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WAVENUMBER EXPLICIT CONVERGENCE ANALYSIS FOR FINITE
ELEMENT DISCRETIZATIONS OF TIME-HARMONIC WAVE

PROPAGATION PROBLEMS WITH PERFECTLY MATCHED LAYERS

T. CHAUMONT-FRELET, D. GALLISTL, S. NICAISE, AND J. TOMEZYK

Abstract. The first part of this paper is devoted to a wavenumber-explicit stability
analysis of a planar Helmholtz problem with a perfectly matched layer. We prove that,
for a model scattering problem, the H1 norm of the solution is bounded by the right-
hand side, uniformly in the wavenumber k in the highly oscillatory regime. The second
part proposes two numerical discretizations: an hp finite element method and a multiscale
method based on local subspace correction. The stability result is used to relate the choice
of parameters in the numerical methods to the wavenumber. A priori error estimates are
shown and their sharpness is assessed in numerical experiments.

1. Introduction

Time harmonic acoustic scattering problems are often modelled through the Helmholtz
equation in full space subject to the Sommerfeld radiation condition [10]. The simulation
with finite elements requires truncation to a finite domain. An alternative to absorbing
boundary conditions, that classically replace the radiation condition in this case, is to in-
troduce a so-called Perfectly Matched Layer (PML) near the boundary, in which a fictitious
absorption coefficient avoids artificial reflections. This procedure was introduced in [2] and
thereafter studied in many contributions (see, e.g., [9] and the references therein).

The governing elliptic differential operator, the Helmholtz operator (∆+k2), depends on
the wavenumber k. We are interested in the highly oscillatory regime, which corresponds
to large values of k. It is known that the finite element method (FEM) is not robust with
respect to that parameter [1]. This phenomenon is usually referred to as pollution effect.
It essentially states that a fixed number of grid points per wavelength is insufficient for
numerical stability, although it would provide a reasonable approximation. The design and
the analysis of numerical methods avoiding pollution has been an active area of numerical
analysis. The stability of the underlying partial differential equation (PDE) with respect
to k is crucial for the analysis of numerical methods. While there are extreme cases [4], in
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which the stability constant depends exponentially on k, for a couple of relevant settings
there are results on polynomial stability [12, 14, 17, 22, 24, 25, 28]

We mention two numerical methods that overcome the pollution effect and are relevant
to our work. In [23] it is shown that hp finite elements are pollution-free if the polynomial
degree is adequately coupled with k. A different approach based on fine-scale correction
techniques was proposed by [26]. It is based on low-order polynomials, but the diameter
of the support of the fine-scale corrections must grow logarithmically with k.

In this work we study hp finite elements and a multiscale method for a two-dimensional
Helmholtz setting with PML. We derive a stability result that shows that the solution
(measured in a scaled H1 norm) is robustly bounded by the L2 norm of the right-hand
side. The proof is based on the combination of a direct estimate obtained in the PML
region with a multiplier method (in the case of absorbing boundary conditions this last
procedure corresponds to the choice of an appropriate test function, see [22]).

The remaining parts of this paper are organized as follows. Section 2 states the PML set-
ting in polar coordinates. The main stability estimate is proven in Section 3. In Section 4
we study the comparison with a sponge layer, which leads to an appropriate expansion of
the solution. The numerical proposed discretizations are described in Section 5 and com-
putational experiments are given Section 6. We conclude with some remarks in Section 7.
Appendix A lists a couple of elementary but important properties of the PML functions
that we often refer to.

We finish this section with some notations used in the remainder of the paper. For a
bounded domain D, the usual norm and semi-norm of Hs(D) (s ≥ 0) are denoted by
‖ · ‖s,D and | · |s,D, respectively. For s = 0, we drop the index 0 for shortness. The space
of smooth functions with compact support in D is denoted by D(D). Furthermore, the
notation A . B (resp. A & B) means the existence of a positive constant C1 (resp. C2),
which is independent of A, B as well as on the wavenumber k and the mesh size h. such
that A ≤ C1B (resp. A ≥ C2B). The notation A ∼ B means that A . B and A & B hold
simultaneously.

2. The scattering problem with a polar PML

We consider the Helmholtz equation set in the outside of a smooth, star-shaped sound-
soft obstacle O ⊂ R2. In order to approximate this problem with finite elements, it is
required to truncate the computational domain. Here, we propose to analyze the Helmholtz
equation when a Perfectly Matched Layer (PML) is employed.

Without losing generality, we select the coordinate system so that O is star-shaped
with respect to the origin. We introduce two positive numbers a < b such that O is
contained in B(0, a), the ball of R2 centered at 0 with radius a, and we employ the notation
Ω0 = B(0, a) \O. In addition, we assume that the computational domain Ω is convex and
contains B(0, b). We also introduce the notation Γ = {|x| = a} = ∂B(0, a). The geometric
setting is displayed in Figure 1. The relevant definitions and properties of the involved
functions are listed in Appendix A.



CONVERGENCE ANALYSIS FOR WAVE EQUATIONS WITH PML 3

O

Ω0

Ω

a
b

Γε
2

ΩPML
Ω+
PML

Figure 1. Illustration of the geometric setting.

As usual we denote by (ρ, θ) the polar coordinates centred at 0. According to [9, §3]
and using the notations from Appendix A, for an arbitrary real number k, we consider the
boundary value problem

k2dd̃u+
1

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

qρ2

∂2u

∂θ2
= dd̃f in Ω,(2.1)

u = 0 on ∂Ω,(2.2)

where the datum f is supposed to be in L2(Ω). As d = d̃ = 1 in Ω0, the problem reduces to
the Helmholtz equation in Ω0, the PML being situated in Ω \ Ω0. Multiplying the partial
differential equation by q, we obtain the equivalent problem

k2d̃2u+
q

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= d̃2f in Ω,(2.3)

u = 0 on ∂Ω.(2.4)

The variational formulation of this problem is obtained by multiplying the partial differ-
ential equation by a test-function v̄ ∈ H1

0 (Ω) and by using formal integration by parts.
Hence we look for u ∈ H1

0 (Ω) solution of

−
∫

Ω

{
q
∂u

∂ρ

∂

∂ρ
(qv̄) +

1

ρ2

∂u

∂θ

∂v̄

∂θ

}
dx+ k2

∫
Ω

d̃2uv̄dx =

∫
Ω

d̃2fv̄dx,∀v ∈ H1
0 (Ω).(2.5)

By Leibniz’s rule, this formulation is equivalent to

bk(u, v) = −
∫

Ω

d̃2fv̄dx,∀v ∈ H1
0 (Ω),(2.6)
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where the sesquilinear form b is defined by

bk(u, v) =

∫
Ω

{
q2∂u

∂ρ

∂v̄

∂ρ
+

1

ρ2

∂u

∂θ

∂v̄

∂θ
+ q

∂q

∂ρ

∂u

∂ρ
v̄ − k2d̃2uv̄

}
dx,∀u, v ∈ H1

0 (Ω).

By Theorem 2 of [9], this problem has a unique solution for all real numbers k except
possibly a discrete set. For this exceptional discrete set, as we are in a Fredholm setting,
uniqueness of a solution is equivalent to existence and uniqueness.

3. The stability estimate

Let us start with the following definition.

Definition 3.1. We will say that system (2.6) satisfies the k-stability property if there
exists k0 > 0 large enough such that for all k ≥ k0 and all f ∈ L2(Ω) any solution
u ∈ H1

0 (Ω) of (2.6) satisfies

(3.1) k‖u‖Ω + |u|1,Ω . ‖f‖Ω,

for all k ≥ k0.

According to this definition, the k-stability property directly implies that for k ≥ k0,
problem (2.6) is well-posed since the only solution u of problem (2.6) with f = 0 is zero.

Let us further remark that once we assume that the k-stability property holds, then the
best constant in the right-hand side of (3.1) is equivalent to 1. More precisely, we can
prove the next result.

Lemma 3.2. Assume that (3.1) holds for all k ≥ k0 > 0 and introduce

Copt(k) := sup
f∈L2(Ω):f 6=0

k‖uf‖Ω + |uf |1,Ω
‖f‖Ω

,

where uf ∈ H1
0 (Ω) is the unique solution of (2.6). Then one has

(3.2) Copt(k) ∼ 1, ∀k ≥ k0.

Proof. The bound Copt(k) . 1 being trivial since (3.1) is assumed, we only concentrate on
the converse estimate. For that purpose, fix a non zero real valued function χ ∈ D(Ω) that
vanishes in the PML region ΩPML. Then for all k ≥ k0, define

u(x) = eikx1χ(x),∀x ∈ Ω,

where x1 is the first component of x, that is considered as solution of (2.6) with f =
∆u+ k2u (as u is zero in the PML). Then direct calculations yield

‖f‖Ω ∼ ‖∆χ‖Ω + k‖∂1χ‖Ω,

and
k‖u‖Ω + |u|1,Ω ∼ k‖χ‖Ω + |χ|1,Ω.

