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This paper is devoted to the existence and Lipschitz regularity of viscosity solutions for a class of very degenerate fully nonlinear operators, on the model of the pseudo p-Laplacian. We also prove a strong maximum principle.

Introduction

Recall that the pseudo-p-Laplacian, for p > 1 is defined by:

∆p u := N 1 ∂ i (|∂ i u| p-2 ∂ i u).
When p > 2, it is degenerate elliptic at any point where even only one derivative ∂ i u is zero.

Using classical methods in the calculus of variations, equation

(1.1) ∆p u = f has solutions in W 1,p loc , when for example f ∈ L p loc . Even if the existence results do not differ from the one for the usual p-Laplacian i.e. ∆ p u = div(|∇u| p-2 ∇u), the regularity raises high difficulties. For the usual p-Laplacian , the reader can look at [START_REF]Tolksdorff Regularity for a more general class of quasilinear elliptic equations[END_REF], [START_REF] Benedetto | C 1+β local regularity of weak solutions of degenerate elliptic equations[END_REF], in a non exhaustive manner . However, coming back to the pseudo p-Laplacian, when p < 2, Lipschitz regularity is a consequence of [START_REF] Fonseca | An existence result for a non convex variational problem via regularity[END_REF].

When p > 2 things are more delicate. Note that in [START_REF] Brasco | On certain anisotropic elliptic equations arising in congestion optimal transport : Local gradient bounds[END_REF], for some fixed non negative numbers δ i , the following widely degenerate equation was considered

(1.2) i ∂ i ((|∂ i u| -δ i ) p-1 + ∂ i u |∂ i u| ) = f.
The authors proved that the solutions of (1.2) are in W 1,q loc for any q < ∞, when f ∈ L ∞ loc . As a consequence, by the Sobolev Morrey's imbedding, the solutions are Hölder continuous for any exponent γ < 1.

The Lipschitz interior regularity for (1.1) has been recently proved by the second author in [START_REF] Demengel | Lipschitz interior regularity for the viscosity and weak solutions of the Pseudo p-Laplacian Equation[END_REF]. The regularity obtained concerns Lipschitz continuity for viscosity solutions. Since weak solutions are viscosity solutions, (see also [START_REF] Belloni | Kawohl The Pseudo p-Laplace eigenvalue problem and viscosity solutions[END_REF]), she obtains Lipschitz continuity for weak solutions when the forcing term is in L ∞ loc .

At the same time, in [START_REF] Bousquet | Lipschitz regularity for local minimizers of some widely degenerate problems[END_REF], the local Lipschitz regularity of the solutions of (1.2) has been proved when either N = 2, p ≥ 2 and f ∈ W 1,p loc or N ≥ 3, p ≥ 4, and f ∈ W 1,∞ loc . Remark that (1.2) can also be written formally as

i (|∂ i u| -δ i ) p-2 + ∂ ii u = f (p -1)
.

This expression has an obvious meaning in the framework of viscosity solutions and with the methods used in [START_REF] Demengel | Lipschitz interior regularity for the viscosity and weak solutions of the Pseudo p-Laplacian Equation[END_REF], one can prove, in particular, that the solutions are locally Hölder's continuous for any exponent γ < 1, when f ∈ L ∞ loc . Unfortunately the Lipschitz continuity for viscosity solutions of (1.2) cannot be obtained in the same way.

We now state the precise assumptions on the fully nonlinear operators that will be considered in this paper and we state our main result. Fix α > 0 and, for any q ∈ R N , let Θ α (q) be the diagonal matrix with entries |q i | α 2 on the diagonal, and let S be in the space of symmetric matrices in R N .

In the following the norm |X| denotes for a symmetric matrix X, |X| = i |λ i (X)|, sometimes for convenience of the computations we shall also use

||X|| = ( |λ i | 2 ) 1 2 ≡ tr( t XX)) 1 2 .
Let F be defined on R N × R N × S, continuous in all its arguments, which satisfies F (x, 0, M ) = F (x, p, 0) = 0 and (H1) For any

M 1 ∈ S and M 2 ∈ S, M 2 ≥ 0, for any x ∈ R N (1.3) λtr(Θ α (q)M 2 Θ α (q)) ≤ F (x, q, M 1 + M 2 ) -F (x, q, M 1 ) ≤ Λtr(Θ α (q)M 2 Θ α (q)) (H2) There exist γ F ∈]0, 1] and c γ F > 0 such that for any (q, X) ∈ R N × S (1.4) |F (x, q, X) -F (y, q, X)| ≤ c γ F |x -y| γ F |q| α |X| (H3)
There exists ω F a continuous function on R + such that ω F (0) = 0, and as soon as (X, Y ) satisfy for some m > 0

-m I 0 0 I ≤ X 0 0 Y ≤ m I -I -I I then F (x, m(x -y), X) -F (y, m(x -y), Y ) ≤ ω F (m|x -y| α+2 α+1 ) + o(m|x -y| α+2 α+1
).

(H4) There exists c F such that for any p, q ∈ R N , for all

x ∈ R N , X ∈ S |F (x, p, X) -F (x, q, X)| ≤ c F ( i=N i=1 ||p i | α -|q i | α |)|X|
Example of operators that satisfy (H1) to (H4) are

F (x, p, X) := tr(L(x)Θ α (p)XΘ α (p)L(x)), when L(x) is a Lipschitz and bounded matrix such that √ λI ≤ L ≤ √ ΛI.
Other examples are the pseudo-Pucci's operators, for 0 < λ < Λ M + α (q, X) = Λtr((Θ α (q)XΘ α (q)) + ) -λtr((Θ α (q)XΘ α (q)) -) = sup λI≤A≤ΛI tr(AΘ α (q)XΘ α (q)). and M - α (q, X) = -M + α (q, -X). satisfy all the assumptions above. The case α = 0 reduces to the standard extremizing uniformly elliptic Pucci operators. In the appendix we shall check that M + α (q, X) satisfies (H4).

