
HAL Id: hal-01887343
https://hal.science/hal-01887343v1

Preprint submitted on 4 Oct 2018 (v1), last revised 18 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Linear Liouville Property for the Generalized
Kawahara Equation

André Kabakouala

To cite this version:
André Kabakouala. A Linear Liouville Property for the Generalized Kawahara Equation. 2018. �hal-
01887343v1�

https://hal.science/hal-01887343v1
https://hal.archives-ouvertes.fr


A Linear Liouveille Property for the Generalized

Kawahara Equation
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Abstract

In Kabakouala and Molinet [6], we construct a family of smooth-even solitons by applying the
Implicit Function Theorem in the neighborhood of the explicit soliton of the generalized Kawahara
equation (gKW), found by Dey et al [5]. Next, by combining the well-known spectral method intro-
duced by Benjamin [3] with the continuity arguments, we proved the orbital stability of these family
for the subcritical and critical generalized Korteweg-de Vries equation (gKdV) nonlinearity power.
In this paper, inspired by the Martel’s Method [8] on the gKdV equation, we prove that the solution
of the linearized gKW equation around these family of solitons which is uniformly localized becomes
static (independent of time), and coincides to the first derivative of the soliton.

1 Introduction

The generalized Kawahara equation is given by:

ut + up∂xu+ ∂3xu− µ∂5xu = 0, (t, x) ∈ R∗+ × R, (1.1)

where p ∈ N∗ denotes the power of nonlinearity, and µ > 0 the parameter which control the fifth-order
dispersion term. For p = 1 and 2, the gKW equation has applications for instance in fuid mechanics
and plasma physics. For p ≥ 3, what interests us is the equilibrium between the nonlinear effect and the
scattering effect, this leads to the formation of solitary waves.

The Cauchy problem associated to (1.1) is locally well-posed in H2(R) (see for instance Abdelouhab
et al. [1]). The H2-solutions of (1.1) satisfy the following two conservation laws in time:

Ep,µ(u(t)) =

∫
R

[
µ

2
(∂2xu)2(t) +

1

2
(∂xu)2(t)− 1

(p+ 1)(p+ 2)
up+2(t)

]
= Eµ(u0) (energy) (1.2)

and

V (u(t)) =
1

2

∫
R
u2(t) = V (u0) (mass). (1.3)

These conserved quantities enable to extend the solutions for all positive times so that (1.1) is actually
globally well-posed in H2(R). Also, note that thanks to the consevartion laws one can rewrite equation
(1.1) in the Hamitonian form:

∂tV
′(u) = ∂xE

′(u), (1.4)
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where V ′(u) and E′(u) denote respectively the Fréchet derivative of V (u) and E(u).
The solitons of gKW are solution of (1.1) of the form u(t, x) = ϕc,p,µ(x−ct), which travels to the right

with the constant speed c > 0. Substituting u by ϕc,p,µ in (1.1), integrating on R with the assumption
∂kxϕc,p,µ(±∞) = 0 for k = 0, . . . 4, we obtain the equation of gKW-solitons:

µ∂4xϕc,p,µ(x)− ∂2xϕc,p,µ(x) + cϕc,p,µ(x) =
1

p+ 1
ϕp+1
c,p,µ(x), ∀x ∈ R. (1.5)

In 1996 Dey , Khare and Kumar [5] compute the explicit solitons of gKW, they found:

ϕc,p,µ(x) =

[
(p+ 1)(p+ 4)(3p+ 4)c

8(p+ 2)

]1/p
sech4/p

[
p
√

(p2 + 4p+ 8)c

4(p+ 2)
x

]
, ∀x ∈ R, (1.6)

with

c =
22(p+ 2)2

(p2 + 4p+ 8)2µ
. (1.7)

We first remark that when µ tends to 0 the speed c converge to +∞, then ϕc,p,µ do not converge to the
soliton of the generalized Korteweg-de Vries (gKdV) equation ψc,p explicitly defined by:

ψc,p(x) =

[
(p+ 1)(p+ 2)c

2

]1/p
sech2/p

[
p
√
c

2
x

]
, ∀x ∈ R, (1.8)

and satisfying equation (1.5) with µ = 0. One can easily observe that ϕc,p,µ is lower and narrower than
ψc,p. Second, since the speed c is related to the parameter µ, then when we change the value of c, we
modify the gKW equation. Due to the necessary condition of stability of the soliton ϕc,p,µ introduced by
Karpman [7]:

µ
∫
R
(
∂2xϕc,p,µ(x)

)2
c
∫
R ϕ

2
c,p,µ(x)

>
p(p− 4)

(p2 + 4p+ 32)
, (1.9)

Dey et al.[5] obtain that the single soliton ϕc,p,µ is unstable with respect to the small perturbation in the
case p ≥ 5.

