N

N

A Linear Liouville Property for the Generalized
Kawahara Equation
André Kabakouala

» To cite this version:

André Kabakouala. A Linear Liouville Property for the Generalized Kawahara Equation. 2018. hal-
01887343v1

HAL Id: hal-01887343
https://hal.science/hal-01887343v1

Preprint submitted on 4 Oct 2018 (v1), last revised 18 Apr 2020 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01887343v1
https://hal.archives-ouvertes.fr

A Linear Liouveille Property for the Generalized
Kawahara Equation

André Kabakouala
People’s Friendship University of Russia (RUDN University)
Miklukho-Maklaya str. 6, Moscow, 117198 Russia Federation.

kadodo1987@yahoo.fr

Abstract

In Kabakouala and Molinet [6], we construct a family of smooth-even solitons by applying the
Implicit Function Theorem in the neighborhood of the explicit soliton of the generalized Kawahara
equation (gKW), found by Dey et al [5]. Next, by combining the well-known spectral method intro-
duced by Benjamin [3] with the continuity arguments, we proved the orbital stability of these family
for the subcritical and critical generalized Korteweg-de Vries equation (gKdV) nonlinearity power.
In this paper, inspired by the Martel’s Method [8] on the gKdV equation, we prove that the solution
of the linearized gKW equation around these family of solitons which is uniformly localized becomes
static (independent of time), and coincides to the first derivative of the soliton.

1 Introduction
The generalized Kawahara equation is given by:
up + uPOpu+ Oou — pdu =0, (t,x) € R% xR, (1.1)

where p € N* denotes the power of nonlinearity, and p > 0 the parameter which control the fifth-order
dispersion term. For p = 1 and 2, the gKW equation has applications for instance in fuid mechanics
and plasma physics. For p > 3, what interests us is the equilibrium between the nonlinear effect and the
scattering effect, this leads to the formation of solitary waves.

The Cauchy problem associated to is locally well-posed in H?(R) (see for instance Abdelouhab
et al. [1]). The H?-solutions of satisfy the following two conservation laws in time:

1

Epuul®) = [ [5@020)+ 50020 - gy

P (1)| = Bu(uo) (emergy)  (12)

and
V(u(t)) = %/Ruz(t) = V(up) (mass). (1.3)

These conserved quantities enable to extend the solutions for all positive times so that is actually
globally well-posed in H2(R). Also, note that thanks to the consevartion laws one can rewrite equation
in the Hamitonian form:

V' (u) = 0, E'(u), (1.4)



where V'(u) and E’(u) denote respectively the Fréchet derivative of V(u) and E(u).

The solitons of gKW are solution of of the form u(t, x) = @¢ p, . (x —ct), which travels to the right
with the constant speed ¢ > 0. Substituting u by ¢,y , in , integrating on R with the assumption
Ok e pu(E00) =0 for k =0,...4, we obtain the equation of gKW-solitons:

x

1
Na;l@c,p,u(x) - a%?ap,u(x) + cpepu(r) = m@?jg,lﬂ(ff), Vz € R. (1.5)

In 1996 Dey , Khare and Kumar [5] compute the explicit solitons of gKW, they found:

, Vo eR, (1.6)

e+ De+)E+ 9" [0/ P+ A+ 8)c
Perul) = e B l 2

with ) )
2°(p+2
c= 2T (L.7)
(P? +4p +8)%p
We first remark that when u tends to 0 the speed c converge to 4o, then ¢, p, do not converge to the
soliton of the generalized Korteweg-de Vries (gKdV) equation )., explicitly defined by:

e p(x) = [W] v sech?/? {1?\2/54 , VzeR, (1.8)

and satisfying equation with ¢ = 0. One can easily observe that ¢, is lower and narrower than
e,p- Second, since the speed c is related to the parameter i, then when we change the value of ¢, we
modify the gKW equation. Due to the necessary condition of stability of the soliton ¢y, introduced by
Karpman [7]:
1w (93 @cpu (x))z p(p—4)
c fR Sog,p,p,(x) (p2 + 4p + 32) ’

Dey et al.[5] obtain that the single soliton ¢, , , is unstable with respect to the small perturbation in the
case p > 5.