Consequently as ‖χ‖Ω > 0, we find

k‖u‖Ω + |u|1,Ω
‖f‖Ω

& 1,
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which proves that Copt(k) & 1, for all k ≥ k0. �

Let us also notice that any solution u ∈ H1
0 (Ω) of (2.6) satisfies

(3.3) k2d̃2u+
1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= d̃2f + q

∂q

∂ρ

∂u

∂ρ
in D′(Ω),

which is equivalent to (2.3) in the distributional sense. As q tends to 1 as k goes to infinity
(cf. Lemma A.2), we deduce that the system

1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2

is strongly elliptic (uniformly in k) for k large enough. By elliptic regularity, we deduce
that, for k large enough, any solution u ∈ H1

0 (Ω) of (2.6) belongs to H2(Ω) with the
estimate

(3.4) ‖u‖2,Ω . ‖f‖Ω + k2‖u‖Ω.

Combined with (3.1), we obviously deduce that

(3.5) ‖u‖2,Ω . k‖f‖Ω,

for k large enough. Note finally that in such a case (3.3) holds strongly, i.e., as an equality
in L2(Ω).

The goal of this section is to prove the k-stability property. This will be made in different
steps.

Lemma 3.3. For k large enough, we have

(3.6)

∫
Ω+
PML

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx+

∫
ΩPML

σ̃k2|u|2dx . k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

Proof. In (2.6), we take v = u and the imaginary part to obtain∫
Ω

{
− Im q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2 Im d̃2|u|2

}
dx = Im

∫
Ω

d̃2fūdx+ Im

∫
Ω

q
∂q

∂ρ

∂u

∂ρ
ūdx.

By Cauchy-Schwarz’s inequality, the fact that q = d̃ = 1 in Ω0 and Lemma A.3, we find∫
ΩPML

{
− Im q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2 Im d̃2|u|2

}
dx . ‖f‖Ω‖u‖Ω +

1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By the identities (A.10) to (A.12), the previous estimate can be equivalently written

(3.7)

∫
ΩPML

{
2γkρσ̃′(ρ)

k2 + σ2(ρ)

∣∣∣∣∂u∂ρ
∣∣∣∣2 + 2kσ̃|u|2

}
dx . ‖f‖Ω‖u‖Ω +

1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.
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Since σ̃′ and σ are positive in ΩPML, in the left-hand side of this estimate, we can reduce
the integral over the first summand to Ω+

PML, namely∫
Ω+
PML

2γkρσ̃′(ρ)

k2 + σ2(ρ)

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx+

∫
ΩPML

2kσ̃|u|2dx . ‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By (A.6) and the fact that γ tends to 1 as k tends to infinity, we conclude that (3.6) holds
for k large enough. �

Lemma 3.4. For k large enough, we have

(3.8)

∫
Ω

|∇u|2 dx . k2‖u‖2
Ω + ‖f‖Ω‖u‖Ω . k2‖u‖2

Ω + ‖f‖2
Ω.

Proof. In (2.6), we take v = u and the real part to obtain∫
Ω

{
Re q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx

= k2

∫
Ω

Re d̃2|u|2dx− Re

∫
Ω

d̃2fūdx− Re

∫
Ω

q
∂q

∂ρ

∂u

∂ρ
ūdx.

By Cauchy-Schwarz’s inequality, the boundedness of d̃ and q for k large (see Lemma A.2)
and Lemma A.3, we obtain∫

Ω

{
Re q2

∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx . k2‖u‖2

Ω + ‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

As q tends to 1 as k tends to infinity (see Lemma A.2), for k large enough, we get∫
Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx . k2‖u‖2

Ω + ‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
.

By Young’s inequality, we can absorb the last term of this right-hand side, namely∫
Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx ≤ Ck2‖u‖2

Ω + C‖f‖Ω‖u‖Ω +
1

2k2
‖∂u
∂ρ
‖2

Ω + C2‖u‖2
Ω.

for some C > 0 independent of k. Consequently we get

(1− 1

2k2
)

∫
Ω

{∣∣∣∣∂u∂ρ
∣∣∣∣2 +

1

ρ2

∣∣∣∣∂u∂θ
∣∣∣∣2
}
dx ≤ Ck2‖u‖2

Ω + C‖f‖Ω‖u‖Ω + C2‖u‖2
Ω,

which yields (3.8) for k large enough since |∇u|2 =
∣∣∣∂u∂ρ ∣∣∣2 + 1

ρ2

∣∣∂u
∂θ

∣∣2. �

In view of this Lemma, we see that the k-stability property will be proved if we can
estimate k‖u‖Ω. Since Lemma 3.3 gives an estimate of this quantity in Ω+

PML, it remains
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to estimate it in Ω \Ω+
PML. This is made via a multiplier method. For the cut-off function

η fixed in the Appendix A, let us introduce the multiplier

m(x) = xη(ρ),∀x ∈ Ω,

the functions (depending only on the radial variable ρ)

α = η′(q̄2 − 2 Re q2) + 2ηq̄
∂q̄

∂ρ
,(3.9)

β = 2d̃2η + ρ
∂

∂ρ

(
d̃2η
)
,(3.10)

as well as the expressions

Σ =

∫
Ω

(q2 − q̄2)η(ρ)
∂u

∂ρ

∂

∂ρ

(
ρ
∂ū

∂ρ

)
dx,(3.11)

Σ1 =

∫
Ω

(d̃
2

− d̃2)η(ρ)ρ
∂u

∂ρ
ū dx.(3.12)

With these notations, we can prove the following identity with multiplier:

Lemma 3.5. The next identity holds

(3.13)

∫
Ω

(
−k2β|u|2 + ρη′

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 − αρ ∣∣∣∣∂u∂ρ

∣∣∣∣2
)
dx+

∫
∂O
|∇u · n|2x · n dσ(x)

= Σ− k2Σ1 + 2 Re

∫
Ω

(d̃2f + q
∂q

∂ρ

∂u

∂ρ
)ηρ

∂ū

∂ρ
dx.

Proof. For shortness, let us set f1 = d̃2f + q ∂q
∂ρ

∂u
∂ρ

, then as already said before u satisfies

(3.3) or equivalently

k2d̃2u+
1

ρ

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2
= f1.

Multiplying this identity by m·∇ū = ηρ∂ū
∂ρ

and integrating in Ω (meaningful as u ∈ H2(Ω)),

we find

(3.14) k2Ia + k2I + Ja + Jrad + Jang =

∫
Ω

f1ηρ
∂ū

∂ρ
dx,
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where we have set

Jrad =

∫
Ω\Ω0

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
η
∂ū

∂ρ
dx,

Jang =

∫
Ω\Ω0

1

ρ

∂2u

∂θ2
η
∂ū

∂ρ
dx,

I =

∫
Ω\Ω0

d̃2uηρ
∂ū

∂ρ
dx,

Ia =

∫
Ω0

u(m · ∇ū) dx,

Ja =

∫
Ω0

∆u(m · ∇ū) dx.

We now transform these expressions by using some integrations by parts.
a) Transformation of I: As η is zero outside B(0, b), we have

I =

∫ 2π

0

∫ b

a

d̃2uηρ2∂ū

∂ρ
dρdθ.

By integration by parts in ρ, we have

I = −
∫ 2π

0

∫ b

a

∂

∂ρ

(
d̃2uηρ2

)
ū dρdθ −

∫
Γ

a|u|2dσ(x),

the boundary term being zero since η(b) = 0. By Leibniz’s rule, we deduce that

I = −
∫ 2π

0

∫ b

a

∂

∂ρ

(
d̃2ηρ2

)
|u|2 dρdθ

−
∫ 2π

0

∫ b

a

d̃2ηρ2∂u

∂ρ
ū dρdθ −

∫
Γ

a|u|2dσ(x).

The second term of this right-hand side would be equal to −Ī if d̃2 would be real, hence
by introducing Σ1, we find that

(3.15) 2 Re I = −
∫

Ω\Ω0

β|u|2 dx+ Σ1 −
∫

Γ

a|u|2dσ(x).

b) Transformation of Ia: By the Green formula, we have

2 Re Ia = 2 Re

∫
Ω0

u(m · ∇ū) dx

=

∫
Ω0

m · ∇|u|2 dx

= −
∫

Ω0

2|u|2 dx+

∫
∂Ω0

m · n|u|2 dσ(x).
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Since u = 0 on ∂O, we have

(3.16) 2 Re Ia = −
∫

Ω0

β|u|2 dx+

∫
Γ

a|u|2dσ(x).

c) Transformation of Jang: As before we have

Jang =

∫ 2π

0

∫ b

a

∂2u

∂θ2
η
∂ū

∂ρ
dρdθ,

and by integration by parts in θ, we find

Jang = −
∫ 2π

0

∫ b

a

∂u

∂θ
η
∂2ū

∂θ∂ρ
dρdθ.