Now we fix c0 = 1 and µp = 22(p+2)2

(p2+4p+8)2 . In Kabakouala and Molinet [6], by applying the Implicit

Function Theorem in the neighborhood of the explicit soliton of speed 1: ϕ1,p,µp , we construct a continuous
in H4(R) branch {ϕc0,p,µp , c0 ∈]1 − δp, 1 + δp[}, with 0 < δp � 1, of even solutions to equation (1.5).
Moreover, for each c0 ∈]1 − δp, 1 + δp[, ϕc0,p,µp is the unique even H4(R) solution of (1.5) in some H4-
neighborhood of ϕ1,p,µp (see Lemma 2.2). Next, we prove the orbital stability of these family by combining
the continuity arguments: for c0 close to 1 we have ϕc0,p,µp is close to ϕ1,p,µp , and the well-known sufficient

condition of the stability of the soliton ϕ1,p,µp introduced by Bejamin: 〈L−11,p,µp
ϕ1,p,µp , ϕ1,p,µp〉L2 < 0,

where L1,p,µpu = µp∂
4
xu− ∂2xu+ u− ϕp1,p,µpu. This stability condition has been verified numerically and

is satisfied for the subcritical and critical gKdV nonlinearity power p = 1, 2, 3, 4 (see [6] Subsection 2.3
and Subsection 2.4).

The goal of this paper is the following, by using the method of Martel [8] applied on the gKdV
equation, we will prove that if u(t, x) is solution to the linearized gKW equation around ϕc0,p,µp : ∂tu =
∂x(Lc0,p,µpu), where Lc0,p,µpu = µp∂

4
xu − ∂2xu + c0u − ϕpc0,p,µpu, and moreover if u(t, x) is uniformly

localized: |u(t, x)| . e−σ|x|, then u(t, x) is static and coincides with the unique element of the kernel of
Lc0,p,µp which is ϕ′c0,p,µp .

Theorem 1.1 (Linear Liouville Property). Assume that p ∈ {1, 2}, µp = 22(p+2)2

(p2+4p+8)2 and c0 ∈]1−δ, 1+δ[,

with 0 < δ � 1. Let u ∈ C(R, H2(R)) ∩ L∞(R, H2(R)) be the solution of

∂tu = ∂x(Lc0,p,µpu), (t, x) ∈ R× R. (1.10)
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Moreover, assume that there exists σ > 0 such that

|u(t, x)| . e−σ|x|, ∀(t, x) ∈ R× R. (1.11)

Then there exists a1 ∈ R such that

u(t, x) ≡ a1ϕ′c0,p,µp(x), ∀(t, x) ∈ R× R. (1.12)

It is clear that ϕ′c0,p,µp satisfies (1.10) and (1.11), since Lc0,p,µpϕ′c0,p,µp = 0 (which is equivalent to
the space derivative of eqution (1.5)).

2 Linear Liouville property

2.1 Preliminaries

We start by recalling the spectral properties of the operator L1,p,µp , and the result of existence of a
familly of solitons (solutions to (1.5)) in a neighborhood of the explicit soliton of velocity 1 (defined in
(1.6)-(1.7)). Also, we give the smoothness and exponential decay property of the solution satisfying (1.10)
and (1.11).

Lemma 2.1 (Spectral Properties of L1,p,µp). Let p ∈ N∗. We consider the unbounded operator L1,p,µp :
L2(R) → L2(R), defined by: u 7→ µp∂

4
xu − ∂2xu + u − ϕp1,p,µpu. We claim that L1,p,µp possesses, among

others, the following three crucial properties:
(P1) The essential spectrum of L1,p,µp is [1,+∞[ ;
(P2) L1,p,µp has only one negative eigenvalue λ1,p,µp which is simple;
(P3) The kernel of L1,p,µp is spanned by ϕ′1,p,µp .

Proof. First, the property (P1) is due to the fact that L1,p,µp is a compact perturbation of µp∂
4
x −

∂2x + 1, since ϕp1,p,µp is smooth and decay exponentially to 0. Second, Albert [2] has given a sufficient
condition based on the qualitative properties of the solitons ϕ1,p,µp which confers the operator L1,p,µp

the spectral properties (P2) and (P3):

F(ϕ1,p,µp)(ω) > 0, ∀ω ∈ R, and
d2

dw2
logF(ϕp1,p,µp)(ω) < 0, ∀ω ∈ R∗. (2.1)

The sufficient conditions (2.1) are clearly satisfied for the gKW-solitons (see [6], Lemma 2.1 for detailed
calculations). �

Lemma 2.2 (Existence of Solitons ϕ1,p,µp for c0 close to 1). There exist δp > 0 and δ̃p > 0 such that for
any c0 > 0 with |c0 − 1| < δp, there exists a unique H4(R) even solution ϕc0,p,µp of (1.5) in the ball of

H4(R) centered at ϕ1,p,µp with radius δ̃p > 0. Moreover, the function c0 7→ ϕc0,p,µp is of class C1 from
]1− δp, 1 + δp[ into BH4(ϕ1,p,µp).

Proof. The proof is based on the application of the Implicit Function Theorem (See [6] Lemma 2.2)
to the fonctional T :]1− δp, 1 + δp[×H4

e (R) 7→ L2
e(R) defined by: T (c, ψ) = µp∂

4
xψ− ∂2xψ+ cψ− 1

p+1ψ
p+1,

where µp = 22(p+2)
(p2+4p+8)2 and H4

e (R) = {u ∈ H4(R) : u(−x) = u(x)} and L2
e(R) = H0

e (R). One can easily

compute that T (1, ϕ1,p,µp) = 0 and ∂
∂ψT (1, ϕ1,p,µp) = L1,p,µp

∣∣∣
H4
e (R)

