ) + b n βn (∂ 3 x wn )(∂ 2 x v n ) + b n βn t 0 β n (s)ds (∂ 4 x ψ cn,p,µ )(∂ 2 x v n ) + c n t 0 β n (s)ds (∂ 3 x ρ cn,p,µ )(∂ 2 x v n ) + c n b n (∂ 2 x ρ cn,p,µ )(∂ 2 x v n ) = 9 k=0 I k . (5.129)
Let us estimate I 9 :

I 9 = c n t 0 β n (s)ds (∂ 5 x ρ cn,p,µ )v n ≤ |c n | t 0 β n (s)ds ∂ 5 x ρ cn,p,µ L 2 v n L 2 ≤ C T b 2 n , (5.130) 
Let us estimate I 8 :

I 8 = c n b n (∂ 4 x ρ cn,p,µ )v n ≤ C T b n .
(5.131)

The estimate of I 7 is similar to I 8 . Let us estimate I 6 :

I 6 ≤ b n | βn | ∂ 3 x wn L 2 ∂ 2 x v n L 2 ≤ C T b n . (5.132)
Let us estimate I 5 :

I 5 = ( βn -β n ) (∂ 5 x ψ cn,p,µ )v n ≤ | βn -β n | ∂ 5 x ψ cn,p,µ L 2 v n L 2 ≤ C T b n .
(5.133)

Let us estimate I 4 . Applying the Young's inequality:

I 4 = - 1 p + 1 p+1 k=2 C k p+1 b k-1 n ∂ 3 x (w k n ψ p-k+1 cn,p,µ )(∂ 2 x v n ) ≤ 1 p + 1 p+1 k=2 C k p+1 b k-1 n 1 2 (∂ 3 x (w k n ψ p-k+1 cn,p,µ )) 2 + 1 2 (∂ 2 x v n ) 2 ≤ C T b n .
(5.134)

Let us estimate I 3 and I 2 . One can easy check that:

I 3 ≤ C T ψ p cn,p,µ -ψ p 1,p,µ H 4 and I 2 ≤ C T |c n -1|.
(5.135)

Let us estimate I 1 :

I 1 = -∂ 3 x (ψ p cn,p,µ v n )(∂ 2 x v n ) = - 3 k=0 C k 3 (∂ k x v n )(∂ 2 x v n )(∂ 3-k x ψ p cn,p,µ ), (5.136)
we have:

I 11 = -(∂ 2 x v n )v n (∂ 3 x ψ p cn,p,µ ) = (∂ x v n ) 2 (∂ 3 x ψ p cn,p,µ ) - 1 2 v 2 n (∂ 5 x ψ p cn,p,µ ) (∂ x v n ) 2 + v 2 n , (5.137) 
and

I 13 = -(∂ 3 x v n )(∂ 2 x v n )ψ p cn,p,µ = 1 2 (∂ 2 x v n ) 2 ∂ x ψ p cn,p,µ (∂ 2 x v n ) 2 , (5.138) then I 1 (∂ 2 x v n ) 2 + (∂ x v n ) 2 + v 2 n .
(5.139)

All of this implies that:

1 2 (∂ 2 x v n ) 2 ≤ 2 k=0 (∂ k x v n ) 2 + C T (|c n -1| + ψ p cn,p,µ -ψ p 1,p,µ H 4 + b n ).
(5.140)

Now one can easy deduce that:

d dt v n (t) 2 H 2 ≤ v n (t) 2 H 2 + C T (|c n -1| + ψ p cn,p,µ -ψ p 1,p,µ H 4 + b n ). (5.141)
Finally by integrating (5.142) between [0, t] we obtain:

v n (t) 2 H 2 ≤ C T ( v n (0) 2 H 2 + |c n -1| + ψ p cn,p,µ -ψ p 1,p,µ H 4 + b n ) → 0 as n → +∞.
(5.142) Using (5.143) and that: lim n→+∞ ψ cn,p,µ -ψ 1,p,µ H s (R) = 0 we also obtain that: and we deduce that w(t, x) satisfies the following equation:

β n (t) = 1 (ψ cn,p,µ ) 2 wn L cn,p,µ ψ cn,p,µ → β(t) = 1 (ψ 1,p,µ ) 2 wL 1,p,µ ψ 1,p,µ . ( 5 
∂ t w = ∂ x (L 1,p,µ w) + β(t)ψ 1,p,µ .
(5.145)

We also have: lim

n→+∞ w n (0) H 2 = w(0) H 2 ≥ 1 2 , (5.146) ∀t ∈ R, w(t, x)ψ 1,p,µ = w(t, x)ψ 1,p,µ = 0, (5.147) and ∀x 0 > 0, ∀t ∈ R, |x|>x0 [µ(∂ 2 x w) 2 + (∂ x w) 2 + w 2 ](t, x) e -x0/K . (5.148)
We define:

w(t, x) = w(t, x) + 1 ρ 1,p,µ ψ 1,p,µ J(t)ψ 1,p,µ where J(t) = w(t, x)( y 0 ρ 1,p,µ (x)dx)dy.
(5.149)

One can easy comptute that:

J (t) = -β n (t) ρ 1,p,µ ψ 1,p,µ , (5.150) 
then w(t, x) satisfies:

∂ t w = ∂ x (L 1,p,µ w), (5.151)
and it is simple to see that w(t, x) is H 2 -compact:

∀x 0 > 0, ∀t ∈ R, 2 k=0 |x|>x0 (∂ k x w) 2 (t, x) ≤ e -x0/K . (5.152)
By the linear Liouville property related to the gKW equation, we infer that: w(t, x) = a(t)ψ 1,p,µ (x), (5.153) and then w(t, x) = a(t) -1 ρ 1,p,µ ψ 1,p,µ J(t) ψ 1,p,µ (x).

(5.154)

Since w, ψ 1,p,µ L 2 = 0 we deduce that: ∀t ∈ R, x ∈ R, w(t, x) ≡ 0, (5.155) this contradicts (5.146) and conclude the proof of the theorem.

Asymptotic stability of the solitons of gKW equation

In this Section, by applying the method of Martel and Merle [START_REF] Martel | Asymptotic stability of solitons of the gKdV equations with general nonlinearity[END_REF], we will prove the asymptotic stability of the solitary waves for the generalized Kawahara equation (gKW).

Theorem 6.1 (Asymptotic stability of ϕ c0,p,µp ). Let p ∈ {1, 2}, c 0 ∈]1 -δ p , 1 + δ p [, with δ p 1, and 
µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 .
Let u(t, x) be the global H 2 -solution of the gKW equation which is close at the initial time (t = 0): u 0 -ϕ c0,p,µp H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x). (6.1)

Then there exists c(t) ∈ C 1 (R) and ξ(t) ∈ C 1 (R) such that:

u(t, x) -ϕ c(t) (x -ξ(t)) → 0 in H 2 (x > θt) as t → +∞, where θ > 0. (6.2)
Moreover there exists c0 such that:

ξ (t) → c0 as t → +∞ and |c 0 -c 0 | ≤ γ. (6.3)

Construction of modulation parameters II

In this Subsection we recall one more time the Lemma which give us the existence and the estimate of the modulation parameters. (p 2 +4p+8) 2 . Assume that u(t, x) is the global H 2 solution of the gKW equation which is close at the initial time (t = 0):

u 0 -ϕ c0,p,µp H 2 ≤ γ, avec γ 1, et u 0 (x) = u(0, x). (6.4)
Then there exist c(t) ∈ C 1 (R) and ξ(t) ∈ C 1 (R) such that:

η(t, x) = u(t, x + ξ(t)) -ϕ c(t),p,µp (x), (6.5 
)

satisfying for all t ∈ R, |ξ(0)| + |c(t) -c 0 | + η(t) H 2 ≤ K 0 γ, (6.6) η(t, x), ϕ c(t) (x) = η(t, x), ϕ c(t) (x) = 0, (6.7)
and

|c (t)| 1/2 + |ξ (t) -c(t)| ≤ K 0 η 2 (t, x)ϕ c,p,µp (x) 1/2 ≤ K 0 η(t) L 2 , (6.8) 
where K 0 is a positive constant.

Monotonicity formula retated to the gKW equation II

In this Subsection, we establish the monotonicity property with the mass L 2 and energy H 2 of the global solution of the gKW equation localized by the right. Thanks to the revesibility fo the gKW equation, we deduce the monotonicity formula with the mass and the energy localized by the left. (p 2 +4p+8) 2 . Let x 0 > 0, K > 0 chosen correctly, t 0 > t, and φ K (x) = 1 2 + 1 2 tanh(x/2K). We set: x = x -ξ(t 0 ) + c0 2 (t 0 -t) -x 0 , and we define:

I x0,t0 (t) = u 2 (t, x)φ K (x) and J x0,t0 (t) = ( µ p 2 (∂ 2 x u) 2 + 1 2 (∂ x u) 2 - 1 (p + 1)(p + 2) u p+2 )(t, x)φ K (x). (6.9)
Assume that u(t, x) is the global H 2 -solution of the gKW equation which is close at the initial time (t = 0):

u 0 -ϕ c0,p,µp H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x). (6.10) 
Then we have:

I x0,t0 (t 0 ) -I x0,t0 (t) e -x0/K and J x0,t0 (t 0 ) -J x0,t0 (t) e -x0/K . (6.11) Moreover if we assume that u(t, x + ξ(t)) is L 2 -compact: ∀ε > 0 ∃R ε > 0 such that ∀t ∈ R |x|>Rε |u(t, x + ξ(t))| 2 ≤ ε, (6.12) 
Then u(t) ∈ H k for all k ∈ N, and we have:

|∂ k x u(t, x + ξ(t))| e -|x|/2K , ∀(t, x) ∈ R × R, (6.13) 
Where the translation function ξ(t) is given by Lemma 6.1.