Since
∂

∂ρ

∣∣∣∣∂u∂θ
∣∣∣∣2 = 2 Re

(
∂u

∂θ

∂2ū

∂θ∂ρ

)
,

we then have

2 Re Jang = −
∫ 2π

0

∫ b

a

η
∂

∂ρ

∣∣∣∣∂u∂θ
∣∣∣∣2 dρdθ.

By integration by parts in ρ, we deduce that

(3.17) 2 Re Jang =

∫
Ω0

ρη′
∣∣∣∣1ρ ∂u∂θ

∣∣∣∣2 dx+

∫
Γ

a

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 dσ(x).

d) Transformation of Jrad: As before we have

Jrad =

∫ 2π

0

∫ b

a

∂

∂ρ

(
q2ρ

∂u

∂ρ

)
ηρ
∂ū

∂ρ
dρdθ,

and an integration by parts in ρ yields

Jrad = −
∫ 2π

0

∫ b

a

q2ρ
∂u

∂ρ

∂

∂ρ

(
ηρ
∂ū

∂ρ

)
dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x)

= −
∫ 2π

0

∫ b

a

q2η′
∣∣∣∣ρ∂u∂ρ

∣∣∣∣2 dρdθ
−

∫ 2π

0

∫ b

a

q2ηρ
∂u

∂ρ

∂

∂ρ

(
ρ
∂ū

∂ρ

)
dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

This can be equivalently written as

(3.18) Jrad = −K −
∫ 2π

0

∫ b

0

q2η′
∣∣∣∣ρ∂u∂ρ

∣∣∣∣2 dρdθ − ∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x),

where we have set

K :=

∫ 2π

0

∫ b

0

q2ηw
∂w̄

∂ρ
dρdθ and w := ρ

∂u

∂ρ
.
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Introducing Σ, we see that

K = Σ +

∫ 2π

0

∫ b

0

q̄2ηw
∂w̄

∂ρ
dρdθ,

hence integrating by parts in ρ in the second term of this right-hand side, we get

K = Σ−
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2ηw

)
w̄ dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x)

= Σ− K̄ −
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2η
)
|w|2 dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

This yields

2 ReK = Σ−
∫ 2π

0

∫ b

0

∂

∂ρ

(
q̄2η
)
|w|2 dρdθ −

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

Taking the real part of the identity (3.18), we conclude that

(3.19) 2 Re Jrad = −Σ−
∫

Ω

αρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx− ∫

Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 dσ(x).

e) Transformation of Ja: By integration by parts, we have

Ja =

∫
Ω0

∆u(m · ∇ū) dx

= −
∫

Ω0

∇u · ∇(m · ∇ū) dx+

∫
Γ

∇u · n(m · ∇ū) dσ(x) +

∫
∂O
∇u · n(m · ∇ū) dσ(x),

We recall that m = x in Ω0. In addition, since u = 0 on ∂O, we also have ∇u · t = 0 on
∂O for the unit tangent vector t. It follows that

m · ∇ū = m · n∇ū · n+m · t∇ū · t = ∇ū · nx · n,
and

∇u · n(m · ∇ū) = |∇u · n|2x · n,
on ∂O. On the other hand, Rellich’s identity yields that

2 Re

∫
Ω0

∇u · ∇(m · ∇ū) =

∫
∂Ω0

|∇u|2x · n =

∫
Γ

|∇u|2x · n+

∫
∂O
|∇u · n|2x · n.

Recalling that m = x in Ω0 and ∇u · t = 0 on ∂O, and using Rellich’s identity, we find that

2 Re Ja =

∫
∂O
|∇u · n|2x · n−

∫
Γ

|∇u|2x · n+ 2

∫
Γ

∇u · n(m · ∇ū)(3.20)

=

∫
∂O
|∇u · n|2x · n+

∫
Γ

a

∣∣∣∣∂u∂ρ
∣∣∣∣2 − ∫

Γ

a

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2 .

Coming back to (3.14), taking the real part and using (3.15), (3.16), (3.17), (3.19) and
(3.20), we arrive at (3.13). �

The previous Lemmas allow to conclude the
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Theorem 3.6. System (2.6) satisfies the k-stability property.

Proof. We first look at the behavior of β as k is large. By Leibniz’s rule, we have

β = β0 + ρd̃2η′,

with

β0 = 2(d̃2 + ρd̃
∂d̃

∂ρ
)η.

With this splitting, (3.13) implies that∫
Ω

(
k2β0|u|2 − ρη′

∣∣∣∣1ρ ∂u∂θ
∣∣∣∣2
)
dx(3.21)

≤ −Σ + k2Σ1 − 2 Re

∫
Ω

f1ηρ
∂ū

∂ρ
dx−

∫
Ω

αρ

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx− k2

∫
Ω+
PML

ρd̃2η′|u|2 dx.

Since d̃2 tends to 1 as k goes to infinity and ∂d̃
∂ρ

= iσ̃′

k
tends to 0 as k goes to infinity, we

directly see that

(3.22) Re β0 ≥ η, for k large enough.

Using this property, the boundedness of d̃ and the fact that η′ ≤ 0 in (3.21), we find that

k2

∫
Ω

η|u|2 dx . |Σ|+ k2|Σ1|+ ‖f1‖Ω‖∇u‖Ω(3.23)

+

∫
Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx,

for k large enough. Now by the definition of α and Lemmas A.2 and A.3, we have∫
Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx .
∫

Ω+
PML

(∣∣∣∣∂u∂ρ
∣∣∣∣2 + k2|u|2

)
dx

+
1

k

∫
ΩPML

∣∣∣∣∂u∂ρ
∣∣∣∣2 dx.

With the help of (3.6), we then obtain∫
Ω

|α|ρ
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx+ k2

∫
Ω+
PML

|u|2 dx

. k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k
‖∂u
∂ρ
‖2

ΩPML
.



12 T. CHAUMONT-FRELET, D. GALLISTL, S. NICAISE, AND J. TOMEZYK

This estimate in (3.23) leads to

k2

∫
Ω

η|u|2 dx . |Σ|+ k2|Σ1|+ ‖f1‖Ω‖∇u‖Ω(3.24)

+k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k
‖∂u
∂ρ
‖2

ΩPML
,

for k large enough.
It then remains to estimate |Σ| and k2|Σ1|.

i) By the definition (3.12) and (A.16), it holds

k2|Σ1| ≤ 4

∫
ΩPML

σ̃1/2

∣∣∣∣∂u∂ρ
∣∣∣∣ kσ̃1/2|u| dx.

Cauchy-Schwarz’s inequality and the boundedness of σ̃1/2 then lead to

k2|Σ1| . ‖
∂u

∂ρ
‖ΩPML

‖kσ̃1/2u‖ΩPML
.

Using Young’s inequality (with an arbitrary λ > 0) and (3.6) we infer

k2|Σ1| . λ‖∂u
∂ρ
‖2

ΩPML
+

1

λ

∫
ΩPML

σ̃k2|u|2dx

. λ‖∂u
∂ρ
‖2

ΩPML
+

1

λ

(
k‖f‖Ω‖u‖Ω + ‖∂u

∂ρ
‖ΩPML

‖u‖ΩPML

)
.(3.25)

For the second term of this right-hand side using Young’s inequality we find

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δk
√
k

∫
ΩPML

σ̃′
∣∣∣∣∂u∂ρ

∣∣∣∣2 dx
+

δ√
k

∫
ΩPML

∣∣∣∣∂2u

∂ρ2

∣∣∣∣2 dx,
for all δ > 0. Using (3.7), the fact that γ tends to 1 as k goes to infinity and the property

k
k2+σ2 ≥ 1

k
valid for k large enough, we find

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δ
√
k

(‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
)

+
δ√
k

∫
ΩPML

∣∣∣∣∂2u

∂ρ2

∣∣∣∣2 dx,
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for all δ > 0 and for k large enough. For the last term of this right-hand side, using the
estimate (3.4), we arrive at

|Σ| . 1

k
‖∂u
∂ρ
‖2

ΩPML

+
1

δ
√
k

(‖f‖Ω‖u‖Ω +
1

k
‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
)

+
δ√
k

(‖f‖2
Ω + k4‖u‖2

Ω).