. Let us prove that L1,p,µp

∣∣∣
H4
e (R)

is

an isomorphism. We have clearly the linearity and the continuity: ‖L1,p,µp‖L2(R) ≤ C‖u‖H4(R). Now,
since the kernel of L1,p,µp is spanned by ϕ′1,p,µp (see Lemma 2.1 (P3)) and ϕ′1,p,µp is an odd function,

then L1,p,µp

∣∣∣
H4
e (R)

is injective. Let ψ ∈ L2
e(R), then there exists φ ∈ H4(R) such that L1,p,µpψ = φ. We

deduce also that L1,p,µpψ(−·) = φ. By setting u(x) = ψ(x)+ψ(−x)
2 ∈ H4

e (R) we get L1,p,µpu(−·) = φ, and
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this prove the surjectivity of L1,p,µp

∣∣∣
H4
e (R)

. Finally, by applying the Implicit Function Theorem we obtain

the desired result. �

Remark 2.1 (Important properties on ϕc0,p,µp and Lc0,p,µp). For c0 close to 1, the even soliton ϕc0,p,µp ∈
H4(R) satisfies the following nonlinear fourth-order ODE:

µp∂
4
xϕc0,p,µp − ∂2xϕc0,p,µp + c0ϕc0,p,µp −

1

p+ 1
ϕp+1
c0,p,µp = 0. (2.2)

The classical bootstrap argument implies that ϕc0,p,µp ∈ Hk(R) for all k ∈ N. In particular, we have
∂kxϕc0,p,µp(±∞) = 0 for all k ∈ N. Then the behavior of ϕc0,p,µp for |x| � 1 is given by the linear
asymptotic equation: µp∂

4
xϕc0,p,µp − ∂2xϕc0,p,µp + c0ϕc0,p,µp = 0. We deduce that ϕc0,p,µp and all these

derivatives decay exponentially:

|∂kxϕc0,p,µp(x)| . e−
√
c0|x|, ∀x ∈ R, ∀k ∈ N. (2.3)

Observe that by differentiating equation 2.2 with respect to the speed c we obtain

Lc,p,µp(− d

dc
ϕc,p,µp) = ϕc,p,µp and we set ρc0,p,µp = −(

d

dc
ϕc,p,µp)c=c0 . (2.4)

We claim that for p ∈ {1, 2, 3, 4} and c0 close to 1, the kernel of Lc0,p,µp is spanned by ϕ′c0,p,µp . Proof:
by differentiating equation 2.2 with respect to x, we have Lc0,p,µpϕ′c0,p,µp = 0. Now, recall that for

p ∈ {1, 2, 3, 4} and c0 close to 1, we prove in [6] (see Subsectiob 2.3) that for all v ∈ H2(R) satisfying
the orthogonality conditions: 〈v, ϕ′c0,p,µp〉L2 = 〈v, ϕc0,p,µp〉L2 = 0, the operator Lc0,p,µp is coercive:
〈Lc0,p,µpv, v〉L2 > 0. Assume that the dimension of the kernel of Lc0,p,µp is larger than or equal to 2,

and choose v0 = v1 −
〈v1,ϕ′

c0,p,µp
〉L2

‖ϕ′
c0,p,µp

‖2
L2(R)

ϕ′c0,p,µp with v1 ∈ KerLc0,p,µp r {ϕ′c0,p,µp}. Then v0 satisfies the

orthogonalities: 〈v0, ϕ′c0,p,µp〉L2 = 0 and 〈v0, ϕc0,p,µp〉L2 = −〈Lc0,p,µpv0, ddc |c=c0ϕc,p,µp〉L2 = 0. But we

have 〈Lc0,p,µpv0, v0〉L2 = 0 which is a contradiction.

Lemma 2.3 (Smoothness and Exponential Decay). Let u ∈ C(R, H2(R)) ∩ L∞(R, H2(R)) satisfying
(1.10) and (1.11). Then u ∈ C∞(R× R). Moreover, there exists σ > 0 such that for all k ∈ N,∣∣∂kxu(t, x)

∣∣ . e−σ|x|, ∀(t, x) ∈ R× R. (2.5)

As for the linearized gKdV equation (see Martel), the proof of Lemma 2.3 is based on the monotonicity
property of energies (conservation laws of gKW) localized by the right, and is completely given in the
Appendix 2.3

2.2 Proof of Theorem 1.1.

We follows the ideas of Martel [8] and we split the proof in four steps.

Step 1. Numerical computing of Kp =
〈
L−21,p,µp

ϕ1,p,µp ,L−11,p,µp
ϕ1,p,µp

〉
L2

for p = 1, 2, 3.

Recall that, we work with c0 = 1 and µp = 22(p+2)2

(p2+4p+8)2 . Let us choose ρ1,p,µp ∈ L−11,p,µp
ϕ1,p,µp and set

ψ1,p,µp = L−21,p,µp
ϕ1,p,µp = L−11,p,µp

ρ1,p,µp . We note that, since L1,p,µp is self-ajoint on L2 the value of Kp
does not depend on the choice of ρ1,p,µp . We recall that ρ1,p,µp is an even function since ϕ1,p,µp is even,

then ρ1,p,µp ∈ (Ker L1,p,µp)⊥. Moreover
〈
ψ1, χ1,p,µp

〉
L2 = λ−21,p,µp

〈
χ1,p,µp , ϕ1,p,µp

〉
L2 6= 0, where the pair

(λ1,p,µp , χ1,p,µp) is such that L1,p,µpχ1,p,µp = λ1,p,µpχ1,p,µp (see Lemma 2.1). Next, by following exactly
the same numerical scheme described in [6] (see Subsection 2.4), we compute that: K1 ≈ −6.4912 < 0
(see Fig.1a-1b), K2 ≈ −0.0713 < 0 (see Fig.1c-1d) and K3 ≈ 0.1090 > 0 (see Fig.1e-1f).