(1.9)

Now we fix ¢g = 1 and p, = %. In Kabakouala and Molinet [6], by applying the Implicit
Function Theorem in the neighborhood of the explicit soliton of speed 1: ¢1 5, ,,,, we construct a continuous
in H*(R) branch {©c)pu,,co €]1 — by, 1 + 6}, with 0 < 6, < 1, of even solutions to equation (L.F).
Moreover, for each ¢g €]1 — 6y, 1 + 6,[, e ,pu, is the unique even H*(R) solution of in some H*-
neighborhood of ¢1 5, ., (see Lemma. Next, we prove the orbital stability of these family by combining
the continuity arguments: for cg close to 1 we have ¢, p 4, is close to ¢1,p, ., , and the well-known sufficient
condition of the stability of the soliton ¢;; ,, introduced by Bejamin: (Ei;)up@l,p,uwSDl,p,up>Lz < 0,
where L1 p ., u = pp05u — 02u +u — o, 4, u- This stability condition has been verified numerically and
is satisfied for the subcritical and critical gKdV nonlinearity power p = 1,2,3,4 (see [6] Subsection 2.3
and Subsection 2.4).

The goal of this paper is the following, by using the method of Martel [8] applied on the gKdV
equation, we will prove that if u(t, ) is solution to the linearized gKW equation around ¢c, p,u,: Oiu =
02(Leg pou,w), Where Lo pot = ppOiu — 02u + cou — ©¥ pu, s and moreover if u(t,z) is uniformly
localized: |u(t,z)| < e?1®l, then u(t,z) is static and coincides with the unique element of the kernel of
Leopu, Which'is @, 0, -

22(p+2)22 and ¢y €]1—6,1+4],

Theorem 1.1 (Linear Liouville Property). Assume thatp € {1,2}, pp, = T A

with 0 < § < 1. Let u € C(R, H?(R)) N L>(R, H%(R)) be the solution of

Oy = 0y (Leg pou,u), (tr) €RXR. (1.10)



Moreover, assume that there exists o > 0 such that
lu(t,z)] S el V(t,z) € R x R. (1.11)
Then there exists a1 € R such that
u(t, r) = a1, . (2), V(t,z) € R xR (1.12)
It is clear that ¢ , , satisfies (1.10) and (L.11)), since Legppu,Peyp,u, = 0 (Which is equivalent to
the space derivative of eqution (1.5))).

2 Linear Liouville property

2.1 Preliminaries

We start by recalling the spectral properties of the operator L, ,,, and the result of existence of a
familly of solitons (solutions to (|1.5))) in a neighborhood of the explicit soliton of velocity 1 (defined in
(1.6)-(1.7)). Also, we give the smoothness and exponential decay property of the solution satisfying ([1.10])
and (1.11)).

Lemma 2.1 (Spectral Properties of £y 5,,,,). Let p € N*. We consider the unbounded operator Ly,
L*(R) — L*(R), defined by: u — ppdiu — 02u+u — go’f’pﬁupu, We claim that Ly, ,, possesses, among
others, the following three crucial properties:

(P1) The essential spectrum of Ly p ., is [1,+00] ;

(P2) L1y, has only one negative eigenvalue Ay p,,, which is simple;

(P3) The kernel of L1,p ., is spanned by o7, , .

Proof. First, the property (P1) is due to the fact that £, is a compact perturbation of 4,0 —
92 + 1, since ga’l”p’ u, 18 smooth and decay exponentially to 0. Second, Albert [2] has given a sufficient
condition based on the qualitative properties of the solitons ¢1 5, ,, which confers the operator Ly,
the spectral properties (P2) and (P3):

d? N
F(o1pu,)(w) >0, VweR, and Wlogf(gof’p#p)(w) <0, VweR*. (2.1)

The sufficient conditions (2.1]) are clearly satisfied for the gKW-solitons (see [6], Lemma 2.1 for detailed
calculations). O