This estimate and (3.25) in (3.24)

k2

∫
Ω

η|u|2 dx . ‖f1‖Ω‖∇u‖Ω

+ k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+ (λ+

1

k
)‖∇u‖2

ΩPML

+ (
k

λ
+

1

δ
√
k

)‖f‖Ω‖u‖Ω + (
1

λ
+

1

δk
3
2

)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+
δ√
k
‖f‖2

Ω + δk
7
2‖u‖2

Ω,

for k large enough.
Comparing this estimate with (3.6) and recalling that η = 1 in Ω \ Ω+

PML and (A.6) for
large k, we have shown that

k2

∫
Ω

|u|2 dx ≤ C
(
‖f1‖Ω‖∇u‖Ω

+ k‖f‖Ω‖u‖Ω + ‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML
+ (λ+

1

k
)‖∇u‖2

ΩPML

+ (
k

λ
+

1

δ
√
k

)‖f‖Ω‖u‖Ω + (
1

λ
+

1

δk
3
2

)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+
δ√
k
‖f‖2

Ω + δk
7
2‖u‖2

Ω

)
,

for k large enough and some positive constant C independent of k. We now chose δ > 0
so that

Cδk
7
2 =

k2

2
,

or equivalently

δ =
k−

3
2

2C
.
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With this choice we find

k2

∫
Ω

|u|2 dx . ‖f1‖Ω‖∇u‖Ω

+ k(1 +
1

λ
)‖f‖Ω‖u‖Ω + (1 +

1

λ
)‖∂u
∂ρ
‖ΩPML

‖u‖ΩPML

+ (λ+
1

k
)‖∇u‖2

ΩPML
+ ‖∂u

∂ρ
‖ΩPML

‖u‖ΩPML
+

1

k2
‖f‖2

Ω,

for k large enough. Recalling the definition of f1 and Lemma A.3, we get

‖f1‖Ω . ‖f‖Ω +
1

k
‖∇u‖Ω,

and consequently

k2

∫
Ω

|u|2 dx . ‖f‖Ω‖∇u‖Ω + (λ+
1

k
)‖∇u‖2

Ω

+ k(1 +
1

λ
)‖f‖Ω‖u‖Ω + (1 +

1

λ
)‖∇u‖Ω‖u‖Ω + ‖f‖2

Ω.

for k large enough. By Young’s inequality, this estimate implies that

k2

∫
Ω

|u|2 dx ≤ C

µ
‖f‖2

Ω + µ‖∇u‖2
Ω + C(λ+

1

k
)‖∇u‖2

Ω

+
C

µ1

(1 +
1

λ
)‖f‖2

Ω + µ1(1 +
1

λ
)k2‖u‖2

Ω

+
C

µ2k2
(1 +

1

λ
)‖∇u‖2

Ω + µ2(1 +
1

λ
)k2‖u‖2

Ω + C‖f‖2
Ω,

for k large enough, for any positive real numbers µ, µ1 and µ2 and a positive constant C
independent of k (and µ, µ1 and µ2). Choosing µ1 = µ2 = (4(1 + 1/λ))−1, we find that

k2

∫
Ω

|u|2 dx ≤ C(1 +
1

µ
(1 +

1

λ
)2)‖f‖2

Ω +
(
µ+ Cλ+

C

k
(1 +

1

λ
)2
)
‖∇u‖2

Ω,

for k large enough, for any positive real numbers µ, λ and a positive constant C independent
of k, µ, λ. At this stage we take advantage of (3.8) to obtain

k2

∫
Ω

|u|2 dx ≤ C
(

(1 +
1

µ
(1 +

1

λ
)2 + µ+ Cλ+

C

k
(1 +

1

λ
)2
)
‖f‖2

Ω

+ (µ+ Cλ)k2‖u‖2
Ω + kC(1 +

1

λ
)2‖u‖2

Ω.

Choosing µ = 1
4

and λ = 1
4C

, we find that

k2

∫
Ω

|u|2 dx ≤ C‖f‖2
Ω + Ck‖u‖2

Ω,

for k large enough and a positive constant C independent of k. As for k large enough
Ck ≤ k2

2
, we have proved that

k‖u‖Ω . ‖f‖Ω,



CONVERGENCE ANALYSIS FOR WAVE EQUATIONS WITH PML 15

for k large enough. Coming back to (3.8), we conclude that∫
Ω

|∇u|2 dx . ‖f‖2
Ω,

for k large enough. �

4. Comparison with a sponge layer

The boundary value problem corresponding to a sponge layer consists in looking at
usponge solution of

Lspongeusponge = f in Ω,(4.1)

usponge = 0 on ∂Ω,(4.2)

where the operator Lsponge is defined by

Lspongev = ∆v + (k2 + 2iσ̃k)v =
1

ρ

∂

∂ρ

(
ρ
∂v

∂ρ

)
+

1

ρ2

∂2v

∂θ2
+ (k2 + 2iσ̃k)v.

This problem (4.1) enters in the framework developed recently in [7] if the boundary
of Ω is C1,1 or if it is a convex polygon, since it satisfies the assumption of Section 2 of
that paper [7] (with the choices L0 = −Id,L1 = −2σ̃Id, and L2 = −∆), and since its
variational formulation is given by

(4.3) asponge(usponge, v) = −
∫

Ω

fv̄ dx,∀v ∈ H1
0 (Ω),

where the sesquilinear form asponge(·, ·) is defined by

asponge(v, w) =

∫
Ω

(
∇v · ∇w̄ − (k2 + 2iσ̃k)vw̄

)
dx,∀v, w ∈ H1

0 (Ω).

This sesquilinear form trivially satisfies

|asponge(v, w)| . |||v||| |||w|||,∀v, w ∈ H1
0 (Ω),

where

|||v||| =
(
k2‖v‖2

Ω + |v|21,Ω
) 1

2 ,

and
Re asponge(v, v) ≥ |v|21,Ω − k2‖v‖2

Ω,∀v ∈ H1
0 (Ω).

Consequently the associated operator Asponge is a Fredholm operator from H1
0 (Ω) into

H−1(Ω), therefore it is an isomorphism if and only if it is injective. But the injectivity is
not difficult to show because u ∈ H1

0 (Ω) solution of (4.3) with f = 0 satisfies in particular

asponge(u, u) = 0,

and taking the imaginary part we get

u = 0 on ΩPML.

Since u also satisfies
∆u+ (k2 + 2iσ̃k)u = 0 in Ω,
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by Holmgrem’s theorem we deduce that u = 0.
In order to compare (4.1) with (3.3), we rewrite (3.3) as

LPMLu = d̃2f,

with

LPMLv = k2d̃2v +
q2

ρ

∂

∂ρ

(
ρ
∂v

∂ρ

)
+

1

ρ2

∂2v

∂θ2
+ q

∂q

∂ρ

∂v

∂ρ
,

We can look at u as solution of

Lspongeu = f (k) in Ω,(4.4)

u = 0 on ∂Ω,(4.5)

where f (k) = Lspongeu− LPMLu+ d̃2f and consequently

f (k) = d̃2f + (1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
+
(

(k2 + 2iσ̃k)− k2d̃2
)
u− q ∂q

∂ρ

∂u

∂ρ
.(4.6)

Let us now estimate the L2-norm of f (k).

Lemma 4.1. For k large enough, it holds

(4.7) ‖f (k)‖Ω . ‖f‖Ω.

Proof. As d̃ is uniformly bounded in Ω, it suffices to estimate the L2-norm of the three
other terms of the right-hand side of (4.6). For the second term of (4.6), by (A.19), we
have

‖(1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖Ω .

1

k
‖1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖ΩPML

.
1

k
‖u‖2,ΩPML

.

By (3.5), we conclude that

(4.8) ‖(1− q2)
1

ρ

∂

∂ρ

(
ρ
∂u

∂ρ

)
‖Ω . ‖f‖Ω,

for k large enough.
The definition of d̃ shows

(k2 + 2iσ̃k)− k2d̃2 = σ̃2.

This identity and the bound (3.1) show that the the third term of (4.6) satisfies

(4.9) ‖
(

(k2 + 2iσ̃k)− k2d̃2
)
u‖Ω . ‖u‖Ω . ‖f‖Ω,

for k large enough.
For the last term of (4.6), using Lemma A.3 and again (3.1), we directly conclude that

‖q ∂q
∂ρ

∂u

∂ρ
‖Ω .

1

k
|u|1,Ω . ‖f‖Ω,

for k large enough. This estimate, (4.8), and (4.9) lead to the asserted estimate. �
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At this stage, we can look at u ∈ H1
0 (Ω) as the unique solution of (4.1) with a datum

f (k) instead of f . The L2 norm of f (k) is uniformly bounded in k. Consequently applying
Theorem 1 of [7], we directly get the next result.

Theorem 4.2. Let γ be a natural number and assume that the boundary of Ω is of class
Cγ+1,1. Then for k large enough, for all ` ∈ {0, · · · , γ}, the unique solution u ∈ H1

0 (Ω) of
(2.6) admits the splitting

(4.10) u =
`−1∑
j=0

kju
(k)
j + r

(k)
` ,

where u
(k)
j ∈ Hj+2(Ω) with

(4.11) ‖u(k)
j ‖j+2,Ω . ‖f‖Ω,

for 0 ≤ j ≤ `− 1 and r
(k)
` ∈ H`+2(Ω) with

(4.12) ‖r(k)
` ‖`+2,Ω . k`+1‖f‖Ω.

Remark 4.3. This result remains valid for a convex polygon with γ = 0.

5. Finite element discretizations

5.1. hp-FEM. Here we want to take advantage of the splitting from Theorem 4.2 to derive
stability conditions and error estimates for hp finite element discretizations of (2.6).