Step 2. Linear dual problem related to (1.10).
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We set ṽ = Lc0,p,µpu. Since ϕ′c0,p,µp ∈ KerLc0,p,µp , we get the first orthogonality condition: 〈ṽ, ϕ′c0,p,µp〉L2 =
0, and from (1.10) we infer that ṽ is a solution of: ∂tṽ = Lc0,p,µp(∂xṽ) for (t, x) ∈ R×R. Next, we modify
ṽ to obtain the second othogonality condition with the function ρc,p,µp :

v(t, x) = ṽ(t, x)−
( ∫

R ṽ(t, x)ρc0,p,µp(x)∫
R ϕc0,p,µp(x)ρc0,p,µp(x)

)
ϕc0,p,µp(x), (2.6)

where ρc0,p,µp is defined in 2.4. One can see that 〈v, ϕ′c0,p,µp〉L2 = 〈v, ρc0,p,µp〉L2 = 0 and satisfies for
(t, x) ∈ R× R,

∂tv = Lc0,p,µp(∂xv) + δ(t)ϕc0,p,µp , (2.7)

with

δ(t) = − 1∫
R ϕc0,p,µp(x)ρc0,p,µp(x)

d

dt

∫
R
ṽ(t, x)ρc0,p,µp(x), (2.8)

since Lc0,p,µp(∂xv) = Lc0,p,µp(∂xṽ). Now, substituting ∂tṽ by Lc0,p,µp(∂xṽ) in (2.8), using that Lc0,p,µpρc0,p,µp =
ϕc0,p,µp , doing intergation by parts, and from the fact ṽ is orthogonal to ϕ′c0,p,µp in L2, we obtain that
δ(t) = 0. This justifies our choice of orthogonality condition between v and ρc0,p,µp (as Côte and al. [4]).
Therefore, v is a solution of the following linear dual problem:

∂tv = Lc0,p,µp(∂xv), (t, x) ∈ R× R. (2.9)

Step 3. Virial Type Identity related to equation (2.9).
We compute a Virial Type Identity for the linear dual problem (2.9). By multiplying (2.9) with the

function v(t, x)x and integrating on R, we obtain

1

2

d

dt

∫
R
v2x =

∫
R

(∂tv)vx =

∫
R
Lc0,p,µp(∂xv)vx. (2.10)

Using the definition of Lc0,p,µp , it holds∫
R
Lc0,p,µp(∂xv)vx = µp

∫
R
(∂5xv)vx−

∫
R
(∂3xv)vx+ c0

∫
R
(∂xv)vx−

∫
R
ϕpc0,p,µp(∂xv)vx

= I + J +K + L. (2.11)

Now, with the aid of integration by parts, I give us

I = −µp
∫
R

(∂4xv)∂x(vx) = −µp
∫
R

(∂4xv)v − µp
∫
R
(∂4xv)(∂xv)x = I1 + I2, (2.12)

with

I1 = µp

∫
R

(∂3xv)(∂xv) = −µp
∫
R
(∂2xv)2 (2.13)

and

I2 = µp

∫
R

(∂3xv)∂x[(∂xv)x] = µp

∫
R

(∂3xv)(∂2xv)x+ µp

∫
R

(∂3xv)(∂xv)

=
µp
2

∫
R
∂x[(∂2xv)2]x− µp

∫
R
(∂2xv)2 = −3µp

2

∫
R

(∂2xv)2. (2.14)

Summing (2.13) and (2.14), we deduce that

I = −5µp
2

∫
R

(∂2xv)2. (2.15)
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We compute J :

J =

∫
R

(∂2xv)∂x(vx) =

∫
R
(∂2xv)v +

∫
R
(∂2xv)(∂xv)x

= −
∫
R

(∂xv)2 +
1

2

∫
R
∂x[(∂xv)2]x = −3

2

∫
R

(∂xv)2. (2.16)

Finally, we compute K and L:

K =
c0
2

∫
R
∂x(v2)x = −1

2

∫
R
v2 (2.17)

and

L = −1

2

∫
R
∂x(v2)ϕpc0,p,µpx =

1

2

∫
R
v2ϕpc0,p,µp +

p

2

∫
R
v2ϕp−1c0,p,µpϕ

′
c0,p,µpx. (2.18)

Thus, summing (2.15)-(2.18), we obtain the following identity:

− d

dt

∫
R
v2x = 5µp

∫
R

(∂2xv)2 + 3

∫
R
(∂xv)2 + c0

∫
R
v2 −

∫
R
v2ϕpc0,p,µp − p

∫
R
v2ϕp−1c0,p,µpϕ

′
c0,p,µpx. (2.19)

Step 4. End of the proof of Theorem 1.1.
The goal is to prove that v(t, x) = 0 for all (t, x) ∈ R × R, and then we will deduce that u(t, x) =

a1ϕ
′
c0,p,µp(x), with a1 a real constant. The definition of Lc0,p,µp permit us to rewrite (2.19) as

− d

dt

∫
R
v2x = 〈Lc0,p,µpv, v〉L2 + 4µp

∫
R

(∂2xv)2 + 2

∫
R

(∂xv)2 − p
∫
R
v2ϕp−1c0,p,µpϕ

′
c0,p,µpx. (2.20)