Lemma 2.2 (Existence of Solitons ¢y 5 ,,, for co close to 1). There exist 6, > 0 and o, > 0 such that for
any co > 0 with |co — 1| < 8y, there ezists a unique H*(R) even solution ¢c,p. ., of (L5) in the ball of

H*(R) centered at @1, with radius 6, > 0. Moreover, the function cy Peop, 18 Of class C* from
1 —=6p, 146, into Ba(p1,pu,)-
Proof. The proof is based on the application of the Implicit Function Theorem (See [6] Lemma 2.2)
to the fonctional T :]1 — 6p, 1 + 6,[x HA(R) — L%(R) defined by: T(c, 1) = pp0ith — 024 + cyp — T}HW)H’
2
where p, = % and HX(R) = {u € H*(R) : u(—z) = u(z)} and L?(R) = H?(R). One can easily
compute that T'(1,¢1,p,,,) = 0 and %T(l,gpl,p,up) = Lipyu,

. Let us prove that £ is
HA(R) P LPbp | a gy

an isomorphism. We have clearly the linearity and the continuity: ||£1p ., [|z2®) < Cllullgaw). Now,
since the kernel of L1, is spanned by ¢}, , (see Lemma (P3)) and ¢, . is an odd function,

then £, is injective. Let ¢ € LZ(R), then there exists ¢ € H*(R) such that £, 1 = ¢. We

sHp HA(R)

deduce also that £y, ,,%(—-) = ¢. By setting u(z) = w € H}(R) we get Ly, u(—) = ¢, and



this prove the surjectivity of L1 p ., Ha(

the desired result. O

B’ Finally, by applying the Implicit Function Theorem we obtain

Remark 2.1 (Important properties on ¢e, p.u, and Le, p.,,)- For cg close to 1, the even soliton ¢, p,u, €
H*(R) satisfies the following nonlinear fourth-order ODE:

1
4 2 1
Upamﬁ"Co,p,up - az‘ﬂcmnup + C0Peo,pyup Pt 1%05;:;)7% =0. (2.2)

The classical bootstrap argument implies that e, ., € H k(R) for all k € N. In particular, we have
0¥ pey pu, (£00) = 0 for all k € N. Then the behavior of ¢c, .., for [z| > 1 is given by the linear
asymptotic equation: 1,05Pcy puy — O2Pco.puy + C0Peopu, = 0. We deduce that ¢, .., and all these
derivatives decay exponentially:

105 o pny ()] S €”VI, Wr €R, VE €N. (2.3)
Observe that by differentiating equation with respect to the speed ¢ we obtain
d d

‘Cc,p,up(_%‘pcmwp) = Qepu, and weset pegp,, = _(%¢C7P7NP)C:CO' (2.4)

We claim that for p € {1,2,3,4} and ¢q close to 1, the kernel of L., 5 ., is spanned by wgowp. Proof:
by differentiating equation with respect to z, we have 50071'7#@9020,1),% = 0. Now, recall that for
p € {1,2,3,4} and ¢ close to 1, we prove in [6] (see Subsectiob 2.3) that for all v € H?(R) satisfying
the orthogonality conditions: (v,g, . )12 = (U, %copu,)r2 = 0, the operator Le,p,u, is coercive:
(Leopupsv)r2 > 0. Assume that the dimension of the kernel of L, ,, is larger than or equal to 2,

<'U1;Solco,p,up>L2

and choose vg = v — with vy € KerLe, p i, {‘Péo,p,up}' Then vy satisfies the

80/
0t pp ez gy * COPoHD

oy . 12 _ _ d _
orthogonalities: <U07S000,p,y,p>L2 = 0 and (vo, Peo,p,u, )12 = _<£CO’W@UO’Elczcowcll’)ﬂﬁm = 0. But we

have (Lcy,p,u,v0,v0) > = 0 which is a contradiction.