Remark 6.1 (Monotonicity formula by the left). Assume that u(t, x) satisafied (6.4) and we set: v(t, x) = u(-t, -x). It is simple to check that v(t, x) is the solution of gKW, and that: v 0 -ϕ c0,p,µp H 2 ≤ γ where v 0 (x) = v(0, x) (since the soliton ϕ c0,p,µp (x) is even). Thanks to the stability result established by K-M, we know that: sup t inf r u(t) -ϕ c0,p,µp (• -r) H 2 ≤ γ 1/2 for the nonlinearity p ∈ {1, 2, 3, 4}. Now, by Lemma 6.1, there exists ξ 1 (t) and c 1 (t) such that v(t, x) satisfied at the two orthogonality conditions (6.7):

(v(t, x + ξ 1 (t)) -ϕ c1(t),p,µp (x))ϕ c1(t),p,µp (x) = -(u(-t, x + (-ξ 1 (t))) -ϕ c1(t),p,µp (x))ϕ c1(t),p,µp (x) = 0 (6.14) and

(v(t, x + ξ 1 (t)) -ϕ c1(t),p,µp (x))ϕ c1(t),p,µp (x) = (u(-t, x + (-ξ 1 (t))) -ϕ c1(t),p,µp (x))ϕ c1(t),p,µp (x) = 0 (6.15)
By uniqueness of the modulation parameters (given by the Implicite Function Theorem), we infer that ξ 1 (t) = -ξ(-t) and c 1 (t) = c(-t).

Applying the monotonicity formula by the right (6.11) to v(t, x), we obtain:

u 2 (-t 0 , -x)φ K (x + ξ(-t 0 ) -x 0 ) u 2 (-t, -x)φ K (x + ξ(-t 0 + c 0 2 (t 0 -t) -x 0 ) + e -x0/K . (6.16)
Using the transformation -x → x and that u 2 (-t 0 ) = u 2 (-t), we get:

u 2 (-t, x)(1 -φ K (-x + ξ(-t 0 ) + c 0 2 (t 0 -t) -x 0 )) u 2 (-t 0 , x)(1 -φ K (-x + ξ(-t 0 ) -x 0 )) + e -x0/K . (6.17)
Finally, by setting t 1 = -t, t 2 = -t 0 , and using that φ K (x) = 1 -φ K (-x), we obtain for all t 1 > t 2 (since t 0 > t) the monotonicity formula by the right:

u 2 (t 1 , x)φ K (x -ξ(t 2 ) - c 0 2 (t 1 -t 2 ) + x 0 ) u 2 (t 2 , x)φ K (x -ξ(t 2 ) + x 0 ) + e -x0/K . (6.18) 
Arguing similar with the energy localized by the right (6.11), we also obtain:

( µ p 2 (∂ 2 x u) 2 + 1 2 (∂ x u) 2 - 1 (p + 1)(p + 2) u p+2 )(t 1 , x)φ K (x -ξ(t 2 ) - c 0 2 (t 1 -t 2 ) + x 0 ) ( µ p 2 (∂ 2 x u) 2 + 1 2 (∂ x u) 2 - 1 (p + 1)(p + 2) u p+2 )(t 2 , x)φ K (x -ξ(t 2 ) + x 0 ) + e -x0/K , (6.19) 
since the energy is also the conservation law for the gKW.

Proof of the Proposition (5.1). All the elements of the proof of this Proposition are content in [START_REF] Kabakouala | A Nonlinear Liouville Property for the Generalized Kawahara Equation[END_REF], we will recall them for a better understanding.

One can easy comptute that the test function satisfied:

φ K (x) = 1 4K sech 2 x 2K e -|x|/K and that |φ (j+1) K (x)| ≤ 1 K j φ K (x) ∀j ∈ N.
Step 1: Monotonicity formula with the L 2 -mass localized by the right. Using only that: u(t) -ϕ c0,p,µp (• -ξ(t)) H 1 ≤ γ (which is given by (6.6)), we will prove that for x 0 > 0, K > 0 chosen correctly, and t 0 > t: 

I x0,t0 (t 0 ) -I x0,t0 (t) e -x0/K . ( 6 
d dt I x0,t0 (t) = -5µ p (∂ 2 x u) 2 φ K (x) -3 (∂ x u) 2 φ K (x) - c 0 2 u 2 φ K (x) + 5µ p (∂ x u) 2 φ (3) K (x) -µ p u 2 φ (5) K (x) + u 2 φ (3) K (x) + 2 p + 2 u p+2 φ K (x). (6.21) 
Let us make the estimate of the terms in the second line of identity (6.21). Using that φ

(j+1) K (x) 1 K j φ K (x), we obtain: 5µ p (∂ x u) 2 φ (3) K (x) -µ p u 2 φ (5) K (x) + u 2 φ (3) K (x) ≤ 5µ p K 2 (∂ x u) 2 φ K (x) + ( µ p K 4 + 1 K 2 ) u 2 φ K (x). (6.22) 
Let us make the estimate of the term which contains the nonlinearity:

2 p+2 u p+2 φ K (x). Let R 0 > 0, we divide R in two parts: 2 p + 2 R u p+2 φ K (x) = 2 p + 2 |x-ξ(t)|>R0 u p+2 φ K (x) + 2 p + 2 |x-ξ(t)|<R0 u p+2 φ K (x) = A + B. (6.23) 
On the one hand, using the Sobolev embedding of H 1 into C 0 , we deduce that:

sup |x-ξ(t)|>R0 |u(t, x)| ≤ sup |x-ξ(t)|>R0 |ϕ c0,p,µp (x -ξ(t))| + γ.
Then we have:

|A| (e -√ c0R0 + γ) p u 2 φ K (x). (6.24) 
On the other hand, for γ 1, (6.8) give us: ξ(t) ≥ 3c 0 /4, and we deduce that:

|x| ≥ -|x -ξ(t)| + (ξ(t 0 ) -ξ(t)) -c0 2 (t 0 -t) + x 0 ≥ -R 0 + c0 4 (t 0 -t) + x 0 .
Then, using that φ K (x) e -|x|/K , and that u(t) is uniformly bounded H 1 , we obtain:

|B| e -x0/K e -c0(t0-t)/4K . (

Finally, adding (6.21)-(6.25), choosing R 0 , K and γ correctly, and by integrating d dt I x0,t0 (t) between [t, t 0 ], we get:

I x0,t0 (t 0 ) + 2 k=0 t0 t (∂ k x u) 2 (s, x)φ K (x)dxds e -x0/K + I x0,t0 (t). (6.26) 
This implies in particular (6.20).

Step 2: Asymptotic limit of the L 2 -mass localized by right.

Using that (6.26) and that u(t, x + ξ(t)) is L 2 -compact (assumption (6.12)), we will prove that:

u 2 (t 0 , x)φ K (x -ξ(t 0 ) -x 0 )dx + t0 -∞ (∂ 2 x u) 2 + (∂ x u) 2 + u 2 (s, x)φ K (x)dxds e -x0/K . (6.27) 
Form (6.26), it suffice to prove that: lim t→-∞ I x0,t0 (t) = 0. Let ε > 0, form (6.12), there exists R ε > 0 such that ∀t ∈ R:

x>Rε u 2 (t, x + ξ(t)) < ε. (6.28) 
we divide R in two parts: {x < R ε } and {x > R ε }, and we comptute:

I x0,t0 (t) = x>Rε u 2 (t, x + ξ(t))φ K (x + ξ(t)) + x<Rε u 2 (t, x + ξ(t))φ K (x + ξ(t)) = A 1 + B 1 . (6.29) 
First, using that (6.28) and that φ K L ∞ ≤ 1, we obtain:

A 1 ε. (6.30)
Second, using that: ξ(t) ≥ 3c 0 /4, one can estimate that: x + ξ(t) ≤ x -c0 4 (t 0 -t) -x 0 . Since φ K is increasing on R, and that L 2 -norm of u(t, x) is conserved, we have:

B 1 φ K (R ε - c 0 4 (t 0 -t) -x 0 ) → φ K (-∞) = 0 as t → -∞. (6.31) 1 (p + 1)(p + 2) u p+2 φ (3) 
K (x) + c 0 2(p + 1)(p + 2) u p+2 φ K (x). (6.33) 
The estimate of all terms in (6.33) are made following the same logic Step 1. For clarity we will estimate two of them. For instance the estimate of:

5µ 2 p 2 (∂ 3 x u) 2 φ (3) 
K (x). We have:

5µ 2 p 2 (∂ 3 x u) 2 φ (3) 
K (x) ≤ 5µ 2 p 2K 2 (∂ 3 x u) 2 φ K (x). (6.34) 
Let's now estimate a term which contains the nonlinearity for to apply the assumption made on u(t, x). For instance: -15µp 6

(∂ x u) 3 u p-1 φ K (x). First, we know that u(t) is bounbed in H2 . Second, by the Sobolev embedding of H 2 in C 1 , we know that: u(t) C 1 ≤ ϕ c0,p,µp C 1 + γ. Thus, arguing as for the estimate of 2 p+2 u p+2 φ K (x), we obtain:

15µ p 6 (∂ x u) 3 u p-1 φ K (x) (e -√ c0R0 + γ) p (∂ x u) 2 φ K (x) + e -x0/K e -c0(t0-t)/4K . (6.35) 
Thus, by combining (6.33)-(6.35), choosing K, R 0 and γ correctly, and integrating d dt J x0,t0 (t) between [t, t 0 ], we obtain:

J x0,t0 (t 0 ) + t0 t ( 4 k=1 (∂ k x u) 2 + u 2p+2 )(s, x)φ K (x)dxds e -x0/K + J x0,t0 (t), (6.36) 
this implies that (6.32).

Step 4: The asymptotic limit of the H 2 -energy localized by the right.

Using that (6.27) and (6.36), we will prove that:

J x0,t0 (t 0 ) + t0 -∞ ( 4 k=1 (∂ k x u) 2 + u 2p+2 )(s, x)φ K (x)dxds e -x0/K . (6.37)
According to (6.36) it suffice to prove that: lim t→-∞ J x0,t0 (t) = 0. First, one can see that:

J x0,t0 (t) 2 k=0 (∂ k x u) 2 φ K (x)
. Now, using that (6.27) and that φ K (x) ∼ φ K (x) ∼ e x/K for x < 0, we have:

2 k=0 t0 -∞ x<ξ(t0)+ c 0 2 (t0-t)+x0 (∂ k x u) 2 e (x-ξ(t0)+ c 0
Letting x 0 → +∞ and multiplying e -x0/K , we have:

2 k=0 t0 -∞ (∂ k x u) 2 φ K (x) e -x0/K , (6.39) 
and we deduce that:

lim t→-∞ 2 k=0 (∂ k x u) 2 φ K (x) = 0. (6.40) 
Which leads to (6.37).

Step 5: Exponential decay u et u x .