We can also consider F (x, p, X) := a(x)M ± α (p, X), where a is a Lipschitz function such that a(x) ≥ a o > 0.

We shall also consider equations with lower order terms. Precisely, let h be defined on R N × R N , continuous with respect to its arguments, which satisfies on any bounded domain Ω

(1.5) |h(x, q)| ≤ c h,Ω (|q| 1+α + 1)
Our main result is the following.

Theorem 1.1. Let Ω be a bounded domain and f be continuous and bounded in Ω and suppose that (H1), (H2), (H4) and (1.5) hold. Let u be any viscosity solution of

(1.6) F (x, ∇u, D 2 u) + h(x, ∇u) = f in Ω,
Then, for any Ω ⊂⊂ Ω , there exists C Ω , such that for any x and y in Ω

|u(x) -u(y)| ≤ C Ω |x -y|.
This will be a consequence of the more general result given in Theorem 2.1, Section 2. We shall construct in Section 3 a super-solution of (1.6) which is zero on the boundary. Theorem 1.1, and the validity of the comparison principle, allows to prove, using Ishii's version of Perron's method, the following existence result : Theorem 1.2. Suppose that Ω is a bounded C 2 domain and let F and h satisfy (H1), (H2), (H3), (H4) and (1.5). Then, for any f ∈ C(Ω), there exists u a viscosity solution of

F (x, ∇u, D 2 u) + h(x, ∇u) = f (x)
in Ω u = 0 on ∂Ω.

Furthermore u is Lipschitz continuous in Ω .

Finally in the last section we prove that the strong maximum principle holds for solutions of equation (1.6) under the hypothesis of Theorem 1.2.

We end this introduction by recalling that many questions concerning these very degenerate operators are still open. For example it is not clear whether a sort of Alexandrov, Bakelman, Pucci 's inequality hold true, similarly to the cases treated by Imbert in [START_REF] Imbert | Alexandroff-Bakelman-Pucci estimate and Harnack inequality for degenerate fully nonlinear elliptic equations[END_REF].

Finally the next open question concerning the regularity of solutions would be to prove that the solutions are in fact C 1 . Even in the cases f = 0 and/or N = 2 it does not seem easy to do.

Proof of Lipschitz regularity.

Let F and Ω be as in Theorem 1.1. We shall now state and prove our main result: Theorem 2.1. Let f and k be continuous and bounded in a bounded open set Ω. Let F and h satisfy (H1), (H2), (H4) and (1.5). Suppose that u is a bounded USC sub-solution of

F (x, ∇u, D 2 u) + h(x, ∇u) ≥ f in Ω and that v is a bounded LSC super-solution of F (x, ∇v, D 2 v) + h(x, ∇v) ≤ k in Ω.
Then, for any Ω ⊂⊂ Ω, there exists C Ω , such that for any (x, y)

∈ (Ω ) 2 u(x) ≤ v(y) + sup Ω (u -v) + C Ω |x -y|.
We start by recalling some general facts. If ψ : R N × R N → R, let D 1 ψ denotes the gradient in the first N variables and D 2 ψ the gradient in the last N variables.

In the proof of Theorem 2.1 we shall need the following technical lemma.

Lemma 2.2. Suppose that u and v are respectively USC and LSC functions such that, for some constant M > 1 and for some

C 2 function Φ ψ(x, y) := u(x) -v(y) -M |x -x o | 2 -M |y -x o | 2 -M Φ(x, y)
has a local maximum in (x, ȳ).

Then for any ι > 0, there exist X ι , Y ι such that

(M D 1 Φ(x, ȳ) + 2M (x -x o ), X ι ) ∈ J2,+ u(x), (-M D 2 Φ(x, ȳ) -2M (ȳ -x o ), -Y ι ) ∈ J2,-v(ȳ)
with

-( 1 ι + |A| + 1) I 0 0 I ≤ X ι -2M I 0 0 Y ι -2M I ≤ (A + ιA 2 ) + I 0 0 I and A = M D 2 Φ(x, ȳ).
This is a direct consequence of a famous Lemma by Ishii [START_REF] Ishii | Viscosity solutions of Nonlinear fully nonlinear equations Sugaku Expositions[END_REF]. For the convenience of the reader the proof of Lemma 2.2 is given in the appendix. In the sequel, we will use Lemma 2.2 with Φ(x, y) := g(x -y), and g is some radial function C 2 except at 0, that will be chosen later. Then

M D 2 Φ(x, ȳ) = M D 2 g(x -ȳ) -D 2 g(x -ȳ) -D 2 g(x -ȳ) D 2 g(x -ȳ) . Choosing ι = 1 1+4M |D 2 g(x)
| , and defining H(x) := D 2 g(x) + 2ιD 2 g 2 (x), one has

M ( D 2 Φ + ι(D 2 Φ) 2 ) = M H(x -ȳ) -H(x -ȳ) -H(x -ȳ) H(x -ȳ) . Remark that M |D 2 Φ(x, ȳ)| = 2M |D 2 g(x -ȳ)|.
We give some precisions on the choice of g. We will assume that there exists ω ∈ C(R + ) ∪ C 2 (R + ), such that g(x) = ω(|x|) and :

(2.1)