Lemma 2.3 (Smoothness and Exponential Decay). Let v € C(R, H3(R)) N L= (R, H?(R)) satisfying
([L.10) and (L1I). Then u € C*°(R x R). Moreover, there exists o > 0 such that for all k € N,

|8§u(t,:c)| Se ol vt z) e R x R. (2.5)

As for the linearized gKdV equation (see Martel), the proof of Lemmais based on the monotonicity
property of energies (conservation laws of gKW) localized by the right, and is completely given in the

Appendix

2.2 Proof of Theorem [1.1l

We follows the ideas of Martel [8] and we split the proof in four steps.

Step 1. Numerical computing of K, = <£1_;7M) ©1,p,1up> Ll—,zla,up‘plvpvup>L2 forp=1,2,3.
2 2
Recall that, we work with cp =1 and p, = %.
Vipoy = ﬁf,zz),up‘pl’pvup = ﬁi;,ﬂppl,p,up’ We note that, since L1, is self-ajoint on L? the value of K,
does not depend on the choice of p1 ;. We recall that pl””g"’ is an even function since ¢, is even,
then p1p.,., € (Ker Lyp,,)". Moreover (¢1,X1,pu,) 2 = AMopoiy (X1.piy> P1pin ) 2 7 0, where the pair
(ALpops X1pop,) 18 such that L1, 0 X1.p.u, = Apou, X1, (See Lemma [2.1). Next, by following exactly
the same numerical scheme described in [6] (see Subsection 2.4), we compute that: £ ~ —6.4912 < 0

(see Fig{lafjlb)), Ko ~ —0.0713 < 0 (see Fig|lcjjld) and K3 ~ 0.1090 > 0 (see Fig]lej1f]).

Step 2. Linear dual problem related to 1.10: .

~1
Let us choose p1pu, € L1, #1,p,u, and set




We set 0 = LCM, u, U Since 9000 ooy € KerLeg p i, we get the first orthogonality condition: (v, ¢r, o, , )12 =
0, and from (1.10) we infer that @ is a solution of: atv = Leypou, (0:0) for (t,2) € RxR. Next, we modify
v to obtain the Second othogonality condition with the function p¢ ., :

U(t, 3}) _ TNJ(t,I) _ < fR ﬁ(t,l')pcoﬁlhﬂp (1‘) ) @co,p,up (l‘), (26)

J ooy () Peo pou, ()
where pey pu, is defined in One can see that (v, g, . )12 = (U, peg,pu, )2 = 0 and satisfies for
(t,x) e R xR,
040 = Loy pou, (020) + 0()Pco,puy s (2.7)
with
i) =—

1 d
— v(t ¢ ) , 2.8
o G it J, 0 @) (28)

since Leg p.pu, (050) = Leg pop, (020). Now, substituting 8,0 by Lo, p. i, (0:0) in (2.8), using that Leg .., Peopoy =
Peo,popip> doing intergation by parts, and from the fact © is orthogonal to ¢, ! L?, we obtain that

d(t) = 0. This justifies our choice of orthogonality condition between v and pc, p,u, (as Cote and al. []).
Therefore, v is a solution of the following linear dual problem:

0w = Lo pp, (020), (t,x) € R xR, (2.9)

Step 3. Virial Type Identity related to equation ([2.9).
We compute a Virial Type Identity for the linear dual problem (2.9). By multiplying (2.9) with the
function v(¢, z)x and integrating on R, we obtain

th/v x—/ (Opv) Ua:—/ﬁco,p,up (0zv) (2.10)

Using the definition of L, ; ,,, it holds

/ Ley po, (Ozv)vT = fup / (O5v)vr — /(83.1})1)3: + cp / (Ogv)vr — / ‘Pgo,p,up (Opv)vz
R R R R R
=I+J+K+L. (2.11)

Now, with the aid of integration by parts, I give us

=— ) vE) = — Ao)v — Ao v)x =11 + I -
I= up/wa)axm up/R@) up/R@)(aw L+ I, (2.12)

with

B =ty [ 020)@r) = =y | (@207 (2.13)

and

L=p, / (920)0[(0,0)2] = 1y / (920)(020) + 1y / (620)(D,0)