Using (6.27) and (6.37), we will prove that k ∈ {1, 2}:

|∂ k x u(t 0 , x + ξ(t 0 ))| e -|x|/2K . (6.41) 
Indeed, thanks to (6.27) and (6.37), and that φ K (x -x 0 ) e (x-x0)/K if x < x 0 , we have:

2 k=0 x<x0 (∂ k x u) 2 (t 0 , x + ξ(t 0 ))e x/K 1, (6.42) 
So, letting x 0 → +∞, we obtain the right exponential decay:

2 k=0 (∂ k x u) 2 (t 0 , x + ξ(t 0 ))e x/K 1. (6.43) 
The remarque 6.1 give us the left exponential decay:

2 k=0 (∂ k x u) 2 (-t 0 , x + ξ(-t 0 ))e -x/K 1. (6.44) 
We deduce (6.41) by applying the Gagliardo-Nirenberg inequality:

(∂ k x u(t 0 , x + ξ(t 0 )))e |x|/2K C 0 ≤ C G (∂ k x u(t 0 , x + ξ(t 0 )))e |x|/2K 1/2 L 2 × (∂ k x u(t 0 , x + ξ(t 0 )))e |x|/2K 2 L 2 + (∂ k+1 x u(t 0 , x + ξ(t 0 )))e |x|/2K 2 L 2 1/4
1. (6.45)

Step 6: Exponential decay of all derivatives of u.

We claim that k ∈ N:

R (∂ k x u) 2 (t, x)φ K (x -ξ(t 0 ) -x 0 )dx + 2 j=0 t0 -∞ R (∂ k+j x u) 2 (s, x)φ K (x)dxds e -x0/K . (6.46)
The proof of (6.46) is made by induction on k applying the similar arguments in Step 1-4 (see details in [START_REF] Kabakouala | A Nonlinear Liouville Property for the Generalized Kawahara Equation[END_REF].).

Nonlinear Liouville property with the family of solitons of gKW which is close to the explicit soliton of gKW

In this Subsection we recall the nonlinear Liouville proprety established in [START_REF] Kabakouala | A Nonlinear Liouville Property for the Generalized Kawahara Equation[END_REF]. This property is the main tools for the prove of Theorem 6.1.

Theorem 6.2 (Nonlinear Liouville property with ϕ c0,p,µp ).

Let p = {1, 2}, c 0 ∈]1 -δ p , 1 + δ p [ with δ p 1,
and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 . Assume that u(t, x) is the global H 2 -solution of the gKW equation which is close at the initial time (t = 0): u 0 -ϕ c0,p,µp H 2 ≤ γ, with γ 1, and u 0 (x) = u(0, x), (6.47)

and assume moreover that u(t, x + ξ(t)) is L 2 -compact:

∀ε > 0 ∃R ε > 0 such that ∀t ∈ R |x|>Rε u 2 (t, x + ξ(t)) ≤ ε, (6.48) then u(t, x) = ϕ c(0),p,µp (x -ξ(0) -c(0)t), ∀(t, x) ∈ R × R, (6.49) 
where the translation function ξ(t) and the speed function c(t) are given by Lemma 6.1.

By applying the method presented in [START_REF] Kabakouala | A Nonlinear Liouville Property for the Generalized Kawahara Equation[END_REF]. we directly obtain the following corollary: Corollary 6.1 (Nonlinear Liouville with ψ c,p,µ ). The Theorem 6.2 holds with the family of solitons {ψ c,p,µ : 0 < µ 1} with 0 < µ < µ 0 1, for any speed c > 0, and for the nonlinearity power p = 1.

Convergence to a compact limit

Assume that (6.4), then using (6.6), we infer that the sequence {u(t, x + ξ(t))} is bounded in H 2 . Thus there exists a asymptotic limit ũ0 (x) ∈ H 2 such that: u(t, x + ξ(t)) ũ0 (x) weakly in H 2 as t → +∞. Martel and Merle understood that the asymptotic object ũ0 (x) will be naturally close to ϕ c0,p,µp in H 2 , and the most remarkable ũ0 (x) will be L 2 -compact (6.48). Thanks to the nonlinear Liouville Theorem6.2, we obtain: ũ0 (x) = ϕ c(0),p,µp (x), where ξ(0) = 0 and c(0) are given by Lemma 6.1. 

∀ε > 0 ∃R ε > 0 such that ∀t ∈ R |x|>Rε ũ2 (t, x + ξ(t)) ≤ ε, (6.55) 
where ξ(t) and c(t) are given by Lemma 6.8 and ξ(0) = 0.

Proof. We will follows the ideas of Martel and Merle and we will present the proof in five steps. Assume that u(t, x) satisfied (6.1), then thanks the stability result established by K-M, we know that: sup t inf r u(t) -ϕ c0,p,µp (• -r) H 2 ≤ γ for the nonlinearity p ∈ {1, 2, 3, 4}. Moreover, by applyinng the Lemma 6.1, we know that there exists ξ(t) and c(t) such that: u(t, • + ξ(t)) -ϕ c(t),p,µp H 2 ≤ γ and |c(t) -c 0 | ≤ γ ∀t ∈ R. Using that: lim c→c0 ϕ c,p,µp -ϕ c0,p,µp H 2 = 0, We infer that: Then, thanks to the stability result: sup t inf r ũ(t) -ϕ c0,p,µp (• -r) H 2 ≤ γ, where ũ(t, x) is the global H 2solution of gKW emanating by the initial datum ũ(0, x) = ũ0 (x). Moreover, by Lemma 6.1, there exist ξ(t) and c(t) such that (6.5)-(6.8) are satisfied.

u(t, • + ξ(t)) H 2 ≤ u(t, • + ξ(t)) -ϕ c(t)
Step 1: Strong convergence in H 1 of u(t n , x + ξ(t n )) to ũ0 (x) by the right and exponential decay of ũ0 (x) and ∂ x ũ0 (x) by the right.

We will prove that for all A > 0:

u(t n , • + ξ(t n )) → ũ0 in H 1 (x > -A) as n → +∞, (6.60) 
and for all x 0 > 0 and K > 0 chosen correctly:

2 k=0 (∂ k x ũ0 ) 2 (x)φ K (x -x 0 ) e -x0/K . (6.61)
Using the monotonicity property by the right (6.11), one can see that:

lim sup t→+∞ 2 k=0 (∂ k x u) 2 (t, x + ξ(t))φ K (x -x 0 ) e -x0/K . (6.62)
Indeed, according to (6.11), we have:

u 2 (t, x)φ K (x -ξ(t) -x 0 ) u 2 0 (x + ξ(0))φ K (x -(ξ(t) -ξ(0)) + c 0 2 t -x 0 ) + e -x0/K . (6.63)
Recall that for γ small enough, (6.6) and (6.8) imply that: ξ(t) -ξ(0) ∼ c 0 t. Thus, using that: lim t→+∞ φ K (x -c0 2 t + x 0 ) = 0, and applying Lebesgue's Dominated Convergence Theorem, we obtain:

lim sup t→+∞ u 2 (t, x)φ K (x -ξ(t) -x 0 ) e -x0/K . (6.64)
Arguing similarly with the H 2 -energy localized by the right J x0,t0 (t), we obtain (6.62).

It is clear that the strong convergence in H 1 loc (6.58) combined with (6.62), give us (6.60).

Thanks to (6.57), we remark that:

∀k ∈ {0, 1, 2} (∂ k x u)(t n , • + ξ(t n )) φ K (• -x 0 ) (∂ k x ũ0 ) φ K (• -x 0 ) in L 2 (since ∀g ∈ L 2 , we have φ K (• -x 0 )g ∈ L 2
). Thus, using the lower semi-continuity and (6.62): 1. (6.66)

2 k=0 (∂ k x ũ0 ) 2 (x)φ K (x -x 0 ) ≤ lim inf n→+∞ 2 k=0 (∂ k x u) 2 (t n , x + ξ(t n ))φ K (x -x 0 ) e -x0/K . ( 6 
Step 2: Strong convergence in L 2 of u(t + t n , x + ξ(t n )) to ũ(t, x) by the right and exponential decay of ũ(t, x) and ∂ x ũ(t, x) by the right.

We will prove that for all A > 0 and ∀t ∈ R:

u(t + t n , • + ξ(t n )) → ũ(t, •) in L 2 (x > -A) as n → +∞, (6.67) 
u(t + t n , • + ξ(t n )) ũ(t, •) in H 2 as n → +∞. (6.68)
Moreover, for all x 0 > 0 and K > 0 chosen correctly, t ∈ R: We deduce that ∀g ∈ C ∞ c :

2 k=0 (∂ k x ũ) 2 (t, x)φ K (x -x 0 ) e -x0
|ũ(t 1 , x) -ũ1 (x)| 2 g ≤2 |u(t 1 + t n , x + ξ(t n )) -ũ(t 1 , x)| 2 g + 2 |u(t 1 + t n , x + ξ(t n )) -ũ1 (x)| 2 g → 0 as n → +∞. (6.74)
Hence ũ1 (x) = ũ(t 1 , x) ∀x ∈ R, this implies (6.68). It remains to prove (6.67). For all t ∈ R we define:

v n (t, x) = u(t + t n , x + ξ(t n )) -ũ(t, x). (6.75)
Using (6.60) one can see that:

v 2 n (0, x)φ K (x) → 0 as n → +∞, (6.76) 
and using the equation of u(t, x) and of ũ(t, x), we obtain the equation of v n (t, x):

∂ t v n = µ p ∂ 5 x v n -∂ 3 x v n -∂ x (f (ũ + v n ) -f (ũ)), ∀(t, x) ∈ R × R, (6.77) 
where f (x) = 1 p+1 x p+1 . Let us prove (6.67) firstly for t ≥ 0. By differentiating v 2 n (t, x)φ K (x) with respect to time, we get:

d dt v 2 n (t, x)φ K (x) = -5µ p (∂ 2 x v n ) 2 φ K (x) -3 (∂ x v n ) 2 φ K (x) + 5µ p (∂ x v n ) 2 φ (3) K (x) -µ p v 2 n φ (5) 
K (x) + v 2 n φ (3) 
K (x) + 2 p + 1 p+1 k=1 C k p+1 v k+1 n ũp-k+1 φ K (x) - 1 k + 1 ∂ x ũp-k+1 φ K (x) .
(6.78)