We look for a finite element approximation uh,p to u. To this end, we consider a family
of regular (in Ciarlet’s sense) meshes {Th}h of Ω, where each mesh is made of triangular
elements K. To simplify the analysis, we assume that the boundary of Ω is exactly tri-
angulated, and therefore, we consider curved Lagrange finite elements [3]. Also, for each

element K, we denote by FK the mapping taking the reference element K̂ to K.
Then, for all p ≤ γ + 1, the finite element approximation space Vh,p is defined as

Vh,p =
{
vh,p ∈ H1

0 (Ω) | vh,p|K ◦ F−1
K ∈ Pp(K̂) ∀K ∈ Th

}
,

where Pp(K̂) stands for the set of polynomials of total degree less than or equal to p.
As the family of meshes is regular, for each v ∈ H l+1(Ω) ∩ H1

0 (Ω)S (0 ≤ l ≤ p), there
exists an element Ih,pv ∈ Vh,p such that

(5.1) |v − Ih,pv|j,Ω . hl+1−j‖v‖l+1,Ω, (0 ≤ j ≤ l).

We refer the reader to [3, Corollary 5.2] (see also [8]).
Then a finite element approximation of u is obtained by looking for uh,p ∈ Vh,p such that

(5.2) bk(uh,p, vh,p) = −
∫

Ω

d̃2fv̄h,pdx, ∀vh,p ∈ Vh,p.
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5.1.1. Asymptotic error estimate. Now we are ready to prove a convergence result in an
appropriate asymptotic range.

Theorem 5.1. Assume that the boundary of Ω is of class Cγ+1,1 for some natural number
γ (or a convex polygon) and let f ∈ L2(Ω). Then there exists k0 large enough and δ > 0
small enough such that if k ≥ k0, kh ≤ δ and kp+1hp ≤ δ with p ≤ γ + 1 (p = 1 if Ω is a
convex polygon), there exists a unique finite element solution uh,p ∈ Vh,p to (5.2), and the
estimate

(5.3) |||u− uh,p||| . inf
φh,p∈Vh,p

|||u− φh,p|||

holds. Furthermore, we have

(5.4) |||u− uh,p||| . kh‖f‖Ω.

Proof. The proof of this Theorem is exactly the same as the one of Theorem 2 from [7], by
using Theorem 4.2 and the fact that the sesquilinear form bk satisfies Assumption 1 from
[7]. Indeed the continuity property

|bk(v, w)| . |||v||| |||w|||,∀v, w ∈ H1
0 (Ω),

is a direct consequence of Cauchy-Schwarz’s inequality. Let us now prove the G̊arding
inequality

(5.5) Re bk(u, u)| & |u|21,Ω − k2‖u‖2
Ω, ∀u ∈ H1

0 (Ω).

Fix an arbitrary u ∈ H1
0 (Ω). First by the properties (A.13), (A.15) and (A.17), for k large

enough we have

Re bk(u, u)| ≥ 1

2
|u|21,Ω − 2k2‖u‖2

Ω −
C

k

∫
ΩPML

|∇u||u| dx,

for some C > 0 independent of k. Cauchy-Schwarz’s inequality and Young’s inequality
then lead to

Re bk(u, u) ≥ 1

4
|u|21,Ω − (2k2 +

C2

k2
)‖u‖2

Ω.

This proves (5.5). �

5.1.2. Pre-asymptotic error estimate. In this part, we aim at giving a pre-asymptotic error
estimate for the problem (2.5). As in [15], we use an appropriate elliptic projection, in
order to obtain the existence of a solution uh,p to (5.2) under a weaker condition than in
the asymptotic range.

First, we define:

Lq(u) := q2∂
2u

∂ρ2
+

1

ρ2

∂2u

∂θ2
+
q2

ρ

∂u

∂ρ
+ q

∂q

∂ρ

∂u

∂ρ

=
q

ρ

∂

∂ρ

(
qρ
∂u

∂ρ

)
+

1

ρ2

∂2u

∂θ2

= ∆u+ (1− q2)
∂2u

∂ρ2
+ (1− q2)

1

ρ

∂u

∂ρ
+ q

∂q

∂ρ

∂u

∂ρ
.
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Then, we look at the following problem: find u ∈ H1
0 (Ω) ∩H2(Ω) solution of{

Lq(u) = f in Ω,

u = 0 on ∂Ω.

The variational form of this problem is: Find u ∈ H1
0 (Ω) such that

(5.6) ak(u, v) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω),

with f ∈ L2(Ω) and

ak(u, v) :=

∫
Ω

(
q
∂u

∂ρ

∂(qv)

∂ρ
+

1

ρ2

∂u

∂θ

∂v

∂θ

)
dx

=

∫
Ω

(
q2∂u

∂ρ

∂v

∂ρ
+

1

ρ2

∂u

∂θ

∂v

∂θ
+ q

∂q

∂ρ

∂u

∂ρ
v

)
dx.

Lemma 5.2. There exist a unique solution u ∈ H1
0 (Ω) to problem (5.6), further we have

u ∈ H2(Ω) with

(5.7) ‖u‖2,Ω . ‖f‖Ω .

Proof. We first prove that ak is continuous and coercive. Indeed one trivially has

|ak(u, v)| . (
∥∥q2
∥∥
∞ + 1) ‖u‖1,Ω ‖v‖1,Ω +

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖∇u‖Ω ‖v‖Ω ,∀u, v ∈ H

1
0 (Ω).

Hence, with Lemma A.2, A.3, we have the existence of a constant independent from k such
that

|ak(u, v)| . ‖u‖1,Ω ‖v‖1,Ω ,∀u, v ∈ H
1
0 (Ω).

On the other hand, if k is large enough, we have

Re ak(u, u) ≥ min(Re q, 1) ‖∇u‖2
Ω −

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖∇u‖Ω ‖v‖Ω

≥ C1 ‖∇u‖2
Ω −

C2

k
‖u‖2

1,Ω

≥
(
C1 −

C2

k

)
‖u‖2

1,Ω

& ‖u‖2
1,Ω .

Then, since ak is continuous and coercive, by Lax-Milgram Lemma, we have the existence
and uniqueness of a solution u ∈ H1

0 (Ω) to (5.6). The strong ellipticity of Lq gives us the
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H2(Ω) regularity of u. So, u ∈ H2(Ω) ∩H1
0 (Ω), and we have

‖u‖2,Ω . ‖∆u‖Ω

. ‖Lq(u)‖Ω +
∥∥1− q2

∥∥
∞ ‖u‖2,Ω +

∥∥1− q2
∥∥
∞ ‖u‖1,Ω +

∥∥∥∥q ∂q∂ρ
∥∥∥∥
∞
‖u‖1,Ω

. ‖f‖Ω +
1

k
‖u‖2,Ω + ‖u‖1,Ω ,

hence for k large enough, we obtain (5.7). �

Lemma 5.3. We define the projections Ph,pu ∈ Vh,p and P∗h,pu ∈ Vh,p as unique solutions
to

ak(Ph,pu, vh,p) = ak(u, vh,p) ∀vh,p ∈ Vh,p,
ak(vh,P∗h,pu) = ak(vh, u) ∀vh,p ∈ Vh,p.

If uφ ∈ H1
0 (Ω) solves bk(uφ, v) = (φ, v) for all v ∈ H1

0 (Ω) for some φ ∈ L2(Ω), then we
have ∥∥uφ − P∗h,puφ∥∥Ω

. (h2 + kphp+1) ‖φ‖Ω

and ∥∥uφ − P∗h,puφ∥∥1,Ω
. (h+ (kh)p) ‖φ‖Ω .

Proof. The existence and uniqueness of Ph,pu and of P∗h,pu comes from the coercivity and
continuity of ak. We recall that, by Theorem 4.2 (with ` = p− 1), we have

uφ =

p−2∑
j=0

kju
(j)
φ + rφ

with ∥∥∥u(j)
φ

∥∥∥
j+2,Ω

. ‖φ‖Ω(5.8)

‖rφ‖p+1,Ω . kp ‖φ‖Ω .(5.9)

By Céa’s lemma, we have∥∥uφ − P∗h,puφ∥∥1,Ω
. inf

vh,p∈Vh,p
‖uφ − vh,p‖1,Ω . ‖uφ − Ih,puφ‖1,Ω .