=12 [0l -, [ @202 =2 [ (@20 (2.14)
2 Jr R 2 Jr
Summing (2.13)) and (2.14), we deduce that
[= 2k [ (522, (2.15)

2 Jr



We compute J:

= /R (820)9, (vz) = /R (02v)v + /R (0%0)(0v)x
—— [@ap+] [l = -3 [ 0.0 (216)

Finally, we compute K and L:
1
K = 0—0/81(112)95: —*/v2 (2.17)
2 Jr 2 Jr

1 2
L= _7/8 ‘PCD,p,up D) /RU 90?07177#;7 +

Thus, summing ([2.15| —-7 we obtain the following identity:

d _
dt U x_5up/(62 ) +3/(a v +CO/U _/U SDCoxplefp _p/'l) %0507;71410('0:307177#;71,' (219)
R

Step 4. End of the proof of Theorem [T.1]
The goal is to prove that v(t,z) = 0 for all (t,2) € R x R, and then we will deduce that u(t,z) =
a1¥%y oy, (), With a1 a real constant. The definition of Le, p,,, permit us to rewrite (2.19) as

and

[NVARS]

2 p—1
R 218)

d _
- = v2z (Leopo,V,0) L2 —|—4,up/(3§v)2 + 2/(89511)2 —p/ vQ@’gO’;’Hpga’Co,p,upx. (2.20)
R R R

With the last term we deal as follow, let us set weyp.u, () = ©1,pu, () + (Peopop, (£) = P1,p.u,)(2) =
Oeo,poup () +y(x). For cg close to 1, we have sup,cg|y(z)| 4 sup, e[y ()| < v, with 0 < v < 1, and

Iy(x)| 4 |7 (z)| < emvVminleoDlzl for all 2 € R. Then we deduce the following estimate:

2 p—1 / 2 p—1 / 2
7PAU wgo,p,upsoco,p,upz 2 7p/Rv <P1,p,#p§01,p,up$*’7/RU . (221)

Since ¢eq,p,p, (¥) >0 and —pp o, (z)z > 0 for all x € R, we get

[ POt = [ 0 (2:22)
The identity (2.20)) becomes
= 2 [ V8= (Legp 0 0) 12 + Aptp 030112y + 201000 T2y — V0 T2m)- (2.23)

Recall that (v, ¢g, 0 )12 = (U, peq,pu,) 2 = 0 (by Step 2). Now, we claim that v still almost ortogonal
to ¢1,p,u, and p1 p ., . Indeed, applying the Cauchy-Schwarz inequality, it holds

d d

|<U7901,p,/tp>| < ’YHUHL%R) and ‘<v7p17p7,“'p>| = <’U, %‘ Pe,pup — %I ‘PC,p,;Lp>L2 < ’Y||U||L2(R)' (2'24)
c=cq c=1

Since v is almost orthogonal to go’l’p’#p and p1p.,,, and since K, < 0 for p = 1,2 (by Step 1), and
L1 p.u, possesses the properties (P1)-(P2) (see Lemma , arguing as Kabakouala and Molinet [6](see
Subsection 2.3), there exists Cy > 0 such that

(L1,p,u,v50) 12 2 COHUHIZLP(R)- (2.25)



It follows immediatly that for c¢q close to 1,

2
<£co,p,upv7v>L2 = <£1,p,upva U>L2 + (CO - 1) ||UHL2(]R) - <’027 @go,p,up - <p11),p,p,p>L2

2 2
> Co [|[vl 2y + (co = 1 =) vl L2m)
Co, 12
> S ol m - (2.26)
Then combining (2.23]) and (2.26]), we get the following inequality

- szm > Ch[vl 32 gy (2.27)

Lemma the definition of L, p,,,, the smoothness and exponential decay properties of ¢, ., , imply
that v € C*°(R x R), and there exists oy > 0 such that

lu(t,z)| S e okl V(t,z) e R x R. (2.28)
For all t € R, we set
J(t) = / v (t, x)x. (2.29)
R
Thanks to (2.28)), one can check that for all ¢t € R,