Using that:

u(t) H 1 1, φ K (x) φ K (x) > 0, and φ (j+1) K (x) 1 K j φ K (x) ∀j ∈ N, we obtain for K chosen correctly: d dt v 2 n (t, x)φ K (x) + C 0 2 k=1 (∂ k x v n ) 2 (t, x)φ K (x) v 2 n (t, x)φ K (x), (6.79) 
where C 0 is a positive constant. So, by applying the Gronwall Lemma between 0 ≤ t ≤ t 0 , and using (6.76):

sup

t∈[0,t0] v 2 n (t, x)φ K (x) e t0 v 2 n (0, x)φ K (x) → 0 as n → +∞. (6.80) 
Now we will prove that (6.67) for t ≤ 0. Let t 1 < 0, we know that (6.72) is true. Let ũ1 (t, x) be the global H 2 -solution of gKW emanating form ũ1 (0, x) = ũ1 (x). By repeating the previous analysis with ũ1 , we have in particular:

u(t n , • + ξ(t n ))
ũ1 (-t 1 ) as n → +∞, (6.81)

Then combining (6.57) and (6.81), we deduce that ∀g ∈ C ∞ c :

(ũ 0 (x)-ũ1 (-t 1 , x))g = (ũ 0 (x)-u(t n , x+ξ(t n ))g+ (u(t n , x+ξ(t n )-ũ1 (-t 1 , x))g → 0 as n → +∞. (6.82) This implies that: ũ0 (x) = ũ1 (-t 1 , x) ∀x ∈ R. By uniqueness of the global H 2 -solution of the gKW, we obtain ũ1 (x) = ũ1 (0, x) = ũ(t 1 , x). Thus for all t 1 < 0, (6.72) give us:

u(t 1 + t n , • + ξ(t n )) ũ(t 1 , •) in H 2 as n → +∞. ( 6 

.83)

Step 3: Exponential decay of ∂ 2 x ũ(t, x) by the right. We will prove that for all x 0 > 0, K > 0 chosen correctly, and t ∈ R: We observe that (6.85) is a direct consequence of (6.69) and (6.84).

(∂ 3 x ũ) 2 (t, x)φ K (x -x 0 ) e -x0/3K (6.
k=3

(∂ k x ũ) 2 (t, x)φ K (x -x 0 ) h(ũ(t, x))φ K (x -x 0 ) + ũ2 (t, x)φ K (x -x 0 ), (6.87 
) where C 1 is a positive constant. Let t 0 ∈ R. By integrating between t 0 -1 ≤ t ≤ t 0 , and using (6.69), we get:

4 k=3 t0 t0-1 (∂ k x ũ) 2 (t, x)φ K (x -x 0 ) ≤ C 2 e -x0/K , (6.88) 
where C 2 is a positive constant. This implies that there exists t 1 ∈ [t 0 -1, t 0 ] such that:

((∂ 4 x ũ) 2 + (∂ 3 x ũ) 2 )(t 1 , x)φ K (x -x 0 ) ≤ C 2 e -x0/K , (6.89) 
and since φ K (x -x 0 ) ∼ φ K (x -x 0 ) ∼ e (x-x0)/K for x < x 0 , we deduce that:

((∂ 4 x ũ) 2 + (∂ 3 x ũ) 2 )(t 1 , x)φ K (x -x 0 ) ≤ C 2 e -x0/K . (6.90)
We claim that:

d dt (∂ 3 x ũ) 2 (t, x)φ K (x -x 0 ) -5µ p (∂ 5 x ũ) 2 φ K (x -x 0 ) (∂ 3 x ũ) 2 (t, x)φ K (x -x 0 ) + (∂ 2 x ũ) 2 (t, x)φ K (x -x 0 ) 1/3 + 2 k=1 (∂ k x ũ) 2 (t, x)φ K (x -x 0 ). (6.91)
Then by applying the Gronwall between t 0 -1 ≤ t 1 ≤ t 0 , and using (6.69) and (6.90), we have:

(∂ 3 x ũ) 2 (t 0 , x)φ K (x -x 0 ) exp( t0 t1 ds) (∂ 3 x ũ) 2 (t 1 , x)φ K (x -x 0 )
+ (e -x0/3K + e -x0/K ) t0 t1 exp( t0 τ ds)dτ ee -x0/3K . (6.92)

It remains to prove (6.91). We will differentiating: (∂ 3 x ũ) 2 (t, x)φ K (x -x 0 ) with respect to time and gradually estimate each terms. To simplify writing we set: g

(x) = φ K (x -x 0 ). d dt (∂ 3 x ũ) 2 (t, x)g(x) = 2 (∂ 3 x ũ)∂ t (∂ 3 x ũ)g = -2 (∂ 6 x ũ)(∂ 3 x ũ)g + 2µ p (∂ 8 x ũ)(∂ 3 x ũ)g -2 (∂ 4 x f (ũ))(∂ 3 x ũ)g = A + B + C. (6.93) Let us compute A: A = 2 (∂ 5 x ũ)(∂ 4 x ũ)g + 2 (∂ 5 x ũ)(∂ 3 x ũ)g = A 1 + A 2 , (6.94 
) 3) , (6.96) adding (6.131)-(6.96): 3) . (6.97)

A 1 = ∂ x [(∂ 4 x ũ) 2 ]g = -(∂ 4 x ũ) 2 g , (6.95) 
A 2 = -2 (∂ 4 x ũ) 2 g -∂ x [(∂ 3 x ũ) 2 ]g = -2 (∂ 4 x ũ) 2 g + (∂ 3 x ũ) 2 g (
A = -3 (∂ 4 x ũ) 2 g + (∂ 3 x ũ) 2 g (
Let us compute B:

B = -2µ p (∂ 7 x ũ)(∂ 4 x ũ)g -2µ p (∂ 7 x ũ)(∂ 3 x ũ)g = B 1 + B 2 , (6.98) 
B 1 = 2µ p (∂ 6 x ũ)(∂ 5 x ũ)g + 2µ p (∂ 6 x ũ)(∂ 4 x ũ)g = B 11 + B 12 , (6.99) 
B 11 = µ p ∂ x [(∂ 5 x ũ) 2 ]g = -µ p (∂ 5 x ũ) 2 g , ( 6 
.100) 3) , (6.101) 5) , (6.103) adding (6.98)-(6.103): 5) . (6.104)

B 12 = -2µ p (∂ 5 x ũ) 2 g -2µ p (∂ 5 x ũ)(∂ 4 x ũ)g = -2µ p (∂ 5 x ũ) 2 g -µ p ∂ x [(∂ 4 x ũ) 2 ]g = -2µ p (∂ 5 x ũ) 2 g + µ p (∂ 4 x ũ) 2 g (
B 2 = 2µ p (∂ 6 x ũ)(∂ 4 x ũ)g + 2µ p (∂ 6 x ũ)(∂ 3 x ũ)g = -2µ p (∂ 5 x ũ) 2 g + µ p (∂ 4 x ũ) 2 g (3) + B 21 , (6.102) 
B 21 = -2µ p (∂ 5 x ũ)(∂ 4 x ũ)g -2µ p (∂ 5 x ũ)(∂ 3 x ũ)g (3) = -µ p ∂ x [(∂ 4 x ũ) 2 ]g + 2µ p (∂ 4 x ũ) 2 g (3) + µ p ∂ x [(∂ 3 x ũ) 2 ]g (4) = 3µ p (∂ 4 x ũ) 2 g (3) -µ p (∂ 3 x ũ) 2 g (
B = -5µ p (∂ 5 x ũ) 2 g + 5µ p (∂ 4 x ũ) 2 g (3) -µ p (∂ 3 x ũ) 2 g (
We deduce that:

A + B -5µ p (∂ 5 x ũ) 2 φ K (x -x 0 ) -(3 - 5µ p K 2 ) (∂ 4 x ũ) 2 φ K (x -x 0 ) + (∂ 3 x ũ) 2 φ K (x -x 0 ). (6.105) Let us compute C: C = 2 p + 1 ∂ 3 x (ũ p+1 )(∂ 4 x ũ)g + 2 p + 1 ∂ 3 x (ũ p+1 )(∂ 3 x ũ)g = C 1 + C 2 . (6.106)
We have:

1 p + 1 ∂ 3 x (ũ p+1 ) = (∂ 3 x ũ)ũ p + 3p(∂ 2 x ũ)(∂ x ũ)ũ p-1 + p(p -1)(∂ x ũ) 3 ũp-2 , (6.107) 
then

C 1 = 2 (∂ 4 x ũ)(∂ 3 x ũ)ũ p g + 6p (∂ 4 x ũ)(∂ 2 x ũ)(∂ x ũ)ũ p-1 g + 2p(p -1) (∂ 4 x ũ)(∂ x ũ) 3 ũp-2 g = C 11 + C 12 + C 13 , (6.108) 
C 11 = ∂ x [(∂ 3 x ũ) 2 ]ũ p g = -(∂ 3 x ũ) 2 ∂ x (ũ p g), (6.109) 
C 12 = -6p (∂ 3 x ũ) 2 (∂ x ũ)ũ p+1 g -6p (∂ 3 x ũ)(∂ 2 x ũ) 2 ũp-1 g -6p(p -1) (∂ 3 x ũ)(∂ 2 x ũ)(∂ x ũ) 2 ũp-2 g -6p (∂ 3 x ũ)(∂ 2 x ũ)(∂ x ũ)ũ p-1 g = -6p (∂ 3 x ũ) 2 (∂ x ũ)ũ p+1 g + C 121 + C 122 + C 123 , (6.110) 
C 121 = -2p ∂ x [(∂ 2 x ũ) 3 ]ũ p-1 g = 2p (∂ 2 x ũ) 3 ∂ x (ũ p-1 g), (6.111) 
C 122 = -3p(p -1) ∂ x [(∂ 2 x ũ) 2 ](∂ x ũ) 2 ũp-2 g = 6p(p -1) (∂ 2 x ũ) 3 (∂ x ũ)ũ p-2 g + 3p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ∂ x (ũ p-2 g), (6.112) 
C 123 = -3p ∂ x [(∂ 2 x ũ) 2 ](∂ x ũ)ũ p-1 g = 3p (∂ 2 x ũ) 3 ũp-1 g + 3p (∂ 2 x ũ) 2 (∂ x ũ)∂ x (ũ p-1 g ), (6.113) 
C 13 = -6p(p -1) (∂ 3 x ũ)(∂ 2 x ũ)(∂ x ũ) 2 ũp-2 g -2p(p -1)(p -2) (∂ 3 x ũ)(∂ x ũ) 4 ũp-3 g -2p(p -1) (∂ 3 x ũ)(∂ x ũ) 3 ũp-2 g = C 131 + C 132 + C 133 , (6.114) 
C 131 = -3p(p -1) ∂ x [(∂ 2 x ũ) 2 ](∂ x ũ) 2 ũp-2 g = 6p(p -1) (∂ 2 x ũ) 3 (∂ x ũ)ũ p-2 g + 3p(p -1)(p -2) (∂ 2 x ũ) 2 (∂ x ũ) 3 ũp-3 g + 3p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ũp-2 g , (6.115) 
C 132 = 8p(p -1)(p -2) (∂ 2 x ũ) 2 (∂ x ũ) 3 ũp-3 g + 2p(p -1)(p -2)(p -3) (∂ 2 x ũ)(∂ x ũ) 5 ũp-4 g + 2p(p -1)(p -2) (∂ 2 x ũ)(∂ x ũ) 4 ũp-3 g = 8p(p -1)(p -2) (∂ 2 x ũ) 2 (∂ x ũ) 3 ũp-3 g + C 1321 + C 1322 , (6.116) 
C 1321 = p 3 (p -1)(p -2)(p -3) ∂ x [(∂ x ũ) 6 ]ũ p-4 g = - p 3 (p -1)(p -2)(p -3) (∂ x ũ) 6 ∂ x (ũ p-4 g), (6.117) 5 p(p -1)(p -2) ∂ x [(∂ x ũ) 5 ]ũ p-3 g = - 2 5 p(p -1)(p -2) (∂ x ũ) 5 ∂ x (ũ p-3 g ), (6.118) 
,