ω(0) = 0, ω(s) > 0, ω (s) > 0 and ω (s) < 0 on ]0, s o [, for some given s o ≤ 1. For x = 0, it is well known that Dg(x) = ω (|x|) x |x| and D 2 g(x) = ω (|x|) - ω (|x|) |x| x ⊗ x |x| 2 + ω (|x|) |x| I. For ι ≤ 1 4|D 2 g(x)| , defining γ H (r) = 1 + 2ι ω (r) r ∈ [ 1 2 , 3 2 ], and β H (r) = 1 + 2ιω (r) ∈ [ 1 2 , 3 2 ] then (2.2) D 2 g + 2ι(D 2 g) 2 (x) = β H (|x|)ω (|x|) -γ H (|x|) ω (|x|) |x| x ⊗ x |x| 2 + γ H (|x|) ω (|x|) |x| I.
For |x| < 1 and > 0, we shall use the following set:

I(x, ) := {i ∈ [1, N ], |x i | ≥ |x| 1+ } and the diagonal matrix Θ(x) := Θ α (q) for q = M ω (|x|)xi |x| i.e. with entries Θ ii (x) = M α 2 ω (|x|)xi |x| α 2 . From now on, if X is a symmetric matrix, µ i (X) for i = 1, . . . , N indicate the ordered eigenvalues of X. A consequence of (2.
2) is the following Proposition proved in [START_REF] Demengel | Lipschitz interior regularity for the viscosity and weak solutions of the Pseudo p-Laplacian Equation[END_REF].

Proposition 2.3 ([9]

). Using the notations above,

(1) If α ≤ 2, for all x = 0, |x| < s o , (2.3) µ 1 Θ(x) H(x)Θ(x) ≤ M 1+α 2 N -α 2 ω (|x|)(ω (|x|)) α < 0.
(2) If α > 2, for all x = 0, |x| < s o , for any > 0 such that I(x, ) = ∅, and such that

(2.4) β H (|x|)ω (|x|)(1 -N |x| 2 ) + γ H (|x|)N |x| 2 ω (|x|) |x| ≤ ω (|x|) 4 < 0, then µ 1 Θ(x) H(x)Θ(x) ≤ M 1+α 1 -N |x| 2 #I(x, ) (ω (|x|)) α ω (|x|) 4 |x| (α-2) . (2.5) [Proof of Theorem 2.1]
It is clear that it is sufficient to prove the result when Ω = B 1 is the ball of center 0 and radius 1 and Ω = B r for some r < 1.

Borrowing ideas from [START_REF] Barles | Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations[END_REF], [START_REF] Birindelli | C 1,β regularity for Dirichlet problems associated to fully nonlinear degenerate elliptic equations[END_REF], [START_REF] Ishii | Viscosity solutions of Fully-Nonlinear Second Order Elliptic Partial Differential Equations[END_REF], [START_REF] Imbert | C 1,α regularity of solutions of degenerate fully non-linear elliptic equations[END_REF], for some x o ∈ B r we define the function

ψ(x, y) = u(x) -v(y) -sup(u -v) -M ω(|x -y|) -M |x -x o | 2 -M |y -x o | 2 ;
M is a large constant and ω is a function satisfying (2.1), both to be defined more precisely later .

If there exists M , independent of x o ∈ B r , such that ψ(x, y) ≤ 0 in B 2 1 , by taking x = x o and, using |x o -y| ≤ 2, one gets

u(x o ) -v(y) ≤ sup(u -v) + 3M ω(|x o -y|).
So making x o vary we obtain that, for any (x, y)

∈ B 2 r , u(x) -v(y) ≤ sup(u -v) + 3M ω(|x -y|).
This proves the theorem when ω(s) behaves like s near zero. Note that this will be obtained once the case where ω(s) = s γ is treated for γ ∈]0, 1[, i.e the Hölder's analogous result.

In order to prove that ψ(x, y) ≤ 0 in B 2 r , suppose by contradiction that the supremum of ψ is positive and achieved on (x, ȳ) ∈ B 1 2 . For some δ > 0, with δ < s o , we choose M such that

(2.6) M (1 -r) 2 > 8(|u| ∞ + |v| ∞ ), and M > 1 + 2|u| ∞ + 2|v| ∞ ω(δ) .
This implies that |x -

x o |, |ȳ -x o | < 1-r 2 .
Hence, by (2.6), x and ȳ are in B 1+r 2 in particular they are in B 1 . Furthermore, always using (2.6), the positivity of the supremum of ψ, the value chosen for M and the increasing behaviour of ω before s o , lead to |x -ȳ| < δ.

As it will be shown later the contradiction will be found by choosing δ small enough depending on (r, α, λ, Λ, N ).

We proceed using Lemma 2.2 and so, for all ι > 0 there exist X ι and Y ι such that (q x , X ι ) ∈ J 2,+ u(x) and (q y , -Y ι ) ∈ J 2,-v(ȳ)

with q x = q + 2M (x -x o ), q y = q -2M (x -x o ), q = M ω (|x -ȳ|) x-ȳ
|x-ȳ| . Furthermore, still using the above notations i.e. g(x) = ω(|x|), and recalling that we have chosen ι

≤ 1 1+4M |D 2 g(x-ȳ)| , for H = (D 2 g(x -ȳ)) + 2ιD 2 g(x -ȳ)) 2 ), we have that (2.7) -( 1 ι + 2M | H|) I 0 0 I ≤ X ι -(2M + 1)I 0 0 Y ι -(2M + 1)I ≤ M H - H -H H .
From now on we will drop the ι for X and Y . Recall that Θ(q) := Θ α (q) is the diagonal matrix such that (Θ) ii (q) = (|q i |) α 2 . In order to end the proof we will prove the following claims. Claims. There exists c depending only on α, N, λ, Λ, r and there exists τ > 0, such that, if δ is small enough and |x -ȳ| < δ, the matrix Θ(X + Y )Θ satisfies