1
701 < [ Pkl £ [ e el = oy (230
R R 207
Now, integrating (2.27) with respect to time and using (2.30)), we obtain
+oo
/ [0(8) 22yt < CTH(T (—00) — T (+00)) < +o0. (2.31)

It follows that for a time sequence ¢, — +o00, we have v(t,) — 0 in H2(R). In particular, we have

1
<
T ()| < o)zl 2@ llo(tn)ll 2@ < N

We infer that J(4o00) = 0. Similarly, J(—oo0) = 0. Thus (2.31) becomes

lv(tn)ll 2wy — 0 as t, — +o0. (2.32)

+oo
[m|wmﬁmma=m

which implies that v(¢,z) = 0 for all (¢,2) € R x R. Then L, p ., u(t,z) = 0(t,z) = B(t)Pco,p,u, (), and

using that Lep u,Pepp, (T) = Qe pp, () and KerLey p 0, = <g0’co,p,#p>, we get u(t, x) = a(t)pey,p,pu, () +
b(t) %y p,u, (T). One can easily compte that 0y Leyppu,u = a(t)el, ., (2) and u = a'(t)peyp,pu, () +
V()% pop, (2). Now, using that dyu = 0;(Ley,p,pu,u), We obtain a'(f) = 0 and b'(t) = a(t), and this
implies that a(t) = ap and b(t) = agt + a;. Finally, since u(t, x) is uniformely bounded, then ag = 0 and
we deduce that u(t,z) = a1;, 4, () for all (t,z) € R x R. O

2.3 Appendix: prove of lemma 2.3

The aim of this section is to prove the smoothness and exponential decay properties of the solutions of
the linearized gKW equation around ¢, p, ., which are uniformly localized on R. We follows the ideas
of Martel [].
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Figure 1: Variation of K, for p=1,2,3 (with ¢o =1 and p, = %).
We define the smooth (C*°) test-function:
1 1 x
= -~ + —tanh(= R.
o(x) 5 + 2tan (2), Vx €
One can easy check the following properties:
1 .
¢ (x) = Zsech2 (g) and ‘¢(]+1)(x)’ < @' (z), Vi EN', Vo eR.

Let K > 0, we set ¢x(x) = ¢(z/K). Note that from (2.34)) we have ‘qb(lgﬂ)(x)‘ < Lo ().

Let 29 > 0, to € R, for all ¢ < t3, we define the L2-localized energy:

Co

9 (to - t) — l‘o)dﬂ?

Lo solt) = / Wt ) b —

(2.33)

(2.34)

(2.35)



We first prove the monotonicity property of I, 4, (t).
Step 1. For 2y > 0 and t < tp, we claim that:

Ifﬁo,to (to) - Iro,to (t) S esz/K. (2.36)

Proof of (2.36). We set Z(t) = v — Q(to —t) —x0 = x — y(t). We compute the time variation of
Izo,to (t):

d o C -
— It (1) = 2/(8tu)u¢K(x) +2 / U Pl (). (2.37)
dt R 2 Jr

Using that u(t) satisfies equation ([1.10), the first term in (2.37)) gives us:

T) = Su)u ) — Bu)u T C u)u T) — P w)u T
2A<atu>u¢K<x>—2upA<aw Yuor (7) 2/R@ Yk ( >+20/R<m Yo (3) 2/Ram<soc,p,u,, Yuo (2)

=I+J+K+L. (2.38)
We compute I by applying several integration by parts:
1= =21, [ (00)(@Ouu)6xc(@) — 20y [ (Ohu)udic(s) =+ Do (2:39)
R R
I; give us
1 =24, [ @0)(@200c(@) + 20, [ @0)@r005(5) = ~310r [ Q2P 5e(0) + 1y [ 0uu D)
R R R R
(2.40)
15 give us
o =24 [ (200005 (2) + 21y [ (O20)udfe(d) = L + Do, (2.41)
R R
with
T = =2, [ (O2026(@) + iy [ (000 (@), (2.42)
R R
and