C 133 = 6p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ũp-2 g + 2p(p -1)(p -2) (∂ 2 x ũ)(∂ x ũ) 4 ũp-3 g + 2p(p -1) (∂ 2 x ũ)(∂ x ũ) 3 ũp-2 g = 6p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ũp-2 g + C 1331 + C 1332 , (6.119) 
C 1331 = 2 5 p(p -1)(p -2) ∂ x [(∂ x ũ) 5 ]ũ p-3 g = - 2 5 p(p -1)(p -2) (∂ x ũ) 5 ∂ x (ũ p-3 g ), (6.120) 
C 1332 = 1 2 p(p -1) ∂ x [(∂ x ũ) 4 ]ũ p-2 g = - 1 2 p(p -1) (∂ x ũ) 4 ∂ x (ũ p-2 g ), (6.121) 
C 2 = 2 (∂ 3 x ũ) 2 ũp g + 6p (∂ 3 x ũ)(∂ 2 x ũ)(∂ x ũ)ũ p-1 g + 2p(p -1) (∂ 3 x ũ)(∂ x ũ) 3 ũp-2 g = 2 (∂ 3 x ũ) 2 ũp g + C 21 + C 22 , (6.122) 
C 21 = 3p (∂ x [(∂ 2 x ũ) 2 ](∂ x ũ)ũ p-1 g = -3p (∂ 2 x ũ) 3 ũp-1 g -3p (∂ 2 x ũ) 2 (∂ x ũ)∂ x (ũ p-1 g ), (6.123) 
C 22 = -6p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ũp-2 g -2p(p -1)(p -2) (∂ 2 x ũ)(∂ x ũ) 4 ũp-3 g -2p(p -1) (∂ 2 x ũ)(∂ x ũ) 3 ũp-2 g = -6p(p -1) (∂ 2 x ũ) 2 (∂ x ũ) 2 ũp-2 g + C 221 + C 222 , (6.124) 
C 221 = - 2 5 p(p -1)(p -2) ∂ x [(∂ x ũ) 5 ]ũ p-3 g = 2 5 p(p -1)(p -2) (∂ x ũ) 5 ∂ x (ũ p-3 g ), (6.125) 
C 222 = - 1 2 p(p -1) ∂ x [(∂ x ũ) 4 ]ũ p-2 g = 1 2 p(p -1) (∂ x ũ) 4 ∂ x (ũ p-2 g ). ( 6 
.126) Thus, using that ũ(t) is uniformly bounded in H 2 , and the property of φ K , we get:

C (∂ 3 x ũ) 2 φ K (x -x 0 ) + (∂ 2 x ũ) 3 φ K (x -x 0 ) + (∂ 2 x ũ) 2 φ K (x -x 0 ) + (∂ x ũ) 2 φ K (x -x 0 ). ( 6 

.127)

The only term that we need to transform is: (∂ 2 x ũ) 3 φ K (x-x 0 ). By applying the Gagliardo-Nirenberg inequality:

(∂ 2 x ũ) 3 φ K (x -x 0 ) ≤ ∂ 2 x ũ 2 L 2 (∂ 2 x ũ)φ K (x -x 0 ) L ∞ ≤ C G ∂ 2 x ũ 2 L 2 (∂ 2 x ũ)φ K (x -x 0 ) 1/2 L 2 × (∂ 2 x ũ)φ K (x -x 0 ) L 2 + (∂ 3 x ũ)φ K (x -x 0 ) L 2 1/2 , (6.128) 
Now, applying the Young inequality we deduce that:

(∂ 2 x ũ) 3 φ K (x-x 0 ) ≤ C G ∂ 2 x ũ 2 L 2 3 4 (∂ 2 x ũ)φ K (x -x 0 ) 2/3 L 2 + 1 2 (∂ 2 x ũ)φ K (x -x 0 ) 2 L 2 + 1 2 (∂ 3 x ũ)φ K (x -x 0 ) 2 L 2 . ( 6 
.129) Finally, by combining (6.105), (6.127) and (6.129), we get (6.91).

Step 4: Strong convergence in H 2 of u(t + t n , x + ξ(t n )) to ũ(t, x) by the right. We will prove that for all A > 0 and ∀t ∈ R:

u(t + t n , • + ξ(t n )) → ũ(t, •) in H 2 (x > -A) as n → +∞. (6.130) C 1 = 5µ p p 2 (∂ 2 x v n ) 2 (∂ x v n )v p-1 n g - µ p p(p -1)(p -2) 4 (∂ x v n ) 5 v p-3 n g + 5µ p 2 (∂ 2 x v n ) 2 v p n g , - 15µ p p(p -1) 12 (∂ x v n ) 4 v p-2 n g - 15µ p p 6 (∂ x v n ) 3 v p-1 n g - 5µ p 2 (∂ x v n ) 2 v p n g (3) 
+ µ p (p + 1)(p + 2) v p+2 n g (5) , (6.139) 3) , (6.140)

C 2 = p 2 (∂ x v n ) 3 v p+1 n g + 3 2 (∂ x v n ) 2 v p n g - 1 (p + 1)(p + 2) v p+2 n g ( 
C 3 = - 1 p + 1 (f (ũ + v n ) -f (ũ)) ∂ x (v p+1 n )g + v p+1 n g . ( 6 
.141) Thus using that: v n (t) H 2 1, we claim that:

C 2 k=0 (∂ k x v n ) 2 φ K (x). ( 6 

.142)

We will just explain the estimation of C 3 . Recall that:

f (ũ + v n ) -f (ũ) = 1 p+1 p+1 k=1 C k p+1 v k n ũp-k+1
. By applying the Young inequality:

1 p + 1 (f (ũ + v n ) -f (ũ))∂ x (v p+1 n )φ K (x) ≤ 1 2(p + 1) (f (ũ + v n ) -f (ũ)) 2 φ K (x) + 1 2(p + 1) [∂ x (v p+1 n )] 2 φ K (x) v 2 n φ K (x). (6.143) 
Let us compute B: 5) , (6.145) 3) , (6.146)

B = ∂ t [(∂ x v n )](∂ x v n )g = µ p (∂ 6 x v n )(∂ x v n )g -(∂ 4 x v n )(∂ x v n )g -∂ 2 x (f (ũ + v n ) -f (ũ))(∂ x v n )g = B 1 + B 2 + B 3 , (6.144) 
B 1 = - 5µ p 2 (∂ 3 x v n ) 2 g + 5µ p 2 (∂ 2 x v n ) 2 g (3) - µ p 2 (∂ x v n ) 2 g (
B 2 = - 3 2 (∂ 2 x v n ) 2 g + 1 2 (∂ x v n ) 2 g (
B 3 = ∂ x (f (ũ + v n ) -f (ũ))[(∂ 2 x v n )g + (∂ x v n )g ]. ( 6 

.147)

One can easly check that:

B - 5µ p 2 (∂ 3 x v n ) 2 φ K (x) + 2 k=1 (∂ 2 x v n ) 2 φ K (x). ( 6 

.148)

We will just explain the estimate of B 3 . By applying the Young inequality:

∂ x (f (ũ + v n ) -f (ũ))(∂ 2 x v n )φ K (x) ≤ 1 2 [∂ x (f (ũ + v n ) -f (ũ))] 2 φ K (x) + 1 2 (∂ 2 x v n ) 2 φ K (x) 2 k=1 (∂ 2 x v n ) 2 φ K (x). ( 6 

.149)

Let us compute A:

A = µ p ∂ t [(∂ 2 x v n )](∂ 2 x v n )g = µ 2 p (∂ 7 x v n )(∂ 2 x v n )g -µ p (∂ 5 x v n )(∂ 2 x v n )g -µ p ∂ 3 x (f (ũ + v n ) -f (ũ))(∂ 2 x v n )g = A 1 + A 2 + A 3 , (6.150 
) 5) , (6.151)

A 1 = - 5µ 2 p 2 (∂ 4 x v n ) 2 g + 5µ 2 p 2 (∂ 3 x v n ) 2 g (3) - µ 2 p 2 (∂ 2 x v n ) 2 g (
A 2 = - 3µ p 2 (∂ 3 x v n ) 2 g + µ p 2 (∂ 2 x v n ) 2 g (3) , (6.152) 
and we directly infer that

A 1 + A 2 - 5µ 2 p 2 (∂ 4 x v n ) 2 φ K (x) -( 3µ p 2 - 5µ 2 p 2K 2 ) (∂ 3 x v n ) 2 φ K (x) + (∂ 2 x v n ) 2 φ K (x). ( 6 

.153)

Next:

A 3 = µ p ∂ 2 x (f (ũ + v n ) -f (ũ))(∂ 3 x v n )g + µ p ∂ 2 x (f (ũ + v n ) -f (ũ))(∂ 2 x v n )g = A 31 + A 32 . (6.154) 
One can compute that:

∂ 2 x (f (ũ + v n ) -f (ũ)) = 1 p + 1 p+1 k=1 C k p+1 [k(∂ 2 x v n )v k-1 n ũp-k+1 + k(k -1)(∂ x v n ) 2 v k-2 n ũp-k+1 + 2k(p -k + 1)(∂ x v n )v k-1 n (∂ x ũ)ũ p-k + (p -k + 1)v k n (∂ 2 x ũ)ũ p-k + (p -k + 1)(p -k)v k n (∂ x ũ) 2 ũp-k-1 ]. (6.155) 
We claim that:

A 32 2 k=0 (∂ k x v n ) 2 φ K (x). ( 6 

.156)

We will explain the estimate of the more complicated terms:

1 p + 1 p+1 k=1 C k p+1 k(k -1) (∂ 2 x v n )(∂ x v n ) 2 v k-2 n ũp-k+1 φ K (x) = - 1 p + 1 p+1 k=1 C k p+1 k(k -1) 3 (∂ x v n ) 3 ∂ x [v k-2 n ũp-k+1 φ K (x)] (∂ x v n ) 2 φ K (x), (6.157) 1 p + 1 p+1 k=1 C k p+1 (p -k + 1)(p -k) (∂ 2 x v n )v k n (∂ x ũ) 2 ũp-k-1 φ K (x) (∂ 2 x v n )v n φ K (x) ≤ 1 2 (∂ 2 x v n ) 2 φ K (x) + 1 2 (∂ x v n ) 2 φ K (x). (6.158)
Here is the most interesting term:

A 321 = 1 p + 1 p+1 k=1 C k p+1 (p -k + 1) (∂ 2 x v n )v k n (∂ 2 x ũ)ũ p-k φ K (x) (∂ 2 x v n )v n (∂ 2 x ũ)φ K (x) v n φ K L ∞ (∂ 2 x v n ) 2 φ K (x) 1/2 (∂ 2 x ũ) 2 1/2 , (6.159) 
Using the Sobolev embedding of H 1 into C 0 and that

φ K (x) 2 √ φ K (x) ≤ √ φ K (x) 2 : v n φ K L ∞ ≤ C S v n φ K 2 L 2 + (∂ x v n ) φ K 2 L 2 1/2 , (6.160) 
thus by applying the young inequality:

A 321 2 k=0 (∂ k x v n ) 2 φ K (x). ( 6 

.161)

We also claim that:

A 31 2 k=1 (∂ k x v n ) 2 φ K (x) + v 2 n φ K (x) 1/4
. (6.162) Indeed:

1 p + 1 p+1 k=1 C k p+1 k (∂ 3 x v n )(∂ 2 x v n )v k-1 n ũp-k+1 φ K (x) = - 1 p + 1 (∂ 2 x v n ) 2 ∂ x [v k-1 n ũp-k+1 φ K (x)] (∂ 2 x v n ) 2 φ K (x), (6.163) 
1 p + 1 p+1 k=1 C k p+1 k(k -1) (∂ 3 x v n )(∂ x v n ) 2 v k-2 n ũp-k+1 φ K (x) = - 1 p + 1 p+1 k=1 C k p+1 k(k -1) (∂ 2 x v n ) ∂ x [(∂ x v n ) 2 ]v k-2 n ũp-k+1 φ K (x) + (∂ x v n ) 2 ∂ x [v k-2 n ũp-k+1 φ K (x)] (∂ 2 x v n ) 2 φ K (x) + (∂ 2 x v n )(∂ x v n )φ K (x) 3 2 (∂ 2 x v n ) 2 φ K (x) + 1 2 (∂ x v n ) 2 φ K (x), (6.164) 2 p + 1 p+1 k=1 C k p+1 k(p -k + 1) (∂ 3 x v n )(∂ x v n )v k-1 n (∂ x ũ)ũ p-k φ K (x) = - 2 p + 1 p+1 k=1 C k p+1 k(p -k + 1) (∂ 2 x v n ){(∂ 2 x v n )v k-1 n (∂ x ũ)ũ p-k φ K (x) + (∂ x v n )(∂ 2 x ũ)v k-1 n ũp-k φ K (x) + (∂ x v n )(∂ x ũ)∂ x [(v k-1 n ũp-k φ K (x)]} (∂ 2 x v n ) 2 φ K (x) + (∂ 2 x v n )(∂ x v n )(∂ 2 x ũ)φ K (x) + (∂ 2 x v n )(∂ x v n )φ K (x) ≤ 3 2 (∂ 2 x v n ) 2 φ K (x) + 1 2 (∂ x v n ) 2 φ K (x) + (∂ 2 x v n )(∂ x v n )(∂ 2
x ũ)φ K (x). (6.165)

We estimate the term:

(∂ 2 x v n )(∂ x v n )(∂ 2 x ũ)φ K (x) as A 321 : (∂ 2 x v n )(∂ x v n )(∂ 2 x ũ)φ K (x) ≤ (∂ x v n ) φ K L ∞ (∂ 2 x v n ) 2 φ K (x) 1/2 (∂ 2 x ũ) 2 1/2 (∂ x v n ) φ K 2 L 2 + (∂ 2 x v n ) φ K 2 L 2 1/2 (∂ 2 x v n ) 2 φ K (x) 1/2 2 k=1 (∂ k x v n ) 2 φ K (x). (6.166)
Here is the estimate of the most important term:

A 131 = 1 p + 1 p+1 k=1 C k p+1 (p -k + 1) (∂ 3 x v n )v k n (∂ 2 x ũ)ũ p-k φ K (x) = - 1 p + 1 p+1 k=1 C k p+1 (p -k + 1) (∂ 2 x v n ){(∂ 3 x ũ)v k n ũp-k φ K (x) + (∂ 2 x ũ)∂ x [v k n ũp-k φ K (x)]} (∂ 2 x v n )v n (∂ 3 x ũ)φ K (x) + (∂ 2 x v n )(∂ x v n )(∂ 2
x ũ)φ K (x). ( 6.167)

Thus it remains to estimate: (∂ 2 x v n )v n (∂ 3 x ũ)φ K (x). Thanks to (6.84) we know that: (∂ 3 x ũ) 2 (t, x)φ K (x) 1. Then:

(∂ 2 x v n )v n (∂ 3 x ũ)φ K (x) ≤ v n φ K L ∞ (∂ 3 x ũ) 2 φ K (x) 1/2 (∂ 2 x v n ) 2 1/2 ≤ C G v n φ K 1/2 L 2 ∂ x (v n φ K ) 1/2 L 2 (∂ 3 x ũ) 2 φ K (x) 1/2 (∂ 2 x v n ) 2 1/2 v n φ K 1/2 L 2 . (6.168)
So we obtain (6.162). By combining (6.142), (6.148), (6.153), (6.156) and (6.162), we get (6.134).

Step 5: Convergence of the modulation parameters and exponential decay of ũ(t, x) by the left.

We will prove that ∀t ∈ R:

ξ(0) = 0, ξ(t + t n ) -ξ(t n ) → ξ(t) as n → +∞, (6.169) 
c(0) = c0 , c(t + t n ) → c(t) as n → +∞, (

where ξ(t) and c(t) are given by Lemma 6.1 (see the begining of the proof of this Proposition). Moreover, for all x 0 > 0, K > 0 chosen correctly, and t ∈ R: ũ2 (t, x + ξ(t))(1 -φ K (x + x 0 )) e -x0/K , (6.171) and |ũ(t, x + ξ(t))| e x/4K , for all x ≤ 0. (6.172)

We know by hypothesis that (6.6) and (6.8) are satisfied, then the sequences {ξ(t+t n )-ξ(t n )} and {c(t+t n )} are uniformly equi-continuous. Indeed, for all t 0 ≥ t 1 we have: |ξ(t 0 + t n ) -ξ(t 1 + t n )| c 0 (t 0 -t 1 ) and |c(t 0 + t n ) -c(t 1 + t n )| γ 2 (t 0 -t 1 ). Thus by the Theorem of Arzelà-Ascoli, there exists a subsequence still denoted by (t n ), and β ∈ C 0 (R), α ∈ C 0 (R) such that for all T > 0: We set now: η n (t, x) = u(t + t n , x + ξ(t + t n )) -ϕ c(t+tn) (x) and η(t, x) = ũ(t, x + β(t)) -ϕ α(t) (x). We know that (6.7) are satisfied:

β(0) = 0, ξ(• + t n ) -ξ(t n ) → β
η n (t, x)ϕ c(t+tn) (x) = η n (t, x)ϕ c(t+tn) (x) = 0. (6.175)

Using that: u(t + t n , x + ξ(t + t n )) ũ(t, x + β(t)) weakly in H 2 thanks to (6.68) and (6.173), and that: lim n→+∞ ϕ c(t+tn) -ϕ α(t) H 1 = 0 thanks to (6.174), we obtain: η(t, x)ϕ α(t) (x) = η(t, x)ϕ α(t) (x) = 0. (6.176)

Then by uniqueness of the modulation parameters (which is given by the Implicit Function Theorem) we obtain: β(t) = ξ(t) and α(t) = c(t). We set V 0 = ũ2 0 (x) (we recall that the norm L 2 is a conservation law for the gKW). Let x 0 > 0 and t 0 ∈ R, we have:

V 0 -ũ2 (t 0 , x)(1 -φ K (x -ξ(t 0 ) + x 0 )) = ũ2 (t 0 , x)φ K (x -ξ(t 0 ) + x 0 ), (6.177) using (6.67) and (6.169) for n(x 0 ) > 0 large enough:

V 0 -ũ2 (t 0 , x)(1 -φ K (x -ξ(t 0 ) + x 0 )) ≥ u 2 (t 0 + t n , x)φ K (x -ξ(t 0 + t n ) + x 0 ) -1 3 e -x0/K . (6.178) So, applying the monotonicity formula by the left (6.18), for m ≥ n(x 0 ) such that t m ≥ t n + t 0 we obtain: Thus by combining (6.179) and (6.181) we obtain for m large enough:

V 0 -ũ2 (t 0 , x)(1-φ K (x-ξ(t 0 )+x 0 )) ≥ u 2 (
V 0 -ũ2 (t 0 , x)(1 -φ K (x -ξ(t 0 ) + x 0 )) ≥ V 0 -e -x0/K , (6.184) this gives (6.171). (6.172) follows form (6.171). It suffice to use that: 1 -φ K (x + x 0 ) ≥ 1 2 for x ≤ -x 0 , the Gagliardo-Nirenberg inequality, and that ũ(t) is bounded in This completes the proof of the Proposition 6.2.