With the last term we deal as follow, let us set ϕc0,p,µp(x) = ϕ1,p,µp(x) + (ϕc0,p,µp(x) − ϕ1,p,µp)(x) =
ϕc0,p,µp(x) + γ(x). For c0 close to 1, we have supx∈R|γ(x)| + supx∈R|γ′(x)| ≤ γ, with 0 < γ � 1, and

|γ(x)|+ |γ′(x)| . e−
√

min (c0,1)|x| for all x ∈ R. Then we deduce the following estimate:

− p
∫
R
v2ϕp−1c0,p,µpϕ

′
c0,p,µpx ≥ −p

∫
R
v2ϕp−11,p,µp

ϕ′1,p,µpx− γ
∫
R
v2. (2.21)

Since ϕc0,p,µp(x) > 0 and −ϕ′c0,p,µp(x)x > 0 for all x ∈ R, we get

− p
∫
R
v2ϕp−1c0,p,µpϕ

′
c0,p,µpx ≥ −γ

∫
R
v2. (2.22)

The identity (2.20) becomes

− d

dt

∫
R
v2x ≥ 〈Lc0,p,µpv, v〉L2 + 4µp‖∂2xv‖2L2(R) + 2‖∂xv‖2L2(R) − γ‖v‖

2
L2(R). (2.23)

Recall that 〈v, ϕ′c0,p,µp〉L2 = 〈v, ρc0,p,µp〉L2 = 0 (by Step 2). Now, we claim that v still almost ortogonal
to ϕ1,p,µp and ρ1,p,µp . Indeed, applying the Cauchy-Schwarz inequality, it holds

|〈v, ϕ1,p,µp〉| ≤ γ‖v‖L2(R) and |〈v, ρ1,p,µp〉| =
∣∣∣∣〈v, ddc |c=c0ϕc,p,µp − d

dc |c=1

ϕc,p,µp〉L2

∣∣∣∣ ≤ γ‖v‖L2(R). (2.24)

Since v is almost orthogonal to ϕ′1,p,µp and ρ1,p,µp , and since Kp < 0 for p = 1, 2 (by Step 1), and
L1,p,µp possesses the properties (P1)-(P2) (see Lemma 2.1), arguing as Kabakouala and Molinet [6](see
Subsection 2.3), there exists C0 > 0 such that

〈L1,p,µpv, v〉L2 ≥ C0‖v‖2H2(R). (2.25)
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It follows immediatly that for c0 close to 1,〈
Lc0,p,µpv, v

〉
L2 =

〈
L1,p,µpv, v

〉
L2 + (c0 − 1) ‖v‖2L2(R) −

〈
v2, ϕpc0,p,µp − ϕ

p
1,p,µp

〉
L2

≥ C0 ‖v‖2H2(R) + (c0 − 1− γ) ‖v‖2L2(R)

≥ C0

2
‖v‖2H2(R) . (2.26)

Then combining (2.23) and (2.26), we get the following inequality

− d

dt

∫
R
v2x ≥ C1‖v‖2H2(R). (2.27)

Lemma 2.3, the definition of Lc0,p,µp , the smoothness and exponential decay properties of ϕc0,p,µp , imply
that v ∈ C∞(R× R), and there exists σ0 > 0 such that

|v(t, x)| . e−σ0|x|, ∀(t, x) ∈ R× R. (2.28)

For all t ∈ R, we set

J (t) =

∫
R
v2(t, x)x. (2.29)

Thanks to (2.28), one can check that for all t ∈ R,

|J (t)| ≤
∫
R
v2(t, x)|x| .

∫
R
e−2σ|x||x| = 1

2σ2
1

. (2.30)

Now, integrating (2.27) with respect to time and using (2.30), we obtain∫ +∞

−∞
‖v(t)‖2H2(R)dt ≤ C

−1
1 (J (−∞)− J (+∞)) < +∞. (2.31)

It follows that for a time sequence tn → +∞, we have v(tn)→ 0 in H2(R). In particular, we have

|J (tn)| ≤ ‖v(tn)x‖L2(R)‖v(tn)‖L2(R) .
1√

2σ3
1

‖v(tn)‖L2(R) → 0 as tn → +∞. (2.32)

We infer that J (+∞) = 0. Similarly, J (−∞) = 0. Thus (2.31) becomes∫ +∞

−∞
‖v(t)‖2H2(R)dt = 0,

which implies that v(t, x) ≡ 0 for all (t, x) ∈ R× R. Then Lc0,p,µpu(t, x) = ṽ(t, x) = β(t)ϕc0,p,µp(x), and

using that Lc,p,µpρc,p,µp(x) = ϕc,p,µp(x) and KerLc0,p,µp =
〈
ϕ′c0,p,µp

〉
, we get u(t, x) = a(t)ρc0,p,µp(x) +

b(t)ϕ′c0,p,µp(x). One can easily compte that ∂xLc0,p,µpu = a(t)ϕ′c0,p,µp(x) and ∂tu = a′(t)ρc0,p,µp(x) +
b′(t)ϕ′c0,p,µp(x). Now, using that ∂tu = ∂x(Lc0,p,µpu), we obtain a′(t) = 0 and b′(t) = a(t), and this
implies that a(t) = a0 and b(t) = a0t+ a1. Finally, since u(t, x) is uniformely bounded, then a0 = 0 and
we deduce that u(t, x) ≡ a1ϕ′c0,p,µp(x) for all (t, x) ∈ R× R. �

2.3 Appendix: prove of lemma 2.3

The aim of this section is to prove the smoothness and exponential decay properties of the solutions of
the linearized gKW equation around ϕc0,p,µp which are uniformly localized on R. We follows the ideas
of Martel [8].
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Figure 1: Variation of Kp for p = 1, 2, 3 (with c0 = 1 and µp = 22(p+2)2

(p2+4p+8)2 ).