(2.8) µ 1 (Θ(X + Y )Θ) ≤ -cM α+1 |x -ȳ| -τ
There exist τ i < τ and c i for i = 1, . . . , 4 depending on α, N, λ, Λ, r such that the four following assertions hold :

(2.9) for all j ≥ 2,

µ j (Θ(X + Y )Θ) ≤ c 1 M α+1 |x -ȳ| -τ1 , (2.10) |F (x, q x , X) -F (x, q, X)| ≤ c 2 M α+1 |x -ȳ| -τ2 (similarly |F (ȳ, q y , -Y ) -F (ȳ, q, -Y )| ≤ c 2 M α+1 |x -ȳ| -τ2 ) (2.11) |F (x, q, X) -F (ȳ, q, X)| ≤ c 3 M α+1 |x -ȳ| -τ3 , (similarly |F (x, q, -Y ) -F (ȳ, q, -Y )| ≤ c 3 M α+1 |x -ȳ| -τ3 ) (2.12) |h(x, q x )| + |h(ȳ, q y )| ≤ c 4 M α+1 |x -ȳ| -τ4 .
From all these claims, by taking δ small enough such that for c > 0 defined in (2.8),

c 2 δ -τ2+τ + c 3 δ τ -τ3 + c 4 δ τ -τ4 + Λc 1 δ τ -τ1 < λc 2 , one gets F (x, q x , X) -F (ȳ, q y , -Y ) + h(x, q x ) -h(ȳ, q y ) ≤ - λc 2 M α+1 |x -ȳ| -τ .
Observe that δ depends only on λ, Λ, α, N, r. Finally, one can conclude as follows

f (x) ≤ F (x, q x , X) + h(x, q x ) ≤ F (ȳ, q y , -Y ) + h(ȳ, q y ) - λc 2 M α+1 |x -ȳ| -τ ≤ - λc 2 M α+1 |x -ȳ| -τ + g(ȳ).
This contradicts the fact that f and g are bounded, as soon as δ is small or M is large enough.

In conclusion, in order to end the proof it is sufficient to prove (2.8), (2.9), (2.10), (2.11), (2.12). But we will need to distinguish the cases ω(s) = s γ and ω(s) s both when α ≤ 2 and when α ≥ 2.

To prove the claims, we will use inequality (2.7) which has three important consequences for Θ(X + Y -2(2M + 1)I)Θ:

(1) As it is well known the second inequality in (2.7) gives (X + Y -2(2M + 1)I) ≤ 0, then also Θ(X + Y -2(2M + 1)I)Θ ≤ 0. In particular, for any j = 1, . . . , N

(2.13) µ j (Θ(X + Y )Θ) ≤ 6M |Θ| 2 .
( In particular, using (2.3), one obtains that when α ≤ 2,

(2.14) µ 1 (Θ(X + Y -2(2M + 1)I)Θ) ≤ 2N -1 M 1+α ω (|x -ȳ|)(ω (|x -ȳ|)) α ;
which in turn implies that

(2.15) µ 1 (Θ(X + Y )Θ) ≤ 2N -1 M 1+α ω (|x -ȳ|)(ω (|x -ȳ|)) α + 6M |Θ| 2 .
When α > 2, if (2.4) holds, using (2.5), one obtains

(2.16) µ 1 (Θ(X + Y )Θ) ≤ 1 -N |x -ȳ| 2 #I(x -ȳ, ) M 1+α ω (|x -ȳ|)(ω (|x -ȳ|)) α |x -ȳ| (α-2) + 6M |Θ| 2 .
(3) Finally, using (2.7), we obtain an upper bound for |X|, |Y | i.e.

(2.17)

|X|, |Y | ≤ 6M (|D 2 g(x -ȳ)| + 1), remarking that | H| ≤ 3 2 |D 2 g(x -ȳ)|. Proofs of the claims when ω(s) = s γ and α ≤ 2.
In this case, ω (s) = γs γ-1 and ω (s

) = -γ(1 -γ)s γ-2 , q = M γ|x -ȳ| γ-1 x - ȳ |x -ȳ| , q x = q + 2M (x -x o ), q y = q -2M (ȳ -x o ).
By (2.15), since γ ∈ (0, 1),

µ 1 (Θ(X + Y )Θ) ≤ -2γ(1 -γ)N -1 M α+1 |x -ȳ| γ-2+(γ-1)α + 6M |Θ| 2 ,
while 6|Θ| 2 ≤ 6M α γ α |x -ȳ| (γ-1)α . Consequently, as soon as δ is small enough,

µ 1 (Θ(X + Y )Θ) ≤ - 2γ(1 -γ) N M α+1 |x -ȳ| γ-2+(γ-1)α + 6M 1+α γ α |x -ȳ| (γ-1)α ≤ -γ 1 -γ N M α+1 |x -ȳ| γ-2+(γ-1)α .
This proves (2.8) with τ = 2 -γ + (1 -γ)α, and c = γ 1-γ N . Now using (2.13) and the above estimate on M |Θ| 2 , (2.9) holds with τ 1 = (1 -γ)α < τ . Recall that by (2.17),

(2.18) |X|, |Y | ≤ 6M (γ(N -γ) + 1)|x -ȳ| γ-2 .
Consequently (2.11) holds with τ 3 = (2-γ)+(1-γ)α-γ F and c 3 = 6c γ F γ α (γ(N -γ)+1) using hypothesis (1.4).