6.5 End of the proof of the Theorem 6.1

We have now all the elements to prove the asymptotic stability of the solitons of gKW. Let u(t, x) be the global H 2 -solution of gKW which satisfied (6.1) with γ small enough. Then the Propostion 6.2 holds. Let t n → +∞ as n → +∞, we know that there exists a subsequence (t τ (n) ), c0 and ũ0 ∈ H 2 such that: c(t τ (n) ) → c0 , |c 0 -c 0 | ≤ γ, and u(t τ (n) , • + ξ(t τ (n) )) -ũ0 → 0 strongly in H 2 (x > -A) for all A > 0. Moreover, ũ(t, x) the global H 2 -solution of gKW emanating for the inital datum: ũ(0, x) = ũ0 (x) satisfied (6.54) and (6.55), and thanks to (6.169) and (6.170): ξ(0) = 0 and c(0) = c0 . Thus the nonlinear Liouville Theorem 6.2 implies that: ũ(t, x) = ϕ c(0),p,µp (x -ξ(0) -c(0)t). At the initial time we have: ũ0 (x) = ϕ c0,p,µp (x). We deduce that: u(t τ (n) , • + ξ(t τ (n) )) -ϕ c(t τ (n) ),p,µp → 0 in H 2 (x > -A) for all A > 0. Since this is true for all sequence of time t n → +∞, we conclude that for all A > 0: Proof of (6.192). We recall that for γ small enough (6.6) and (6.8) gives us: ξ(t 0 )+ c0 2 (t-t 0 ) ∼ ξ(t)-c0 2 (t-t 0 ). We have: (6.194). We have: :

u(t, • + ξ(t)) -ϕ c(t
(∂ k x u)(t,
C 1 x<-x0 e -2 √ c0|x| = 1 2 √ c0 e -2
√ c0x0 e -x0/K , (6.201) and using that: 1 -φ K (x + x 0 ) e -(x+x0)/K ∀x ∈ R, we obtain:

C 2 ∂ k x ϕ c0,p,µp 2 
L ∞ e -x0/K x≥-x0
e -x/K e -x0/K . (6.202)

  p,µp (-d dc ϕ c,p,µp ) = ϕ c,p,µp and we set ρ c0,p,µp = -d dc ϕ c,p,µp | c=c0 . (2.6) We claim that: lim c0→1 ϕ c0,p,µp -ϕ 1,p,µp H k = 0 and lim c0→1 ρ c0,p,µp -ρ 1,p,µp H k = 0, ∀k ∈ N.

  10)-(3.14) we get I:

  .40) Combining (3.35) and (3.40), we get the claim (3.28).

For c 0

 0 close to 1, we have sup x∈R (|γ(x)| + |γ (x)|) ≤ γ, with 0 < γ 1, and |γ(x)| + |γ (x)| e -|x| for all x ∈ R. Then we deduce the following estimate:

  ρ 1,3,µ 3 (x) and L -1 1,3,µ 3 ρ 1,3,µ 3 (x) profiles.
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 1 Figure 1: Variation of K p for p ∈ {1, 2, 3} (with c 0 = 1 and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 ).

Figure 2 :

 2 Figure 2: Sufficient condition of the Liouville linear property with ψ 1,p for p ∈ {1, 2}.

  and w n (0) → w 0 in H 4 loc as n → +∞. (4.22) Then, combining (4.20) and (4.22), we infer that: w n (0) → w 0 in H 4 as n → +∞. (4.23) Let w ∈ C([0, T ], H 5 (R)) the unique solution of the linearized gKdV equation around ψ 1,p :

  .121) w n (0) → w 0 in H 2 loc as n → +∞. (5.122) By combining the convergence in H 2 loc (5.122) and the H 2 -compactness (5.85) we obtain: w n (0) = wn (0) → w 0 = w0 in H 2 as n → +∞. (5.123) Let w ∈ C([0, T ], H 2 (R)) the unique global solution of the linear Liouville problem related to the gKW equation:
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  .20) By differentiating I x0,t0 (t) with respect to time (see Virial Identity I in K. (2019)):

  .65) Moreover, proceeding as in Step 5 (Monotonicity formula), we deduce that: ũ0 (x)e x/2K C 1

  in C([-T, T ]) as n → +∞, (6.173) and c(• + t n ) → α in C([-T, T ]) as n → +∞. (6.174) 

2 L 2

 22 H 1 : sup x≤-x0 |ũ(t, x + ξ(t))| ≤ C G ũ(t, • + ξ(t)) 1/(x≤-x0) ∂ x ũ(t, • + ξ(t))

  (∂ kx u)(t 0 , x + ξ(t 0 ))(∂ k x ϕ c(t0),p,µp )(x)φ K (x + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x) ≤ (∂ k x u)(t 0 , x + ξ(t 0 ))φ K (x + x 0 ) (∂ k x ϕ c(t0),p,µp )(x) -(∂ k x ϕ c0,p,µp )(x) + (∂ k x u)(t 0 , x + ξ(t 0 )) -(∂ k x ϕ c0,p,µp )(x) (∂ k x ϕ c0,p,µp )(x)φ K (x + x 0 ) + (∂ k x ϕ c0,p,µp ) 2 (x) [1 -φ K (x + x 0 )] = A + B + C. (6.199)Then A → 0 since: lim c(t0)→c0 ϕ c(t0),p,µp -ϕ c0,p,µp H 2 = 0, and B → 0 since:u(t 0 , x + ξ(t 0 )) ϕ c0,p,µp in H 2 and (∂ k x ϕ c0,p,µp )φ K (• + x 0 ) ∈ L 2 .Let us explain the exponential decay of C:C = x<-x0 (∂ k x ϕ c0,p,µp ) 2 (x) [1 -φ K (x + x 0 )] + x≥-x0 (∂ k x ϕ c0,p,µp ) 2 (x) [1 -φ K (x + x 0 )] = C 1 + C 2 . (6.200) Using that: ∂ k x ϕ c0,p,µp (x) e - √ c0|x| and 1 -φ K (x + x 0 ) ≤ 1 ∀x ∈ R, we obtain K ≥ 1 2 √ c0

  By (2.31) we know that ( ψ1,p,µn,∞ ) is H k -compact, that is to say, for R 0 > 0 large enough:

		|∂ k x ψ1,p,µ,∞ (x)| 2 e -2R0 .	(2.39)
	|x|>R0		
	Then (2.37) and (2.39) give us:		
	ψ1,p,µn,∞ → ψ1,p,0,∞ in H 1 as n → +∞.	(2.40)
	Finally, by passing to limit in (2.29), using (2.32), (2.36) and (2.38), we infer that for all g ∈ H 2 (R):	
			.35)
	Let µ n → 0 as n → +∞. Then there exists ψ1,p,0,∞ ∈ H 2 (R) such that up to subsequence:	
	ψ1,p,µn,∞	ψ1,p,0,∞ in H 2 as n → +∞,	(2.36)
	ψ1,p,µn,∞ → ψ1,p,0,∞ in H 1 loc as n → +∞,	(2.37)

and ψ1,p,µn,∞ → ψ1,p,0,∞ a.e in R, as n → +∞. (2.38)

  It is clear that ϕ c0,p,µp satisfies (3.1) and (3.2), since L c0,p,µp ϕ c0,p,µp = 0. By making the change of variable w = ∂ x (L c0,p,µp u), we obtain that w(t, x) satisfies equation (3.1) and is orthogonal in L 2 to ϕ c0,p,µp .

	.3)
	Remark 3.1.

  .11) We set: b n = sup t∈R wn (t) H 5 . Let t n be such that wn (t n ) H 5 ≥ 1 2 b n , and we define:

	wn (0) H 5 ≥	1 2	, sup t∈R	wn (t) H 5 ≤ 1,	wn (t)ψ 1,p,µn = 0,	(4.14)
	δn (t) =	1 (ψ 1,p,µn ) 2	wn (t)L 1,p,µn (ψ 1,p,µn ),	(4.15)
	and		5			
	∀x 0 > 0, ∀t ∈ R,		(∂ k x wn (t, x)) 2 dx e -x0/K .	(4.16)
			k=0 |x|>x0	
	Finally, we set:					
					t	
	w n (t, x) = wn (t, x) -ψ 1,p,µn	δn (s)ds,	(4.17)
					0	
	so that					
			wn (t, x) =	wn (t n + t, x) b n	.	(4.12)
	So that it holds:					
	∂ (4.13)

t wn = ∂ x (L 1,p,µn wn ) + δn (t)ψ 1,p,µn , (t, x) ∈ R × R,

  Proposition 6.2 (Convergence to a compact solution). Let p = {1, 2, 3, 4}, c 0 ∈]1 -δ p , 1 + δ p [ with δ p 1, and µ p = 2 2 (p+2) 2 (p 2 +4p+8) 2 . Assume that u(t, x) is the global H 2 -solution of the gKW equation which is close at the Let t n → +∞ as n → +∞. Then there exists (t τ (n) ), c0 > 0, and ũ0 ∈ H 2 such that:

	initial time (t = 0):		
	u 0 -ϕ c0,p,µp H 2 ≤ γ, with γ	1, and u 0 (x) = u(0, x).	(6.50)
	u(t τ (n) , • + ξ(t τ (n) ))	ũ0 weakly in H 2 as n → +∞,	(6.51)
	for all A > 0,		
	u(t τ (n) , • + ξ(t τ (n) )) → ũ0 strongly in H 2 (x > -A) as n → +∞	(6.52)
	and		
	c(t τ (n) ) → c0 as n → +∞,	(6.53)
	where ξ(t) and c(t) are given by Lemma 6.1.		
	Moreover, ũ(t, x) the global H 2 -solution of gKW emanating by the initial data ũ(0, x) = ũ0 (x) satisfied:
	ũ0 -ϕ c0,p,µp H 2 ≤ γ	(6.54)
	and ũ(t, x + ξ(t)) is L 2 -compact:		