We define the smooth (C∞) test-function:

φ(x) =
1

2
+

1

2
tanh(

x

2
), ∀x ∈ R. (2.33)

One can easy check the following properties:

φ′(x) =
1

4
sech2

(x
2

)
and

∣∣∣φ(j+1)(x)
∣∣∣ . φ′(x), ∀j ∈ N∗, ∀x ∈ R. (2.34)

Let K > 0, we set φK(x) = φ(x/K). Note that from (2.34) we have
∣∣∣φ(j+1)
K (x)

∣∣∣ ≤ 1
Kj φ

′
K(x).

Let x0 > 0, t0 ∈ R, for all t ≤ t0, we define the L2-localized energy:

Ix0,t0(t) =

∫
R
u2(t, x)φK(x− c0

2
(t0 − t)− x0)dx. (2.35)
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We first prove the monotonicity property of Ix0,t0(t).
Step 1. For x0 > 0 and t ≤ t0, we claim that:

Ix0,t0(t0)− Ix0,t0(t) . e−x0/K . (2.36)

Proof of (2.36). We set x̃(t) = x − c0
2 (t0 − t) − x0 = x − y(t). We compute the time variation of

Ix0,t0(t):
d

dt
Ix0,t0(t) = 2

∫
R

(∂tu)uφK(x̃) +
c0
2

∫
R
u2φ′K(x̃). (2.37)

Using that u(t) satisfies equation (1.10), the first term in (2.37) gives us:

2

∫
R
(∂tu)uφK(x̃) = 2µp

∫
R

(∂5xu)uφK(x̃)− 2

∫
R
(∂3xu)uφK(x̃) + 2c0

∫
R

(∂xu)uφK(x̃)− 2

∫
R
∂x(ϕpc,p,µpu)uφK(x̃)

= I + J +K + L. (2.38)

We compute I by applying several integration by parts:

I = −2µp

∫
R

(∂4xu)(∂xu)φK(x̃)− 2µp

∫
R
(∂4xu)uφ′K(x̃) = I1 + I2. (2.39)

I1 give us

I1 = 2µp

∫
R
(∂3xu)(∂2xu)φK(x̃) + 2µp

∫
R

(∂3xu)(∂xu)φ′K(x̃) = −3µp

∫
R

(∂2xu)2φ′K(x̃) + µp

∫
R
(∂xu)2φ′′′K(x̃).

(2.40)

I2 give us

I2 = 2µp

∫
R

(∂3xu)(∂xu)φ′K(x̃) + 2µp

∫
R

(∂3xu)uφ′′K(x̃) = I21 + I22, (2.41)

with

I21 = −2µp

∫
R

(∂2xu)2φ′K(x̃) + µp

∫
R

(∂xu)2φ′′′K(x̃), (2.42)

and

I22 = −2µp

∫
R

(∂2xu)(∂xu)φ′′K(x̃)− 2µp

∫
R

(∂2xu)uφ′′′K(x̃) = 3µp

∫
R

(∂xu)2φ′′′K(x̃)− µp
∫
R
u2φ

(5)
K (x̃). (2.43)

Combining (2.39)-(2.43) we get I:

I = −5µp

∫
R

(∂2xu)2φ′K(x̃) + 5µp

∫
R

(∂xu)2φ′′′K(x̃)− µp
∫
R
u2φ

(5)
K (x̃), (2.44)

We compute J :

J = 2

∫
R

(∂2xu)(∂x)φK(x̃) + 2

∫
R

(∂2xu)uφ′K(x̃) = −3

∫
R

(∂xu)2φ′K(x̃) +

∫
R
u2φ′′′K(x̃). (2.45)

K and L give us

K = −c0
∫
R
u2φ′K(x̃), L =

∫
R
u2
[
ϕpc0,p,µpφ

′
K(x̃)− (ϕpc0,p,µp)′φK(x̃)

]
. (2.46)

Therefore, combining (2.37),(2.44)-(2.46), we obtain

d

dt
Ix0,t0(t) = −5µp

∫
R

(∂2xu)2φ′K(x̃)− 3

∫
R
(∂xu)2φ′K(x̃)− c0

2

∫
R
u2φ′K(x̃)

+ 5µp

∫
R
(∂xu)2φ′′′K(x̃)− µp

∫
R
u2φ

(5)
K (x̃) +

∫
R
u2φ′′′K(x̃)

+

∫
R
u2
[
ϕpc0,p,µpφ

′
K(x̃)− (ϕpc0,p,µp)′φK(x̃)

]
. (2.47)
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Note that the term 5µp
∫
R(∂2xu)2φ′K(x̃) + 3