To prove (2.10) we will use the following universal inequality : For any z and t in R

||z| α -|t| α | ≤ sup(1, α)|z -t| inf(1,α) (|z| + |t|) (α-1) + in the form ( for any i ∈ [1, N ]), (2.19) ||q x i | α -|q i | α | ≤ sup(1, α)M α |x i -ȳi | (γ-1)(α-1) + .
Hence using (H4) and (2.18), (2.10) holds with τ 2 = (2 -γ) + (1 -γ)(α -1) + , and c 2 = 6c F N sup(1, α)γ α (γ(N -γ) + 1). Finally, (2.12) holds with τ 4 = (1 -γ)(1 + α) and c 4 = 2c h,Ω ((γ + 3) 1+α + 1) .

Proofs of the claims when ω(s) = s γ and α ≥ 2. The function ω is the same than in the previous case. In order to use the result in Proposition 2.3 we need (2.4) to be satisfied. For that aim we take > 0 such that

< inf γ F 2 , 1-γ 2 . Let (2.20) δ N := (1 -γ) 2(4 -γ)N 1 2
and assume δ < δ N . In particular, for α ≥ 2, using the definition of δ N in (2.20), for |x -ȳ| < δ ≤ δ N the set I(x -ȳ, ) = ∅, indeed observe that there exists i ∈ [1, N ] such that

|x i -ȳi | 2 ≥ |x -ȳ| 2 N ≥ |x -ȳ| 2+2 .
Furthermore,

1 2 ω (|x -ȳ|)(1 -N |x -ȳ| 2 ) + 3N 2 |x -ȳ| 2 ω (|x -ȳ|) |x -ȳ| ≤ 1 2 ω (|x -ȳ|) + N 2 |x -ȳ| 2 (γ(1 -γ) + 3γ)|x -ȳ| γ-2 ≤ 1 4 γ(γ -1)|x -ȳ| γ-2 = ω (|x -ȳ|) 4 ,
and then (2.4) is satisfied. We are in a position to apply (2.16), and Θ(X + Y )Θ satisfies

µ 1 (Θ(X + Y )Θ) ≤ - 1 -N |x -ȳ| 2 #I(|x -ȳ, ) γ(1 -γ)M α+1 |x -ȳ| γ-2+(γ-1)α+ + 6M |Θ| 2 , hence remarking that 1-N ||x-ȳ| 2 #I(|x-ȳ, ) ≥ 1 2N µ 1 (Θ(X + Y )Θ) ≤ -( γ(1 -γ) 2N )M α+1 |x -ȳ| γ-2+(γ-1)α+ +6M 1+α γ α |x -ȳ| (γ-1)α ≤ -( γ(1 -γ) 4N )M α+1 |x -ȳ| γ-2+(γ-1)α+
for |x -ȳ| ≤ δ small enough. Hence (2.8) holds with τ = 2 -γ + (1 -γ)α -. Note that (2.9), (2.11) (2.10) and (2.12) have already been proved in the previous case, since the sign of α -2 does not play a role. Recall then that τ 1 = (-γ + 1)α, while

τ 3 = (2 -γ) + (1 -γ)α -γ F < τ by the choice of .
Finally τ 2 = (2 -γ) + (α -1)(γ -1) and (2.12) still holds with

τ 4 = (1 -γ)(1 + α).
Let us observe that in the hypothesis of Theorem 2.1 we have proved that u and v satisfy, for any γ ∈ (0, 1),

(2.21) u(x) ≤ v(y) + sup Ω (u -v) + c γ,r |x -y| γ .
This will be used in the next cases.

Proofs of the claims when ω(s) s and α ≤ 2. We choose τ ∈ (0, inf(γ

F , 1 2 , α 2 )) and γ ∈] τ inf( 1 2 , α 2 ) , 1[. We define, for s ≤ s o , ω(s) = s-ω o s 1+τ and, for s > s o , ω(s) = soτ
1+τ , ω o is chosen so that ω is extended continuously. We suppose that δ < 1 and

δ τ ω o (1 + τ ) < 1 2 , which ensures that (2.22) for s < δ, 1 2 ≤ ω (s) < 1, ω(s) ≥ s 2 .
We suppose that (2.23)

M = sup (1 + τ )2(|u| ∞ + |v| ∞ ) δτ , 1 + 4(|u| ∞ + |v| ∞ ) (1 -r) 2
which implies in particular (2.6). So we derive that |x -ȳ| ≤ δ and x, ȳ ∈ B 1+r 2 . Here

|D 2 g(x -ȳ)| = N -1 |x -ȳ| + ω o τ (1 + τ )|x -ȳ| -1+τ ≤ (N -1 + ω o τ (1 + τ ))|x -ȳ| -1 ,
and

| H| ≤ 3 2 |D 2 g(x -ȳ)|.
Then (2.17) is nothing else but

(2.24) |X|,|Y | ≤ 6M (|D 2 g(x -ȳ)| + 1) ≤ 6M (N + ω o τ (1 + τ ))|x -ȳ| -1 . Furthermore q = M ω (|x -ȳ|) x-ȳ |x-ȳ| , q x = q + 2M (x -x o ), q y = q -2M (ȳ -x o ). Using (2.21) in B 1+r 2 , for all γ < 1, M |x -x o | 2 + M |ȳ -x o | 2 + sup(u -v) ≤ u(x) -v(ȳ) ≤ sup(u -v) + c γ,r |x -ȳ| γ and then (2.25) |ȳ -x o | + |x -x o | ≤ 2 c γ,r |x -ȳ| γ M 1 2
.