To estimate this right-hand side, we use (5.8) and (5.9) and (5.1) to obtain

‖uφ − Ih,puφ‖1,Ω .
p−2∑
j=0

kj
∥∥∥u(j)

φ − Ih,pu
(j)
φ

∥∥∥
1,Ω

+ ‖rφ − Ih,prφ‖1,Ω

.
p−2∑
j=0

kjhj+1
∥∥∥u(j)

φ

∥∥∥
j+2,Ω

+ hp ‖rφ‖p+1,Ω

. h

p−2∑
j=0

kjhj
∥∥∥u(j)

φ

∥∥∥
j+2,Ω

+ (kh)p ‖φ‖Ω .
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This proves that

‖uφ − Ih,puφ‖1,Ω . (h+ (kh)p) ‖φ‖Ω ,(5.10)

and hence ∥∥uφ − P∗h,puφ∥∥1,Ω
. (h+ (kh)p) ‖φ‖Ω ,

Similarly we can show that

‖uφ − Ih,puφ‖Ω . h(h+ (kh)p) ‖φ‖Ω .(5.11)

This estimate cannot be used to bound the L2-norm of uφ−P∗h,puφ, hence we use an Aubin-

Nitsche trick. For this, we introduce ξ ∈ H1
0 (Ω) solution to ak(ξ, v) = (uφ −P∗h,puφ, v), for

all v ∈ H1
0 (Ω). The existence and uniqueness of ξ follow from the properties of ak and we

have ∥∥uφ − P∗h,puφ∥∥2

Ω
= ak(ξ, uφ − P∗h,puφ)

= ak(ξ − Ph,pξ, uφ − P∗h,puφ)

≤
∥∥uφ − P∗h,puφ∥∥1,Ω

‖ξ − Ph,pξ‖1,Ω

. (h+ (kh)p) ‖φ‖Ω h
∥∥uφ − P∗h,puφ∥∥Ω

. (h2 + kphp+1) ‖φ‖Ω

∥∥uφ − P∗h,puφ∥∥Ω
.

�

Now, since we have introduced the elliptic projection and its approximation properties
in Lemma 5.3, we can follow [15] to produce a pre-asymptotic error estimate.

Theorem 5.4. Assume that kp+2hp+1 is small enough, then there exists a unique solution
uh,p ∈ Vh,p of problem (5.2) and it holds

(5.12) |||u− uh,p||| . (kh+ k2p+1h2p) ‖f‖Ω .

Proof. We use Aubin-Nitsche’s trick, that is why we introduce ξ ∈ H1
0 (Ω), which verifies

bk(v, ξ) = (v, u− uh), for all v ∈ H1
0 (Ω). Hence we have, by the above lemma,

‖u− uh,p‖2
Ω = bk(u− uh,p, ξ) = bk(u− uh,p, ξ − P∗h,pξ)

= −k2(d̃2(u− uh,p), ξ − P∗h,pξ) + ak(u− uh,p, ξ − P∗h,pξ)
= −k2(d̃2(u− uh,p), ξ − P∗h,pξ) + ak(u− Ih,pu, ξ − P∗h,pξ)
. k2 ‖u− uh,p‖Ω

∥∥ξ − P∗h,pξ∥∥Ω
+ ‖u− Ih,pu‖1,Ω

∥∥ξ − P∗h,pξ∥∥1,Ω

. ((kh)2 + kp+2hp+1) ‖u− uh,p‖2
Ω + (h2 + (kh)2p) ‖f‖Ω ‖u− uh,p‖Ω .

Then, if kp+2hp+1 and kh are small enough,

(5.13) ‖u− uh,p‖Ω . (h2 + (kh)2p) ‖f‖Ω .
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This allows to estimate the energy norm of u− uh,p as follows:

|||u− uh,p|||2 . k2 ‖u− uh,p‖2
Ω + |u− uh,p|21,Ω

. k2 ‖u− uh,p‖2
Ω + |ak(u− uh,p, u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |ak(u− uh,p, u− uh,p)− k2(d̃2(u− uh,p), u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |bk(u− uh,p, u− uh,p)|

. k2 ‖u− uh,p‖2
Ω + |bk(u− uh,p, u− Ih,pu)|

. k2 ‖u− uh,p‖2
Ω + |||u− uh,p||| · |||u− Ih,pu|||.

Young’s inequality gives us

|||u− uh,p||| . k ‖u− uh,p‖Ω + |||u− Ih,pu|||.
By (5.13), (5.10) and (5.11), we deduce that

|||u− uh,p||| . (k(h2 + (kh)2p) + h+ (kh)p) ‖f‖Ω ,

which proves (5.12) as kh2 . kh and h+ (kh)p . kh.
�

5.2. A multiscale approach. An alternative to high-order polynomials for achieving
stability is the computation of subscale corrections in a multiscale fashion. The approach
was first used for numerical homogenization problems [21] and later applied to Helmholtz
problems by [26]. A Petrov–Galerkin variant of this approach is studied in [16], while [6]
discusses the case of variable coefficients, which is closely related to the present case of
a PML. In order to state the PML setting in the framework of [6], it is convenient to
reformulate the original boundary-value problem (2.1) in Cartesian coordinates as follows

−∇ · A∇u− k2dd̃u = −dd̃f in Ω and u = 0 on ∂Ω.

The resulting coefficient matrix A has been provided by [9] and reads

A(ρ, θ) =

(
q cos2 θ + q−1 sin2 θ (q − q−1) cos θ sin θ
(q − q−1) cos θ sin θ q sin2 θ + q−1 cos2 θ

)
where it is understood that q = q(ρ). This problem is equivalent to (2.1) (and thereby
to (2.3)) in the sense that they have the same unique solution u. The reason why the
multiscale method is stated for this version of the equation it has the structure of a standard
Helmholtz equation with a nontrivial diffusion coefficient. For this case, stability and error
estimates have been formulated in [6, 16, 26], and they immediately apply to the present
situation. As the equations are equivalent on the PDE level, the stability results from
Section 3 remain valid. The corresponding alternative variational formulation (equivalent
to (2.1) or (2.3)) reads: find u ∈ H1

0 (Ω) such that

(5.14) Ak(u, v) = (f̃ , v)L2(Ω)

where f̃ := −dd̃f and the sesquilinear form Ak is defined by

Ak(v, w) := (A∇v,∇w)L2(Ω) − k2(dd̃u, v)L2(Ω) for any v, w ∈ H1
0 (Ω).
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With help of the results from Section 3 it can be shown that Ak satisfies the following
inf-sup condition.

Lemma 5.5. The sesquilinear form Ak satisfies

(5.15) γ(k) . inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

ReAk(v, w)

|||v||| |||w|||

where γ(k) > 0 satisfies γ(k)−1 ∼ k.

Proof. Let v ∈ H1
0 (Ω) be given. We follow the approach of [22] and denote by z ∈ H1

0 (Ω)
the solution to the following dual problem

Ak(η, z) = 2k2(η, v)L2(Ω) for all η ∈ H1
0 (Ω).

The form Ak is symmetric (but not self-adjoint) and so the stability bound from Theo-
rem 3.6 applies to z and reads

|||z||| . ‖k2v‖L2(Ω) . k|||v|||.

After setting w := v + z one concludes

Ak(v, w) = Ak(v, v) +Ak(v, z) = Ak(v, v) + 2k2‖v‖2
L2(Ω) = |||v|||2

as well as

|||w||| ≤ |||v|||+ |||z||| . (1 + k)|||v||| . k|||v|||
for k large enough. The combination of these estimates yields

ReAk(v, w) = |||v|||2 & k−1|||v||| |||w|||

which implies the claimed stability condition with γ(k)−1 . k.
Conversely, if we assume that (5.15) holds, then we have

γ(k)|||u||| . sup
w∈H1

0 (Ω)\{0}

ReAk(u,w)

|||w|||

for the solution u ∈ H1
0 (Ω) of (5.14) with f ∈ L2(Ω). Consequently by Cauchy-Schwarz’s

inequality one gets

γ(k)|||u||| . ‖f‖0,Ω

k
,

or equivalently

|||u||| . 1

kγ(k)
‖f‖0,Ω.

According to the definition of Copt(k) from Lemma 3.2, we deduce that

1

kγ(k)
& Copt(k),

which proves the converse bound for γ(k)−1 due to the equivalence (3.2). �
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The numerical method is based on a coarse quasi-uniform finite element grid TH and
first-order conforming finite elements VH,1. The mesh size is indicated by the symbol H
because h will refer to the fine-scale discretization parameter in the two-scale method. Let
JH : H1

0 (Ω) → VH,1 denote a quasi-interpolation operator satisfying the usual first-order
approximation and stability property

H−1‖v − JHv‖L2(T ) + ‖∇JHv‖L2(T ) . ‖∇v‖L2(N(T )) for all T ∈ TH and all v ∈ H1
0 (Ω).

Here, N(T ) = N1(T ) is the union of all elements from TH that have a nonempty intersection
with T . More generally, we define N0(T ) := T and

Nm(T ) :=
⋃
{K ∈ TH : K ∩Nm−1(T ) 6= ∅}

for any positive integer m. On quasi-uniform meshes, the cardinality of Nm(T ) grows
polynomially with m.