  ,p,µp H 2 + ϕ c(t),p,µp -ϕ c0,p,µp H 2 + ϕ c0,p,µp H 2 ≤ ϕ c0,p,µp H 2 + γ. (6.56) Let t n → +∞ as n → +∞, by (6.56) the sequence {u(t n , x + ξ(t n ))} is bounded in H 2 , then up to a subsequence, there exists ũ0 ∈ H 2 such that:

	u(t n , • + ξ(t n ))	ũ0 weakly in H 2 as n → +∞,	(6.57)
	and also:		
	u(t n , • + ξ(t n )) → ũ0 strongly in H 1 loc as n → +∞.	(6.58)
	Moreover, using the lower semi-continuity, we infer that:
	ũ0 -ϕ c0,p,µp H 2 ≤ lim inf n→+∞	u(t n , • + ξ(t n )) -ϕ c0,p,µp H 2 ≤ γ.	(6.59)

  Since by hypothesis: u(t n , • + ξ(t n )) -ϕ c0,p,µp H 2 ≤ γ, then thanks to the orbital stability: sup t inf r u(t + t n , • + ξ(t n ) -ϕ c0,p,µp (• -r) H 2 ≤ γ, and by Lemma 6.1 we know that there exist ξ 2 (t) et c 2 (t) such that:u(t 1 +t n , •+ξ(t n ))-ϕ c2(t),p,µp (x-ξ 2 (t)) H 2 ≤ γ with |c 2 (t)-c 0 | ≤ γ.Thus the sequence {u(t 1 +t n , x+ξ(t n ))} is bounded in H 2 . Then up to a subsequence, there exists ũ1 ∈ H 2 such that:

				/K ,	(6.69)
	and			
	ũ(t, x)e x/2K	C 1	1.	(6.70)
	Assume (6.68), it is clear that using the lower semi-continuity and (6.62), we have (6.69). (6.70) follows by
	applying the same arguments as in Step 5 (Monotonicity formula).
	Assume now (6.67). Let t 1 ∈ R, we have in particular:		
	u(t 1 + t n , • + ξ(t n )) → ũ(t 1 , •) in L 2 loc as n → +∞.	(6.71)
	u(t 1 + t n , • + ξ(t n ))	ũ1 in H 2 as n → +∞,	(6.72)
	and			
	u(t 1 + t n , • + ξ(t n )) → ũ1 in H 1 loc as n → +∞.	(6.73)

  t m , x)φ K (x-ξ(t 0 +t m )-c 0 2 [t m -(t 0 +t n )]+x 0 )-2 3 e -x0/K . (6.179)Recall that γ small enough (6.6) and (6.8) imply:ξ(t 0 + t m ) + c0 2 [t m -(t 0 + t n )] ∼ ξ(t m ) -c0 2 [t m -(t 0 + t n )]. Moreover for n fixed, one can remark that:u(t m , • + ξ(t m )) φ K (• + c 0 2 [t m -(t 0 + t n )] + x 0 )ũ0 in L 2 as m → +∞ (6.180)

	1/2	g 2	φ K (x +	c 0 2	[t 2 1/2	→ 0.	(6.183)

and

V 0 ≤ lim inf m→+∞ u 2 (t m , x + ξ(t m ))φ K (x + c 0 2 [t m -(t 0 + t n )] + x 0 ).

(6.181)

Indeed, for all g ∈ L 2 :

u(t m , x + ξ(t m )) φ K (x + c 0 2 [t m -(t 0 + t n )] + x 0 )g -ũ0 (x)g ≤ u(t m , x + ξ(t m ))g φ K (x + c 0 2 [t m -(t 0 + t n )] + x 0 ) -1 + u(t m , x + ξ(t m ))g -ũ0 (x)g = A + B. (6.182)

Using (6.57) B → 0, and with A we use that φ K (+∞) = 1 and we apply the Lebesgue's Dominated Convergence Theorem:

A ≤ u 2 (t m , x + ξ(t m )) m -(t 0 + t n )] + x 0 ) -1

  ),p,µp → 0 in H 2 (x > -A) as t → +∞, (6.186) and c(t) → c0 as t → +∞ et |c 0 -c 0 | ≤ γ. (6.187) By combining (6.8) and (6.187) we directly infer that: c (t) → 0 and ξ (t) → c0 as t → +∞. (6.188)Now we redefine: η(t, x) = u(t, x) -ϕ c(t),p,µp (x -ξ(t)). Thanks to (6.186) we know that for x 0 > 0:From the monotonicity formula by the left (6.18) and (6.19) we know that: (t 0 , x)φ K (x -ξ(t 0 ) + x 0 ) + e -x0/K . (6.191) ϕ c(t0),p,µp ) 2 (x)φ K (x + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x) e -x0/K .(6.195) 

					lim t0→+∞	(∂ k
						2
	lim t→+∞ x η) 2 k=0 (∂ k k=0 (∂ k x η) c 0 2 (t -t 0 ) + x 0 ) =	2 k=0	(∂ k x u) c 0 2	(t -t 0 ) + x 0 )
		-2	2 k=0	(∂ k x u)(t, x)(∂ k	c 0 2	(t -t 0 ) + x 0 )
		+	2 k=0	(∂ k	c 0 2	(t -t 0 ) + x 0 ).	(6.190)
	2 k=0 x u) 2 We claim that k ∈ {0, 1, 2}: (∂ k x u) 2 (t, x)φ K (x -ξ(t 0 ) -2 c 0 2 (t -t 0 ) + x 0 ) k=0 (∂ k
	lim t→+∞	(∂ k x u)(t, x)(∂ k x ϕ c(t),p,µp )(x -ξ(t))φ K (x -ξ(t 0 ) -	c 0 2	(t -t 0 ) + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x) = 0, (6.192)
	lim t→+∞		(∂ k x ϕ c(t),p,µp ) 2 (x + ξ(t))φ K (x -ξ(t 0 ) -	c 0 2	(t -t 0 ) + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x) = 0,	(6.193)
	and					
	lim t0→+∞		(∂ k		e -x0/K ,	(6.194)
							58

2 (t, x)φ K (x -ξ(t) + x 0 ) = 0. (6.189) Let t ≥ t 0 , we compute: 2 (t, x)φ K (x -ξ(t 0 ) -2 (t, x)φ K (x -ξ(t 0 )x ϕ c(t),p,µp )(x -ξ(t))φ K (x -ξ(t 0 )x ϕ c(t),p,µp ) 2 φ K (x -ξ(t 0 )x u)(t 0 , x + ξ(t 0 ))(∂ k x ϕ c(t0),p,µp )(x)φ K (x + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x) x

  x)(∂ k x ϕ c(t),p,µp )(x -ξ(t))φ K (x -ξ(t 0 ) -+ ξ(t)) -(∂ k x ϕ c0,p,µp )(x) (∂ k x ϕ c0,p,µp )(x) = A + B + C. (6.196)By applying the Holder inequality, and using: u(t) H 2 1, φ K L ∞ ≤ 1 and that lim c(t)→c0 ϕ c(t),p,µpϕ c0,p,µp H 2 = 0 on obtient:A ≤ φ K L ∞ (∂ k x u) 2 (t, x + ξ(t))Again by applying the Holder inequality, and using that φ K (+∞) = 1 and the Lebesgue's Dominated Convergence Theorem we get:

					c 0 2	(t -t 0 ) + x 0 ) -(∂ k x ϕ c0,p,µp ) 2 (x)
		≤	(∂ k x u)(t, x + ξ(t))φ K (x +	c 0 2	(t -t 0 ) + x 0 ) (∂ k x ϕ c(t),p,µp )(x) -(∂ k x ϕ c0,p,µp )(x)
		+	(∂ k x u)(t, x + ξ(t))(∂ k x ϕ c0,p,µp )(x) φ K (x +	c 0 2	(t -t 0 ) + x 0 ) -1
		+	(∂ k x u)(t, x 1/2		(∂ k x ϕ c(t),p,µp )(x) -(∂ k x ϕ c0,p,µp )(x)	2	1/2	→ 0.	(6.197)
	B ≤	(∂ k x u) 1/2					2 1/2	→ 0.	(6.198)

2 

(t, x + ξ(t))

(∂ k x ϕ c0,p,µp ) 2 (x) φ K (x + c 0 2 (t -t 0 ) + x 0 ) -1

Finally C → 0 since: u(t, x + ξ(t)) ϕ c0,p,µp weakly in H 2 . (6.193) follows arguing similarly. Now let us prove

(∂ 2 x w n ) 2 ∂

x (ψ p cn,p,µ )(∂ 3 x w n ) 2 + (∂ 2 x w n ) 2 ,(5.110)

(t0-t))/K 1.(6.38) 
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Thus (6.30) and (6.31) give us lim t→-∞ I x0,t0 (t) = 0, and we infer (6.27).

Step 3: Monotonicity formula with the H 2 -energy localized by the right.

Using only that: u(t) -ϕ c0,p,µp (• -ξ(t)) H 2 ≤ γ, we will prove that for x 0 > 0, K > 0 chosen correctly, and t 0 > t: J x0,t0 (t 0 ) -J x0,t0 (t) e -x0/K . (6.32) By differentiating J x0,t0 (t) with respect to time (see Virial identity II in K. ( 2019)), we obtain:

K (x) -

To simplify writing we define:

ũp+2 . We will differentiating h(ũ(t, x))φ K (x -x 0 ) with respect to time:

K (x -x 0 ). (6.86)

Using that: u(t) H 2 1, φ(x) φ (x) > 0, and φ

we obtain for K chosen corretly:

Let t 0 ∈ R. First, by integrating (6.79) between [t 0 -1, t 0 ] and using (6.80), we obtain:

Second, combining (6.62) and (6.69), we deduce that for all x 0 > 0 and K > 0 chosen correctly:

.132) (6.131) and (6.132) implies that:

We claim that:

By integrating one more time between t 0 -1 ≤ t ≤ t 0 , and using (6.80) and (6.133):

→ 0 as n → +∞. (6.136) This prove (6.130) for A = 0. Now let us prove (6.134). For simplicity we set g(x) = φ K (x). Let us differentiating h(v n (t, x))g(x) with respect to time:

This completes the proof of (6.194). The proof of ( (∂ k x η) 2 (t 0 , x)φ K (x -ξ(t 0 ) + x 0 ) + C 3 e -x0/K , (6.203)

where C 3 is a positive constant. Finally by setting: θt = ξ(t 0 ) + c0 2 (t -t 0 ) -x 0 and using (6.189):

and this prove (6.2).