Then taking δ small enough, more precisely if (c γ,r δ γ ) Then we derive from (2.15) that

µ 1 (Θ(X + Y )Θ) ≤ - ω o τ (1 + τ ) N M α+1 |x -ȳ| τ -1 + 6M |Θ| 2 .
Since M |Θ| 2 ≤ M 1+α , (2.8) holds with τ = 1 -τ , and c = ωoτ (1+τ ) 2N , (2.9) holds with τ 1 = 0 < 1 -τ, and c 1 = 6, while (2.11) is satisfied with

τ 3 = -γ F + 1 < 1 -τ, and c 3 = 12c γ F (N + ω o τ (1 + τ )).
To check (2.10), we use (2.19), (2.24) , (2.25) and (2.26)

| |q x i | α -|q i | α | |X| ≤ 6(N + ω o τ (1 + τ ))M 1+ inf(α,1) 2 c inf(1,α) 2 γ,r |x -ȳ| inf(1,α)γ 2 |x -ȳ| -1 .
Hence, for inf(1, α)γ > 2τ , (2.10) holds with

τ 2 = 1 - inf(1, α) 2 γ and c 2 = 6c F sup(1, α)N (N -1 + ω o τ (1 + τ ))(c γ,r ) α 2 if α ≤ 1 and c 2 = αc F 6N (N -1 + ω o τ (1 + τ ))(c γ,r ) α 2 3 α-1
), if α ≥ 1. Finally τ 4 = 0 and c 4 = c h,Ω (2 1+α + 1) are convenient for (2.12).

Proofs of the claims when ω(s) s and α > 2.

In order to use the result in Proposition 2.3 we need (2.4) to be satisfied. For that aim we take τ , > 0 and γ such that

(2.27) 0 < τ < γ F α , 1 > γ > τ α, and τ 2 < < inf γ 2 -τ α -2 , γ F -τ α -2 .
Let us define ω, s o , as in the case α ≤ 2. We suppose δ < δ N where

δ N := ω o (1 + τ )τ 2N (3 + ω o τ (1 + τ )) 1 2 -τ . (2.28)
In particular, since there exists i such that

|x i -ȳi | 2 ≥ 1 N |x -ȳ| 2 ≥ |x -ȳ| 2+2 , by (2.28), I(x -ȳ, ) = ∅. Furthermore, recall that by (2.28), 1 ≥ ω (|x -ȳ|) ≥ 1 2 and 1 2 ω (|x -ȳ|) + N 2 ω o τ (1 + τ )|x -ȳ| τ -1+2 + 3 2 N |x -ȳ| 2 -1 ω (|x -ȳ|) ≤ 1 2 ω (|x -ȳ|) + N 2 (ω o τ (1 + τ ) + 3)|x -ȳ| 2 -1 ≤ - 1 4 ω o (1 + τ )τ |x -ȳ| -1+τ = ω (|x -ȳ|) 4 ,
and then (2.4) holds. We still assume that (2.23) holds. As in the case α ≤ 2, using (2.21), for δ small enough, (2.26) is still true. The hypothesis (2.28) ensures, using also (2.5) that

µ 1 (Θ(X + Y )I)Θ) ≤ - ω o τ (1 + τ ) 2N M 1+α |x -ȳ| -1+τ +(α-2) + 6M |Θ| 2
and then, by (2.13) and 6M |Θ| 2 ≤ 6M 1+α , by (2.27) and for δ small enough, (2.8) holds with τ = (2 -α) + 1 -τ and c = ωoτ (1+τ )
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. Furthermore (2.9) holds with τ 1 = 0, and c 1 = 6. As in the previous case, (2.24) is true, and then, (2.11) holds with

τ 3 = 1 -γ F < 1 -τ + (2 -α) and c 3 = 6c γ F (N -1 + ω o τ (1 + τ )).
Now using (2.19), (2.24), (2.26), (2.25), one has

||q x i | α -|q i | α ||X| ≤ 6α(N + ω o τ (1 + τ ))M |x -x o |( 5M 4 ) α-1 M |x -ȳ| -1 ≤ c 3 |x -ȳ| γ 2 -1 M 1+α
and then (2.10) holds with

τ 2 = 1 - γ 2 < 1 -τ + (2 -α) and c 2 = αN c 1 2 γ,r (2) α-1 6(N -1 + ω o τ (1 + τ )).
Note finally that

|h(x, q x )| + |h(ȳ, q y )| ≤ 2c h 5M 4 1+α
and then (2.12) holds with τ 4 = 0 and c 4 = 2 2+α c h .

Existence of solutions.

Using Perron's method, see e.g. [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equations[END_REF], the existence's Theorem 1.2 will be proved once the following Propositions are known: Proposition 3.1. Suppose that Ω is a bounded domain in R N and that F satisfies (H1), (H2), (H3), (H4). Suppose that h is continuous and it satisfies (1.5). Let u be a USC sub-solution of

F (x, ∇u, D 2 u) + h(x, ∇u) -β(u) ≥ f in Ω
and v be a LSC super-solution of

F (x, ∇v, D 2 v) + h(x, ∇v) -β(v) ≤ k in Ω
where β, f and k are continuous. Suppose that either β is increasing and

f ≥ k in Ω, or β is nondecreasing and f > k in Ω. If u ≤ v on ∂Ω, then u ≤ v in Ω.
Proposition 3.2. Suppose that the assumptions in Proposition 3.1 hold, and that f is continuous and bounded and β is increasing. Suppose that u is a USC sub-solution, and u is a LSC super-solution of the equation

F (x, ∇u, D 2 u) + h(x, ∇u) -β(u) = f, in Ω,
such that u = u = ϕ on ∂Ω. Then there exists u a viscosity solution of the equation with u ≤ u ≤ u in Ω, and u = ϕ on ∂Ω.