Let h denote the fine-scale mesh parameter and consider the finite element space Vh,1
related to the mesh Th. It is supposed that Th is sufficiently fine such that the finite element
method over Vh,1 is stable in the sense that

(5.16) γ(k) . inf
vh∈Vh,1\{0}

sup
wh∈Vh,1\{0}

ReAk(vh, wh)
|||vh||| |||wh|||

where γ(k) is the inf-sup constant of Ak from Lemma 5.5. More precisely, if we assume
that k2h is small enough, then (5.16) holds. Indeed let us introduce

η(Vh,1) = sup
f∈L2(Ω)\{0}

inf
vh∈Vh,1

|||S∗kf − vh|||
‖f‖0,Ω

,

where S∗kf ∈ H1
0 (Ω) is the solution of the adjoint problem of (5.14) with a right-hand side

f . Then by standard interpolation estimates and the H2 regularity of S∗kf , we can see that

η(Vh,1) . kh.

Consequently by using the arguments of [23, Thm 4.2] and the stability bound from The-
orem 3.6, we deduce that (5.16) as soon as k2h is small enough.

Since global computations with Th are too costly, only certain functions from Vh,1 with
quasi-local support will be utilized to stabilize a scheme over TH . The stabilization is as
follows. The kernel of JH reads

Wh = {vh ∈ Vh,1 : JHvh = 0}.

Given T ∈ TH and vH ∈ VH,1, its so-called element correction CTvh ∈ Wh is defined as the
solution to the following variational problem

(5.17) Ak(wh, CTvH) = Ak,T (wh, vH) for all wh ∈ Wh.

Here and throughout this section, the notation Ak,ω indicates the spatial restriction of the
form Ak to a subdomain ω. Problem (5.17) is well-posed due to the next result.
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Lemma 5.6. Provided Hk . 1, we have the coercivity

‖∇wh‖2
L2(Ω) . ReAk(wh, wh) for all wh ∈ Wh.

The constants involved in “.” only depend on the bounds of the coercivity and continuity
constant of A as well as on the maximal modulus of dd̃.

Proof. The proof almost verbatim follows [6, Lemma 1]. �

This result readily implies boundedness of CT ,

|||CTvH ||| . |||vH |||T for all vH ∈ VH .
By linearity, one can see that the “global corrector” CvH :=

∑
T∈TH CTvH solves

Ak(wh, CvH) = Ak(wh, vH) for all wh ∈ Wh,

and thus satisfies the continuity

|||CvH ||| . |||vH ||| for all vH ∈ VH .
As mentioned above, the correctors from (5.17) shall serve as an additive stabilizing com-
ponent to the coarse finite element basis functions. But at this stage (5.17) defines a global
fine-scale problem and, thus, CTvH is not computationally available. The key observation
from [21] is that such computations can be localized to certain neighbourhoods of T . Let
` ∈ N be a localization (or oversampling) parameter and define

ΩT := intN `(T )

and
Wh(ΩT ) := {wh ∈ Wh : wh = 0 outside ΩT}.

These objects depend on the parameter `, which will, however, be suppressed for convenient
notation. Problem (5.17) is now approximated by seeking CT,`vH ∈ Wh(ΩT ) such that

(5.18) Ak,ΩT (wh, CT,`vH) = Ak,T (wh, vH) for all wh ∈ Wh.

Note that the numerical computation of each of the problems (5.18) is feasible (with
O(`H/h)2 vertices in 2D) as long as ` is of moderate size. The global localized version of
C is defined as

C`vH :=
∑
T∈TH

CT,`vH .

The localized approximation is justified by the following exponential decay result.

Theorem 5.7. Provided kH . 1, there exists 0 < β < 1 such that any vH ∈ VH , any
T ∈ TH , and any ` ∈ N satisfy

‖∇(CT − CT,`)vH‖L2(Ω) . β`‖∇vH‖L2(T ),

‖∇(C − C`)vH‖L2(Ω) . C(`)β`‖∇vH‖L2(T ),

with a constant C(`) that grows not faster than polynomially with `.

Proof. For a proof we refer to [16]. See also [6, Theorem 4]. �
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The multiscale scheme is a Petrov–Galerkin method and referred to as multiscale Petrov–
Galerkin scheme (MSPG). It seeks u

(`)
H ∈ VH,1 such that

(5.19) Ak(u(`)
H , (1− C`)vH) = (f̃ , (1− C`)vH)L2(Ω) for all vH ∈ VH,1.

Well-posedness of (5.19) is ensured through an appropriate parameter choice that will be
described in the following. Suppose the fine-scale mesh size h is small enough such that
(5.16) is satisfied. The important property of the multiscale method is that it suffices to
relate the oversampling lengths logarithmically to the wave number k.

Theorem 5.8. Suppose kH . 1 and (5.16) as well as

(5.20) ` & | log γ(k)|
/
| log β|.

Then, the Petrov–Galerkin bilinear form from (5.19) satisfies

γ(k) . inf
vH∈VH,1\{0}

sup
wH∈VH,1\{0}

ReAk(vH , (1− C`)wH)

|||vH ||| |||wH |||
.

Proof. For a proof we refer to [16]. See also [6, Theorem 5]. �

As in [16, Thm 3], it can be shown that

|||uh − u(`)
H ||| . inf

vH∈VH,1
|||uh − vH |||.

Thus, the triangle inequality and classical approximation properties together with the H2

bound (3.5) show for h sufficiently small that

|||u− u(`)
H ||| . H‖u‖H2(Ω) . Hk‖f‖L2(Ω).

In particular, this means that the standard resolution condition kH . 1 for approximation
is also sufficient for stability of the multiscale scheme.

6. Some numerical examples

6.1. A first example. For the first test, we have taken Ω = [−6, 6]2\B(0, 1), the fictious
absorption coefficient σ and the exact solution uex as follows:

σ(ρ) =

{
0 if ρ ≤ 4
(ρ−4)2

2
otherwise

and uex(x, y) = (x2 − 36)(y2 − 36)eikx.

In Figure 2, we have depicted the rates of convergence for different values of h and k,
for p = 1 and 2. We can see that, when h is small enough, the order of convergence is p,
as expected from the theory. From these plots we can observe three states of convergence:
no convergence range/ pre-asymptotic range / asymptotic range.

Theorem 5.1 states that, provided kp+1hp . 1, the following error bound holds

|||uex − uh,p||| . |||uex − Ph,puex|||,
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Figure 2. First experiment with hp FEM: convergence curves for different
values of k and p.

where Ph,puex the orthogonal projection of uex on Vh,p for the inner product associated
with the norm ||| · |||. For different values of k, h and p, we compute uh,p and Ph,puex, and
denote by h∗(k) the greatest value of h such that

|||uex − uh,p||| ≤ 2|||uex − Ph,puex|||.
Figure 3 displays the graph of h∗(k) (in a log-log scale) for p = 1 and 2. In both

cases, we observe that h∗(k) ∼ k−1−1/p, which means that the condition kp+1hp . 1 is
optimal. Figure 4 displays the relative errors in the preasymptotic range dependent on the
wavenumber k, while k and h are coupled (depending on p) as in Theorem 5.4. As predicted
by the theory, the relative error stays constant, which means that the discretization is stable
with that choice of h and p.
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Figure 3. First experiment with hp FEM: Asymptotic range of h∗(k) for
p = 1, 2 and 6.

Next, we report numerical results for the multiscale scheme. We consider Q1 (bi-
linear) finite elements on a sequence of uniformly refined square meshes of mesh size
H = 3/4, 3/8, . . . , 3/128. The reference mesh has the mesh size h = 3/256. The very
regular structure of square meshes allows a quite efficient numerical implementation [16]
of the method in which the correctors C` outside the PML are computed on a reference
patch and re-used where the same configuration occurs. For simplicity, we disregard the
possibility of resolving the curved boundary within the corrector problems, although this
can be done in principle [13, 27]. We do not further analyze the error caused by this geo-
metric perturbation. For wave numbers k = 8, 12, 16, Figure 5 compares the relative errors
in the energy norm ||| · |||, namely the nodal interpolation by Q1 finite element functions,
the Q1-FEM error, and the error of the MSPG method where the oversampling parameter
varies from ` = 1 to ` = 3. For the FEM, pollution is clearly visible, while the MSPG
scheme produces smaller errors that are close to the best approximation for appropriate `.
Especially in the case k = 16, the choice of ` = 1 seems to be insufficient, while ` = 2, 3
lead to better results. This indicates the necessity of the coupling ` ∼ log k. Since the
accuracy of the MSPG method is limited by that of the FEM on the reference mesh, the
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(b) p = 2 and k5h4 = C
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Figure 4. First experiment with hp FEM: preasymptotic range.

last two mesh refinements for k = 16 do no provide a reasonable improvement. We finally
mention that the mesh resolution condition “hk2 small” is not fully satisfied for k = 16,
but we empirically observe that this choice of h seems to be sufficient.