= =2y [ (020)(0.000c(5) = 21, | @20)uii(@) = 3y [ @uPod) =y [ 200 (@), 243
Combining — we get I:
I==5uy [ (@202 6(@) + 5y [ @0 (@) =y [ 020f2(@), (2.44)
We compute J:
7 =2 [ @u)@)0k(5) +2 [ (@uush(@ = =3 [ 0P i@+ [ oi(a). (2.45)
K and L give us
K=o [ 0ic(@). L= [ 0 [0, 0(8) = (P, o (5)]. (2.46)

Therefore, combining (2.37)),(2.44)-(2.46]), we obtain

Gnn®) = =5, [ @00 (@) =3 [ o) - § [ orc(@)

s, [ @P @)~ [P @)+ [ woia)

b [ [ O(8) = (P, 0c(2)] (2.47)
R




Note that the term 5y, [ (93u)? ¢ (Z) + 3 [5(02u)? ¢ (Z) will permit us to gain regularity. Now, using
that ‘qﬁé)‘ < (1/K771)¢ on R for j = 2,3,4,5, the estimation of the terms on the second line of (2.47)

leads to
'w/(a W@ — o [P @ + [ o >\
< max <5K“§ % + ;2) /R((agﬂ,t)2 + u?) @ (Z). (2.48)

Now, let us estimate the last term in (2.47). We first remark that, using the properties of the soliton
Peo,p.u, and the test function ¢, we have for all x € R,

Loty ()] S5 @)+ [0, 5,0, (@)] 6 (@) £ 7V 61 (@). (2.49)
Let o > 0 to be fixed later. We consider the three following cases.
Case: < a. Then & < a — % (to —t) — o, so that
—p\/alwlqu( ) < dr(E) S K < ela—F (to—t)—z0) /K (2.50)

Case: a <z < @ (to —t) 4 xo. Then, we get that
IV (3) S VPG () S IV (), (251)

since ¢ (%) S ¢ (Z) for T < 0.
Case: G (to —t) +x0 < x. We have

emPVelel g () < emPVel (F(fo=t)+20) < o=(F (to—t)+z0)/K (2.52)
if we choose K > %.
Combining (22.49)-(2.52), and using that by (L.11)) we have [|u[| 2y < 1/1/0, we deduce that
/RUQ [@go,p,yp¢/l<(j) o (@go,p,up)/¢K(j)} ’ < e(a—%(to—t)—xo)/K +eP Coa/Rug(b/K(-i')~ (2.53)

Finally, integrating (2.47)) between ¢ and ¢y, using that the first three terms in identity (2.47) are negative,
combining the estimates (2.48) and (2.53)), and for K > 0 and a > 0 chosen correctly, we obtain claim

(2.36). More general, we get

to
/ (2, t0)dx (x — 20) dm—i—/ / [(02u) )2+ u?)(z, 8) Pl (%) dads
< —“/K+/ (2, ) (x — ;(to—t)—xo)d:c. (2.54)
R
Step 2. We claim that:
lim T, () = 0. (2.55)

Proof of (2.55)). Let 8 > 0, we cut the integral into two pieces
[wnoc@) = [ o) + [ o) = a+ B (2.56)
R x> z<f

On the one hand, using the uniform bound of ¢x (||¢x||L~®) < 1) and the exponential decay property
of u(t), we have

1 —20
A < |9kl o (x) ||UHL2(’E>[3) 2 ¢ 28, (2.57)
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On the other hand, using that ¢x (z) < /X for all x € R, and the L? bound of u(t), we have
c 1 c
B< e(B—Z (to—t)—w0)/ K ||u||i2(R) < ge(ﬂfio(tO*t)*wo)/K. (2.58)

Since 8 is an arbitrarily positive constant, then from (2.57) and (2.58)), we obtain the claim (2.55)).
Step 3. For g > 0, t < tg and k € N, we claim that:

/( w)?(to, z)px (¥ — w0 dzv—f—/ ) / [(05F2u)? + (05 w)? + (05u)*(2)] @k (s, @) dads S e /K.