∫
R(∂xu)2φ′K(x̃) will permit us to gain regularity. Now, using

that
∣∣∣φ(j)K ∣∣∣ ≤ (1/Kj−1)φ′K on R for j = 2, 3, 4, 5, the estimation of the terms on the second line of (2.47)

leads to ∣∣∣∣5µp ∫
R
(∂xu)2φ′′′K(x̃)− µp

∫
R
u2φ

(5)
K (x̃) +

∫
R
u2φ′′′K(x̃)

∣∣∣∣
≤ max

(
5µp
K2

,
µp
K4

+
1

K2

)∫
R

((∂xu)2 + u2)φ′K(x̃). (2.48)

Now, let us estimate the last term in (2.47). We first remark that, using the properties of the soliton
ϕc0,p,µp and the test function φK , we have for all x ∈ R,∣∣∣ϕpc0,p,µp(x)

∣∣∣φ′K(x̃) +
∣∣∣(ϕpc0,p,µp)′(x)

∣∣∣φK(x̃) . e−p
√
c0|x|φK(x̃). (2.49)

Let α > 0 to be fixed later. We consider the three following cases.
Case: x < α. Then x̃ < α− c0

2 (t0 − t)− x0, so that

e−p
√
c0|x|φK(x̃) . φK(x̃) . ex̃/K . e(α−

c0
2 (t0−t)−x0)/K . (2.50)

Case: α < x < c0
2 (t0 − t) + x0. Then, we get that

e−p
√
c0|x|φK(x̃) . e−p

√
c0xφ′K(x̃) . e−p

√
c0αφ′K(x̃), (2.51)

since φK(x̃) . φ′K(x̃) for x̃ < 0.
Case: c0

2 (t0 − t) + x0 < x. We have

e−p
√
c0|x|φK(x̃) . e−p

√
c0(

c0
2 (t0−t)+x0) . e−(

c0
2 (t0−t)+x0)/K , (2.52)

if we choose K > 1
θp .

Combining (2.49)-(2.52), and using that by (1.11) we have ‖u‖L2(R) ≤ 1/
√
σ, we deduce that∣∣∣∣∫

R
u2
[
ϕpc0,p,µpφ

′
K(x̃)− (ϕpc0,p,µp)′φK(x̃)

]∣∣∣∣ . e(α− c02 (t0−t)−x0)/K + e−p
√
c0α

∫
R
u2φ′K(x̃). (2.53)

Finally, integrating (2.47) between t and t0, using that the first three terms in identity (2.47) are negative,
combining the estimates (2.48) and (2.53), and for K > 0 and α > 0 chosen correctly, we obtain claim
(2.36). More general, we get∫

R
u2(x, t0)φK(x− x0)dx+

∫ t0

t

∫
R

[(∂2xu)2 + (∂xu)2 + u2](x, s)φ′K(x̃)dxds

. e−x0/K +

∫
R
u2(x, t)φK(x− c0

2
(t0 − t)− x0)dx. (2.54)

Step 2. We claim that:
lim

t→−∞
Ix0,t0(t) = 0. (2.55)

Proof of (2.55). Let β > 0, we cut the integral into two pieces∫
R
u2(t, x)φK(x̃) =

∫
x>β

u2(t, x)φK(x̃) +

∫
x<β

u2(t, x)φK(x̃) = A+B. (2.56)

On the one hand, using the uniform bound of φK (‖φK‖L∞(R) ≤ 1) and the exponential decay property
of u(t), we have

A ≤ ‖φK‖L∞(R) ‖u‖
2
L2(x>β) ≤

1

2σ
e−2σβ . (2.57)
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On the other hand, using that φK(x) ≤ ex/K for all x ∈ R, and the L2 bound of u(t), we have

B ≤ e(β−
c0
2 (t0−t)−x0)/K ‖u‖2L2(R) ≤

1

σ
e(β−

c0
2 (t0−t)−x0)/K . (2.58)

Since β is an arbitrarily positive constant, then from (2.57) and (2.58), we obtain the claim (2.55).
Step 3. For x0 > 0, t ≤ t0 and k ∈ N, we claim that:∫
R

(∂kxu)2(t0, x)φK(x− x0)dx+

∫ t0

−∞

∫
R

[
(∂k+2
x u)2 + (∂k+1

x u)2 + (∂kxu)2(x̃)
]
φ′K(s, x)dxds . e−x0/K .

(2.59)
Proof of (2.59). We proceed by induction on k. From Step 1 and Step 2, the estimate (2.59) holds for
k = 0. Now, we assume that (2.59) is true for 1 ≤ j ≤ k − 1. By repeating the computations done on

Step 1 with the Hk-localized energy: I
(k)
x0,t0(t) =

∫
R(∂kxu)2(t, x)φK(x̃)dx, we get

d

dt
I
(k)
x0,t0(t) = −5µp

∫
R

(∂k+2
x u)2φ′K(x̃)− 3

∫
R

(∂k+1
x u)2φ′K(x̃)− c0

2

∫
R

(∂kxu)2φ′K(x̃)

+ 5µp

∫
R
(∂k+1
x u)2φ′′′K(x̃)− µp

∫
R
(∂kxu)2φ

(5)
K (x̃) +

∫
R

(∂kxu)2φ′′′K(x̃)

− 2

∫
R
∂k+1
x (ϕpc0,p,µpu)(∂kxu)φK(x̃). (2.60)

By applying the similar arguments as for the estimate (2.48), we have∣∣∣∣5µp ∫
R
(∂k+1
x u)2φ′′′K(x̃)− µp