6.2. A scattering problem. Here we want to show the efficiency of our method by
approaching a real scattering problem. Namely as obstacle O we take the unit disc and
take

uscat(θ, ρ) =
∞∑

j=−∞

ij
(

Jj(k)

Jj(k) + iYj(k)

)
(Jj(kρ) + iYj(kρ)) eijθ

as exact solution of the Helmholtz equation in R2 \ O, which corresponds to the scat-
tered solution of the incidence wave eikx1 (see [20, (3.3)] or [10]). As fictitious absorption
coefficient, we choose

σ(ρ) =

{
0 if ρ ≤ a
β(ρ−a)2

(b−a)2 otherwise
,
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Figure 5. First experiment. Relative error plots for the nodal interpolation
IH,1u, the Q1 FEM, and the multiscale Petrov–Galerkin method (‘MSPG’)
with oversampling parameter ` = 1, 2, 3.

with β > 0. Now, consider the solution ub of (compare with (2.3))
k2d̃2ub + q

ρ
∂
∂ρ

(
qρ∂ub

∂ρ

)
+ 1

ρ2
∂2ub
∂θ2 = 0 in Ω,

ub = eikx1 on ∂O,
ub = 0 on ∂Ω \ ∂O,

(6.1)

where Ω = B(0, b) (see section 2) with 1 < a < b. It is well-known (see for instance)
[18, 19, 5]) that ub converges to uscat (even exponentially but the constant being dependent
of the wave number k) in H1(B(0, a)) as b goes to infinity. For our tests, we take a = 3
and b = 6.

As an approximation we compute

uh,p ∈ Ṽh,p =
{
vh,p ∈ H1(Ω) | vh,p|K ◦ F−1

K ∈ Pp(K̂) ∀K ∈ Th
}
,

the FEM solution of (6.1).
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Figure 6. Second experiment with hp FEM: Convergence curves for differ-
ent values of k and β, with p = 2.

As ub is unknown, we compare the FEM solution uh,p with uscat, and the relative error

in energy norm means that we compute
|||uh,p−uscat|||Ωa
|||uscat|||Ωa

. The full error clearly satisfies

(6.2) |||uh,p − uscat|||Ωa ≤ |||uh,p − ub|||+ |||ub − uscat|||Ωa

Figure 6 shows convergence curves for different values of k, given in the relative energy
norm by using polynomials of degree 2. On the left, we have chosen β = 3 small enough
so that the error |||ub − uscat||| is not negligible. Accordingly, the error does not tend to 0
when h is small. On the right, with β = 6, the term |||ub − uscat||| is negligible compared
to the FEM error. As σ ∈ C2(Ω), we know that ub is at least H3(Ω), which is the reason
why we have 2 for the convergence rate. Figure 7 shows for polynomials of degree 6 that
the empirical convergence rate is not higher than 2.5, which indicates that the solution ub
might not be smoother than H7/2. In comparison with the case p = 2, in the case β = 6,
the term |||ub − uscat||| seems here more dominant as the rate of convergence deteriorates
more rapidly.

We also made a pre-asymptotic test (see Figure 8) with p = 2 and β = 3 or 6. We observe
that when k5h4 is constant, the relative error in energy norm is constant too, which is in
accordance with the estimate (6.2) since in the pre-asymptotic range the second term of
the right-hand side is negligible, while the first one is constant due to Theorem 5.4.

Figure 9 displays the real part of uscat and uh,p, for k = 20, p = 6 and β = 10, where we
see a good agreement between the exact solution and its approximation in Ωa.

The computational results obtained by the MSPG method are displayed in Figure 10.
The parameters H, h, `, and k are chosen as in the first experiment, and β = 10. As in
the first experiment, the FEM suffers from pollution, which is mitigated by the MSPG
method. The precision increases with larger `.
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Figure 7. Second experiment with hp FEM: Convergence curves for differ-
ent values of k and β, with p = 6.
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Figure 8. The pre-asymptotic examples with p = 2.

7. Conclusion

We have shown that the PML model problem satisfies the k-stability property. This
result enables is key to the numerical analysis of the two schemes presented in this work.
The numerical results underline that the stability conditions for the numerical methods
are sharp. Instead of comparing the two proposed schemes, we rather mention that they
are are designed for different types of applications: the hp FEM is of high order for smooth
domains, while the multiscale scheme is pollution-free without smoothness, but restricted
to first order.
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Figure 9. Second experiment with hp FEM: Real part of the exact solution
and the computed PML solution (p = 6 and β = 10) with k = 20.
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Figure 10. Second experiment. Relative error plots for the nodal inter-
polation IH,1u, the Q1 FEM, and the multiscale Petrov–Galerkin method
(‘MSPG’) with oversampling parameter ` = 1, 2, 3.
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Appendix A. Useful properties of the PML functions

We recall from [9] that the fictious absorption coefficient σ is supposed to be a non
decreasing function in C1(0,∞) such that

(A.1) σ(ρ) =

{
= 0, ∀ρ ≤ a,
> 0,∀ρ > a.

Then we define σ̃ ∈ C[0,∞) as follows

(A.2) σ̃(ρ) =

{
= 0, ∀ρ ≤ a,

1
ρ

∫ ρ
a
σ(s) ds,∀ρ > a.

From this expression, we deduce that

ρσ̃(ρ) =

∫ ρ

a

σ(s) ds,∀ρ > a,

and therefore

σ(ρ) = (ρσ̃)′(ρ), ∀ρ > a.

By Leibniz’s rule, we get

(A.3) ρσ̃′(ρ) = σ(ρ)− σ̃(ρ),∀ρ > a.

In addition, as σ is non decreasing, (A.2) directly implies

(A.4) σ̃(ρ) ≤ ρ− a
ρ

σ(ρ) < σ(ρ),∀ρ > a.

These two estimates directly lead to

(A.5) σ̃′(ρ) > 0,∀ρ > a,

and therefore σ̃ is a also a non decreasing function. Furthermore σ̃ ∈ C1[0,∞) because
from (A.3) and the continuity at a of σ and σ̃, one has

σ̃′(ρ) =
σ(ρ)− σ̃(ρ)

ρ
→ 0, as ρ→ a.
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From (A.1), (A.2) and (A.5) and the C1 property of σ̃, for all ε > 0, there exists δ > 0
such that

(A.6) σ(ρ) ≥ δ, σ̃(ρ) ≥ δ, σ̃′(ρ) ≥ δ, ∀ρ ≥ a+
ε

2
.

We then fix ε > 0 small enough such that a + ε < b and fix a cut-off function η ∈ D(R)
with η′ ≤ 0 such that

η(ρ) =

{
1,∀ρ ≤ a+ ε

2
,

0,∀ρ ≥ a+ ε.

For convenience, we denote by ΩPML, the PML region, i. e.,

ΩPML = {x ∈ Ω : |x| > a}.

We also set

Ω+
PML = {x ∈ Ω : |x| > a+

ε

2
}.

Lemma A.1. We always have

(A.7) σ ≤ σ̃′ in ΩPML.

Proof. By (A.4), one has

0 ≤ lim
ρ→a+

σ̃(ρ)

σ(ρ)
≤ lim

ρ→a+

ρ− a
ρ

= 0,

which shows that

lim
ρ→a+

σ̃(ρ)

σ(ρ)
= 0.

Using (A.3), we then have

lim
ρ→a+

σ̃′(ρ)

σ(ρ)
=

1

a
.

Consequently for ρ > a but close to a, we trivially have (A.7). On the other hand, for
ρ ∈ [a+ ε1, b], with ε1 > 0 as small as we want, (A.6) and the continuity of σ directly yield
(A.7). The proof is then complete. �

As in [9], we set

(A.8) d = 1 +
iσ

k
, and d̃ = 1 +

iσ̃

k
.

Let us also define

(A.9) q =
d̃

d
.
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Lemma A.2. The next properties hold

Im q(ρ) = − kρσ̃′(ρ)

k2 + σ2(ρ)
≤ 0,(A.10)

Im q2 = 2γ Im q,(A.11)

Im d̃2 =
2σ̃

k
≥ 0,(A.12)

q → 1, as k →∞,(A.13)

d→ 1, as k →∞,(A.14)

d̃→ 1, as k →∞,(A.15)

d̃2 − d̃2 = −4i

k
σ̃(A.16)

where 0 < γ =
1+σσ̃

k2

1+σ2

k2

that tends to 1 as k goes to infinity.

Proof. The properties (A.12) to (A.16) are direct. To prove (A.10) and (A.11), we notice
that q admits the writing

q = γ +
ik

k2 + σ2
(σ̃ − σ),

which directly yields the results recalling (A.3). �

Lemma A.3. We have

| ∂
∂ρ
q| . 1

k
in ΩPML,(A.17)

q = 1 in Ω0,(A.18)

|q − 1| . 1

k
in ΩPML.(A.19)

Proof. The second identity being immediate, let us concentrate on the two other ones. By
direct calculations, we see that

∂

∂ρ
q =

i

k
(
σ̃′

d
− d̃σ′

d2
).

The estimate (A.17) follows as |d| ≥ 1 as well as |d̃| ≥ 1 and since σ′ and σ̃′ are bounded.
Concerning the last one, we see that

q − 1 =
1

k

i(σ̃ − σ)

1 + iσ
k

.

Hence the estimate (A.19) holds because |1+ iσ
k
| ≥ 1 and because σ and σ̃ are bounded. �
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