(2.59)
Proof of (2.59). We proceed by induction on k. From Step 1 and Step 2, the estimate (2.59) holds for
k = 0. Now, we assume that - is true for 1 <5< k — 1. By repeating the computations done on

Step 1 with the H*-localized energy: I( = [i( (0Fu)%(t, v)dx (%) dx, we get

(0 = =5uy [ (@ 0Pe@) =3 [ @ o) - G [ 0kuPoh(@
+5my [O020(@) — y [ @20l @)+ [ @hureii
2/aﬁ“(wﬁo,p,upw(aiu)aﬁx(i). (2.60)
R

By applying the similar arguments as for the estimate (2.48)), we have
s [0 0Pei) sy (@000 )+ [ @roo)

5 1 ;-
< max (I’;g % + K2> /R((ajgﬂu)? + (05 0)2) ol (2). (2.61)

Let us estimate the last term in ). Applying the Leibniz formula on 9¥+1( w), it holds

90001711«

=2 [ O, 0 @000k (7) = / (O)? [~ 2k + 1), ) OK(E) + 0, S5 ()]
R R
k+1

~23 Gl [0, 0@ (260

Arguing as for the estimate (2.53)), we get

[ @E0)? [~k 4 1), YO0 + o, ()] \ S ottt/ | (ke (z).
R R

(2.63)
Remark that for all x € R and j € N,

(98 i)V 10k (2) S €V G (2) S Pl (2). (2.64)
Indeed, for Z < 0, we have ¢ (%) < ¢ (Z). For > 0, we have z > Z > 0, and then

e PVEIRl g () < e PVET < o mPVET < g (7). (2.65)
Young’s inequality by parts and lead to

k+1 k—1

220k+1/ w) (05T u) (b ) ) Do (& /R (z). (2.66)

J:0
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Therfore, by integrating (2.60) between on ¢ and t(, and combining the estimates (2.61)), (2.63]) and (2.66)),
we obtain

10+ [ [ 10802 + @+ 0h?] he(2)
k+1

to
< —Io/K+Z / / Biu)2 e (2) + ILF, (8). (2.67)

Letting ¢ tends to —oo and using the induction hypothesis, we get

8, (1) + / / [(0520)? + (05 )? + (05u)?] ol (7)

< *IO/KHtlmmfIgO)to() (2.68)
Let us proof that Ig(ﬂlz)to( t) — 0 as t — —oo. From the induction hypothesis with j = k — 1, we know that
to
| [@ure@ s er. (2.69)
—oo JR
Then .
0
/ / (Oku)2ele=F 0=/ < (2.70)
—0o0 x<%(t0—t)+x0
since e?/K < ¢ () for # < 0. Thus, passing to the limit as zy tends to +oc in (2.70) and multiplying
by e*o/K | we get
to .
/ /(a’;u)%w Se /K (2.71)
—oo JR
and then, since (%) < /K for all z € R,
to
/ / (0ku)pi (&) S e mo/K. (2.72)
—oo JR
Thus, we infer that
hm inf (8511)2(;51((92) =0. (2.73)

Combining (2.68) and (2.73)), we get the claim 1)

Step 4. For all £ € N, we claim that:
/ (0Fu)2(t, 2)el™l/K < 1. (2.74)
R
Proof of (2.74]). From Step 3, we know that:
/(Ofu)%K(x —x) S e /K, (2.75)
R

and then
/ (Fu)2e”/ K <1, (2.76)
rx<zxo

since e(®=20)/ K < ¢y (1 — xq) for & < x. Now, passing to the limit as x( tends to 400 in ([2.76)), we get
the exponential decay property by the right:

/(aﬁu)%x/f{ <1 (2.77)
R
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For the left exponential decay proprety, one can remark that u(—t, —x) satisfies (1.10) and (1.11). Then,
repeating the same analysis with u(—t, —x), we get the claim (2.74]). In particular, applying the Gagliardo-
Nirenberg inequality, we infer that for all & € N,

1/2 1/2

H(al;u)eszH | <Cy H(a’;u)e"‘/%‘

H(akﬂu)eWzK‘

T

<1, (2.78)

Lo (R L2(R) L2(R) ™

and this prove (2.5)).
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