The proofs of these two Propositions can be done by using the classical tools, see [START_REF] Crandall | Lions User's guide to viscosity solutions of second order partial differential equations[END_REF].

Remark 1. One can get the same existence's result when β = 0, by using a standard approximation procedure and the stability of viscosity solutions.

Nevertheless the proof of Theorem 1.2 requires the existence of a super-solution which is zero on the boundary when β = 0 which is the object of the next proposition: Proposition 3.3. Suppose that Ω is a bounded C 2 domain, and that F and h satisfy the hypothesis in Proposition 3.1. Then for any f continuous and bounded, there exist a supersolution and a sub-solution of F (x, ∇u, D 2 u) + h(x, ∇u) = f in Ω which are zero on the boundary.

Proof of Proposition 3.3 : Let diam(Ω) denote the diameter of Ω and we recall that the distance to the boundary d satisfies everywhere that d is semi concave or equivalently there exists C 1 such that

D 2 d ≤ C 1 I.
In the following we will make the computations as if d be C 2 , it is not difficult to see that the required inequalities hold also in the viscosity sense. Recall that

N i=1 (∂ i d) 2 = 1, hence N i=1 |∂ i d| α ≤ N, while N 1 |∂ i d| α+2 ≥ N -α α+2 .
For some M large that will be chosen later, we define

ψ(x) = M (1 - 1 (1 + d(x)) k ). Clearly ∇ψ = M k∇d (1 + d) k+1 , D 2 ψ = M k (1 + d) k+2 ((1 + d)D 2 d -(k + 1)∇d ⊗ ∇d)
and then, one has

F (x, ∇ψ, D 2 ψ) ≤ (M k) α+1 (1 + d) k+2+(k+1)α [(1 + d)M + α (∇d, D 2 d) -(k + 1)M - α (∇d, ∇d ⊗ ∇d)] ≤ (M k) α+1 (1 + d) k+2+(k+1)α [N (1 + d)ΛC 1 |∂ i d| α -(k + 1)λ |∂ i d| α+2 ] ≤ (M k) α+1 (1 + d) k+2+(k+1)α [N 2 (1 + diam(Ω))ΛC 1 -λ(k + 1)N -α α+2 ] and h(x, ∇ψ) ≤ C h (M k) α+1 (1 + d) (k+1)(1+α) .
In particular we can choose k such that

1 2 λ(k + 1)N -α α+2 = (1 + d(Ω))(ΛC 1 N 2 + C h )
with d(Ω) the diameter of Ω. Hence

F (x, ∇ψ, D 2 ψ) + h(x, ∇ψ) ≤ - (k + 1)λN -α α+2 (M k) α+1 4(1 + d) k+2+(k+1)α .
For k as above we can choose M large enough in order that

F (x, ∇ψ, D 2 ψ) + h(x, ∇ψ) ≤ -f ∞ .
A similar computation leads to: for some c and m to be chosen.

F (x, ∇(-ψ), D 2 (-ψ)) + h(x, ∇(-ψ)) ≥ f ∞ .
For simplicity of the calculation we will suppose that x 1 = 0 and we denote by r := |x -x 1 | = |x|. We choose m so that on r = R 2 , w ≤ u in the same spirit of simplicity we replace m by 1.

One has For that aim let us note that ( i, j) ⊥ is in the kernel of H. We introduce a = c 2 r 2 + c r 3 and b = -c r . Then the non zero eigenvalues of Hc -α e cr(1+α) are given by

∇w = -cx r e -cr , D 2 w = e -cr ( c 2 r 2 + c r 3 )(x ⊗ x) -
µ ± = a| i| 2 + b| j| 2 2 ± a| i| 2 + b| j| 2 2 2 -ab(| i| 2 | j| 2 -( i • j) 2 ).
Note that there exist constants c i (N, α)

for i = 1, • • • 4, such that c 1 (N, α) R 2 α+2 ≤ c 1 (N, α)r α+2 ≤ | i| 2 ≤ c 2 (N, α)r α+2 ≤ c 2 (N, α) 3R 2 α+2 and c 3 (N, α) R 2 α ≤ c 3 (N, α)r α ≤ | j| 2 ≤ c 4 (N, α)r α ≤ c 4 (N, α) 3R 2 α .
Note that one can choose c large enough in order that for some constant c 5 (N, α)

a| i| 2 + b| j| 2 ≥ c 1 (N, α) R 2 α+2 c 2 r 2 -c 4 (N, α) 3R 2 α c r ≥ c 5 (N, α)c 2 .
On the other hand one can assume c large enough in order that

4|ab|(| i| 2 | j| 2 -( i • j) 2 ) ≤ 4 c 3 r 2 c 2 (N, α)c 4 (N, α) 3R 2 2α+2 ≤ c 6 (N, α)c 3 < λ + Λ Λ -λ 2 -1 (c 5 (N, α)c 2 )) 2 ≤ λ + Λ Λ -λ 2 -1 a| i| 2 + b| j| 2 2 .
In particular this implies

λµ + + Λµ -= ( a| i| 2 + b| j| 2 2 ) × (λ + Λ) + (λ -Λ) 1 + 4 |ab|(| i| 2 | j| 2 -( i • j) 2 ) (a| i| 2 + b| j| 2 ) 2 > 0 i.e. M -(H) > 0. Using the comparison principle in the annulus { R 2 ≤ |x -x 1 | ≤ 3R 2 } one obtains that u ≥ w.
Observe that w touches u by below on x o , and then, since w is C 2 around x o , by the definition of viscosity solution

F (x o , ∇w(x o ), D 2 w(x o )) ≤ 0.
This contradicts the above computation.