∫
R
(∂kxu)2φ

(5)
K (x̃) +

∫
R

(∂kxu)2φ′′′K(x̃)

∣∣∣∣
≤ max

(
5µp
K2

,
µp
K4

+
1

K2

)∫
R

((∂k+1
x u)2 + (∂kxu)2)φ′K(x̃). (2.61)

Let us estimate the last term in (2.60). Applying the Leibniz formula on ∂k+1
x (ϕpc0,p,µpu), it holds

−2

∫
R
∂k+1
x (ϕpc0,p,µpu)(∂kxu)φK(x̃) =

∫
R

(∂kxu)2
[
−(2k + 1)(ϕpc0,p,µp)′φK(x̃) + ϕpc0,p,µpφ

′
K(x̃)

]
− 2

k+1∑
j=2

Cjk+1

∫
R

(∂kxu)(∂k−j+1
x u)(ϕpc0,p,µp)(j)φK(x̃). (2.62)

Arguing as for the estimate (2.53), we get∣∣∣∣∫
R

(∂kxu)2
[
−(2k + 1)(ϕpc0,p,µp)′φK(x̃) + ϕpc0,p,µpφ

′
K(x̃)

]∣∣∣∣ . e(α− c02 (t0−t)−x0)/K +e−p
√
c0α

∫
R

(∂kxu)2φ′K(x̃).

(2.63)
Remark that for all x ∈ R and j ∈ N,

|(ϕpc0,p,µp)(j)|φK(x̃) . e−p
√
c0|x|φK(x̃) . φ′K(x̃). (2.64)

Indeed, for x̃ ≤ 0, we have φK(x̃) ≤ φ′K(x̃). For x̃ > 0, we have x > x̃ > 0, and then

e−p
√
c0|x|φK(x̃) . e−p

√
c0x . e−p

√
c0x̃ . φ′K(x̃). (2.65)

Young’s inequality by parts and (2.65) lead to∣∣∣∣∣∣2
k+1∑
j=2

Cjk+1

∫
R
(∂kxu)(∂k−j+1

x u)(ϕpc0,p,µp)(j)φK(x̃)

∣∣∣∣∣∣ .
k−1∑
j=0

∫
R

(∂jxu)2φ′K(x̃). (2.66)
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Therfore, by integrating (2.60) between on t and t0, and combining the estimates (2.61), (2.63) and (2.66),
we obtain

I
(k)
x0,t0(t0) +

∫ t0

t

∫
R

[
(∂k+2
x u)2 + (∂k+1

x u)2 + (∂kxu)2
]
φ′K(x̃)

. e−x0/K +

k+1∑
j=0

∫ t0

t

∫
R
(∂jxu)2φ′K(x̃) + I

(k)
x0,t0(t). (2.67)

Letting t tends to −∞ and using the induction hypothesis, we get

I
(k)
x0,t0(t0) +

∫ t0

−∞

∫
R

[
(∂k+2
x u)2 + (∂k+1

x u)2 + (∂kxu)2
]
φ′K(x̃)

. e−x0/K + lim inf
t→−∞

I
(k)
x0,t0(t). (2.68)

Let us proof that I
(k)
x0,t0(t)→ 0 as t→ −∞. From the induction hypothesis with j = k− 1, we know that∫ t0

−∞

∫
R

(∂kxu)2φ′K(x̃) . e−x0/K . (2.69)

Then ∫ t0

−∞

∫
x<

c0
2 (t0−t)+x0

(∂kxu)2e(x−
c0
2 (t0−t))/K . 1, (2.70)

since ex̃/K . φ′K(x̃) for x̃ < 0. Thus, passing to the limit as x0 tends to +∞ in (2.70) and multiplying
by ex0/K , we get ∫ t0

−∞

∫
R

(∂kxu)2ex̃ . e−x0/K , (2.71)

and then, since φ(x̃) . ex̃/K for all x ∈ R,∫ t0

−∞

∫
R

(∂kxu)2φK(x̃) . e−x0/K . (2.72)

Thus, we infer that

lim inf
t→−∞

∫
R
(∂kxu)2φK(x̃) = 0. (2.73)

Combining (2.68) and (2.73), we get the claim (2.59).
Step 4. For all k ∈ N, we claim that:∫

R
(∂kxu)2(t, x)e|x|/K . 1. (2.74)

Proof of (2.74). From Step 3, we know that:∫
R

(∂kxu)2φK(x− x0) . e−x0/K , (2.75)

and then ∫
x<x0

(∂kxu)2ex/K . 1, (2.76)

since e(x−x0)/K . φK(x− x0) for x < x0. Now, passing to the limit as x0 tends to +∞ in (2.76), we get
the exponential decay property by the right:∫

R
(∂kxu)2ex/K . 1. (2.77)
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For the left exponential decay proprety, one can remark that u(−t,−x) satisfies (1.10) and (1.11). Then,
repeating the same analysis with u(−t,−x), we get the claim (2.74). In particular, applying the Gagliardo-
Nirenberg inequality, we infer that for all k ∈ N,∥∥∥(∂kxu)e|·|/2K

∥∥∥
L∞(R)

≤ CG
∥∥∥(∂kxu)e|·|/2K

∥∥∥1/2
L2(R)

∥∥∥(∂k+1
x u)e|·|/2K

∥∥∥1/2
L2(R)

. 1, (2.78)

and this prove (2.5).
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