Remark 2. As it is well known, the above proof can be used to see that on a point of the boundary where the interior sphere condition is satisfied, the Hopf principle holds.

Appendix A. Proof of Lemma 2.2
The proof of Lemma 2.2 is based on the following Lemma by Ishii

Lemma A.1. [14] Let A be a symmetric matrix on R 2N . Suppose that U ∈ U SC(R N ) and V ∈ U SC(R N ) satisfy U (0) = V (0) and, for all (x, y) ∈ (R N ) 2 , U (x) + V (y) ≤ 1 2 ( t x, t y)A x y .
Then, for all ι > 0, there exist X U ι ∈ S, X V ι ∈ S such that (0, X U ι ) ∈ J2,+ U (0), (0, X V ι ) ∈ J2,+ V (0)

and

-( 1 ι + |A|) I 0 0 I ≤ X U ι 0 0 X V ι ≤ (A + ιA 2 ).
We can now start the proof of Lemma 2.2. The second order Taylor's expansion for Φ around (x, ȳ) , gives that for all > 0 there exists r > 0 such that, for |x -x| which we extend by some convenient negative constants in the complementary of that ball (see [START_REF] Ishii | Viscosity solutions of Nonlinear fully nonlinear equations Sugaku Expositions[END_REF] for details). Observe first that (0, X U ) ∈ J 2,+ U (0), (0, X V ) ∈ J This ends the proof of Lemma 2.2.

Finally, as promised in the introduction, we here check that M + α (q, X) satisfies (H4).

First, recalling the properties of the Pucci's operators we get M + α (p, X) ≤ M + α (p, X) + M + (Θ α (p)XΘ α (p) -Θ α (q)XΘ α (q)) ≤ M + α (p, X) + (Λ + λ)|(Θ α (p)XΘ α (p) -Θ α (q)XΘ α (q))| = M + α (p, X) + Λ + λ 2 (|(Θ α (p) -Θ α (q))X(Θ α (p) + Θ α (q)) + ((Θ α (p) + Θ α (q))XΘ α (p) -Θ α (q)|)

Then one has using for X symmetric ||X|| ≤ |X| ≤ √ N ||X||, and observing that for any matrices A B, ||AB|| = ||BA|| |(Θ α (p) -Θ α (q))X(Θ α (p) + Θ α (q)) + ((Θ α (p) + Θ α (q))XΘ α (p) -Θ α (q)| ≤ √

N ||(Θ α (p) -Θ α (q))X(Θ α (p) + Θ α (q)) + ((Θ α (p) + Θ α (q))XΘ α (p) -Θ α (q)|| ≤ 2

√ N ||X(Θ α (p) -Θ α (q))(Θ α (p) + Θ α (q))|| ≤ 2 √ N ||X|| ||(Θ α (p) -Θ α (q))(Θ α (p) + Θ α (q))|| ≤ 2 √ N |X| ||(Θ α (p)) 2 -(Θ α (q)) 2 || ≤ 2 √ N |X| i ||p i | α -|q i | α |

4 .

 4 The strong Maximum Principle Theorem 4.1. Under the hypothesis of Theorem 1.1, suppose that u is a supersolution of the equation F (x, ∇u, D 2 u) ≤ 0 in a domain Ω and that u ≥ 0. Then either u > 0 in Ω or u ≡ 0. Proof. Without loss of generality we suppose that u > 0 on B(x 1 , R), with R = |x 1 -x o | and u(x o ) = 0, and we can assume that the annulus R 2 ≤ |x -x 1 | ≤ 3R 2 is included in Ω. Let w be defined as w(x) = m(e -c|x-x1| -e -cR )

2 x

 2 using the usual notation Θ(∇w), H := Θ(∇w)D 2 wΘ(∇w), i.e. i e i and j = |x i | α 2 e i . Since, by hypothesis (H1), F (x, ∇w, D 2 w) ≥ e -c(α+1)r M -(H), where M -(X) := inf λI≤A≤ΛI (trAX) is the extremal Pucci operator, we need to evaluate the eigenvalues of H and in particular prove that M -(H) > 0.

2 + 2 t

 22 |ȳ -y| 2 ≤ r 2 , u(x) -u(x) -(M D 1 Φ(x, ȳ) + 2M )(x -x o ), x -x + +v(ȳ) -v(y) -(M D 2 Φ(x, ȳ) + 2M )(ȳ -x o ), y -ȳ ≤ 1 (x -x), t (y -ȳ) (M D 2 Φ(x, ȳ) + I) x -x y -ȳ +M (|x -x| 2 + |y -ȳ| 2 ).We now introduce the functions U and V defined, in the closed ball |x -x| 2 + |y -ȳ| 2 ≤ r 2 , byU (x) = u(x + x) -M D 1 Φ(x, ȳ) + 2M (x -x o ), x -u(x) -M |x| 2 and V (y) = -v(y + ȳ) -M D 2 Φ(x, ȳ) + 2M (ȳ -x o ), y + v(ȳ) -M |y| 2

  1 Φ(x, ȳ) + 2M (x -x o ), X U + 2M I) ∈ J 2,+ u(x) and (-M D 2 Φ(x, ȳ) -2M (ȳ -x o ), -X V -2M I) ∈ J 2,-v(ȳ).We can apply Lemma A.1, which gives that, for any ι > 0, there exists (X ι , Y ι ) such that(M D 1 Φ(x, ȳ) + 2M (x -x o ), X ι ) ∈ J2,+ u(x)and(-M D 2 Φ(x, ȳ) -2M (ȳ -x o ), -Y ι ) ∈ J2,v(ȳ)Choosing such that 2 ι|M D 2 Φ(x, ȳ)| + + ι( ) 2 < 1, one gets
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